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ABSTRACT 

The objective of this research was to develop a predictive model using artificial neural 

networks to determine the optimal chemical composition to achieve required 

hardenability in steel. The chemical composition of steel has great influence on its 

hardenability; however, the contribution of alloying elements is not purely additive or 

linear. The correlation between hardness values at various distances from the 

quenched end of the Jominy specimen and the chemical composition of steel, based on 

current knowledge of the subject is impossible mathematically defined. Since hardness 

is affected by both microstructure and chemical composition, microstructural data was 

also incorporated into the research. Supervised artificial neural networks were 

employed to create a sophisticated regression models which are based on a 

representative dataset of steels for heat treatment. 

A representative dataset of 470 steel samples was collected, with each sample 

including Jominy test results and chemical compositions. Additionally, an indication 

of significant martensite presence in the microstructure was included in the input data. 

Four distinct approaches to dataset representation were investigated. Each new 

approach offered ANN models with beĴer results and more options for future 

research. 

The developed models were experimentally validated, demonstrating its effectiveness. 

This innovative approach enables automated and precise prediction of chemical 

composition based on the required Jominy curve (hardenability), offering significant 

benefits to the mechanical engineering and manufacturing industries. 

 

Keywords: Heat Treatment, Hardenability, Chemical compositions, Microstructure, 

Jominy curve, Deep learning 
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PROŠIRENI SAŽETAK  

Cilj istraživanja u ovom doktorskom radu bio je razviti model koji predviđa optimalni 

kemijski sastava čelika potreban za postizanje zahtijevane prokaljivosti pomoću 

umjetnih neuronskih mreža. Kemijski sastav čelika utječe na prokaljivosti. Međutim, 

utjecaj legirajućih elemenata nije strogo aditivan niti linearan. Korelacija između 

vrijednosti tvrdoće na različitim udaljenostima od gašenog čela Jominyjevog uzorka i 

kemijskog sastava čelika je složena i ne može se precizno definirati tradicionalnim 

matematičkim metodama.  

Prikupljen je reprezentativni skup podataka od 470 uzoraka čelika, pri čemu svaki 

uzorak uključuje rezultate Jominyjeva testa (tvrdoću izražena u HRC, na 13 udaljenosti 

od gašenog čela) i kemijski sastav (maseni udjeli ugljika, mangana, silicija, kroma, 

nikla, molibdena i bakra). Budući da na tvrdoću utječu i mikrostruktura i kemijski 

sastav, mikrostrukturni podaci također su uključeni u istraživanje. U ulazne podatke 

uključen je i pokazatelj prisutnosti martenzita u mikrostrukturi. Pokazatelj značajne 

prisutnosti martnezita definiran je s prisutnosti od 50% martenzita u mikrostrukturi.  

Nadzirane umjetne neuronske mreže korištene su za razvoj sofisticiranih regresijskih 

modela temeljenih na reprezentativnom skupu podataka čelika za toplinsku obradu. 

Istražena su četiri različita pristupa predstavljanju skupa podataka, pri čemu je svaki 

novi pristup omogućio poboljšane modele umjetnih neuronskih mreža i otvorio nove 

mogućnosti za buduća istraživanja. 

Za modeliranje je korišten program MATLAB 2023b, uključujući aplikacije Neural 

Network FiĴing i Experiment Manager. Najoptimalniji modeli odabrani su na temelju 

najnižeg parametra korijena srednje kvadratne pogreške (engleski root mean squared 

error - RMSE). 

Za eksperimentalnu validaciju modela korišteno je pet čelika različitih prokaljivosti. 

Predviđeni maseni udjeli kemijskih elemenata za svih pet čelika nalazili su se unutar 

granica definiranih klasama čelika. Razvijeni modeli eksperimentalno su potvrđeni, 



 

iv 

 

čime je dokazana njihova učinkovitost. Ovaj inovativni pristup omogućuje 

automatizirano i precizno predviđanje kemijskog sastava na temelju zahtijevane 

Jominyjeve krivulje (prokaljivosti), nudeći značajne prednosti za strojarstvo i 

proizvodnu industriju. 

 

Ključne riječi: toplinska obrada, prokaljivost, kemijski sastav, mikrostruktura, 

Jominyjeva krivulja, duboko učenje 
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1. INTRODUCTION 

1.1. Origin of work 

The selection of steel for specific machine parts or constructions begins with defining 

the required properties. Among these properties, hardenability of steel is one of the 

most critical criteria for steels intended for quenching. Hardenability of steel is the 

ability of steel to achieve martensitic structure in deeper layer. It depends on the 

chemical composition of steel.  

The most commonly used method for characterizing hardenability is the Jominy-

Boegehold test, which produces a Jominy curve, which is a graphical representation 

of hardness values along the length of a test specimen. Hardenability is influenced by 

the prior austenite grain size, cooling rate, and the kinetics of austenite transformation. 

The contribution of alloying elements is crucial and it is not purely additive or linear. 

The correlation between hardness values at various distances from the quenched end 

of the Jominy specimen and the chemical composition of steel, based on current 

knowledge, cannot be fully explained using mathematical formulas. Microstructure 

significantly influences hardness and must be evaluated in conjunction with chemical 

composition. 

Consequently, designing the chemical composition of steel to achieve a desired 

hardenability, defined by the shape of the Jominy curve, is a highly complex task. This 

process is difficult to accomplish without the aid of computational methods. 

Computational modelling is a relatively inexpensive and efficient method widely used 

in materials science. Nowadays, with the advancement of computers and available 

software, artificial neural networks are used increasingly. Deep learning employs 

methods that enable computers to learn from real datasets by modeling nonlinear 

correlations between material properties and influencing factors.  
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In the modern era of optimization, achieving specific material properties at the lowest 

possible cost without compromising quality is crucial. Therefore, there is a growing 

need to develop steel with an optimized chemical composition that not only meets the 

required hardenability but also minimizes production costs. 

 

1.2. Hypothesis and research objective 

The main hypothesis of this doctoral thesis posits that it is possible to design chemical 

composition of steel with the required hardenability. The underlying premise is that 

the relationship between chemical composition, on one side and microstructure and 

hardenability on other side, can be modeled effectively to achieve desired outcomes. 

The research objective stems from this hypothesis: to develop a predictive model 

based on artificial neural networks that can determine the optimal/suitable chemical 

composition required for achieving a specific hardenability of steel. This model 

incorporates the effects of both chemical composition and microstructural 

characteristics on steel hardness.  

A representative dataset, comprising Jominy test results, mass fractions of seven 

chemical elements, and microstructural data, is utilized to establish and quantify the 

complex relationships that govern hardenability. 

The expected outcome of this research is a model that facilitates 

the calculation of the optimal/suitable chemical composition of steel to achieve specific 

hardenability of steel, i.e. Jominy curve profile. 

This hypothesis driven approach aims to provide an innovative framework for 

designing steel compositions that meet precise hardenability criteria, with potential 

applications in advancing material science and industrial steel production. 
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1.3. Research methodology and scientific contribution 

To achieve the objectives outlined in the hypothesis and research, the first critical step 

was to establish of a representative dataset, containing the chemical compositions of 

steels and their corresponding experimentally obtained Jominy test results. A 

comprehensive dataset comprising 470 steels for quenching and tempering, and case 

hardening by carburizing steels, with hardness data from the Jominy-Boegehold test 

(Jominy curve) serving as input predictors. Data were collected at 13 distinct distances 

from the quenched end, while the chemical composition was used as output response 

data for the same steels. The modeling process utilized mass fractions of carbon, 

silicon, manganese, chromium, nickel, molybdenum, and copper. Recognizing the 

role of microstructure in influencing hardness values, microstructure was also 

incorporated into the model, providing a more nuanced understanding of the 

relationship between chemical composition on one side and hardness and 

microstructure on other side.  

For the advanced regression analysis necessary to determine the relationships 

between the Jominy test results (hardness and microstructure) and the chemical 

composition of steel, Artificial Neural Networks (ANNs) in MATLAB 2023b were 

employed. Different models were generated for various data organizations, with the 

Regression Learner App used to train the neural network models. To prevent 

overfiĴing, 10-fold cross-validation was implemented during training. The model 

development process, encompassing both the training and testing phases. Models 

with the lowest test root mean square error (RMSE) were selected as the most accurate. 

In this thesis, a novel and innovative approach was developed by enabling the 

automated and highly accurate prediction of the chemical composition of steel based 

on the required hardenability. This method uniquely incorporates the consideration 

of microstructural variations at different distances from the quenched end of the 
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Jominy specimen, representing a significant advancement in the field of material 

science and steel processing. 

 

1.4. Structure of the doctoral thesis 

The doctoral thesis is organized into four main sections. The first section introduces 

the hypothesis, establishes the scientific significance of the study, and outlines the 

methodology employed. It serves as the foundation for understanding the research 

objectives and approach, while providing an overview of the thesis structure. 

The second section delves deeper into the theoretical background and includes a 

comprehensive literature review, divided into two major parts. The first part is 

concerned with the transformations of undercooled austenite and its relevance to 

hardenability. The historical development of hardenability characterization is traced, 

beginning with early studies and culminating in modern computational modeling 

techniques. A detailed discussion of the Jominy-Boegehold method is included to 

illustrate one of the most widely used characterization methods, along with its 

result—the Jominy curve. The second part explores the evolution of neural networks, 

beginning with early efforts to simulate biological neurons. It highlights seminal 

contributions, such as the foundational work of McCulloch and PiĴs, RosenblaĴ’s 

perceptron, and Widrow and Hoff’s formalization of learning through quantitative 

error measures. Key concepts, including the architecture of feedforward neural 

networks, backpropagation learning, and non-linear activation functions like sigmoid, 

ReLU, and Leaky ReLU, are presented to provide a comprehensive understanding of 

neural network theory. 

The third section focuses on analytical and experimental research, offering a detailed 

explanation of the methodology applied in the study. It presents the findings 

systematically, supported by visual data representations such as graphs and tables. 

The models are analyzed and interpreted in the context of the theoretical background 
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established earlier, demonstrating the correlation between chemical composition and 

the Jominy curve. 

The final section provides a conclusion and critical evaluation of the research. It 

summarizes the key findings, identifies the strengths and limitations of the study, and 

discusses its broader implications. The experiment that validated the numerical 

models is also explained. The thesis concludes by proposing potential avenues for 

future research, emphasizing how the findings could be applied to address related 

challenges or explore new directions in the field. 
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2. THEORETICAL BACKGROUND AND REVIEW OF PREVIOUS 

STUDIES 

2.1. Undercooled austenite transformation 

Steel is the most widely used construction material among all metals, due to its cost, 

the availability of iron, and its unique combination of properties. Another feature that 

contributes to steel's importance as a construction material is its ability to be modified 

and enhanced to meet specific requirements. 

Heat treatment facilitates the modification of steel's properties by intentional 

alteration of its microstructure. The alteration of microstructure during these 

processes influences the mechanical properties, particularly hardness and strength. 

During heat treatment, it is essential to define the appropriate heating temperature for 

the steel specimen, as well as the cooling rate. A controlled cooling rate is critical for 

achieving the desired hardness and strength, while also minimizing undesirable 

effects such as briĴleness, distortion, or excessive residual stresses. 

The transformation temperatures of steel are critical temperatures at which alterations 

in the crystal structure occur, mostly influenced by the carbon content within the 

microstructure. In addition to carbon, other chemical elements also influence the 

transformation temperatures of steel [1]. An especially interesting temperature is the 

critical temperature of austenite (γ - Fe) formation during heating and completely its 

transformation upon cooling which is denoted A₁. For plain carbon steels, A₁ is 

approximately 725 °C. Results of austenite decomposition during cooling below 

725 °C can include pearlite, bainite, or martensite, depending on the cooling 

conditions [2]. 

The driving force for a phase transformation is the difference in Gibbs free energy 

between the initial and final phases [3]. A system tends to undergo a phase 
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transformation in the direction that decreases its Gibbs free energy, moving toward a 

more stable phase. 

∆𝐺 = 𝐺ϐ୧୬ୟ୪ − 𝐺୧୬୧୲୧ୟ୪ (2.1). 

When ∆𝐺 < 0, the system will naturally transform from the initial phase to the final 

phase to reach a lower energy, more stable state. 

For phase transformations, equation 2.1 can be expressed in terms of enthalpy, 

temperature, and entropy: 

∆𝐺 = ∆𝐻 − 𝑇∆𝑆 (2.2), 

where H is enthalpy, T is absolute temperature and S is entropy. 

Austenite has a face-centered cubic (FCC) crystal structure, while ferrite (α - Fe) has a 

body-centered cubic (BCC) crystal structure. Austenite FCC structure contains a 

greater number of iron atoms per unit cell than ferrite BCC structure. Austenite FCC 

structure contains four iron atoms, while ferrite BCC structure contains only two iron 

atoms. Furthermore, austenite FCC structure provides an increased number of 

available slip planes. This atomic configuration facilitates increased atomic mobility 

and randomness. Pearlite is a two-phase mixture of ferrite and cementite (Fe₃C). The 

alternating layers of ferrite and cementite introduce structural regularity, further 

reducing atomic randomness. 

Even if austenite has a higher enthalpy (H) compared to pearlite, its higher entropy 

(S) makes Gibbs free energy for austenite lower at elevated temperatures, stabilizing 

the phase (Figure 2.1). 
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Figure 2.1. Gibbs free energy vs. temperature diagram [4] 

 

Austenite is unstable below A1 and it tends to transform to other phases depending on 

cooling conditions. During cooling, the transformation to martensite can only occur if 

the steel is first heated to the austenitization temperature. If pearlite is present instead 

of austenite before cooling, martensite will not form, as pearlite is already 

thermodynamically stable. 

The critical temperatures are dependent upon whether the steel is subjected to heating 

or cooling. Critical temperatures for starting and finishing the transformation to 

austenite during heating are denoted, respectively, by Ac1 and Ac3 for hypo-eutectoid 

steels (with wt. % of carbon less than 0.8) and by Ac1 and Accm for hypereutectoid steels 

(with wt. % of carbon between 0.8 and 2). These temperatures are higher than the 

corresponding critical temperatures for the start and finishing of the transformation 

from austenite during cooling, which are represented by Ar3 and Ar1 for hypoeutectoid 

steels and by Arcm and Ar1 for hypereutectoid steels with carbon content higher than 

0.8%).1 The faster the heating, the higher is the Ac temperature; the faster the cooling, 

 
1 Suffix ‘c’ comes from French word for heating (Chauffage) and ‘r’ comes from French word for cooling 
(Refroidissement).  
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the lower is the Ar temperature. As heating and cooling rates become endlessly slow, 

these critical temperatures converge on the equilibrium values A1, A3, and Acm (Figure 

2.2). 

 

Figure 2.2. The critical temperatures for steels 

 

2.1.1. Pearlite transformation 

The undercooling of austenite determines the microstructure that forms during the 

transformation of austenite. As the hypoeutectoid steel is cooled slightly below the A3 

temperature, proeutectoid α phase begins to form. The formation of ferrite is a 

diffusion-driven process. As ferrite forms, remained austenite enriches with carbon 

atoms, because there is no place for carbon atoms in ferrite. Both austenite (with an 

FCC crystal structure) and ferrite (with a BCC crystal structure) are primarily 

composed of iron atoms. During the transformation, these iron atoms rearrange to 

adapt to the new crystal structure. This rearrangement does not require the diffusion 

of iron atoms across large distances. 

The cooling rate plays a significant role in determining both the amount of ferrite that 

forms and the form it takes. Ferrite can be classified into two types: allotriomorphic 

and idiomorphic ferrite. Allotriomorphic ferrite is named for its irregular, non-

equiaxed shape, as it grows along the prior austenite grain boundaries (Figure 2.3). 
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Idiomorphic ferrite refers to equiaxed (regular, roughly spherical) ferrite crystals that 

form within the austenite grain. 

During slow cooling, allotriomorphic ferrite forms because the atoms have sufficient 

time to migrate, allowing ferrite to develop at the grain boundaries of austenite. In 

contrast, faster cooling rates promote the formation of equiaxed ferrite. This occurs 

because, at higher cooling rates, atoms may not have enough time to align into the 

elongated, boundary-following structure of allotriomorphic ferrite, resulting in more 

uniform ferrite formation within the austenite grain [5]. 

 

Figure 2.3. Schematic illustration of grain boundary allotriomorphic ferrite 
formation 

 

The pearlite transformation is a diffusion-based transformation that results in the 

formation of a two-phase microstructure composed of ferrite and cementite (Fe₃C) 

arranged in a lamellar (layered) structure. The transformation occurs at temperatures 

below the A1 temperature (eutectoid temperature). As the steel was cooled below the 

A3 temperature, the formation of ferrite caused the remaining austenite to become 

enriched with carbon. This process continued until the temperature reached A1, at 

which point the remaining austenite had a carbon content of 0.8 wt.% (eutectoid 

composition). The eutectoid transformation is a solid-state phase change in which 

single-phase austenite, with an approximate carbon content of 0.8 wt.%, transforms 
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into a two-phase microstructure. The ferrite transformed before the eutectoid 

temperature was achieved by cooling is referred to proeutectoid in order to indicate 

that it has been formed by a mechanism other than the eutectoid transformation. 

During the pearlite transformation, carbon atoms begin to diffuse, and the austenite 

decomposes into alternating layers of ferrite and cementite. Carbon atoms diffuse out 

of the ferrite regions and into the cementite regions, forming the characteristic lamellar 

structure. Cementite forms as a stable carbide to accommodate the excess carbon.  

The nucleation of pearlite is a heterogeneous process, meaning it typically occurs at 

sites where the energy barriers for nucleation are lower. The austenite/proeutectoid 

ferrite boundaries are ideal nucleation sites because the boundary provides an 

interface that reduces the energy required to form new phases (Figure 2.4).  

 

Figure 2.4. Schematic illustration of pearlite formation 

 

Carbon atoms readily diffuse along austenite/proeutectoid ferrite boundaries, 

facilitating the formation of the cementite component of pearlite. In eutectoid steels, 

nucleation occurs at austenite grain boundaries due to the absence of proeutectoid 

ferrite. Conversely, in hypereutectoid steels, nucleation takes place at 

austenite/proeutectoid cementite boundaries. 
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The simple calculation based on the lever rule shows that in a pearlite, approximately 

88 wt.% is ferrite, while the remaining 12 wt.% is cementite. Ferrite is a soft, ductile, 

and relatively low-strength phase. Cementite is a hard, briĴle, and high-strength 

phase. Pearlite has a good combination of strength and toughness. 

In faster cooling processes, with higher undercooling carbon diffusion is restricted due 

to less time and lower temperatures. Carbon atoms do not have sufficient time to 

segregate into distinct regions at a larger scale. Due to the restricted diffusion of 

carbon, the formation of pearlite occurs with narrower (finer) interlamellar spacing 

between the ferrite and cementite lamellae [6]. This is because the carbon content 

changes more quickly, leading to a denser arrangement of the alternating phases. 

During slower cooling and lower undercooling (temperature closer to A1) diffusion of 

carbon atoms occurs more freely due to more time and higher temperatures, leading 

to widely spaced (coarser) lamellae (Figure 2.5). 

 

Figure 2.5. Difference in pearlitic structure due to annealing and normalizing 

 

Fine pearlite can be obtained by normalizing, while coarse pearlite can be obtained by 

annealing (Figure 2.6). 
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Figure 2.6. Process nomenclature based on cooling rate 

 

2.1.2. Martensitic transformation 

Increased undercooling of austenite, achieved through a higher cooling rate 

(quenching), reduces the time available for atomic diffusion, significantly affecting the 

resulting microstructure of the steel. At lower temperatures, the displacive 

decomposition of austenite occurs, where atoms shift positions without long-range 

diffusion. Transformation occurs by crystallographic shear. This is in contrast to the 

reconstructive decomposition of austenite (e.g., pearlite transformation), which 

involves atomic diffusion and occurs at slower cooling rates at higher temperatures. 

Quenching prevents carbon atoms from diffusing out of the austenitic laĴice in 

adequate time. To optimize quenching, it is essential to determine the upper critical 

cooling rate. The upper critical cooling rate is defined as the minimum cooling rate at 

which diffusion-controlled precipitation during quenching is inhibited, allowing all 

dissolved alloying element atoms to stay in a supersaturated solid solution. When the 

cooling rate exceeds the upper critical cooling rate, increased undercooling of 

austenite occurs, leading to the martensitic transformation. The upper critical cooling 

rate is the minimum cooling rate required to form a 100% martensitic structure in steel 

during quenching.  Being an athermal reaction, martensitic transformation is only 

dependent on temperature and not on time. The Martensite start (Ms) and martensite 
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finish (Mf) temperatures define the temperature range within which the 

transformation takes place. 

Martensite has a body-centered tetragonal (BCT) crystal structure, which is distinctly 

different from the FCC structure of austenite. The transformation from austenite to 

martensite occurs through a diffusionless shear mechanism [7]. This mechanism 

involves a highly coordinated movement of atoms, which results in a distortion of the 

crystal laĴice rather than atomic diffusion. This process creates a massive amount of 

internal strain and introduces a very high density of dislocations in the martensitic 

structure. These dislocations act as barriers to further dislocation motion, which 

makes deformation extremely difficult and contributes to the high strength and 

hardness of martensite. 

In low-carbon steels, martensite typically forms as lath martensite, with fine, parallel 

plates (laths) oriented in the same direction, creating a needle-like structure. In high-

carbon steels, martensite forms as finer, elongated needle-like structures. These 

needles can be extremely small (microscopic in size), and their high dislocation 

density contributes to the steel’s hardness. As carbon content increases, the size of the 

laths diminishes (Figure 2.7). 

Carbon content (wt.%) 

0.1 – 0.2 0.3 0.4 0.6 0.8 

     

Figure 2.7. Schematic illustrations depicting morphological changes in lath 
martensite structures with varying carbon content in steels [8] 
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2.1.3. Bainite transformation 

Bainite transformation is the intermediate phase between martensite and pearlite. The 

process is diffusion-controlled regarding carbon partitioning, although it also 

incorporates shear deformation, rendering it a complex transformation [9]. Bainite 

develops at temperatures below pearlite transformation and above martensite 

transformation when austenite is cooled at a rate that is slower than that necessary for 

the creation of martensite, yet faster than that required for pearlite formation. 

Bainite consists of a fine mixture of ferrite and cementite. Upper bainite forms at 

higher temperatures (350–550 °C) and has a feathery morphology, with carbide 

precipitates between ferrite laths. Lower bainite forms at lower temperatures (250–

350 °C) and has a plate-like structure, with fine carbides precipitated within the ferrite 

plates (Figure 2.8). 

 

Figure 2.8.  Schematic illustration of the bainite transformation in steels [10] 

 

Upper bainite has a slower nucleation rate due to reduced driving force from 

undercooling, while lower bainite exhibits a higher nucleation rate because of greater 

undercooling despite lower atomic mobility. In both cases, ferrite grows by a shear 

mechanism, similar to martensitic transformation, but with carbon partitioning into 
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the surrounding austenite. In upper bainite, carbides precipitate at the ferrite-

austenite interfaces due to higher carbon mobility at elevated temperatures. In 

contrast, in lower bainite, carbides precipitate within the ferrite plates because of 

reduced carbon mobility at lower transformation temperatures. 

 

2.2. Hardenability 

Hardenability refers to the ability of a ferrous material to harden after austenitization 

and quenching. This general definition comprises two subdefinitions: the ability to 

reach a certain hardness level and the uniform hardness distribution within a cross 

section. The ability to reach a certain hardness level is associated with the highest 

aĴainable hardness. It depends first of all on the carbon content in the steel [11]. This 

doctoral thesis focuses on the laĴer aspect—the uniform hardness distribution within 

a cross-section. 

High hardenability steels are used for larger machine parts where high hardness is 

required in deeper layers. Steels with low hardenability may be used for smaller 

components or for surface hardened components such as gears or shafts. 

As mentioned in Section 2.1.2. Martensite transformation, carbon dissolved in the 

austenite after the austenitizing treatment has relevant influence on the hardness of 

martensite. The hardness of quenched steel reaches its maximum when the critical 

cooling rate is achieved during quenching, ensuring that no austenite remains. 

However, the carbon content (wt.%) in steel imposes a fundamental limit on hardness, 

even when the microstructure consists entirely of martensite (Figure 2.9). 

Additionally, the proportion of martensite in the microstructure plays a crucial role in 

determining the final hardness after quenching. 
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Figure 2.9.  Achievable maximum hardness influenced by the carbon content and 
amount of the martensite in the microstructure [12]. 

 

Increased carbon concentration in steel stabilizes austenite and delays its 

transformation into ferrite. Higher carbon content lowers the equilibrium temperature 

for the austenite-to-ferrite (A3) transformation. The transformation of austenite to 

ferrite requires the diffusion of carbon out of the austenite laĴice, as ferrite has an 

extremely low solubility for carbon. A higher carbon concentration increases the 

amount of carbon that must diffuse, thereby slowing the transformation process. 

Carbon increases the laĴice distortion of the BCT structure of martensite. The higher 

the carbon content, the greater the distortion, which directly enhances hardness. While 

the carbon content significantly affects the maximum hardness achievable, it has liĴle 

impact on the formation of martensite in the interior of the material. 

Upon cooling, the alloying elements, as well as carbon, are reallocated between ferrite 

and cementite. The redistribution of alloying elements requires diffusion. The 

diffusivity of alloying elements is significantly lower than that of carbon in steel. As a 

result, austenite is difficult to transform to pearlite when alloying elements are 

present. The critical cooling rate is reduced by alloying elements in steel. Thus, the 
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alloying elements improve hardenability [13, 14]. Alloying elements will effectively 

enhance deep hardenability only if they form a complete homogeneous solution with 

austenite. 

 

2.2.1. Jominy test 

Widely used experimental method for characterizing the hardenability was proposed 

by Jominy and Boegehold in 1938 [15].  A standardized bar, 25.4 mm diameter (1 inch) 

and 101.6 mm long (4 inch), is heated to the austenitizing temperature and then placed 

on a rig in which one end of the rod is cooled by a standard jet of water (Figure 2.10).  

This leads to a gradual reduction in the cooling rate along the bar, from rapid cooling 

at the quenched end to rates comparable to air cooling at the opposite end. 

 
Figure 2.10. Schematic representation of the Jominy- Boegehold test [16] 
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The round specimen is then ground flat along its length to a depth of 0.38 mm (15 

thousandths of an inch) to remove decarburized material. The hardness is measured 

at specific distances from the quenched end of Jominy specimen: 1.5, 3, 5, 7, 9, 11, 13, 

15, 20, 25, 30 40, 50 mm respectively. Different cooling rates result in variations in the 

final microstructure and, consequently, in different hardness (Figure 2.11). Higher 

hardness occurs where higher volume fractions of martensite develop. Lower 

hardness indicates transformation to bainite or ferrite/pearlite microstructures. The 

distance from the quenched end, over which martensite is obtained, is then the 

measure of hardenability (up to 50% of martensite in the microstructure). 

 
Figure 2.11. Measuring hardness and cooling rates on the standard Jominy specimen 

and resulting Jominy curve 

 

For two distinct Jominy curves it is visible that a different hardness value might be 

aĴained with the same microstructure (i.e. 99% martensite) at the same distance (i.e. 5 

mm) from the quenched end (Figure 2.12).  
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Figure 2.12. Jominy curves for steels C60E and 42CrMo4 

 

The variation is aĴributed to the differences in chemical composition, primarily the 

carbon content. Conversely, it is possible to obtain the same hardness value at an 

equivalent distance, yet with a different microstructure. It originates from the differing 

chemical composition (Figure 2.13). 

 

Figure 2.13. Jominy curves for steels C60E and 17CrNi6 

 

The cooling process in the Jominy test occurs primarily through heat conduction, 

influenced by physical properties such as density, specific heat capacity (c), thermal 

conductivity (λ), and heat transfer coefficient (α). These properties remain mostly 
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unaffected by the chemical composition of the steel. While the cooling rate is the same 

at specific distances from the quenched front, the chemical composition of the steel 

affects the resulting microstructure and phase transformations at these distances, as 

different alloying elements influence the transformation kinetics and the formation of 

phases such as martensite, bainite or pearlite. 

 

2.2.2. Influence of alloying elements on hardenability 

Steels with different chemical compositions exhibit distinct Jominy hardness profiles, 

leading to differences in hardenability [17]. The impact of alloying elements is 

observed in the delayed pearlite transformation [18]. Thus, the Ms temperature, 

necessary for martensitic transformation, is reached even at lower cooling rates. 

The martensitic structure exhibits high hardness; therefore, steels with high 

hardenability will maintain elevated hardness levels even at greater distances from 

the quenched end. As stated in the chapter's introduction, the maximum achievable 

hardness of steel is largely determined by its carbon content. As a result, steels with 

various carbon contents have different hardness, even if they acquire a practically 

similar martensitic structure at a smaller distance from the quenched end. Steels with 

high hardenability exhibit a more gradual decline in the Jominy curve. Figure 2.12 

shows that 42CrMo4 is a high-hardenability steel, whereas C60E is a low-

hardenability steel, despite C60E exhibiting higher hardness at shorter distances from 

the quenched end. 

Carbon increases the stability of austenite due to its high solubility. Carbon lowers the 

temperature at which this transformation occurs, making martensite formation easier 

at lower temperatures. The maximal achievable hardness primarily depends on 

carbon content because carbon strengthens the martensitic laĴice by distorting it 

through interstitial solid solution strengthening. 
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Chromium is a strong carbide-forming element that produces complex carbides such 

as Cr₇C₃ and Cr₃C₂. These carbides dissolve gradually in austenite at high 

temperatures, helping to resist grain coarsening during heat treatment. Chromium 

enhances steel hardenability by lowering the critical cooling rate, allowing for deeper 

martensite formation during quenching [19]. 

With sufficient austenitizing time, chromium significantly increases the depth of 

hardening by stabilizing austenite at high temperatures, facilitating martensite 

formation even in thicker sections and under slower cooling conditions. This makes 

chromium essential in steels requiring high strength and wear resistance, such as tool 

steels, high-strength structural steels, and automotive components. 

Additionally, chromium carbides influence the distribution of carbon in the austenite 

matrix, indirectly affecting martensitic transformation. By tying up carbon in localized 

regions, these carbides reduce the carbon content of the surrounding austenite, which 

raises the martensite start (Ms) temperature and can influence the final hardness of the 

martensite. 

Manganese, as a carbide former (primarily in the form of Mn₃C), plays a crucial role 

in increasing the hardenability of steel. By forming carbide precipitates, it enhances 

the steel’s ability to form martensite during quenching. In structural steels, manganese 

raises the critical cooling rate required to suppress pearlite and ferrite formation, 

enabling deeper hardening and ensuring uniform hardness, even in thicker sections. 

Additionally, manganese increases carbon solubility in austenite by expanding the 

interstitial laĴice spaces, allowing more carbon to dissolve. This effect lowers the 

martensite start (Ms) temperature, extending the time available for transformation 

during cooling and facilitating martensite formation at slower cooling rates or in 

deeper layers. 

Molybdenum, depending on its composition and carbon content, can form complex 

carbides such as Mo₂C, which enhance hardness and wear resistance. It significantly 
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improves hardenability, especially when combined with other elements like nickel 

and chromium. Molybdenum reduces the rate of phase transformations (e.g., 

austenite to ferrite), lowering the critical cooling rate and increasing hardening depth, 

making it crucial for steels that require deep hardening and high strength. 

Molybdenum’s large atomic size slows diffusion in the steel matrix, decelerating 

transformations like austenite to ferrite or pearlite, while promoting martensite 

formation during cooling. Additionally, it forms stable carbides at elevated 

temperatures, depleting carbon in specific regions. This carbon depletion hinders 

diffusion-driven transformations, such as pearlite or bainite formation. Molybdenum 

and chromium carbides precipitate at grain boundaries or within grains, refining the 

microstructure and reducing the size of regions where diffusional transformations can 

nucleate. 

Nickel enhances hardenability by reducing the critical cooling rate required for 

quenching and lowers the Ac and Ar critical temperatures, which influences the 

austenite-to-martensite transition. Unlike other alloying elements, nickel does not 

form carbides. Alloy steels containing nickel and chromium exhibit higher elastic 

ratios, increased hardenability, and improved impact strength and fatigue resistance 

compared to carbon steels. 

Silicon slows the pearlite transformation by inhibiting the nucleation and growth of 

cementite. As silicon is insoluble in cementite, it increases the free energy of the 

cementite phase, making its formation less favorable. In hypoeutectoid steels, silicon 

promotes ferrite formation, shifting the transformation toward a ferrite-dominated 

microstructure. Additionally, silicon enhances the stability of retained austenite by 

suppressing carbide precipitation during quenching and tempering. 

Though it does not form carbides, silicon elevates critical temperatures in proportion 

to carbon content, requiring higher austenitizing temperatures. While offering a 
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modest increase in hardenability, silicon is primarily used in small amounts as an 

effective deoxidizer [20]. 

Chemical elements, beyond their distinct impact on hardenability, also exhibit a 

synergistic effect [21]. By carefully selecting and combining elements such as carbon, 

chromium, manganese, molybdenum, and nickel, engineers can optimize the cooling 

rate, phase transformations, and final microstructure to meet the specific requirements 

of various applications, particularly for large or thick sections where precise 

hardenability is essential. 

 

2.3. Deep Learning 

Artificial Intelligence (AI) has become one of the most revolutionary technologies of 

the 21st century. The rapid progression and extensive applicability of AI have 

established it as a necessary component of nowadays innovation. The economic 

implications of AI are huge. Studies suggest that AI could contribute trillions of dollars 

to the global economy over the coming decade by enhancing productivity and 

enabling entirely new innovations [22]. The term "Artificial Intelligence" (AI) was first 

used in a proposal for the Dartmouth summer research project on artificial intelligence 

in 1955 [23]. Despite its widespread usage today, the term lacks a specific definition. 

Artificial intelligence (AI) can be defined as the ability of a digital computer or 

computer-controlled machine to perform tasks commonly associated with intelligent 

beings, such as learning, comprehension, problem solving and decision-making [24]. 

In 1959, Arthur L. Samuel revealed methods enabling his checkers program to learn 

from previously played games. The program improved with each game it played. 

Samuel named this process as machine learning [25]. Machine learning is considered 

as a subset of artificial intelligence (AI) that focuses on developing algorithms and 

statistical models that allow computers to learn from and make predictions or 

decisions based on data, without being explicitly programmed for every task. Machine 
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learning models are trained on data to detect paĴerns and generate conclusions or 

predictions. The system's performance progressively becomes beĴer as it is exposed 

to more data. As a result, trained machine learning models can apply their knowledge 

to previously untested data [26]. Machine learning relies on the harmonious 

integration of its fundamental components: input data, features, models, training and 

testing. Each component contributes to its ability to learn, adapt, and generalize. 

The first and most critical element of any machine learning process is the input data. 

This data serves as the raw material upon which the model is built. The quality and 

diversity of input data directly impact the performance of the machine learning 

model.  

Once input data is gathered, the next step involves extracting features, which are the 

relevant aĴributes or variables from the data. Features act as the lens through which 

the model interprets the input data. Selecting and engineering appropriate features is 

a crucial task, as it determines how well the model can learn meaningful paĴerns.  

The mathematical or computational representation of the problem is the core of 

machine learning. The model functions as a mapping mechanism between the input 

features and the desired output. Various model types exist, from basic linear 

regressions to sophisticated neural networks, each specialized for specific uses. The 

choice of the model depends on the complexity of the problem, the nature of the data, 

and the desired level of accuracy and interpretability.  

The model acquires the ability to identify paĴerns from the data throughout the 

training process. The quality of training is influenced by factors like the size of the 

dataset, the algorithm used, and the duration of the training process. Proper training 

ensures that the model generalizes well to new data. 

Testing evaluates the performance of the trained model on unseen data. This step is 

vital for assessing how well the model can generalize. 
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Classical machine learning relies more heavily on human intervention for learning. 

Human experts identify the features necessary to discern distinctions among data 

sources, typically necessitating more structured data for effective learning [27]. 

Deep learning is a form of machine learning that employs neural networks to replicate 

the learning processes of the human brain [28]. Deep learning represents a 

contemporary term for a methodology in artificial intelligence known as neural 

networks. Despite requiring additional data for training, deep learning possesses the 

capability to adjust to novel situations and correct its own errors.  

An artificial neural network consists of up of thousands or even millions of connected 

basic processing nodes that are simply modeled after the structure of the human brain. 

The majority of contemporary neural networks are structured in layers of nodes and 

operate in a "feed-forward" manner, indicating that data travels through them in one 

direction. A single node may link to multiple nodes in the layer below, from which it 

receives data, and to multiple nodes in the layer above, to which it passes data. 

Each incoming connection to a node in a neural network is assigned a number called 

a weight. When the network is active, the node receives a different data value — a 

number — through each of its connections and multiplies each value by the 

corresponding weight. The node then sums the resulting products to yield a single 

output. During the training process, all the weights are initially set to random values. 

The training data is fed into the input layer, where it passes through the network’s 

subsequent layers. In each layer, the data is multiplied by the associated weights, 

summed, and transformed, until it reaches the output layer. Throughout training, the 

weights are adjusted iteratively so that the network consistently produces outputs 

similar to the expected results when the training data with the same labels is provided. 
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2.3.1. Biological neuron 

The structure of the brain's component neurons (nerve cells) must be understood to 

comprehend the brain's capabilities. The human brain consists of around 100 billion 

(1011) neurons, organized according to their specific functions in a meticulously 

determined manner. Each neuron may be connected up to 10.000 other neurons. A 

neuron comprises four fundamental components: the cell body (soma), a collection of 

dendrites (branches), an axon (elongated structures that convey electrical signals), and 

a series of axon terminals [29]. The structure of biological neuron is illustrated in 

Figure 2.14. 

 

Figure 2.14. Structure of biological neuron [30] 
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2.3.2. Processing Element 

In 1943, neuroscientist Warren McCulloch and logician Walter PiĴs developed a model 

that provided one of the earliest mathematical abstractions of a biological neuron [31]. 

McCulloch and PiĴs outlined five key assumptions governing the operation of 

neurons. First, the neuron can exist in one of two possible states: active (1) or inactive 

(0), following an "all-or-none" principle. Second, each neuron has a specific predefined 

threshold, meaning that a predetermined number of synapses must be activated to 

stimulate the neuron at any given moment. Third, the neuron receives inputs from 

excitatory synapses, each with a uniform weight. It also receives inputs from 

inhibitory synapses, which have a definitive effect — if the inhibitory synapse is 

activated, the neuron cannot fire. Fourth, a time quantum for the integration of 

synaptic inputs is based on the physiologically observable synaptic delay. The fifth 

assumption states that the structure of the neuron remains constant over time. 

In the quantum interval, the neuron reacts to the activity of its synapses. The neuron 

sums its synaptic inputs and determines whether the total reaches or surpasses its 

predefined threshold if no inhibitory synapses are engaged. Upon reaching or 

exceeding its threshold, the neuron subsequently activates. If it fails to do so, the 

neuron remains inactive. Mathematically. their model treated the neuron as a binary 

threshold unit, meaning: Inputs are either 0 (inactive) or 1 (active) and each input has 

a weight and. If the weighted sum of inputs exceeds a threshold, the neuron fires 

(outputs 1); otherwise, it stays inactive (outputs 0): 

𝑦 = ൞
1  if ෍ 𝑥୧𝑤୧

௡

௜ୀଵ

≥ 𝛩  

0             otherwise

 (2.3) 

Where 𝑥௜ are the binary inputs (0 or 1), 𝑤௜ are the corresponding weights, 𝛩 is the 

threshold and y is the output (1 if activated, 0 if not). 
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Biological neurons do not operate as mere binary switches. They function by a 

complex combination of electrical and chemical processes that allow them to interpret 

information in extremely advanced manners [32, 33].  

McCulloch-PiĴs neuron was designed to simulate logical operations, and it is highly 

simplified biological neuron. It is deterministic and do not include a learning 

mechanism. Despite its limitations (absence of a learning mechanism, fixed weights 

assigned to all inputs, and inability to handle non-Boolean inputs), the McCulloch-

PiĴs model is considered as foundational to contemporary cognitive science and 

neuroscience, especially in the field of artificial intelligence [34]. 

In 1957, psychologist Frank RosenblaĴ developed an adaptable system known as the 

perceptron [35, 36]. Perceptrons are highly simplified models of biological brains, 

created to explore the mechanisms by which the brain performs its functions. 

RosenblaĴ designed his perceptron based on the structure and function of the optic 

nerve [37, 38]. Specifically, he used the retina as a model, as its primary function is to 

capture light stimuli. The retina then transforms these stimuli through a complex 

chemical process into electrical impulses, which are transmiĴed to the brain [39]. 

RosenblaĴ's perceptron comprises three components (layers): sensory unit (S-Unit), 

associator unit (A-Unit), and response unit (R-Unit). RosenblaĴ also took into 

consideration four-layer systems (schematic type S—AI—AII -R), which have two 

layers of associator units [40, 41]. Each layer comprises a set of simple threshold 

elements ('neurons') [42, 43].  Figure 2.15 depicts a simple perceptron. 

 
Figure 2.15. RosenblaĴ’s simple perceptron [42] 
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From the perspective of modern neural network terminology, RosenblaĴ's perceptron 

is typically described as a single-layer network. This refers to the fact that there is only 

one layer of adjustable weights. 

RosenblaĴ's crucial contribution was the development of the perceptron learning rule, 

allowing the system to learn paĴerns from data rather than being a static logical unit 

such as MP neuron. The notion that learning takes place through weight adjustments 

based on input-output interactions was inspired by the Hebbian rule [44]. 

Only the connections from A-units to R-units are determined by synaptic plasticity 

and therefore possess adjustable weights. [43, 45]. 

To simplify computation, in his initial perceptron model, RosenblaĴ introduced the 

bias term (b), expressed as the negative equivalent of the threshold (Θ): 

𝑏 = −𝛩 (2.4). 

In that way, the threshold was incorporated as part of the perceptron's decision rule 

and suggested that it could be treated as an additional input with a constant input 

 𝑥଴ = 1, with a weight  𝑤଴ = −𝛩. This reformulated a linear function: 

y =w⋅x + b 

𝑦 = ෍ 𝑥୧𝑤୧

௡

௜ୀଵ

− 𝛩 
(2.5), 

into: 

𝑦 = ෍ 𝑥௜𝑤௜

௡

௜ୀ଴

 (2.6). 

After computing the weighted sum, the perceptron applies a (sign) step function: 

𝑜 = sign(𝑦) = ቊ
+1   if   𝑦 > 0  

−1  otherwise
 (2.7). 
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According to the Perceptron Convergence Theorem, the perceptron learning 

algorithm is guaranteed to converge only if the dataset is linearly separable and a finite 

learning rate is used. When these conditions are met, the perceptron can find a set of 

weights that separates the classes. 

The perceptron learning rule adjusts weights proportionally to the product of the 

input (xi) and the error signal (t−o), modifying weights only when there is a 

misalignment between the target (t) and the output (o). The perceptron learning rule 

can be explained by the expression: 

𝑤୧ ← 𝑤୧ + 𝜂(𝑡 − 𝑜)𝑥୧ (2.8), 

where 𝑤௜ is weight for the i-th input, 𝑥௜ is i-th input, t is true output (target), o is 

predicted output, 𝜂 is a learning rate. 

The perceptron exhibited clear limitations. The perceptron algorithm could only solve 

problems where a single linear decision boundary can perfectly separate the classes. 

In a case when data is not linearly separable (e.g., XOR problem), the perceptron fails 

to find a weight vector that minimizes the classification error. The perceptron has no 

mechanism to directly measure or minimize classification error, as it does not optimize 

a specific cost function to assess overall performance. It simply updates weights 

whenever it encounters a misclassification. As a result, the perceptron keeps 

oscillating through the dataset without seĴling on a stable solution. 

The use of a step function introduces non-linearity in the output (e.g., +1+ or −1-), but 

this does not address the issue of non-linear separability in the data. 

The key contribution of RosenblaĴ's perceptron is its introduction of a learning rule 

for adjusting weights based on errors. 

Bernard Widrow and Marcian E. Hoff created ADALINE (ADAptive LInear 

NEeuron), an early single-layer artificial neural network, shortly after RosenblaĴ's 
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perceptron. They also constructed a compact electrical device that could be trained, 

serving as a hardware manifestation of the algorithm they developed [46]. 

It pertained to perceptrons. It was referred to as an adaptive neuron with variable 

connection strengths (weights). The adaptive neuron calculated a weighted sum of the 

input activities (inputs can take values of either a +1 or a -1) multiplied by the synaptic 

weights, in addition to a bias element. The output became + 1 if the sum exceeded 

zero. If it was less than or equal to zero, the output was -1.  

The ADALINE works by minimizing the mean square error of the predictions 

generated by a linear function. This indicates that the learning process is not 

dependent on the results of a threshold function as in the perceptron, but rather on 

the results of a linear function. The developed algorithm is known as Least Mean 

Squares (LMS) algorithm. The algorithm adjusts the weights in the ADALINE model 

incrementally during training, using a gradient descent optimization approach.  

The algorithm initiates by multiplying all input values (𝐱𝒊) by their respective weights 

(w), following summing these products to provide the net input (y), including of bias, 

equivalent to RosenblaĴ's perceptron. In vector form, it is represented by an 

expression: 

𝑦௜ = 𝐱୧
୘𝐰 = 𝐰୘𝐱𝒊 = ෍ 𝐰𝐣

𝒏

𝒋ୀ𝟏

𝐱𝐢𝐣 (2.9), 

where i is i-th paĴern (sample of inputs or observation), j is j-th number of 

observations, 1 ≤ j ≤ n. 

The error is calculated as the difference between the calculated (𝑦௜) and desired output 

(𝑑௜): 

𝑒୧ = 𝑑୧ − 𝑦୧ = 𝑑୧ − 𝐱௜
୘𝐰 (2.10). 
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The objective is minimizing the mean square of the error over the set of training 

paĴerns. To eliminate the influence of negative values while calculating the mean, the 

error is squared: 

𝑒୧
ଶ = (𝑑୧ − 𝑦୧)

ଶ = 𝑑୧
ଶ − 2𝑑୧𝐱୧

୘𝐰 + 𝐰୘𝐱𝐢 𝐱୧
୘𝐰 (2.11). 

The mean square error (expected value) is represented as: 

MSE = 𝜉 = E(𝑒ଶ) = E(𝑑ଶ) − 2E(𝑑୧𝐱୧
୘)𝐰 + 𝐰୘E(𝐱𝐢𝐱୧

୘)𝐰 (2.12). 

The weights are fixed during applying the whole set different paĴerns. The mean 

square error is quadratic function of the weights. Basically, the goal is to find set of 

weights, such that MSE is the lowest. To find the best wights (w), the steepest descent 

(gradient descent) method is used: 

𝐰୨ାଵ = 𝐰୨ + 𝜇(−∇෡𝑒୨
ଶ(𝐰)) (2.13), 

where ∇෡𝑒୨
ଶ(𝐰) =

డ௘ౠ
మ(𝐰)

డ𝐰
 is a gradient estimate, 𝜇 is coefficent that control the speed of 

convergence. 

The gradient estimate (instantaneous gradient) approximates the total (full) gradient 

of the mean squared error, calculated using solely the current training sample [47]. In 

other word, the LMS algorithm estimates the gradient by using the error from a single 

training sample.  

The gradient estimate is: 

∇෡𝑒୨
ଶ =

𝜕𝑒୨
ଶ

𝜕𝐰
= 2𝑒୨

𝜕𝑒

𝜕𝐰
= 2𝑒୨(−𝑥୨) (2.14). 

The outcome of equation (2.13) can be integrated into equation (2.12), yielding the 

LMS algorithm: 

𝐰୨ାଵ = 𝐰୨ + 2𝜇𝑒୨𝐱𝐣   (2.15). 
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Nowadays, the LMS algorithm is recognizable in the following form2: 

𝑤௜ାଵ ← 𝑤௜ + 𝜂 𝑒 𝑥୧   (2.16). 

While RosenblaĴ's perceptron learning rule implicitly reduced error, he did not 

explicitly define a mathematical function to measure and minimize prediction errors. 

It was Widrow and Hoff who, with the development of the Least Mean Squares (LMS) 

algorithm, introduced the concept of using a mathematical function — specifically, the 

Mean Squared Error (MSE) — to measure and minimize prediction errors in neural 

network training. Widrow and Hoff formalized the idea of a quantitative measure of 

error that could guide learning. This was a foundational step because it allowed the 

learning process to be framed as optimization and it linked the model's performance 

(error) to its adjustable parameters (weights), creating a systematic way to adjust 

weights to minimize error. 

Before the introduction of optimization frameworks, learning algorithms were often 

described as rule-based or heuristic-driven processes, with no explicit mathematical 

structure that guided parameter updates in a way that could be systematically 

optimized. The LMS algorithm introduced a structured way to approach learning, 

formalizing it as an optimization problem. 

The original Perceptron and Adaptive Linear Neuron were foundational 

computational units that computed a weighted sum of inputs and then applied a hard 

threshold function to determine the output. Although these models have their origins 

in neuroscience and are often referred to as 'neurons', Widrow renamed his ADALINE 

to Adaptive Linear Element after recognizing that they were computational units with 

liĴle in common with biological neurons [48]. 

 
2 Sometimes the factor 0.5 is included in the error squared. It is purely for mathematical convenience. It 
does not affect the outcome of the algorithm, as the learning rate compensates for any constant scaling. 
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The breakthrough that allowed neural networks to handle nonlinearity came from 

introducing nonlinear activation functions. This was critical in moving beyond simple 

linear classifiers and allowing networks to model complex paĴerns. 

Today, the processing element or nodes refers to computational unit. Modern 

interpretations of processing elements replace the hard threshold with a nonlinear 

activation function, such as sigmoid, ReLU, or tanh (Figure 2.16).  

 

Figure 2.16.  Processing element 

 

2.3.3. Multilayered Neural Network 

In the nature, truly linear relationships, where changes in one factor lead to 

proportional changes in another, are rare. Most systems, whether physical, biological, 

or social, are nonlinear [49]. Material behavior often depends on intricate, multiscale 

phenomena (e.g., atomic interactions, grain boundaries, phase transformations), 

which are inherently nonlinear. Nonlinear systems are more challenging to analyze 

because small changes in input can result in wildly different outputs (‘buĴerfly effect'). 

Understanding these systems requires tools and methods that can handle their 

inherent complexity and uncover paĴerns beyond simple cause-and-effect reasoning. 
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The transition from single-layer to multilayer neural networks revolutionized artificial 

intelligence, establishing neural networks as an indispensable tool for solving 

complex problems of today's computing.  

Feedforward Neural Networks (FNNs) are one of the most fundamental and widely 

used architectures in Artificial Neural Networks (ANNs). In this design, information 

flows in a unidirectional manner, progressing from the input layer, through one or 

more hidden layers, to the output layer. 

Each layer in the network consists of interconnected neurons (nodes), where every 

neuron in a layer is connected to all neurons in the subsequent layer. These 

connections are weighted, with each weight determining the strength and influence 

of the signal passed between neurons. During the forward pass, input data is 

multiplied by these weights and processed through an activation function at each 

neuron, introducing non-linearity to enable the network to model complex 

relationships (Figure 2.17). 

 
Figure 2.17. Architecture of simple feedforward neural network with two hidden
  layers 

 

The input layer represents the initial data as a vector of predefined values. The hidden 

layers, located between the input and output layers, apply non-linear transformations 

to the data, enabling the network to learn intricate paĴerns and perform sophisticated 
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tasks. Finally, the output layer processes the data from the last hidden layer to produce 

the final results. This fully interconnected structure allows FNNs to efficiently capture 

relationships between inputs and outputs, making them a powerful tool for various 

applications in machine learning [50]. 

In a single-layer networks, learning algorithms could be applied. Multilayer networks 

introduced hidden layers, which made it unclear how to propagate the error signal 

back through the layers to update weights. Backpropagation solved this problem by 

providing a systematic way to compute gradients for all weights in the network [51].  

Backpropagation Algorithm, popularized by Rumelhart, Hinton, and Williams, 

allowed the efficient training of multilayer networks using gradient descent to 

minimize error [52]. This error is typically measured by a cost function, such as the 

Mean Squared Error (MSE), which quantifies the difference between the predicted 

output and the true target values. The introduction of hidden layers including 

nonlinear activation functions in these models was groundbreaking. "Semilinear" is 

the term they used to characterize the required function with the desired activation 

function features. They underscored the necessity for differentiability and 

nonlinearity. The word "semilinear" is employed to characterize the sigmoid 

function's "soft thresholding" characteristic, which integrates linearity in localized 

regions with overall nonlinearity (Figure 2.18).  

  
(a)                                                                                      (b) 

Figure 2.18.  Threshold (a) and sigmoid function (b) 
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In contrast to the step function, the sigmoid function is differentiable, a crucial 

aĴribute for employing gradient descent and backpropagation in the training of 

neural networks.  

The sigmoid function is denoted by the formula: 

𝜎(𝑥) =
1

1 + 𝑒ି௫
 (2.17). 

A very useful property of the sigmoid function is that the derivative of the sigmoid 

function can be expressed in terms of the sigmoid function itself: 

𝑑𝜎(𝑥)

𝑑𝑥
= 𝜎(𝑥) ∙ (1 − 𝜎(𝑥)) (2.18). 

This compact form enhances the efficiency of backpropagation computations in neural 

networks. But, when the value of sigmoid function is near 0 or 1, the derivative 

becomes very small, which can lead to the vanishing gradient problem. This is one 

reason why some other activation functions are used in modern architectures (beside 

sigmoid). The ReLU (Rectified Linear Unit) activation function was popularized by 

Vinod Nair and Geoffrey Hinton [53]. The ReLU activation function (which outputs 

zero for negative inputs and the input itself for positive inputs) has become widely 

popular because for x > 0, the gradient is constant (equal to 1). This avoids the 

vanishing gradient problem in the positive activation regions. If a neuron frequently 

outputs negative values during training, its weights may stop updating altogether 

because the gradient becomes zero.  

Leaky ReLU function allows a small, non-zero gradient for x ≤ 0, and it is defined as: 

𝑓(𝑥) = ቊ
𝑥      if   𝑥 > 0,             

𝛼𝑥   if 𝑥 ≤ 0,   𝛼 > 0
 (2.19). 

This guarantees that neurons can recuperate even from negative weighted sum (input) 

and prevents the gradient from becoming exactly zero. The ReLU function and Leaky 

ReLU function are illustrated in Figure 2.19 
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   (a)        (b) 

Figure 2.19. ReLU (a) and Leaky ReLU (b) function 

 

The activation 𝑎௝
௟ of the 𝑗௧௛ neuron in the 𝑙௧௛  layer is related to the activations in 

the (𝑙 − 1)௧௛ layer by the equation: 

𝑎௝
௟ = 𝑧 ൭෍ 𝑤௝௞

௟ 𝑎௞
௟ିଵ + 𝑏௝

௟

௞

൱ (2.20). 

The activation 𝑎௝
௟ of the 𝑗௧௛ neuron in the 𝑙௧௛  layer is schematically represented in the 

Figure 2.20. 

 

Figure 2.20.  Schematic representation of the two neurons in the hidden layer l, fully 
coupled to neurons from the preceding hidden layer (l-1) 

 

The cost function in a neural network is not always the mean squared error (MSE), but 

MSE is one of the most commonly used cost functions, especially in regression 

problems. Mean Squared Error (MSE) is expressed as: 
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𝐶 =
1

𝑛
෍(𝑦୧ − 𝑦ො୧)

ଶ

௡

௜ୀଵ

 (2.21), 

where 𝑦௜ is the true value, 𝑦ො௜ is the predicted value, and n is the number of examples. 

MSE is often utilized in tasks involving regression, where the target variable is 

continuous, meaning it can take any real number. The cost function in the 

backpropagation algorithm can be computed either for individual training examples 

or for all training examples, depending on how the training process is structured. 

When training a neural network using stochastic gradient descent (SGD) or its mini-

batch variant, the cost function is typically computed for a single training example or 

a small batch of examples.  The cost for a single training example x is: 

𝐶(𝑥) =
1

2
(𝑦 − 𝑦ො)ଶ (2.22). 

When considering the entire dataset, the overall cost function (often referred as global 

cost function) is computed as the average (or sum) of the costs for all training 

examples. For n training examples, the cost is: 

𝐶 =
1

𝑛
෍ 𝐶(

௡

௜ୀଵ

𝑥௜) (2.23). 

The learning process uses the chain rule to compute gradients layer by layer. Hidden 

units adjust their activations indirectly by altering weights and biases to enhance their 

contribution to the desired input-output mapping. 

 

2.4. Modelling of hardenability 

Chemical composition of steel, as mentioned in Section 2.2, has significant influence 

on the hardenability. Many efforts have been undertaken to define hardenability 

according to its chemical composition. A precise model for calculating hardenability 



 

41 

 

(Jominy curve) at the initial phase of steel production could enable control over the 

hardenability of the end product. Grossmann characterized hardenability by 

determining the ideal critical diameter as the maximum diameter of a cylindrical 

specimen that converts into a minimum of 50% martensite when subjected to 

quenching at an endlessly large cooling rate at the surface [54]. In his subsequent 

research, Grossmann suggested the use of multiplicative coefficients for alloying 

elements to compute the critical diameter [55].   

Crafts and Lamont explored the factors influencing the hardenability of steel, 

particularly the role of alloying elements and cooling rates (quenchants). They 

emphasized the Jominy end-quench test as a key method for measuring hardenability 

[56]. Kramer et al. systematically examined how different alloying elements influence 

steel hardenability. Their research evaluated the impact of sixteen alloying elements 

using. They demonstrated that certain elements, especially molybdenum and 

chromium, significantly improve hardenability by delaying pearlite and bainite 

formation, allowing for deeper martensitic hardening [57]. Kramer et. al. provided a 

structured methodology to understand and predict how various alloying elements 

affect steel’s hardenability. Comstock investigated how titanium affects the 

hardenability of steel. The study highlights that titanium has a complex effect—it can 

both increase and decrease hardenability depending on its interaction with carbon and 

nitrogen [58]. Hodge and Orehoski examined how carbon content influences 

hardenability in low-alloy steels. Their research showed that as carbon content 

increases, hardenability improves, primarily due to carbon’s role in stabilizing 

austenite and promoting martensite formation during quenching [59]. They also 

proposed formula to estimate the hardness of steel with approximately 50% 

martensite using multiplicative coefficients for various alloying elements. Just 

introduced innovative formulas aimed at predicting the hardenability of steels based 

on their chemical composition. His work focused on correlating the average 
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compositions of steels with their Jominy end-quench hardness profiles, providing a 

more precise method for estimating hardenability curves [60]. 

Brown and James focused on improving the precision of hardenability estimation in 

steels. They discussed advancements in experimental measurement techniques, 

mathematical modeling, and process control methods to predict hardenability more 

accurately [61]. 

Kunze and Russel, as well as Doane [19] proposed improved empirical and statistical 

methods to predict hardenability [62, 63]. Mangonon investigated how molybdenum 

(Mo) and vanadium (V) influence the hardenability of 4330 alloy steel. His research 

highlighted that molybdenum significantly enhances hardenability by delaying 

pearlite and bainite formation, while vanadium refines grain size and contributes to 

precipitation strengthening. He indicated that their combined effect is not purely 

additive, as interactions between molybdenum and vanadium influence carbide 

formation and austenite stability [64]. Tartaglia et. al. determined the effects of 

manganese, nickel, chromium and molybdenum on annealability of carburizing 

steels. They showed that substitution of the ferrite-stabilizing elements such as 

chromium and molybdenum with the austenite-stabilizing elements such as 

manganese and nickel is generally an effective means of reducing the annealing time 

while maintaining constant hardenability [65]. Kasuya and Yurioka introduced an 

improved carbon equivalent (CE) formula and multiplying factors to more accurately 

predict the hardenability of steel. They incorporated the effects of alloying elements 

like Mn, Cr, Mo, and B, providing a more precise estimation of steel’s reaction to heat 

treatment [66]. Yamada et al. examined how chromium (Cr) and other alloying 

elements influence the different steel properties. Their research discovered that 

increasing chromium content (1–3%) enhances hardenability and strength but can 

negatively impact toughness and stress corrosion cracking (SCC) resistance, 

depending on the presence of additional elements like molybdenum and nickel. [67]. 
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The correlation between the values derived from the Jominy end-quench test and the 

chemical composition of steel, and vice versa, cannot be accurately established by any 

mathematical function. Advanced regression analysis is required. At the transition 

between the 20th and 21st centuries, developments in computers and software have 

positioned artificial neural networks as important computational methods in 

materials science. Deep learning, as described in Section 2.3. is a powerful tool for 

finding paĴerns in multi-dimensional data. Deep learning uses algorithms such a 

computer can learn from empirical dataset by modelling nonlinear relationships 

between the material properties and influencing factors. Artificial neural networks 

(ANNs) are widely used in modeling steel and metal alloy issue due to their efficiency 

in handling regression tasks. ANNs are characterized by their ability to learn from 

labeled dataset and are, therefore, well suited for supervised learning applications. 

Bhadeshia analyzed the application of artificial neural networks (ANNs) in the field 

of materials science, focusing on their ability to model complex relationships within 

materials behavior, particularly in steel processing. His research provided an 

overview of how neural networks can be used to predict and optimize various 

material properties, such as hardenability, microstructure formation, phase 

transformations, and material performance under different conditions [68]. 

Filetin et al. demonstrated how neural networks can be used to predict steel 

properties, particularly when some of the influencing factors and their relationships 

are not known. They proposed a multi-layer feedforward neural network to predict 

the Jominy curve based on chemical composition [69]. Studies of Sitek et. al. 

highlighted the growing influence of artificial intelligence and machine learning 

techniques (specifically neural networks) in the material design and processing of 

steels. They demonstrate that neural networks can effectively model and predict the 

properties of steels, ranging from constructional steels to high-speed steels, by 

analyzing the chemical composition and processing conditions [70-75]. 
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Vanucci and Colla proprosed an approach to design the chemical composition of steel, 

based on neural networks and genetic algorithms, which aims to achieve a desired 

hardenability behavior [76]. Geng X. et al established a combined machine learning 

(CML) model including k-nearest neighbor and random forest to predict the 

hardenability curves of non-boron steels based on chemical composition [77].  

For non-boron steels, ASTM A255 – 10 provides a method to estimate the ideal 

diameter (DI) using an empirical formula based on chemical composition, where DI 

represents the diameter of a round steel bar that forms 50% martensite at its center 

under ideal quenching conditions. This formula, derived from experimental data, is 

widely used to predict the hardenability of low-alloy steels [78]. 

Despite the success of numerous researchers in hardenability modeling, challenges 

remain, including the need for larger and more diverse datasets, improved model 

interpretability, and beĴer transferability to new domains. Addressing these issues 

will further establish neural networks as indispensable tools in materials science. The 

creation of a representative dataset is crucial for developing an effective model based 

on artificial neural networks. 
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3. DATA PREPARATION 

Data preparation is a crucial step in developing model by using Artificial Neural 

Network (ANN). Properly prepared data ensures that the model trains effectively and 

produces accurate predictions. In general, there are several phases that one has to 

make during data preparation. The first one is the most obvious one and that is 

collection of data. Data collecting must fulfill two critical criteria: the data must 

originate from credible sources, such as experiments, simulations, or databases, and a 

sufficiently large and representative dataset relevant to the topic at hand must be 

supplied. 

 

3.1. Data Collection 

Overall, dataset for 470 steels were collected. Dataset used for neural network training 

are obtained from the former Stalowa Wola Steelworks, Poland (about 80%), the 

standards, steel producer’s catalogues, trade literature and Max Planck atlas for heat 

treatment of steel. The steels investigated are classified according to the following 

standards EN 10083-2 (Steels for quenching and tempering – Part 2: Technical delivery 

conditions for non alloy steels), EN 10083-3 (Steels for quenching and tempering – Part 

3: Technical delivery conditions for alloy steels), EN 10084 (Case hardening steels –   

Technical delivery conditions) and similar. Full list of steel grades is given in Table 3.1. 

While the study focused on 30 steel grades, multiple chemical compositions were 

examined within each grade. As a result, a total of 470 distinct steel compositions were 

analyzed. 
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Table 3.1. Complete list of investigated steel grades 

Steel Standard 

C35E  
EN 10083 – 2 (Steels for quenching and 

tempering – Part 2: Technical delivery 
conditions for non alloy steels) 

C45E  

C55E  

C60E  

34CrNiMo6  

EN 10083 – 3 (Steels for quenching and 

tempering – Part 3: Technical delivery 

conditions for non alloy steels) 

39NiCrMo3  

25CrMo4  

34CrMo4 

42CrMo4 

50CrMo4 

34Cr4 

38Cr2 

46Cr2 

37Cr4 

41Cr4  

20MnCr5 

EN 10084 (Case hardening steels – 

Technical delivery conditions) 
 

16MnCr5 

20MoCrS4 

17NiCrMo6-4 

20NiCrMo2-2 

18CrNiMo7-6 

16MnCr5 

16MnCrS5 

20MnCr5 

20MnCrS5 

18CrMo4 

55Cr3 Not specified* 

15CrMo5 Not specified* 

20CrMo5  Not specified* 

20MnCr6 Not specified* 

* Recognized steel grade, but not listed in a formal standard 
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The input data consists of 13 hardness measurements obtained at various distances 

from the quenched end of the Jominy specimen, specifically at 1.5, 3, 5, 7, 9, 11, 13, 15, 

20, 25, 30, 40 and 50 mm. Hardness values are reported on the Rockwell C scale (HRC). 

Additionally, 13 values representing the presence of martensite in the steel's 

microstructure are included as part of the input data. The output data includes the 

weight percentages of seven key alloying elements: carbon (C), manganese (Mn), 

silicon (Si), chromium (Cr), nickel (Ni), molybdenum (Mo), and copper (Cu), 

providing a comprehensive dataset for the modeling process.  

Steel is heated and tested in accordance with relevant ASTM standards under 

standard conditions for data collection. The grain size of the steel is measured on the 

ASTM scale and has been determined to be 7 [78].  

 

Table 3.2 and Table 3.3 show example data collected for five distinct steels: 42CrMo4, 

17CrNi6-6, C45E, 20CrMo5 and 16MnCr5. 

Table 3.2.  Obtained data of the weight percentages of seven alloying elements 
  for five distinct steels 

Steel 
Chemical composition, wt% 

C Mn Si Cr Ni Mo Cu 

42CrMo4 0.41 0.63 0.23 1.01 0.28 0.2 0.14 

17CrNi6-6 0.17 0.50 0.28 1.54 1.54 0.08 0.28 

C45E 0.48 0.74 0.22 0.28 0.10 0.05 0.18 

20CrMo5 0.20 0.93 0.23 1.16 0.09 0.23 0.16 

16MnCr5 0.18 1.25 0.31 0.91 0.16 0.04 0.13 
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Table 3.3. Hardness values in HRC obtained for five distinct steels 

Steel 
Hardness (HRC) at different distance (in mm) from quenched end 

1.5 3 5 7 9 11 13 15 20  25 30 40 50 

42CrMo4 58 57 56.5 56 55 53 52 50 43 40 37 35 34 

17CrNi6-6 43.5 43.5 43 42 41 39 37.5 36 33 32 31.5 31 30.5 

C45E 59 57 49 34 31.5 30.5 29.5 29 27 25 23 21 19 

20CrMo5 45.5 45 44.5 43 40.5 37.5 35 33.5 31 29.5 28 26.5 24 

16MnCr5 44 42.5 39 35 32 30 29 27.5 25.5 24 23 21 19 

 

Table 3.4 outlines the ranges of key predictor parameters for all steels used in 

modeling steel hardenability. 

Table 3.4. Chemical composition ranges for steels 

Range (wt.%) C Mn Si Cr Ni Mo Cu 

Minimum 0.12 0.38 0.12 0.09 0.04 0.01 0.07 

Maximum 0.7 1.4 0.41 1.97 2.739 0.43 0.34 

 

In addition to chemical composition, the microstructure plays a key role in 

determining hardness. Therefore, microstructure was also considered in the modeling 

process. While heat treatment, particularly quenching, is relatively simple to perform, 

it remains a complex physical process. Even small deviations from the standard 

procedure can lead to significantly different results. Moreover, regardless of the steel 

grade or standard, absolute homogeneity in the steel cannot be expected. However, it 

is nearly impossible to precisely determine the microstructure distribution for 

specified intervals (e.g., 1.5, 3, 5, 7 mm, etc.) relative to the quenched end of the Jominy 

specimen. Martensite, being the hardest phase, has the greatest influence on hardness, 

particularly when present in substantial amounts. A substantial proportion is 
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generally considered to be 50% or more [78]. Consequently, to minimize errors in the 

input data, only the presence of martensite was considered. Specifically, for the 

specified measurement points relative to the quenched end of the Jominy specimen, a 

martensite content greater than 50% is labeled as 1, while the rest is labeled as 0. Limit 

of 50% of martensite is determined by the relation. For calculating the hardness value 

with 50% martensite (HRC50%M), according to maximum hardness, HRCmax it is used 

following relation [79, 80]: 

𝐻𝑅𝐶 (𝑀ହ଴) = 𝑘 ∙ 𝐻𝑅𝐶௠௔௫ (3.1). 

Ratio of hardness of steel with 50% martensite in the microstructure and 99% of 

martensite in the microstructure (coefficient k) depends on carbon percentage and 

values for different carbon content is shown in Figure 3.1 [75, 79]. 

 
Figure 3.1. Ratio of hardness of steel with 50% martensite in the microstructure and 

99% of martensite in the microstructure for different carbon content 

 

For distances on the Jominy specimen where the hardness values exceed 𝑘 ∙ HRC௠௔௫, 

a value of 1 is assigned (indicating that more than 50% of martensite is present in the 

microstructure). For hardness values lower than 𝑘 ∙ HRC௠௔௫, a value of 0 is assigned 

(indicating that less than 50% of martensite is present in the microstructure). 
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Example of predictors (indicators of presence of martensite) for steel 42CrMo4 is 

shown in Figure 3.2 and in Table 3.5. 

 
Figure 3.2.  Predictors of steel 42CrMo4 (hardnesses and microstructures) 

Table 3.5. Predictors for one observation (steel 42CrMo4) 

M1.5 M3 M5 M7 M9 M11 M13 M15 M20 M25 M30 M40 M50 

1 1 1 1 1 1 1 1 0 0 0 0 0 

 

3.2. SpliĴing data set  

SpliĴing a dataset into subsets for training and validation is fundamental in machine 

learning. It plays a key role in tasks such as model evaluation, comparison, and 

hyperparameter tuning. Common methods include holdout, bootstrap, and cross-

validation (CV). 

In these methods, the dataset is divided into two subsets: a training set, used to 

determine the model parameters, and a validation set (test set), which is used to 

evaluate the model's performance. The training set is crucial for parameterization, 
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while the validation set serves as an independent reference point for performance. The 

final model is selected based on its performance on the validation set, ensuring it 

generalizes well to unseen data. 

Cross-validation (CV) is a widely used resampling method in statistical learning. It 

estimates the test error of a given model and is essential for model evaluation and 

selection. Cross-validation also helps determine the optimal degree of model 

flexibility, which is critical for refining and optimizing statistical models. 

In k-fold cross-validation, the dataset is divided into k folds, with each fold used as a 

validation set once while the others form the training set. Empirical evidence suggests 

that k = 10 often provides a good balance, yielding test error estimates with moderate 

bias and variance. This helps mitigate the risks of underfiĴing (high bias) and 

overfiĴing (high variance) during model evaluation.  

When k is too small (e.g., k = 2), the training set becomes smaller, which can lead to 

higher bias. This means the model may underfit the data, as it doesn't have enough 

training data to capture complex patterns. When k is too large, the training set is 

almost as large as the original dataset, leading to low bias but high variance. This is 

because the model's performance can vary significantly depending on small changes 

in the validation set, especially if there are outliers or noise. 

UnderfiĴing means the model is too simple to capture the underlying paĴerns in the 

data. It doesn’t learn enough from the training set, leading to poor performance on 

both the training data and new data. This typically happens when the model has too 

few parameters or is not trained long enough to capture the complexity of the data. 

The key sign of underfiĴing is high error on both the training and test data.  

OverfiĴing means the model has learned the training data too well. It performs very 

well on the training set but struggles to generalize to new, unseen data. The model 

essentially "memorizes" the training data, capturing noise and outliers rather than 
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generalizable paĴerns. The key sign of overfiĴing is low training error (loss) but high-

test error (loss) (Figure 3.3). 

 

Figure 3.3.  Illustration of neural network learning with early stopping technique 

 

Four approaches to organizing the dataset were applied in an evolving sequence, each 

based on the analysis of the dataset, which included features such as Jominy test 

results (hardness), microstructure (indicating the presence of more than 50% 

martensite), and the mass fraction of seven alloying elements for various steels. The 

details of these approaches were presented in Sections 3.3 to 3.6. These approaches 

were chosen to address specific challenges in modeling and data representation, with 

each method progressively refining the dataset for improved analysis. The purpose of 

this approach was to maximize the use of these features, eventually producing the 

most efficient model for designing the chemical composition of steels based on the 

required hardenability. The results for each ANN model, based on the different 

dataset organizations, were presented in Section 4. 
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3.3. Organization of the Dataset Approach 1 

The input data for each steel are structured as shown in Table 3.6. The dataset consists 

of 14 columns—13 for hardness measurements and 1 for microstructure—and 13 rows, 

each corresponding to a specific Jominy distance. 

Table 3.6.  First approach at data structuring – Example of input data (predictors) 
organized for one steel (C45E)  

Predictors  
59 0 0 0 0 0 0 0 0 0 0 0 0 1 
0 57 0 0 0 0 0 0 0 0 0 0 0 1 
0 0 49 0 0 0 0 0 0 0 0 0 0 1 
0 0 0 34 0 0 0 0 0 0 0 0 0 0 
0 0 0 0 31.5 0 0 0 0 0 0 0 0 0 
0 0 0 0 0 30.5 0 0 0 0 0 0 0 0 
0 0 0 0 0 0 29.5 0 0 0 0 0 0 0 
0 0 0 0 0 0 0 29 0 0 0 0 0 0 
0 0 0 0 0 0 0 0 27 0 0 0 0 0 
0 0 0 0 0 0 0 0 0 25 0 0 0 0 
0 0 0 0 0 0 0 0 0 0 23 0 0 0 
0 0 0 0 0 0 0 0 0 0 0 21 0 0 
0 0 0 0 0 0 0 0 0 0 0 0 19 0 

 

In this data structure, the original 470 observations (samples) are transformed into 

6110 observations (470 × 13). Each steel sample is represented by 13 rows in total. A 

microstructure indicator (values 1 or 0) is added as the 14th column, making the input 

data consist of 14 features in total (13 hardness values and 1 corresponding to 

microstructure). The predictors (input data) comprise 85540 values (14 features × 6110 

observations). 

The responses (output data) include 42770 values (7 features × 6110 observations). The 

output data is structured as shown in Table 3.7. 
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Table 3.7. Example of output data (responses) for steel C45E  

C Mn Si Cr Ni Mo Cu 

0.48 0.74 0.22 0.28 0.10 0.05 0.18 

 

3.4. Organization of the Dataset Approach 2 

The next approach focused on analyzing each specified distance relative to the 

quenched end of the Jominy specimen. For each steel, data is organized across 13 

specified measurement points of Jominy specimen - distances from the quenched end 

of the Jominy specimen. For each measurement points of Jominy specimen, three 

parameters were included: 

 Jominy distance (Jd), 

 Hardness (HRC), 

 Microstructure (M). 

A microstructure indicator (values 1 or 0) remained the same as in Approach 1. For 

each steel sample, data is collected across 13 specified distances from the quenched 

end, characterized by 39 parameters (Jd, HRC, and M). The output for each steel is the 

mass fraction of 7 selected alloying elements. 

The data arranged in this structure are illustrated in Table 3.8. 

 

Table 3.8. Second approach at data structuring - Input data (predictors) for first 6 
points of Jominy curve for steel C45E 

Predictors 

1.5 59 1 3 57 1 5 49 1 7 34 0 9 31.5 0 11 30.5 0 
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In this structure, the total number of observations remains consistent with the original 

version, with 470 observations in total. This approach simplifies the data organization 

compared to the first aĴempt.  

Predictors (input data) consist of 39 features (Jd, HRC, M) × 470 observations (for each 

steel). Responses (output data) consist of seven features (the mass fraction of the seven 

chemical elements) × 470 observations (for each steel) – the same as in the aĴempt no.1. 

By organizing the data this way, the dataset maintains its original number of 

observations but in a more manageable and structured format, which facilitates easier 

analysis and modeling. 

 

3.5. Organization of the Dataset Approach 3 

To simplify the data structure and reduce the number of input features, a new 

approach is considered. In this method, one parameter is ‘fixed,’ which is the Jominy 

distance (Jd). Although there are 13 different Jominy distances, each hardness value 

and microstructure are specifically associated with a particular Jominy distance (Jd). 

For example, the first hardness value is always associated with Jd = 1.5 mm, and the 

fifth hardness value is associated with Jd = 9 mm. This results in a reduction of input 

features: instead of 39 features, only 26 features are considered. 

The data arranged in this structure are illustrated in Table 3.9. 

 

Table 3.9. Input data (predictors) for all 13 points of Jominy curve for one steel 
(C45E) 

Predictors 

59 1 57 1 49 1 34 0 31.5 0 30.5 0 29.5 0 29 0 27 0 25 0 23 0 21 0 19 0 

 



 

56 

 

Predictors (input data) consist of 26 features × 470 observations. Responses (output 

data) remain the same, consisting of 7 features × 470 observations. 

 

3.6. Organization of the Dataset Approach 4 

The input data are structured in the same way as in the previous instance (Dataset 

Approach 3) and are presented in Table 3.10. The key distinction lies in the output data 

(responses). Each alloying element is treated as an individual output, as neural 

networks typically have a single output. Consequently, seven separate neural network 

models are developed, one for each alloying element 

 

Table 3.10. Input data (predictors) for one steel (65Mn4) 

Predictors 

64 1 63 1 59.5 1 41 0 36 0 36 0 35.5 0 35 0 35 0 33.5 0 32 0 30 0 27.5 0 

 

Considering that there are 26 input data points and one output data point (chemical 

element), the neural networks architecture will consist of 26 input nodes and a single 

output node. Seven neural network models, one for each of the seven alloying 

elements, need to be developed. 

The first step in modeling individual neural networks for each alloying element is to 

divide the dataset into a training dataset and a test dataset. 

Data partitioning is done in MATLAB 2023b using the cvpartition function. This 

function generates a random, non-stratified partition for holdout validation on a 

dataset. The proportion of observations assigned to the test set is set to 5%, while the 

remaining data form the training set. 

By dividing a dataset, the objective is to develop a model using the training dataset 

and evaluate its performance on the test dataset. For optimal results, both the training 
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dataset and test dataset should be representative samples of the overall data 

distribution. This ensures that the model learns meaningful paĴerns during training 

and is evaluated reliably on the test dataset. Otherwise, the model may not generalize 

well. The Kolmogorov–Smirnov (K-S) test assesses whether the training and test 

datasets follow the same distribution by detecting significant differences between 

them [80]. The null hypothesis of the K-S test states that both datasets come from the 

same underlying distribution. 

The Kolmogorov–Smirnov (K-S) test values, representing the maximum absolute 

differences between the cumulative distribution functions, were calculated for the 

features hardness (HRC) and microstructure (M) at specific Jominy distances. The test 

was not performed for Jominy distances because their distribution is the same. 

The results of the Kolmogorov-Smirnov test for the hardness (HRC) feature and 

microstructure at specified distances from the quenched end of the Jominy specimen 

are presented in Tables 3.11 and 3.12, respectively. 

Table 3.11. Kolmogorov-Smirnov test results of the training and test dataset 
Features HRC1.5 HRC3 HRC5 HRC7 HRC9  HRC11 HRC13 HRC15 HRC20 HRC25 HRC30 HRC40 HRC50 
KS -test  
Value 

0.152 0.163 0.166 0.127 0.093 0.090 0.147 0.161 0.157 0.132 0.132 0.167 0.147 

p-value 0.68 0.6 0.57 0.86 0.99 0.99 0.72 0.61 0.64 0.82 0.84 0.57 0.73 

 

Table 3.12. Kolmogorov-Smirnov test results of the training and test dataset 
Features M1.5 M3 M5 M7 M9  M11 M13 M15 M20 M25 M30 M40 M50 
KS -test  
Value 

0 0 0.018 0.106 0.071 0 0.001 0.037 0.031 0.027 0.044 0.037 0.009 

p-value 1 1 1 0.96 1 1 1 1 1 1 1 1 1 

 

The K-S test values obtained for hardness (HRC) range from 0.09 to 0.161, while those 

for microstructure (M) range from 0 to 0.106. These values suggest relatively small 

differences between the distributions. Additionally, p-values for each test ranged from 

0.66 to 0.99 for hardness and from 0.9 to 1.0 for microstructure, indicating no 
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substantial evidence to reject the null hypothesis of similarity between the 

distributions. 

These results further support the similarity of feature distributions between the 

training and test datasets, providing confidence in the model's ability to generalize 

well to unseen test data (Figure 3.4). 

 

Figure 3.4.  Training and test datasets’ split distribution for first six nearest distances 
from quenched end of Jominy specimen 
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4. RESULTS OF THE ANN APPLICATION FOR VARIOUS DATA 

REPRESENTATION 

For a collected dataset supervised artificial neural networks are used to model 

complex regression relationships. To design artificial neural networks, application 

called Neural Net FiĴing from MATLAB version 2023b is used. Deferent architectures 

of artificial neural network were tested. 

MATLAB 2023b was utilized for regression development, with the trainlm training 

function employed. Trainlm is a network training function that updates weight and 

bias values using Levenberg-Marquardt optimization. The backpropagation method, 

known for its efficiency, is recommended as the primary supervised learning 

algorithm [81]. 

The Levenberg-Marquardt (LM) optimization is an iterative method used to solve 

non-linear least squares problems. It combines the advantages of two optimization 

techniques: gradient descent and the Gauss-Newton method. When the solution is far 

from optimal, LM behaves like gradient descent, taking cautious, small steps to 

prevent divergence.  As the solution approaches the optimal point, it transitions to the 

faster Gauss-Newton method for fine-tuning [82]. LM is designed to converge faster 

than standard gradient descent by using a second-order approximation of the error 

surface, similar to Newton's method. 

Gradient Descent relies on the first derivative of the error function to find the direction 

of the steepest descent. It adjusts the parameters incrementally in that direction: 

𝑤௡௘௪ = 𝑤௢௟ௗ − 𝜂 ∙ ∇𝐸 (4.1), 

where η is the learning rate, and ∇𝐸 is the gradient of the error with respect to the 

parameters. Gradient descent assumes that the error surface is linear in the region it’s 

working with, which can lead to slow convergence when the surface is highly curved 

or when the learning rate is poorly tuned. 
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Newton's method incorporates the second derivative of the error surface, represented 

by the Hessian matrix, H. Newton's update rule is: 

𝑤௡௘௪ = 𝑤௢௟ௗ − 𝐻ିଵ ∙ ∇𝐸 (4.2). 

The Hessian matrix, H, contains second-order partial derivatives of the error function 

and provides information about the curvature of the error surface. Using 𝐻ିଵ allows 

the algorithm to adjust the step size dynamically, taking larger steps in shallow 

regions and smaller steps in steep regions. 

Hessian matrix is defined as: 

𝐻 = ∇ଶ𝑓 =

⎝

⎜⎜
⎛

𝜕ଶ𝑓

𝑥ଵ
ଶ ⋯

𝜕ଶ𝑓

𝑥ଵ𝑥௡

⋮ ⋱ ⋮
𝜕ଶ𝑓

𝑥௡𝑥ଵ
⋯

𝜕ଶ𝑓

𝑥௡
ଶ ⎠

⎟⎟
⎞

 (4.3). 

The Gauss-Newton method is based on the Newton-Raphson method, but specially 

adapted for solving the nonlinear least squares problem. Namely, unlike Newton's 

method, Gauss-Newton's method does not use other derivatives, but approximates 

the Hesse matrix that is needed for calculation. 

According to the Gauss-Newton's method the approximation of expression 4.3 is: 

𝐻 ≈ 2𝐽்𝐽 (4.4), 

Where 𝐽 is Jacobian matrix. 

Jacobian matrix is: 

𝐽 =

⎣
⎢
⎢
⎢
⎡
𝜕𝑓ଵ

𝑥ଵ
⋯

𝜕𝑓ଵ

𝑥௡

⋮ ⋱ ⋮
𝜕𝑓௡

𝑥ଵ
⋯

𝜕𝑓௡

𝑥௡ ⎦
⎥
⎥
⎥
⎤

 (4.5), 

The gradient is computed as: 
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∇𝐸 = 𝐽்𝑒 (4.6), 

where  𝑒 is is the vector of errors. 

LM updates the weights using the following formula: 

𝑤௜ାଵ = 𝑤௜ − (𝐽்𝐽 + 𝜇𝐼)்𝐽்𝑒 (4.6), 

where 𝐽்𝐽 approximates the Hessian matrix, 𝜇𝐼 adds a damping factor to ensure 

numerical stability, where µ is a positive scalar, and I is the identity matrix. 

When the solution is far from the minimum, LM increases µ, making (𝐽்𝐽 + 𝜇𝐼) 

dominate, causing LM to behave like gradient descent.  As the solution nears the 

minimum, µ is reduced, and LM transitions to the Gauss-Newton method. Near the 

minimum steps are efficient and decrease in size due to diminishing residuals and 

gradients. 

The model with the smallest test root mean square error (RMSE) is considered the best 

model, as a low RMSE indicates that the selected model is likely to generalize well to 

new datasets. In addition to RMSE, the model's performance is evaluated using other 

metrics, including mean square error (MSE), mean absolute error (MAE), and the 

coefficient of determination (R²), during the test performance analysis [83]. 

The Root Mean Square Error (RMSE) is calculated as:  

𝑅𝑀𝑆𝐸௝ = ඩ
1

𝑁
෍(𝑦௜ − 𝑦ො௜)

ଶ

௡

௜ୀଵ

 (4.7), 

where j states as the j-th iteration (of 10), n is total number of observations, yi is the 

response (actual) value of the i-th observation and 𝑦ො௜ is the predicted value of the i-th 

observation. 
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During the application of 10-fold cross-validation, the Root Mean Squared Error 

(RMSE) is computed for each of the 10 iterations, and the mean of these values is 

reported as the model's RMSE:   

𝑅𝑀𝑆𝐸 =
1

10
෍ 𝑅𝑀𝑆𝐸௝

ଵ଴

௝ୀଵ

 (4.8). 

The coefficient of determination, denoted as R2, is defined as: 

𝑅ଶ = 1 −
𝑆𝑆௥௘௦

𝑆𝑆௧௢௧
 (4.9), 

where 𝑆𝑆௥௘௦ is residual sum of squares and it is defined as: 𝑆𝑆௥௘௦ = ∑ (𝑦௜ − 𝑦ො௜)
ଶ

௜ , where 

𝑦௜ are actual values, while 𝑦ො௜ are predicted values, and 𝑆𝑆௧௢௧ is total sum of squares 

and it is defined as 𝑆𝑆௥௘௦ = ∑ (𝑦௜ − 𝑦ത)ଶ
௜ , where 𝑦௜ are actual values, while 𝑦పഥ  is mean of 

actual values [84, 85]. 

The coefficient of determination is usually between values 0 and 1. When the 

coefficient of determination is equal to 0, model explains no variability and predictions 

are no beĴer than the mean (𝑆𝑆௥௘௦ = 𝑆𝑆௧௢௧). The perfect fit is when the coefficient of 

determination is equal to 1. The model's predictions perfectly match the actual data 

points, leaving no unexplained variation (𝑆𝑆௥௘௦ = 0)3. 

A negative 𝑅ଶ can occur in models that fit worse than a simple horizontal line at 𝑦ത

(𝑆𝑆௥௘௦ > 𝑆𝑆௧௢௧) [86]. 

 

 
3 Unexplained variability is the part of the variability that the model cannot capture. This is the Residual 
Sum of Squares (SSres). 
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4.1. Results of the ANN application for Dataset Approach 1 

The neural network architecture used in this study is denoted as [14-27-27-7], 

indicating an input layer with 14 nodes, two hidden layers each containing 27 nodes, 

and an output layer with 7 nodes corresponding to 7 chemical elements. 

As described in Section 3.2, the dataset is randomly divided into three subsets: the 

training dataset (70% of the total data), the validation dataset (15% of the total data), 

and the test dataset (15% of the total data). Prior to training, the input data (predictors) 

and output data (responses) were normalized to a specific range using the mapminmax 

procedure in MATLAB [87]. The training function utilized is trainlm, which employs 

Levenberg-Marquardt optimization. Plot of training results are shown in Figure 4.1. 

 

Figure 4.1. Training results Dataset Approach 1 
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The maximum number of training epochs is set to the default value of 1000. The initial 

value of µ (the damping parameter) is set to its default value of 0.001, while the target 

value of µ is set to the default value of 1000. In the Levenberg-Marquardt (trainlm) 

algorithm, the damping term is represented as µI, where I is the identity matrix. A 

very large µ makes trainlm behave like slow gradient descent and can cause 

stagnation. At the start of training, the gradient is computed based on the initial 

randomly assigned weights and is found to be 33.2. The target gradient value is set to 

the default value of 10−7. If the gradient is smaller than this value, training is 

considered converged, and the algorithm should stop. Maximum validation failures. 

is set to the default value of 6. The validation error is a measure of how well the model 

performs on a separate validation dataset. The condition specifies that if no 

improvement in the validation error occurs for six consecutive validation checks 

(epochs), the model has not made significant progress in terms of generalization, and 

training should stop. 

The training process is structured so that it continues until one of the stopping criteria 

is met. In this case, training proceeded until the validation error was greater than or 

equal to the previously recorded minimum validation error for six consecutive 

validation iterations ("Met validation criterion"). 

Neural network training performance is shown in Figure 4.2 
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Figure 4.2.  Neural network training performance for Dataset Approach 1 

 

The best validation performance of MSE=0.235 was achieved at epoch 134. The 

training continued for six more epochs before stopping. The best validation 

performance corresponds to RMSE=0.485. 

Generally, the error decreases after more epochs of training, but it may start to increase 

on the validation dataset as the network begins to overfit the training data, as shown 

in Figure 3.3. In Figure 4.2, this was not the case, as the gap between the training and 

test datasets is too small, which is undesirable. A small gap typically indicates 

underfiĴing, suggesting that the model is not learning effectively from the training 

data. 
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The regression plot in Figure 4.3 displays the network predictions (output) with 

respect to responses (target) for the training, validation, and test sets. 

 

Figure 4.3. Comparison between the expected and actual response plots for Dataset 
Approach 1 

 

The correlation coefficient, R for the test dataset is 0.86, corresponding to a coefficient 

of determination, R2 of 0.74. However, the ANN model produces physically 
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meaningless results. Therefore, further optimization, including improved data 

spliĴing and architectural adjustments, has been discontinued. 

 

4.2. Results of the ANN application for Dataset Approach 2  

The input layer consists of 39 nodes, incorporating 13 distances from the quenched 

end of the Jominy specimen, 13 corresponding hardness values, and 13 indicators of 

martensite presence in the microstructure at those distances. The output layer 

comprises seven nodes, each corresponding to a specific chemical element. The 

proposed neural network architecture is [39-14-14-7], featuring two hidden layers, 

each with 14 nodes. The dataset is randomly divided into three subsets as previously 

described. The training function utilized is trainlm, which employs Levenberg-

Marquardt optimization. Plot of training results are shown in Figure 4.4. 

 

Figure 4.4.  Training results Dataset Approach 2 
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The maximum number of training epochs is set to the default value of 1000. The initial 

value of µ (the damping parameter) is set to its default value of 0.001, while the target 

value of µ is set to the default value of 1000. At the start of training, the gradient is 

computed based on the initial randomly assigned weights and is found to be 0.173. 

The target gradient value is set to the default value of 10−7. Maximum validation 

failures. is set to the default value of 6. 

The training process is structured so that it continues until one of the stopping criteria 

is met. In this case, training proceeded until the validation error was greater than or 

equal to the previously recorded minimum validation error for six consecutive 

validation iterations ("Met validation criterion"). 

Neural network training performance is shown in Figure 4.5. 

 

Figure 4.5.  Neural network training performance for Dataset Approach 2 
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The best validation performance of MSE=0.015 was achieved at epoch 19. The training 

continued for six more epochs before stopping. The best validation performance 

corresponds to RMSE=0.121. 

The regression plot in Figure 4.6 displays the network predictions (output) with 

respect to responses (target) for the training, validation, and test sets. 

 

Figure 4.6.  Network predictions (output) with respect to responses (target) for the 
training, validation, and test sets for Dataset Approach 2 

 



 

70 

 

The correlation coefficient for the test dataset is R=0.94 which corresponds to 

coefficient of determination R2=0.88.  

 

4.3. Results of the ANN application for Dataset Approach 3 

The proposed neural network architecture is [26-14-14-7], where the input layer 

consists of 26 nodes, representing 13 hardness values at various distances from the 

quenched end of the Jominy specimen and corresponding indicators of martensite 

presence in the microstructure. The dataset is randomly divided into three subsets, as 

previously described. The training function utilized is trainlm, which employs 

Levenberg-Marquardt optimization. Plot of training results are shown in Figure 4.7. 

 

Figure 4.7.  Training results Dataset Approach 3 
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The maximum number of training epochs is set to the default value of 1000. The initial 

value of µ (the damping parameter) is set to its default value of 0.001, while the target 

value of µ is set to the default value of 1000. At the start of training, the gradient is 

computed based on the initial randomly assigned weights and is found to be 1.36. The 

target gradient value is set to the default value of 10−7. Maximum validation failures. 

is set to the default value of 6. 

The training process is structured so that it continues until one of the stopping criteria 

is met. In this case, training proceeded until the validation error was greater than or 

equal to the previously recorded minimum validation error for six consecutive 

validation iterations ("Met validation criterion"). Neural network training 

performance is shown in Figure 4.8. 

 

Figure 4.8.  Neural network training performance for Dataset Approach 3 
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The best validation performance of MSE=0.015 was achieved at epoch 20. The training 

continued for six more epochs before stopping. The best validation performance 

corresponds to RMSE=0.123. 

The regression plot in Figure 4.9 displays the network predictions (output) with 

respect to responses (target) for the training, validation, and test sets. 

 
Figure 4.9.  Network predictions (output) with respect to responses (target) for the 

training, validation, and test sets for Dataset Approach 3 
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The correlation coefficient (R) indicates results that are comparatively favorable, 

marginally exceeding those obtained with Dataset Approach 2. The correlation 

coefficient for the test dataset is R=0.95 which corresponds to coefficient of 

determination R2=0.90.  

 

4.4. Results of the ANN application for Dataset Approach 4 

The Machine Learning and Deep Learning Toolbox from MATLAB R2023b was used 

for regression tasks. Neural network regression models are trained using the 

Regression Learner App, with 10-fold cross-validation applied during training to 

prevent overfiĴing [88, 89]. 

The model development procedure, including both the training and testing phases, is 

carried out independently for each of the seven alloying elements. Five distinct 

artificial neural network architectures were used for training: 'trilayered', 'bilayered', 

'narrow', 'medium', and 'wide' networks, along with an optimized neural network. 

The specific structures of these neural networks are as follows: 

 trilayered [26-10-10-10-1],  

 bilayered [26-10-10-1],  

 narrow [26-10-1], 

 medium [26-25-1], 

 wide [26-100-1]. 

All neural networks had an input layer with 26 nodes and an output layer with one 

node. The hidden layers vary across the different architectures. Specifically: 

The narrow network consists of one hidden layer with 10 nodes. The medium network 

has one hidden layer with 25 nodes. The broad network includes one hidden layer 

with 100 nodes. The bilayered network has two hidden layers, each containing 10 

nodes. The trilayered network features three hidden layers, each with 10 nodes. 
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The rectified linear unit (ReLU) activation function is used for all five neural network 

architectures. For the optimized neural network, both the architecture and activation 

function are adjusted for improved performance. 

The following subsections provide comprehensive reviews of model evaluations and 

selections, performance analyses, and training procedures to identify the optimal 

models for predicting the chemical compositions of steels. The training was conducted 

individually for each chemical element. The alloying elements were analyzed 

individually, as the distinct impact of each element is essential and often adequate to 

achieve the desired chemical composition of steel. Consequently, each neural network 

comprises an input layer with 26 nodes (13 hardness measurements at distances of 1.5, 

3, 5, 7, 9, 11, 13, 15, 20, 25, 30, 40 and 50 mm from the quenched end of the Jominy 

specimen, together with 13 indicators of martensite presence) and an output layer 

featuring a single node (alloying element).  
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4.4.1. ANN model for carbon 

The artificial neural network models are listed in Table 4.1 and sorted according to 

their lowest RMSE values for the test results 

Table 4.1. Results after training for carbon with six different architectures of ANNs 

Model Architecture 
RMSE R2 MAE MSE 

Train Test Train Test Test Test 

Narrow NN 26-10-1 0.0204 0.0108 0.973 0.994 0.0093 0.0001 

Bilayered NN 26-10-10-1 0.0191 0.0114 0.976 0.994 0.0085 0.0001 

Trilayered NN 26-10-10-10-1 0.0218 0.0140 0.969 0.991 0.0111 0.0002 

Medium NN 26-25-1 0.0200 0.0199 0.974 0.981 0.0137 0.0004 

Wide NN 26-100-1 0.0292 0.0290 0.945 0.959 0.0164 0.0008 

Optimizable NN 26-4-4-14-1 0.0232 0.0307 0.965 0.954 0.0202 0.0010 

 

The Narrow Neural Network model yielded the best results, featuring one hidden 

layer with 10 nodes. For this model, the comparison between the predicted responses 

and the experimental data for each observation from the training dataset is shown in 

Figure 4.10. Similarly, the predicted responses versus the experimental unseen data 

(the test dataset) are presented in Figure 4.11. Additionally, Figure 4.11 includes the 

relationship between the residuals (the differences between predicted responses and 

experimental data) and the real data. The best neural network model demonstrates 

excellent performance, with very low RMSE and an exceptionally high R² value. 



 

76 

 

  

Figure 4.10. Performance evaluation of Narrow Neural Network on training dataset 
(carbon) 

  

Figure 4.11. Performance evaluation of Narrow Neural Network on test dataset 
(carbon) 
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4.4.2. ANN model for manganese 

The artificial neural network models for manganese are listed in Table 4.2, sorted by 

the lowest RMSE values for the test results. 

 

Table 4.2. Results after training for manganese with six different architectures of 
ANNs 

Model Architecture 
RMSE R2 MAE MSE 

Train Test Train Test Test Test 

Narrow NN 26-10-1 0.1870 0.1122 0.485 0.823 0.0915 0.0126 

Trilayered NN 26-10-10-10-1 0.1930 0.1163 0.451 0.810 0.0827 0.0135 

Wide NN 26-100-1 0.2084 0.1251 0.361 0.780 0.0885 0.0157 

Optimizable NN 26-3-1 0.1637 0.1362 0.605 0.739 0.1188 0.0186 

Medium NN 26-25-1 0.2110 0.1665 0.344 0.610 0.1222 0.0277 

Bilayered NN 26-10-10-1 0.2389 0.1918 0.160 0.482 0.1092 0.0368 

 

Like the results for carbon, the Narrow Neural Network model has the best results. 

The predicted response vs. the experimental data, for each observation (from the 

training dataset), is shown in Figure 4.12. For the same model, the predicted response 

vs. the experimental unseen data (the test dataset) are shown in Figure 4.13. In Figure 

4.13, the relation between residuals and real data are shown too. The best neural 

network model shows good results with relatively low RSME, as well as with 

satisfying R2. 
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Figure 4.12. Performance evaluation of Narrow Neural Network on training dataset  
(manganese) 

  

Figure 4.13. Performance evaluation of Narrow Neural Network on test dataset 
(manganese) 
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4.4.3. ANN model for silicon 

The artificial neural network models for silicon are placed in Table 4.3 according to the 

lowest RMSE for test results as well. According to the given criterion, Optimizable 

Neural network is placed in first row. However, predicted values of this model are 

concentrated around the mean value of trained dataset. Due to that, the best model is 

chosen the Narrow Neural Network model. For that model, the predicted response 

vs. the experimental data, for each observation from the training dataset, is shown in 

Figure 4.14. For the same model, the predicted response vs. the experimental unseen 

data is shown in Figure 4.15. In Figure 4.15, the relation between residuals and true 

data are shown too.  

The Narrow Neural Network has very low RSME, so one can conclude that the model 

is very good. At the same time, the coefficient of determination R2 is negative. By 

definition, the coefficient of determination can be negative, indicating that the 

regression performed poorly—worse even than a model that explains none of the 

variability in the response data relative to its mean [85]. However, the residuals in 

Figure 4.15 are minimal, suggesting that the predicted values closely match the 

experimental data. Additionally, the predicted values for silicon fall within the 

specified steel standard. 
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Table 4.3. Results after training for silicon with six different architectures of ANNs 

Model Architecture 
RMSE R2 MAE MSE 

Train Test Train Test Test Test 

Optimizable NN 26-5-1 0.0426 0.0342 -0.011 -0.072 0.0258 0.0012 

Narrow NN 26-10-1 0.0515 0.0371 -0.476 -0.262 0.0279 0.0014 

Bilayered NN 26-10-10-1 0.0645 0.0401 -1.317 -0.474 0.0317 0.0016 

Trilayered NN 26-10-10-10-1 0.0717 0.0428 -1.864 -0.678 0.0333 0.0018 

Wide NN 26-100-1 0.0757 0.0510 -2.192 -1.387 0.0392 0.0026 

Medium NN 26-25-1 0.0622 0.0630 -1.152 -2.642 0.0405 0.0040 

 

 

Figure 4.14. Performance evaluation of Narrow Neural Network on training dataset  
(silicon) 
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Figure 4.15. Performance evaluation of Narrow Neural Network on test dataset  
(silicon) 
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4.4.4. ANN model for chromium 

The artificial neural network models for chromium are placed in Table 4.4 according 

to the lowest RMSE as well. 

According to the given criterion, Bilayered Neural network model is chosen as the 

best. For that model, the predicted response vs. the experimental data, for each 

observation from the training dataset, is shown in Figure 4.16. For the same model, 

the predicted response vs. the experimental unseen data is shown in Figure 4.17. In 

Figure 4.17, the relation between residuals and real data is shown too.  

The Bilayered Narrow Neural Network has relatively low RSME and very high the 

coefficient of determination R2 (close to 0.9). 

 

Table 4.4.  Results after training for chromium with six different architectures of  
ANNs 

Model Architecture 
RMSE R2 MAE MSE 

Train Test Train Test Test Test 

Bilayered NN 26-10-10-1 0.1609 0.1168 0.748 0.896 0.1047 0.0824 

Optimizable NN 26-219-1 0.1308 0.1377 0.834 0.856 0.0939 0.0886 

Trilayered NN 26-10-10-10-1 0.1518 0.1400 0.776 0.851 0.0963 0.1009 

Wide NN 26-100-1 0.1539 0.1447 0.770 0.841 0.1033 0.0839 

Narrow NN 26-10-1 0.1433 0.1748 0.800 0.767 0.1006 0.1310 

Medium NN 26-25-1 0.1814 0.2039 0.680 0.684 0.1196 0.1304 
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Figure 4.16. Performance evaluation of Bilayered Neural Network on training 
dataset (chromium) 

 

   

Figure 4.17. Performance evaluation of Bilayered Narrow Neural Network on test 
dataset (chromium) 
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4.4.5. ANN model for nickel 

The artificial neural network models for nickel placed in Table 4.5 according to the 

lowest RMSE. 

According to the given criterion, Trilayered Neural network model is chosen as the 

best (neural network with three hidden layers with 10 nodes each). For that model, 

the predicted response vs. the experimental data, for each observation from the 

training dataset, is shown in Figure 4.18. For the same model, the predicted response 

vs. the experimental unseen data is shown in Figure 4.19. In Figure 4.19 the relation 

between residuals and true data is shown too.  

The Trilayered Narrow Neural Network has relatively low RSME and very high the 

coefficient of determination R2 (close to 0.9). For most of the dataset, residuals are 

lower than 0.2 with one relatively high exception (0.6).  

 

Table 4.5. Results after training for nickel with six different architectures of ANNs 

Model Architecture 
RMSE R2 MAE MSE 

Train Test Train Test Test Test 

Trilayered NN 26-10-10-10-1 0.2998 0.1590 0.660 0.899 0.0933 0.0253 

Bilayered NN 26-10-10-1 0.3476 0.2386 0.544 0.771 0.1416 0.0569 

Optimizable NN 26—1 0.2800 0.2450 0.704 0.759 0.1451 0.0600 

Wide NN 26-100-1 0.3841 0.2715 0.443 0.704 0.1524 0.0737 

Narrow NN 26-10-1 0.3537 0.3381 0.527 0.541 0.1986 0.1143 

Medium NN 26-25-1 0.4303 0.3608 0.301 0.477 0.2241 0.1302 
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Figure 4.18.  Performance evaluation of Trilayered Neural Network on training  
dataset (nickel) 

 

  

Figure 4.19. Performance evaluation of Trilayered Narrow Neural Network on test  
dataset (nickel) 
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4.4.6. ANN model for molybdenum 

The artificial neural network models for molybdenum are placed in Table 4.6. 

according to the lowest RMSE as well. 

According to the given criterion, Optimizable Neural network model is chosen as the 

best (neural network with two hidden layers, first with 295 nodes and second with 5 

nodes). For that model, the predicted response vs. the experimental data, for each 

observation from the training dataset, is shown in Figure 4.20. For the same model, 

the predicted response vs. the experimental unseen data is shown in Figure 4.21. In 

Figure 4.21, the relation between residuals and true data is shown too.  

The Optimizable Narrow Neural Network has very low RSME and weakly the 

coefficient of determination R2. For most of the test dataset, residuals are lower than 

0.1. 

 

Table 4.6. Results after training for molybdenum with six different architectures of 
ANNs 

Model Architecture 
RMSE R2 MAE MSE 

Train Test Train Test Test Test 

Optimizable 
NN 

26-295-5-1 0.0611 0.0570 0.5160 0.613 0.0442 0.0033 

Trilayered NN 26-10-10-10-1 0.0871 0.0634 0.0147 0.521 0.0417 0.0040 

Bilayered NN 26-10-10-1 0.2185 0.0682 -5.1983 0.445 0.0461 0.0047 

Narrow NN 26-10-1 0.0798 0.0701 0.1732 0.415 0.0591 0.0049 

Wide NN 26-100-1 0.1012 0.0832 -0.3292 0.176 0.0558 0.0069 

Medium NN 26-25-1 0.1009 0.1070 -0.3205 -0.364 0.0787 0.0115 
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Figure 4.20. Performance evaluation of Optimized Neural Network on training 
dataset (molybdenum) 

  

 

Figure 4.21. Performance evaluation of Optimized Narrow Neural Network on test  
dataset (molybdenum) 
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4.4.7. ANN model for copper 

The artificial neural network models for copper are placed in Table 4.7 according to 

the lowest RMSE as well. 

According to the given criterion (lowest RMSE), Optimizable Neural network is 

placed in first row (one hidden layer with 260 nodes). For that model, the predicted 

response vs. the experimental data, for each observation from the training dataset, is 

shown in Figure 4.22. For the same model, the predicted response vs. the experimental 

unseen data is shown in Figure 4.23. In Figure 4.23, the relation between residuals and 

true data are shown too.  

The Optimizable Neural Network has very low RSME, while the coefficient of 

determination R2 negative which shows that regression performed poorly. 

Nevertheless, residuals in figure 17 show very small figures (lower than 0.1). It means 

that predicted values are similar to the experimental data. 

 

Table 4.7. Results after training for copper with six different architectures of ANNs 

Model Architecture 
RMSE R2 MAE MSE 

Train Test Train Test Test Test 

Optimizable 
NN 

26-260-1 0.0442 0.0020 0.1505 0.0331 0.0297 0.0013 

Narrow NN 26-10-1 0.0613 0.0038 -0.6341 0.0452 0.0433 0.0036 

Medium NN 26-25-1 0.0659 0.0043 -0.8875 0.0462 0.0443 0.0042 

Trilayered NN 26-10-10-10-1 0.0536 0.0029 -0.2493 0.0394 0.0516 0.0049 

Wide NN 26-100-1 0.0741 0.0055 -1.3885 0.0500 0.0562 0.0052 

Bilayered NN 26-10-10-1 0.0738 0.0055 -1.3784 0.0457 0.0639 0.0098 
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Figure 4.22. Performance evaluation of Narrow Neural Network on training dataset  
(copper) 
 

   

Figure 4.23. Performance evaluation of Optimized Narrow Neural Network on test 
dataset (copper) 
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5. EXPERIMENTAL VERIFICATION 

To experimentally validate the model, five steels with varying hardenability were 

used: C60E, 41Cr4, 46Cr2, 17CrNi6-6, and 65Mn4. A comparison of their Jominy 

curves is shown in Figure 5.1. 

 

Figure 5.1. Jominy curves for five steels with different hardenability 

 

Steel C60E is chosen from the EN10083-2:2006 standard (non-alloy steels for 

quenching and tempering) as a non-alloy steel. Steel C60E can be defined as steel with 

low hardenability. 

Alloy steels 41Cr4 and 46Cr2 are steel grades chosen from the standard EN10083-

3:2007 (alloy steels for quenching and tempering). Hardenability of the steel 41Cr4 can 

be classified as moderate to high. Steel 46Cr2 can be considered as a steel with low to 

moderate hardenability. 
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Steel 17CrNi6-6 is the steel grade chosen from standard EN10084:2008 (case-

hardening steels). The steel 17CrNi6-6 has a low carbon content, hence the maximal 

hardness is 50 HRC. A relatively high content of chromium and nickel makes the steel 

capable of achieving high hardness at significant depths and thus can be considered 

as a steel with high hardenability. 

65Mn4 is DIN Steel number (1.1240) grade. This steel exhibits relatively high hardness 

values near the quenched end of the Jominy specimen. However, the hardness 

declines significantly after a distance of only 7 mm from the quenched end, which 

characterizes it as having low hardenability. 

Jominy curves for five steels are shown in Figures 5.2 to 5.6, while their chemical 

compositions are presented in Tables 5.1 to 5.5. 

According to the given Jominy curves of five steels, chemical compositions are 

predicted using ANN models for Approach 2 to Approach 4 of Dataset organization. 

Predicted values are compared to the real data. 

The Jominy curve of the steel C60E is shown in Figure 5.2. 

 

Figure 5.2. Jominy curve for the steel grade C60E 
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Chemical composition of the steel grade C60E is given in Table 5.1. 

Table 5.1. Chemical composition of the steel C60E 

C Mn Si Cr Ni Mo Cu 

0.61 0.69 0.24 0.31 0.11 0.03 0.19 

 

The Jominy curve of the steel 41Cr4 is shown in Figure 5.3. 

 

Figure 5.3. Jominy curve for the steel grade 41Cr4 

 

Chemical composition of the steel grade 41Cr4 is given in Table 5.2. 

Table 5.2. Chemical composition of the steel 41Cr4 

C Mn Si Cr Ni Mo Cu 

0.43 0.72 0.27 1.09 0.15 0.06 0.16 
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The Jominy curve of the steel 46Cr2 is shown in Figure 5.4. 

 

Figure 5.4. Jominy curve for the steel grade 46Cr2 

 

Chemical composition of the steel grade 46Cr2 is given in Table 5.3. 

Table 5.3. Chemical composition of the steel 46Cr2 

C Mn Si Cr Ni Mo Cu 

0.43 0.59 0.26 0.47 0.40 0.04 0.17 
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The Jominy curve of the steel 17CrNi6-6 is shown in Figure 5.5. 

 

Figure 5.5. Jominy curve for the steel grade 17CrNi6-6 

 

Chemical composition of the steel grade 17CrNi6-6 is given in Table 5.4. 

Table 5.4. Chemical composition of the steel 17CrNi6-6 

C Mn Si Cr Ni Mo Cu 

0.15 0.53 0.22 1.42 1.45 0.04 0.17 
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The Jominy curve of the steel 65Mn4 is shown in Figure 5.6. 

 

Figure 5.6. Jominy curve for the steel grade 65Mn4 

 

Chemical composition of the steel grade 65Mn4is given in Table 5.5. 

Table 5.5. Chemical composition of the steel 65Mn4 

C Mn Si Cr Ni Mo Cu 

0.67 1.01 0.32 0.09 0.07 0.02 0.15 

 

The predicted values of alloying elements for different approaches of data 

representation, for each of five steels (C60E, 41Cr4, 46Cr2, 17CrNi6-6 and 65Mn4) are 

presented in separate Tables 5.6 to 5.10, respectively.  For each of these steels, the 

minimum and maximum values of the defined chemical elements, according to the 

steel grades, are presented in Tables 5.6 to 5.10. 
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Table 5.6. Experimental vs. predicted data of chemical elements for steel C60E 

 C Mn Si Cr Ni Mo Cu 

Predicted 
values – 

Approach 1 
Calculation has not been made due to discontinuing 

Predicted 
values – 

Approach 2 
0.56 0.72 0.25 0.29 0.05 0.03 0.19 

Predicted 
values – 

Approach 3 
0.61 0.73 0.27 0.30 0.11 0.01 0.18 

Predicted 
values – 

Approach4 
0.63 0.79 0.26 0.19 0.12 0.02 0.19 

Experimental 
values 

0.61 0.69 0.24 0.31 0.11 0.03 0.19 

Steel grade 
limits 

0.57 – 0.65 0.6 – 0.9 < 0,4 < 0,4 < 0,4 < 0,1 N/D* 

* N/D not defined limits within the steel grade 
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Table 5.7. Experimental vs. predicted data of chemical elements for steel  
  41Cr4 

 C Mn Si Cr Ni Mo Cu 

Predicted 
values – 

Approach 1 
Calculation has not been made due to discontinuing 

Predicted 
values – 

Approach 2 
0.43 0.66 0.26 1.04 0.09 0.08 0.15 

Predicted 
values – 

Approach 3 
0.41 0.69 0.27 1.04 0.12 0.07 0.14 

Predicted 
values – 

Approach4 
0.42 0.69 0.26 1.03 0.14 0.07 0.15 

Experimental 
values 

0.41 0.7 0.25 1.08 0.13 0.04 0.12 

Steel grade 
limits 

0.38 – 0.45 0.6 – 0.9 < 0,4 0.9–1.2 N/D* N/D* N/D* 

* N/D not defined limits within the steel grade 
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Table 5.8. Experimental vs. predicted data of chemical elements for steel 
  46Cr2 

 C Mn Si Cr Ni Mo Cu 

Predicted 
values – 

Approach 1 
Calculation has not been made due to discontinuing 

Predicted 
values – 

Approach 2 
0.41 0.62 0.24 0.46 0.18 0.10 0.21 

Predicted 
values – 

Approach 3 
0.44 0.62 0.25 0.49 0.36 0.03 0.18 

Predicted 
values – 

Approach4 
0.44 0.61 0.20 0.42 0.29 0.01 0.20 

Experimental 
values 

0.43 0.59 0.26 0.47 0.40 0.04 0.17 

Steel grade 
limits 

0.42 – 0.50 0.5 – 0.8 < 0,4 0.4–0.6 N/D* N/D* N/D* 

* N/D not defined limits within the steel grade 
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Table 5.9.  Experimental vs. predicted data of chemical elements for steel  
   17CrNi6-6 

 C Mn Si Cr Ni Mo Cu 

Predicted 
values – 

Approach 1 
Calculation has not been made due to discontinuing 

Predicted 
values – 

Approach 2 
0.15 0.64 0.23 1.50 1.28 0.06 0.16 

Predicted 
values – 

Approach 3 
0.18 0.58 0.24 1.42 1.37 0.01 0.17 

Predicted 
values – 

Approach4 
0.17 0.53 0.27 1.40 1.45 0.05 0.15 

Experimental 
values 

0.15 0.53 0.22 1.42 1.45 0.04 0.17 

Steel grade 
limits 

0.14 – 0.20 0.5 – 0.8 < 0,4 1.4–1.7 1.4–1.7 N/D* N/D* 

* N/D not defined limits within the steel grade 
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Table 5.10.  Experimental vs. predicted data of chemical elements for steel 65Mn4 

 C Mn Si Cr Ni Mo Cu 

Predicted 
values – 

Approach 1 
Calculation has not been made due to discontinuing 

Predicted 
values – 

Approach 2 
0.60 0.90 0.26 0.09 0.05 0.03 0.19 

Predicted 
values – 

Approach 3 
0.66 0.97 0.28 0.09 0.05 0.01 0.17 

Predicted 
values – 

Approach4 
0.66 1.13 0.25 0.02 0.12 0.03 0.19 

Experimental 
values 

0.67 1.01 0.32 0.09 0.07 0.02 0.15 

Steel grade 
limits 

0.6 – 0.7 0.9 – 1.2 0.25 – 5 N/D* N/D* N/D* N/D* 

* N/D not defined limits within the steel grade 

 

Predicted values for chemical elements, for all steels, are within the limits defined by 

the steel grades. The model was validated accordingly, confirming its accuracy. 
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6. DISCUSSION OF RESULTS 

Contemporary industry demands, particularly in materials and steel production, 

focus on achieving specific hardenability requirements. Along with these demands, 

new insights have emerged into the influence of different alloying elements and heat 

treatment processes on hardenability.  

Customers are often required to choose a steel grade that provides the desired 

hardenability. However, this steel grade may have excessive hardenability, which 

unnecessarily increases the use of alloying elements. Therefore, it is important to 

design the chemical composition according to the customer's requirements in order to 

achieve the desired hardenability while keeping production costs relatively low. The 

demand for specific hardenability typically falls within a narrow range that is 

generally covered by a specific steel grade. Sometimes, customer demands are not 

only restricted by the lower hardenability limit but also by the upper hardenability 

limit. 

This research has led to new possibilities for beĴer predicting and controlling 

hardenability. However, despite these developments, defining the precise 

relationships between key factors—such as chemical composition and 

microstructure—and the resulting hardenability remains a complex and challenging 

task. The current state of the art in the field does not provide enough knowledge to 

establish a mathematical relationship or model between chemical composition and the 

hardenability of steel. In support of this thesis, existing models are not sufficiently 

precise or are limited to specific groups of steels [54, 55, 60].  

On the other hand, calculating the chemical composition based on the required Jominy 

curve shape (which is inverse problem) provides a new approach to this challenge. 

This task can be tackled using contemporary computational methods, particularly 

neural networks. An artificial neural network acts as a black-box model capable of 

analyzing previously undiscovered phenomena during phase transformations in heat 
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treatment, as well as the synergistic influence of alloying elements on properties, 

including hardenability. Due to these facts in this thesis was proposed the 

methodology of designing chemical composition based on the required hardenability. 

A representative dataset of 470 steel samples was collected, with each sample 

including Jominy test results and chemical compositions. Additionally, an indication 

of significant martensite presence in the microstructure (with the limit set at 50%) was 

included in the input data. The input features consisted of Jominy test results and 

indicators of martensite presence, while the output target consisted of the mass 

fractions of seven alloying elements (C, Mn, Si, Cr, Ni, Mo and Cu). Various neural 

network models were developed for different dataset representations. The models 

were compared based on their predicted results and experimentally validated using a 

selected steel grade with known chemical composition and significantly different 

Jominy curve. 

The key factor determining the success of a neural network architecture is the 

representation of the dataset. MATLAB 2023b was used to develop the different neural 

network architectures. In this doctoral thesis, four distinct approaches to dataset 

representation were investigated (Sections 3.3 to 3.6). Each new approach offered 

beĴer results and more options for future research. In Approach 1, the input features 

were limited to only 14 parameters: 13 hardness values at specific distances from the 

quenched end and one indicating the presence of martensite. An aĴempt was made to 

associate the presence of martensite with a specific distance from the quenched end. 

The hardness value for that distance was included, while hardness values for other 

distances were set to zero. With this approach, 13 observations were created for each 

steel sample (Table 3.7). The dataset was randomly divided into three subsets: the 

training dataset (70% of the total data), the validation dataset (15% of the total data), 

and the test dataset (15% of the total data). For this dataset representation, a neural 

network with the architecture denoted as [14-27-27-7] was applied. This architecture 

indicates that the input layer consisted of 14 nodes, two hidden layers each containing 
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27 nodes, and an output layer with 7 nodes corresponding to 7 chemical elements. 

Unfortunately the obtained results were physically meaningless, suggesting that the 

model was not learning effectively from the training data (Figures 4.1 to 4.3). 

Therefore, further research on this model was discontinued. 

In Approach 2, the idea was that one paĴern is related to one steel. To more clearly 

link the hardness values and the indications of martensite presence at specific 

distances from the quenched end, the input paĴern consisted of 39 data points. The 

input features were consisted of 39 parameters: 13 Jominy distances from quenched 

end of Jominy specimen (Jd), 13 hardness values at specific distances from the 

quenched end and 13 indicators of the presence of martensite in the microstructure 

(Table 3.9). Outputs (responses) were mass fractions of seven alloying elements. The 

dataset was randomly divided into three subsets: the training dataset (70% of the total 

data), the validation dataset (15% of the total data), and the test dataset (15% of the 

total data). For this dataset representation, among others a neural network with the 

architecture denoted as [39-14-14-7] was applied. This architecture indicates that the 

input layer consisted of 39 nodes, two hidden layers each containing 14 nodes, and an 

output layer with 7 nodes corresponding to 7 alloying elements. The results are 

presented in Figures 4.4. to 4.6. For Approach 2 of data representation and the 

proposed neural network architecture, the following performance metrics were 

obtained: RMSE = 0.121 and the coefficient of determination R² = 0.88. 

The next optimization of the dataset representation focused on reducing the number 

of input parameters. Distances from the quenched end were removed, so the input 

features consisted of 26 parameters: 13 hardness values at specific distances from the 

quenched end and 13 indicators of the presence of martensite in the microstructure 

(Table 3.10). The dataset was randomly divided into three subsets: the training dataset 

(70% of the total data), the validation dataset (15% of the total data), and the test 

dataset (15% of the total data). For Approach 3 of dataset representation, among others 

a neural network with the architecture denoted as [26-14-14-7] was applied. For 
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Approach 3 of data representation and the proposed neural network architecture, the 

following performance metrics were obtained: RMSE=0.123 and the coefficient of 

determination R² = 0.90 (Figures 4.7 to 4.9). 

It is important to mention, that some predicted chemical compositions obtained using 

Approaches 2 and 3 were not within the limits of the specified steel grades. Therefore, 

in order to solve any potential problems in situations where non-standard chemical 

compositions are obtained as a result of calculations, it was decided to organize the 

data set in a different way – Approach 4, one that would allow correction of the 

concentration of an element whose calculated concentration was outside the allowable 

limits for a particular steel grade 

 Approach 4 of data representation focused on modeling each alloying element 

separately. The input features remained the same as in Approach 3, consisting of 26 

parameters: 13 hardness values at specific distances from the quenched end and 13 

indicators of the presence of martensite in the microstructure (shown in Table 3.11). 

The output consisted of one parameter (one alloying element). Fo Approach 4 of 

dataset representation the Machine Learning and Deep Learning Toolbox from 

MATLAB R2023b was used for regression tasks. Neural network regression models 

are trained using the Regression Learner App, with 10-fold cross-validation. Five 

distinct artificial neural network architectures were used for training. All neural 

networks had an input layer with 26 nodes and an output layer with one node. The 

hidden layers varied across the different architectures. The narrow network consisted 

of one hidden layer with 10 nodes. The medium network had one hidden layer with 

25 nodes. The broad network included one hidden layer with 100 nodes. The bilayered 

network had two hidden layers, each containing 10 nodes. The trilayered network 

featured three hidden layers, each with 10 nodes. The artificial neural network models 

were sorted according to their lowest RMSE values for the test results in the Tables 4.1 

to 4.7. 
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If the predicted mass fraction of an alloying element exceeds the limits of the steel 

grade, a specific adjustment of the mass fraction is possible for that particular alloying 

element. The accuracy of the neural network models is particularly high for carbon, 

manganese, chromium, and nickel, as indicated by low RMSE values and high R² 

values (Table 4.1, Table, 4.2, Table, 4.4 and Table 4.5). This is particularly important 

because these elements have a strong influence on hardenability. The mass fraction of 

silicon exhibits significant variability in the dataset, with values that are practically 

random. This randomness reduced the accuracy of the neural network model, leading 

to higher RMSE values and lower R² values (Table 4.3). Silicon remains in steel after 

the metallurgical process, primarily as a residual deoxidizer. While its concentration 

can vary due to processing factors and is essentially random, it typically remains 

within controlled limits. The residuals, which represent the difference between 

predicted and real experimental values for copper, are very small. Although the 

coefficient of determination for copper is low (Table 4.7), similar to silicon, the 

predicted values are very close to the experimental values (Figure 4.17). The coefficient 

of determination for molybdenum is higher, and the predicted values are also very 

close to the experimental values (Figure 4.15).  

For the experimental verification of the neural network models, five steel with distinct 

hardenability has chosen (Figure 5.1). The predicted chemical compositions obtained 

by neural network models for different approaches to dataset representation for five 

representative steels (C60E, 41Cr2, 46Cr2, 17CrNi6 and 65Mn4) were presented in 

Tables 5.6 to 5.10 include the experimental values for these steels and the 

corresponding steel grade limits. All neural network models provided predicted 

chemical compositions that fall within the specified steel grade limits. 

The proposed methodology for designing the chemical composition of steel based on 

the required hardenability can offer significant benefits to steel producers. This 

approach ensures that the predicted chemical composition results in a very narrow 

range of the desired hardenability (Jominy curve). This approach is innovative for the 
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automated and precise prediction of a chemical composition of steel. To design any 

artificial neural network a relatively large number of experimental data are required. 

With additional experimental data, for nickel and molybdenum steels especially, used 

for learning and testing neural networks, the proposed models can be further tuned 

and improved. 
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7. CONCLUSION 

This thesis introduces an innovative approach for the automated and precise 

prediction of the chemical composition of steel based on the Jominy curve, which 

represents the required hardenability. The method also accounts for microstructure 

(martensite presence) at different distances from the quenched end of the Jominy 

specimen. 

Unlike traditional hardenability modelling methods, which determine the Jominy 

curve for a given chemical composition, this approach makes possible to solve inverse 

problem, designing the chemical composition from the required Jominy curve. 

Solving of the inverse problem in this research is the new and innovative contribution 

in the field of material science. 

The research results obtained in this work allow to formulate the following 

conclusions: 

1. Using neural networks, models of the relationship between hardenability and 

chemical composition of steel was developed taking into account the 

microstructure (martensite presence), based on an appropriate data set, 

including successive hardness values on the Jominy curve, together with the 

mass fraction of alloying elements C, Si, Mn, Cr, Ni, Mo and Cu. 

2. The developed neural network models yielded acceptable results for designing 

the chemical composition of steel. These predicted results were experimentally 

validated with four representative steel grades (C60E, 41Cr4, 46Cr2, and 

17CrNi6-6) from three different standards (EN 10083-2, EN 10083-3, and EN 

10084), as well as with the additional steel grade 65Mn4. 

3. The developed artificial neural network models demonstrate their effectiveness 

in predicting the chemical composition of steels for heat treatment based on the 

curvature of the Jominy curve. The predicted values for all seven chemical 
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elements align closely with the experimental values and fall within the limits 

defined by the respective steel grades. 

4. This methodology for selecting the optimal steel composition based on the 

required hardenability has significant practical applications in the mechanical 

engineering and manufacturing sectors. By using this approach, chemical 

compositions can be designed to meet specific customer requirements while 

ensuring the desired hardenability. Furthermore, the ability to achieve these 

results at relatively low production costs makes this method both efficient and 

economically viable, providing a valuable tool for steel design and selection in 

industrial applications. 
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