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Abstract
Machine learning has gained an important place both in daily interactions and in scientific
development. It has a wide range of applications andmany different approaches which can
be used to solve various problems. Neural networks are one of these approaches and are
a potent regression tool which is applied in a large number of scientific fields. In recent
years it has gained popularity in the field of computational mechanics as an alternative
material model replacing (or complementing) existing analytical models. These neural
network models are useful for describing complex relationships that existing models can
not fully describe. They are also used as a general model that can be applied to a wide
range of materials. This thesis places a focus on the latter, with the aim of creating a
general material model for hyperelastic materials such as rubber. With analytical models
there is a need to fit different models (Neo-Hookean, Mooney-Rivlin, Ogden, Yeoh, Gent,
etc.) to experimental data and use the one that approximates the data best. Each analyt-
ical model has some advantages compared to the others as well as drawbacks, and the
choice of the model also depends on what the application of the model will be. By using
a neural network as a model the goal is to obtain a single model that has no drawbacks
and can function for any material. This also speeds up the material modelling process as
only one single model is generated instead of fitting multiple models and choosing be-
tween them. In this thesis a detailed investigation is made between different modelling
strategies. Firstly, a neural network that predicts stress from strain is developed and is a
representative of the most common approach in neural network modelling. Afterwards, a
more general model using the same neural network architecture is created that is similar
to conventional invariant models so that it predicts the energy while taking the invariants
of the right Cauchy-Green deformation tensor as inputs. It was demonstrated that it can be
used as a direct replacement for the invariant models by reusing the existing framework
for the numerical implementation of invariant based models. Secondly, a significant im-
provement to the neural network architecture is done through the implementation of a
custom activation function suited for modelling of hyperelastic behaviour. It is accompa-
nied by the implementation of certain conditions from solid mechanics such as objectivity,
thermodynamic consistency, normalisation of energy, non-negativity of energy, normal-
isation of stress and polyconvexity. All of these improvements have created a neural
network model, referred to as LINEXP-PANN, that can capture a wider range of mate-
rial behaviours with a significantly reduced dataset size compared to the previous simpler
neural network models. The LINEXP-PANN model was used for modelling damage in
rubber-like materials which is known as the Mullins effect. A new modelling strategy was
developed for modelling the Mullins effect using neural networks where certain weights
are reused and shared within the neural network. The majority of the work is based on
the assumption of incompressibility, a common assumption when modelling rubber-like
materials. The LINEXP-PANN model was also extended to compressible behaviour con-
firming the general modelling capabilities of the model. Finally, a comparison is made
between the LINEXP-PANN model and another data-driven method called Data-Driven
Computational Mechanics (DDCM) where the advantages of the LINEXP-PANN model
are demonstrated.
Keywords: hyperelasticity, physics-augmented neural networks, material modelling
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Prošireni sažetak
Strojno učenje je postalo dio naše svakodnevice i dio znanstvenoga razvoja. Ima široko
područje primjene i postoje mnogi različiti pristupi koje se može primijeniti za rješavanje
problema. Neuronske mreže su jedan od tih pristupa i moćni su regresijski alat koji se
primjenjuje u mnoštvu znanstvenih polja. Sa porastom primjene strojnog učenja u in-
ženjerstvu, neuronske mreže postaju sve popularniji alternativni materijalni model koji
zamjenjuje (ili nadopunja) postojeće analitičke modele. Materijalni modeli temeljeni na
neuronskim mrežama su korisni za opisivanje složenih ponašanja koje postojeći analitički
modeli ne mogu u potpunosti opisati. Također se koriste i kao opći modeli koji mogu
opisati širi raspon materijala. U ovom doktorskome radu se pozornost stavlja na drugo
svojstvo primjene gdje se želi stvoriti opći materijalni model za hiperelastične materi-
jale sa naglaskom na materijale slične gume. Kada se koriste analitički modeli potrebno
je prilagoditi više modela (Neo-Hookean, Mooney-Rivlin, Ogden, Yeoh, Gent, itd.) na
eksperimentalne podatke i odabrati onaj model koji najbolje opisuje podatke. Svaki anali-
tički model ima neke prednosti u odnosu a druge modele, no i nedostatke u odnosu na njih,
te se mora odabrati model ovisno o tome koji najviše odgovara određenoj primjeni. Koris-
teći neuronsku mrežu kao model cilj je dobiti jedinstveni model koji nema nedostataka i
može se koristiti za bilo koji materijal. Ovo također ubrzava proces materijalnoga modeli-
ranja jer je potrebno prilagoditi samo jedan model umjesto više njih između kojih se mora
birati. Prvi korak u radu je bio razvoj neuronske mreže koja predviđa naprezanje iz de-
formacije i predstavnik je uobičajenoga načina modeliranja neuronskim mrežama. Potom
je stvoren općenitiji model temeljen na istoj arhitekturi neuronske mreže koji je sličan in-
varijantnim modelima jer predviđa energiju i koristi invarijante desnog Cauchy-Greenova
tenzora deformiranja kao ulazne podatke. Pokazalo se da ovaj model može biti korišten i
kao jednostavna zamjena za klasične invarijantnemodele jer koristi već postojeće rutine za
računarsku implementaciju invarijantnih modela. Drugi korak čine unaprijeđenja samoj
arhitekturi neuronske mreže od kojih je najznačajnija implementacija vlastite aktivacijske
funkcije primjerene modeliranju hiperelastičnoga ponašanja. Korištenje vlastite aktivaci-
jske funkcije omogućava ispunjenje određenih uvjeta iz mehanike čvrstoga tijela poput
objektivnosti, termodinamičke konzistencije, normalizacije energije, ne-negativnost en-
ergije, normalizacija naprezanja i polikonveksnost. Promjene u arhitekturi i ispunjenje
ovih uvjeta su vodile stvaranju modela temeljenog na neuronskoj mreži kojem se nad-
jenulo ime LINEXP-PANN (Linear EXPonential Physics-Augmented Neural Network,
hrv. linearno eksponencijalna fizikalno proširena neuronska mreža). Ovaj model može
opisati široki raspon materijalnih ponašanja koristeći znatno manju količinu podataka za
treniranje neuronske mreže u usporedbi sa jednostavnijim modelima predstavljenim u pr-
vome koraku. Prethodno spomenuti LINEXP-PANN model je korišten i za u modeli-
ranju oštećenja kod gumenih materijala koji je poznat kao Mullinsov efekt. Razvijen je
novi pristup modeliranju Mullinsova efekta neuronskim mrežama koji je specifičan jer su
određene težine dijeljene u neuronskoj mreži među njenim dijelovima. Većina ovoga rada
je temeljena na pretpostavci nestlačivosti koja je česta u kontekstu modeliranja gumenih
materijala. Novorazvijeni LINEXP-PANN model je proširen i za modeliranje stlačivog
hiperelastičnog ponašanja čime se dodatno potvrđuju prilagodljivost i općenitost modela.
Naposljetku je napravljena usporedba između LINEXP-PANN modela i jedne alternative
metode temeljene na podacima Data-Driven Computational Mechanics (DDCM, hrv. po-
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dacima pogonjena računalna mehanika) te su prikazane prednosti LINEXP-PANN mod-
ela.
Ključne riječi: hiperelastičnost, fizikalno proširene neuronske mreže, materijalno mod-
eliranje
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1 Introduction

In the past several decades, and more intensely in the past 10 to 15 years, machine learning has
gained a lot of attention and is being applied to a large variety of topics. Although the application
of machine learning started to gain traction following the work of [28] where the possibility of
using neural networks as general approximator for any function was proposed, there was earlier
work done on applying machine learning techniques to solid and structural mechanics [71],
although it was curtailed by the relatively modest hardware capabilities (compared to modern
day CPUs and GPUs). As hardware became more potent the applications of neural networks to
material modelling expanded, with work like that in [62] dealing with the application of neural
networks to more complex non-linear behaviour. Now, neural networks (and other machine
learning techniques) are applied in every aspect of engineering, including mechanics.

As the application of neural networks (NNs) became more widespread it has also been
adopted in the field of constitutive modelling of materials. Neural networks could be simply
explained as sophisticated regression algorithms that describe a relation between an indepen-
dent and dependent quantity that would otherwise be difficult to describe. Conventional models
have variables in them that have physical significance, e.g. Young’s modulus in linear elastic-
ity, while the alternative neural network models likely have a large amount of variables (usually
in the hundreds or thousands in relation to solid mechanics) that most often do not have any
physical significance but simply statistically relate the independent variables (inputs) to the de-
pendent variables (outputs). Given the general approximative power of neural networks they
are a potential candidate model in many areas of constitutive modelling when the relations are
not simple and conventional models have difficulties capturing the material behaviour. A very
early example of the application of NNs to model complex relations can be found in [20] where
NNs were used to model the behaviour of concrete under cyclic loading. When describing metal
plasticity in [29], proper orthogonal decomposition was used to prepare the data and then trained
an NN model on this reduced dataset and the final model successfully represented the material
behaviour. Another application of NNs to metal plasticity is shown in [17] where recurrent
neural networks are used to describe the behaviour of steel under tension-compression loading
cycles. Neural networks can be used as surrogate models to replace complex simulations such
as liver deformation under point load during surgery [48] or the thoracic aorta [43] at a fraction
of the computational cost. This was achieved by training the NNs on finite element simulations.
On the other end of the size scale, NNs have been used to predict properties of carbon nanotubes
which include non-local effects that arise from the small scale of the problem [8, 41]. Neural
networks are also attractive due to their ability to filter out noises as shown in [19] where recur-
rent NNs were used for describing material behaviour with noisy data. In general other machine
learning techniques are also good candidates for application on noisy data, another example is
given in [30] where a Bayesian framework is used to recover a conventional model from noisy
data. Another more general application of neural network can be to directly generate stiffness
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matrices of finite elements rather than just describing material behaviour. This was done in [32]
where finite element stiffness matrices that were obtained from NNs outperformed conventional
finite elements in convergence. Similar work in a multi-scale approach was done in [10] using
support vector regression in place of NNs.

This thesis deals with the application of NNs to hyperelastic behaviour (hyperelasticity)
which are materials that undergo large strains and are defined by a strain energy density func-
tion, the most common application is modelling of rubber and rubber-like materials. The first
work where a conventional NN was applied to model the strain energy density function in place
of conventional models is [62]. Neural network were used to model the strain energy density
function for a one dimensional case in the micro-sphere model in [75], with an extension to in-
elastic behaviour using recurrent NNs. In [69] the objective function of the NN was augmented
in such a manner to consider material frame indifference while predicting stress directly from
strain without modelling a strain energy density function. In the work of [73] conventional NNs
were applied to modelling adiabatic rubber thermoelasticity both by directly predicting the stress
from strain and by approximating the strain energy density function demonstrating the difference
in the two approaches and that it is more advantageous to approximate the strain energy density
function with an NN. A very useful concept introduced in [14] is the concept of Sobolev training
for neural networks. Sobolev spaces are the spaces of derivatives of a function, thus Sobolev
training implies that the NN is trained on its derivatives. In the original paper it is tested on a
regression benchmark. In the work [68] training on the Sobolev space is introduced for elasto-
plasticity. This is a useful training strategy that is adopted by many other works since it enables
training on stress data while the strain energy is predicted by the NN. One of the first works
which used Sobolev training for an NN to capture hyperelastic behaviour is [45] which utilised
a conventional NN design. This work was later followed by [46] where a specially constructed
NN was designed inspired by existing hyperelastic material models. This approach is referred
to as the Constitutive Artificial Neural Network (CANN). The CANN approach offers good per-
formance but it is not as flexible as a NN so further work was done by exploring way to augment
conventional NN architectures to incorporate restrictions normally required from conventional
hyperelastic models. In the work of [58] physically meaningful loss measures were introduced
into the NN so that the NN could better describe the physical problem at hand, this approach
is widely referred to as Physics Informed Neural Networks (PINNs). In the work of [3] the au-
thors introduced additional restrictions from solid mechanics, such as convexity, to conventional
NNs that further improved the approximation qualities of NNs, they refer to their approach as
mechanics informed neural networks. Further refined models with more restrictions were pro-
posed in [44] summarizing the possible restrictions and their implementation strategies with the
proposed term Physics-Augmented Nueral Networks (PANNs) where conventional NNs were
adapted to effectively fulfil requirements stemming from solid mechanics. This approach and
variations thereof was successfully adopted for modelling of isothermal compressible hypere-
lasticity [44], anisotropic hyperelasticity [38], in a multi-physics setting with magneto active
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polymers [33], isotropic Mullins type damage [74], parametrized hyperelasticity [39], and vis-
coelasticity [59]. All the previously mentioned works deal with the implementation of neural
networks to distinct material behaviours but none deal with the application to thermoelastic
behaviour or materials with damage. These behaviours are specially interesting for rubber-like
materials since during loading they exhibit an interesting property where their temperature firstly
decreases but after a certain point begins to increase [23]. Another common behaviour of rubber
materials with carbon fillers is the occurrence of damage so that the unloading path is not the
same as the loading path, this is known as the Mullins effect [49]. Additionally, all of the pre-
viously mentioned works use standard activation functions that, although certainly viable, are
not commonly used in describing hyperelastic behaviour and a better candidate function might
exist. Therefore, two hypotheses are brought forward in this thesis:

(i)

General neural network based hyperelastic material models can be successfully

applied in specific phenomena such as thermoelasticity or damage modelling.

(ii)

The introduction of specialised activation functions renders a more compact

neural network material model.

In order to fulfil these goals an investigation is made starting from conventional methods
of NN modelling used in existing work to discern the importance of different NN modelling
strategies. New concepts and solutions are introduced and compared in order to obtain a NN
model with superior accuracy and general performance compared to existing models.

A final note should bemade that although neural networks are often referred to as data driven
models or approaches, there is another approach to simulations that completely relies on data
(which is obtained artificially or experimentally) and does not even have a model per semaking
it a ”true” data-driven model-free approach. This was first proposed in [36] with an example
on linearly elastic trusses, the name for this family of solvers is taken from this work as Data-
Driven ComputationalMechanics (DDCM). It was later adopted to different applications such as
fracture [11], hyperelasticity [57], inelastic behaviour [18], molecular dynamics [6], multiscale
modelling [34], noisy data [37], frequency domain data [60] and other areas. A comparison is
made in the thesis between the performance of NNs and DDCM.

A brief overview of the contents of this thesis is given as follows:

• In Section 2 a brief overview of hyperelasticity is given with a basic overview of the
kinematics, conservation laws and basic constitutive relations. This section serves as
the basis where all the background from mechanics that is needed to follow this work is
given. Similarly, Section 3.1 contains the necessary background for following the work
done related to the construction of neural networks, their training and implementation.
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• In Section 3, a brief introduction is given about feedforward neural networks and their
training procedure. Various types of activation functions are described which are usually
used in neural networks followed by the application of conventional neural networks ar-
chitectures on hyperelasticity. Also, in the same section the application of neural networks
to adiabatic thermoelasticity is investigated since the difference between it and isother-
mal hyperelasticity are very small, giving an insight into the capabilities of conventional
neural network architectures for capturing small differences in the same material type
behaviour.

• In Section 4, drawing on insights fromSubsection 3.3 and the literature, a physics-augmented
neural network is presented. This is a neural network which fulfils certain condition from
solid mechanics by its construction, rendering a neural network that can correctly capture
general material behaviour. This section is the central piece of the thesis where the con-
struction of a general neural network for modelling hyperelasticity is presented in detail
and a new activation function is introduced as well as the concept of modelling incom-
pressible hyperelasticity with neural networks.

• In Section 5 a framework for modelling Mullins-type simple isotropic damage is pre-
sented. The general neural network model from Section 4 is used and compared against
several variations of the model as well as against another neural network model from the
literature. Also, a novel strategy for modelling materials with damage is introduced where
components of the network are reused in order to fulfil a modelling requirement from solid
mechanics.

• Finally, in Section 6 the general neural network model is compared with a different novel
approach called data driven computational mechanics. It is a model-free approach that
directly uses data gathered from simulations/experiments to perform an analysis. In this
chapter the viability of neural networks compared to the other most popular data based
approach is investigated.
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2 Brief Overview of Hyperelasticity

Within this chapter a brief overview is provided of the necessary fundamentals of hyperelastic
material behaviour. Hyperelastic materials are those that are described by a strain energy (or
stored energy) function, which is in turn a function of the deformation gradient F, both these
terms are discussed later in this section. If there are no losses during the deformation process (i.e.
if the deformation process is perfectly reversible) such amaterial may be referred to as a perfectly
elastic Cauchy material. Rubber-like materials are an example of a hyperelastic material as
their behaviour is often characterised by a strain energy function. This chapter encompasses the
background needed to understand the presented work and introduces much of the used notation.
For a more detailed overview of the subject the reader is referred to the works of [9, 27, 54, 66]
and further in relation to its application in the finite element method in the works of [5, 15, 70].

2.1 Kinematics

Consider a body in a three-dimensional Euclidean spaceR3. A point on the body can be defined
in its initial configuration X = XaEa at a time t0, also called the material or Lagrangian config-
uration, or in the current configuration, also called the spatial configuration, x = xaea at a time
t, with a = 1, 2, 3, E and e the basis vectors such that Ei × Ej = Ek and ei × ej = ek. Note
that the uppercase letters usually denote a quantity in the initial (material or Lagrangian) config-
uration and lowercase letters usually denote the quantity in the current (spatial) configuration.
This also applies to mathematical operators such as the gradient and divergence with Grad or
Div denoting the gradient or divergence with respect to the initial configuration and grad or div
with respect to the current configuration.

The deformation gradient F is introduced as the operator which maps the line element from
the initial to the current configuration as

dx = FdX, (2.1)

from which the deformation gradient can further be defined as

F =
∂x
∂X

=
∂xi
∂Xj

= Fijei ⊗ Ej. (2.2)

The deformation gradient serves as a basis for all further measures of deformation introduced
in this work. Note that the deformation gradient is also depicted as the transformation from the
initial to the current configuration asφ(X, t). A general motion described by F can be separated
into pure stretch, which can be defined by the right (U) and left (V) stretch tensors, and pure
rotation which is defined by the rotation tensor R:

F = VR = RU, (2.3)
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with R being a proper orthogonal tensor, i.e. RT = R−1. Also, U and V are both symmetric
tensors. Furthermore, the stretch tensors can be decomposed using spectral decomposition to
their eigenvalues λa such that

U =
3∑

a=1

λaNa ⊗ Na, (2.4a)

V =
3∑

a=1

λana ⊗ na, (2.4b)

where Na and na are the eigenvectors of the right and left stretch tensors. The deformation
gradient can also be decomposed in the following form

F =
3∑

a=1

λana ⊗ Na, (2.5)

with the previously mentioned principal stretches λa and the eigenvectorsNa and na. Having de-
fined the deformation gradient, a summary of the transformations from the initial configuration
to the current one can be given:
(i) Mapping of line elements

As already presented in Eq. (2.1) the mapping of line elements is done by dx = FdX.

(ii) Mapping of surface elements

The mapping between the initial and current configuration is given by Nanson’s formula:

da = JF−TdA = cof(F)dA, (2.6)

with da = nda and dA = NdA, and where J is the volume ratio of the current configuration
with respect to the initial one, i.e. the relative change of volume during deformation defined
as the determinant of the deformation gradient

det(F) = J = λ1λ2λ3. (2.7)

(iii) Mapping of volume elements

The mapping of volume elements is simply related by the Jacobian between the volumes in
the initial and current configuration:

dv = JdV, (2.8)

with dv being the infinitesimal volume element in the current configuration defined by the
triple scalar product dx1 · (dx2×dx3), and dV the infinitesimal volume element in the initial
configuration defined by the triple scalar product dX1 · (dX2 × dX3).
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Another important deformation measure in the material configuration is the right Cauchy-
Green deformation tensor C defined as

C = FTF = UTRTRU = U2 =
3∑

a=1

λ2aNa ⊗ Na, (2.9)

with its counterpart in the current configuration being the left Cauchy-Green deformation tensor
B defined as

B = FFT = VRRTVT = V2 =
3∑

a=1

λ2ana ⊗ na. (2.10)

Additionally, the the Green-Lagrange strain tensor can be expressed as

E =
1

2
(C− I) . (2.11)

A convenient manner to express any state of deformation regardless of the change of basis
would be to express it in terms of principal invariants. Later in this work invariants are going
to be the base upon which general neural network material models will be formed. Using the
Cayley-Hamilton theorem a matrix polynomial can be constructed such that it is equal to the
zero matrix, i.e. pA(A) = 0 where pA(A) is the matrix polynomial and A is an invertible square
matrix. The matrix polynomial can be written as

pA(A) = An + cn−1An−1 + ...+ c1A+ c0In, (2.12)

where ci (i = 0, ..., n) are the coefficients of the polynomial, In is the identity matrix of rank n
and n is the rank of the matrix A. Having in mind that C ∈ R3×3 it follows from the Cayley-
Hamilton theorem that

C3 + I1C2 + I2C+ I3I = 0, (2.13)

where the coefficients c2, c1, c0 are now replaced with the notation I1, I2, I3 and called the prin-
cipal invariants. The coefficients of the matrix polynomial (i.e. the principal invariants) are
obtained in terms of exponential Bell polynomials as:

I1 = tr(C), I2 =
1

2

(
tr(C)2 − tr(C2)

)
, I3 = det(C). (2.14)

The invariants can further be interpreted in terms of the eigenvalues of C as

I1 = λ21 + λ22 + λ23, I2 = λ21λ
2
2 + λ22λ

2
3 + λ21λ

2
3, I3 = λ21λ

2
2λ

2
3 = J2. (2.15)

The displacement u of a point on a body in the current configuration can be defined as

u = x− X, (2.16)
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and it does not change in the initial configuration as the displacement is defined in the same
mannerU = x−X. The velocity and acceleration are further defined as material time derivatives
D
Dt(•) (i.e. a time derivative holding the reference X fixed) of the displacement

v = V =
D
Dt

(x− X) = ∂x
∂t

= ẋ, a =
∂v
∂t

=
∂2x
∂t2

= ẍ, (2.17)

note that the time derivative of X vanishes since the position in the initial configuration is held
fixed, i.e. it is constant. The material time derivative is also denoted with a dot above the derived
quantity as ˙(•). The gradient of the velocity ℓ is defined as

ℓ = gradv, (2.18)

and by deriving the deformation gradient F with respect to time as

Ḟ =
∂

∂t

(
∂x
∂X

)
=

∂

∂X

(
∂x
∂t

)
=
∂v
∂X

=
∂v
∂x

∂x
∂X

= gradvF = ℓF, (2.19)

the alternate definition of the velocity gradient can be formulated as

ℓ = ḞF−1. (2.20)

The velocity gradient can be further decomposed to its symmetric and antisymmetric parts
as

ℓ = d+ w, d =
1

2

(
ℓ+ ℓT

)
, w =

1

2

(
ℓ− ℓT

)
, (2.21)

where d is the symmetric part and is called the rate of deformation tensor, and w is the rate of
rotation tensor.

2.2 Stresses

Stress is defined as a force per unit area. In a more general sense, it can be expressed as a
linear function of the normal unit vector acting on the boundary of a body or a surface area. The
Cauchy stress tensor σ relates the traction vector t to the outward normal unit vector n in the
current configuration, whereas the first Piola-Kirchhoff stress tensor P relates the traction vector
T to the outward normal unit vector N in the initial configuration. Note that both t and T point
in the same direction as they describe the same external load. This can be defined as

t = σn, T = PN. (2.22)

The traction vectors describe the same load so the following holds:

tda = TdA, (2.23)
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Ω0
Ωt

da
dA T

t

N
n

φ(X,t)

∂Ω0 ∂Ωt

Figure 2.1: Initial and current configurations, depiction of the normal vectors n and N, traction
vectors t and T, and surface areas dA and da.

so using the previous equations the relation between Cauchy and first Piola-Kirchhoff stress can
be given as

P = JσF−T . (2.24)

Another useful stress tensor that is the Kirchhoff stress tensor τ which is tied to Cauchy’s
stress tensor by the volume ratio J as

τ = Jσ, (2.25)

and additionally the second Piola-Kirchhoff stress tensor is introduced and can be obtained by
the pull-back operation on τ as

S = F−1τF−T = JF−1σF−T = F−1P. (2.26)

This is a fictitious tensor with no physical interpretation, however it is often used in the definition
of material behaviour as it leads to simpler operations and will prove useful when defining a
neural network model.
Incompressible behaviour If a material behaves in such a manner that during deformation
there is no volume change, it can be classified as an incompressible material. Following from
[66], section 30, in the case of material incompressibility an internal constraint in the form of
det(C) = 1 arises and the stress can thus be computed up to an extra stress component p. In this
case the Cauchy stress can be expressed as

σ = σE − pI, (2.27)

where σE is defined from a constitutive relation from the strain energy function which is dis-
cussed later in the next subchapter. See and compare with Eq. (2.84) and the accompanying
text.

2.3 Balance Principles

Conservations and balance principles serve as the building blocks upon which behaviour of
continua is described. They do not depend on any specific material behaviour, but are valid
in general for any behaviour reduced to a continuum. In this section several principles are
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covered, namely the conservation of mass, balance of linear and angular momentum, balance of
mechanical energy, the entropy inequality, and the Clausius-Duhem inequality. Some balance
principles include the material time derivative which will in general be defined with a dot above
the derived quantity, i.e. ˙(•).
Conservation of mass As a body deforms it changes its shape and potentially changes its vol-
ume. However, its mass remains unchanged. Considering an infinitesimal mass dm it can be
expressed in the initial or current configuration

dm = ρ0dV = ρdv, (2.28)

with ρ0 and ρ the densities in the initial and current configuration. Given that mass doesn’t
change during deformation, the conservation of mass can be expressed using Eq. (2.8) as∫

Ω0

(
ρ0 − Jρ

)
dV = 0, (2.29)

in the global form and as
ρ0 − Jρ = 0 → ρ0 = Jρ (2.30)

in the local form giving the relation between the densities in the current and reference configu-
ration.
Balance of Linear Momentum The balance of linear momentum states that the change of mo-
mentum L is equal to the externally applied force f . Linear momentum is defined as

L =

∫
Ω

ρvdv, (2.31)

with Ω being the domain in the current configuration, ρ the density and v the velocity. The
external force f is defined as

f =

∫
Ω

bdv +
∫
∂Ω

tda, (2.32)

with b the body (volume) forces that act in the domain Ω in the current configuration, and t the
traction vector defined earlier in Eq. (2.22)1 that is acting on the boundary ∂Ω.

The balance of linear momentum L̇ = f can be written as∫
Ω

ρv̇dv =

∫
Ω

bdv +
∫
∂Ω

tda. (2.33)

Recalling Eq. (2.22)1 and the divergence theorem the second term on the right hand side of
Eq. (2.33) can be expressed as∫

∂Ω

tda =

∫
∂Ω

σnda =

∫
Ω

divσdv, (2.34)
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leading to the balance of linear momentum in its global form in the current configuration as∫
Ω

(
divσ + b− ρv̇

)
dv = 0, (2.35)

which is also known as Cauchy’s first equation of motion, and also to the equation of motion in
its local form

divσ + b− ρv̇ = 0. (2.36)

The balance of linear momentum can be expressed in the material configuration by recalling
Eqs. (2.8), (2.23), (2.24) and (2.30)2. Each term in Eq. (2.33) can be transformed to the material
configuration: ∫

Ω

divσdv =

∫
∂Ω

σnda =

∫
∂Ω0

PNdA =

∫
Ω0

DivPdV (2.37a)∫
Ω

bdv =

∫
Ω0

bJdV =

∫
Ω0

BdV, (2.37b)∫
Ω

ρv̇dv =

∫
Ω0

ρ0v̇dV, (2.37c)

with the final global form of the balance of linear momentum in the material configuration∫
Ω0

(
DivP+ B− ρ0v̇

)
dV = 0, (2.38)

and in this equation B denotes the vector of body forces in the initial configuration, not to be
confused with the left Cauchy-Green stretch tensor from Eq. (2.10).
Balance of angular momentum The balance of angular momentum states that the change of
angular momentum is equal to the moment M of force f about x0. The angular momentum J
relative to a fixed point x0 can be expressed using the vector (cross) product × as

J =

∫
Ω

r× ρvdv, (2.39)

with r = x− x0, and the momentM as

M =

∫
Ω

r× bdv +
∫
∂Ω

r× tda. (2.40)

The balance of angular momentum J̇ = M follows as∫
Ω

r× ρv̇dv =

∫
Ω

r× bdv +
∫
∂Ω

r× tda, (2.41)

note that when deriving r×v from Eq. (2.39) with respect to time, the term ṙ×v vanishes since
ṙ = ẋ = v, so ṙ × v = v × v = 0. From this point, the expression for the balance of angular
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momentum in the global form can be derived in a similar way as the global form of the balance
of linear momentum. However, given that a cross product is present the divergence theorem
does change somewhat and instead as in Eq. (2.34) the traction term on the boundary changes
to ∫

∂Ω

r× tda =

∫
Ω

(
r× divσ + ϵ : σT

)
dv, (2.42)

with ϵ denoting the Levi-Civita symbol. Reordering the terms gives the expression∫
Ω

r×
(
ρv̇− b− divσ

)
dv =

∫
Ω

ϵ : σTdv. (2.43)

Knowing Cauchy’s first equation of motion given in Eq. (2.36), it can be concluded that

ϵ : σT = 0, ϵabcσcb = 0, (2.44)

which gives the expressionsσ12 − σ21

σ23 − σ32

σ31 − σ13

 =

00
0

→ σ12 − σ21 = 0, σ23 − σ32 = 0, σ31 − σ13 = 0, (2.45)

σ12 − σ21 = 0, σ23 − σ32 = 0, σ31 − σ13 = 0, (2.46)

implying that the Cauchy stress tensor is symmetric so the relation

σ = σT (2.47)

holds. This relation is also called Cauchy’s second equation of motion. It also implies the
symmetry of the Kirchhoff stress tensor and the 2nd Piola-Kirchhoff stress tensor since they are
related to Cauchy’s stress tensor by Eqs. (2.25) and (2.26).
Balance of mechanical energy The balance of mechanical energy requires that the work done
by external forces acting on a bodyPext is equal to the mechanical work done by the deformation
of the body itself Pint and the change of kinematic energy of the body K. This can be written as

D
Dt

K + Pint = Pext, (2.48)

with the expression for the kinematic energy taken as

K =

∫
Ω

1

2
ρv · vdv. (2.49)

The external mechanical work is that of the external force in Eq. (2.32), f · u, from which
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the rate of exterior mechanical work follows as

Pext =
D
Dt

(f · u) =
∫
Ω

b · vdv +
∫
∂Ω

t · vda. (2.50)

In order to obtain the expression for Pint, Eqs. (2.49) & (2.50) are put into Eq. (2.48). Before
that the term for the work done on the boundary in Eq. (2.50) is expanded using the divergence
theorem as∫

∂Ω

t · vda =

∫
∂Ω

(σn) · vda =

∫
Ω

div
(
σTv

)
dv =

∫
Ω

(divσ · v+ σ : gradv) dv, (2.51)

so that the expression from Eq. (2.48) can be rewritten using Eqs. (2.18), (2.21) & (2.36) as

Pint = Pext −
D
Dt

K =

∫
Ω

b · vdv +
∫
Ω

(divσ · v+ σ : gradv) dv −
∫
Ω

ρv̇ · vdv =

=

∫
Ω

σ : gradv︸ ︷︷ ︸
= ℓ

dv +
∫
Ω

(divσ + b− ρv̇)︸ ︷︷ ︸
= 0

·vdv =

∫
Ω

σ : (d+ w) dv =

∫
Ω

σ : d dv,
(2.52)

where the property that the inner product of a symmetric and antisymmetric tensor is equal to
zero is used, i.e. σ : w = 0. The final expression for Pint is also called the stress power and
in Eq. (2.52) is expressed in the spatial configuration. Alternative expressions in the material
configuration can be obtained using Eqs. (2.8), (2.20) & (2.24) as

Pint =

∫
Ω

σ :
(
ḞF−1

)
dv =

∫
Ω0

JσF−T : ḞdV =

∫
Ω0

P : ḞdV =

∫
Ω0

S : ĖdV, (2.53)

and with Ė given as

Ė =
1

2
˙FTF =

1

2

(
˙FTF+ FT Ḟ

)
=

1

2

(
FTℓTF+ FTℓF

)
= FT 1

2

(
ℓT + ℓ

)
F = FTdF. (2.54)

Balance of thermal energy (First law of thermodynamics) The first law of thermodynamics
states that the rate of change of total energy (both kineticK and internal E) of a thermodynamic
system equals the rate at which external mechanical work Pext is done on that system plus the
rate at which thermal work Q is done by heat fluxes and heat sources. The internal energy of a
body E is defined as:

E(t) =
∫
Ω

ec(x, t)dv, (2.55)

where ec is the internal energy at a current position and time. The rate of thermal work Q is
defined as the sum of the work of heat fluxes and heat sources

Q(t) =

∫
∂Ω

qnda+
∫
Ω

rdv =

∫
∂Ω0

QNdA+

∫
Ω0

RdV, (2.56)

where the heat flux is denoted by qn orQN and the heat source by r orR in the spatial and current
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configurations, respectively. The heat fluxes can further be defined as

qn(x, t, n) = −q(x, t) · n, QN(X, t,N) = −Q(X, t) · N. (2.57)

The balance of thermal energy can be expressed as

D
Dt

K(t) +
D
Dt

E(t) = Pext(t) +Q(t), (2.58)

and substituting Eqs. (2.49), (2.50) and (2.56) into Eq. (2.58) the first law of thermodynamics
in the spatial description is obtained as

D
Dt

∫
Ω

(
1

2
ρv2 − ec

)
dv =

∫
∂Ω

(t · v+ qn) da+
∫
Ω

(b · v+ r) dv. (2.59)

Employing Eq. (2.57) and the divergence theorem in Eq. (2.56), and expressingPint = Pext−
D
DtK from Eq. (2.52), a reduced global form of balance of energy in the spatial description can
be obtained as

D
Dt

∫
Ω

ecdv =

∫
Ω

(σ : d− divq+ r) dv. (2.60)

The reduced global form in the material description can be expressed as

D
Dt

∫
Ω0

edV =

∫
Ω0

(
P : Ḟ− DivQ+R

)
dV, (2.61)

where e is the internal energy in the material description. Since the reference volume V is
independent of time, the local form of the balance of energy can be expressed from Eq. (2.61)
as

ė = P : Ḟ− DivQ+R. (2.62)

Entropy inequality principle (Second law of thermodynamics)When observing thermome-
chanical processes it can be seen that they posses a direction in which they occur. E.g., heat
flows spontaneously from a warmer body to a colder body, the inverse does not happen. Also,
consider an object that has to get from point A to point B and has the option of two routes, one
longer and one shorter. If friction is taken into account then the work needed to cover these
two routes is not the same even though the same endpoint is reached. In order to fulfil such
conditions, an additional state variable called entropy is introduced. Rubber-like materials are
polymer materials and are made of long intertwinedmolecular chains. During deformation these
chains straighten which reduces the disorder in the material. Entropy is also referred to as a mea-
sure of disorder or randomness. It will be denoted with η(x, t) and N(X, t) in the spatial and
material configurations, respectively. The entropy of an entire body will be denoted with S and
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is defined with the expression

S(t) =
∫
Ω

η(x, t)dv =

∫
Ω0

N(X, t)dV. (2.63)

The rate of entropy input into a body (or region) consists of the entropy transferred through the
boundary of the body and the amount that it generated or destroyed within the body. It is denoted
with Q̃ and defined as

Q̃ = −
∫
∂Ω

h · nda+
∫
Ω

r̃dv = −
∫
∂Ω0

H · NdA+

∫
Ω0

R̃dV, (2.64)

with h andH denoting the entropy fluxes, and r̃ and R̃ denoting the entropy sources in the spatial
and material descriptions respectively. Since entropy is a quantity introduced to observe the
direction of a process it is required that its total value in an observed system can not decrease,
i.e. the total entropy can only be increased (or in the case of reversible processes remain the
same). This increase, also called the total production of entropy, can be expressed using the
symbol Γ(t) as

Γ(t) =
D
Dt

S(t)− Q̃(t) ≥ 0, (2.65)

asserting that entropy can only increase with time. The entropy fluxes and sources can be con-
nected to the heat fluxes and sources through the factor of 1

Θ
, whereΘ is the absolute temperature

measured in Kelvin [K]:

h =
q
Θ
, H =

Q
Θ
, r̃ =

r

Θ
, R̃ =

R

Θ
. (2.66)

Thus, substituting Eqs. (2.63) and (2.64) into Eq. (2.65), and having in mind the relations in
Eq. (2.66), yields the following expression

Γ(t) =
D
Dt

∫
Ω

ηdv +
∫
∂Ω

q
Θ

· nda−
∫
Ω

r

Θ
dv ≥ 0, (2.67)

resulting in what is called the Clausius-Duhem inequality. In the material configuration it takes
the form of

Γ(t) =
D
Dt

∫
Ω0

NdV +

∫
∂Ω0

Q
Θ

· NdA−
∫
Ω0

R

Θ
dV ≥ 0. (2.68)

Applying the divergence theorem on the boundary part of Eq. (2.68) and substituting it back
into the equation, the localized form of the inequality can be obtained as

Ṅ +
1

Θ
DivQ− 1

Θ2
Q · GradΘ− R

Θ
≥ 0, (2.69)

and bymultiplying the equation with the temperature and using Eq. (2.62) to replace heat source,
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the alternative local form of the inequality is obtained as

P : Ḟ− ė+ΘṄ − 1

Θ
Q · GradΘ ≥ 0. (2.70)

TheHelmholtz free energy per unit reference volume is introduced asψ = e−ΘN . Note that
later when considering an isothermal setting (that is when neglecting temperature and entropy)
the functionψ will be referred to as the strain-energy function. With the expression forψ in mind
and assuming a homogenous temperature distribution where GradΘ = 0, the Clausius-Duhem
inequality reduces to the form

P : Ḟ− ψ̇ −NΘ̇ ≥ 0. (2.71)

The Helmholtz free energy depends on the deformation gradient F and the temperatureΘ (it
is possible that it depends on other quantities but they are not considered in this work) so that
the time derivative ψ̇(F,Θ) can be expressed as

ψ̇(F,Θ) =
∂ψ(F,Θ)

∂F
: Ḟ+

∂ψ(F,Θ)

∂Θ
Θ̇. (2.72)

By replacing ψ̇ from Eq. (2.71) with Eq. (2.72) the following expression is obtained(
P− ∂ψ(F,Θ)

∂F

)
: Ḟ−

(
N +

∂ψ(F,Θ)

∂Θ

)
Θ̇ ≥ 0. (2.73)

If the temperature is assumed to be constant, i.e. Θ̇ = 0, then the expression leads to(
P− ∂ψ(F,Θ)

∂F

)
: Ḟ ≥ 0, (2.74)

and since Ḟ can take any arbitrary values (positive or negative) then the definition of the 1st

Piola-Kirchhoff stress follows as

P− ∂ψ(F,Θ)

∂F
= 0 → P =

∂ψ(F,Θ)

∂F
. (2.75)

At this point it should be reiterated that a hyperelastic material is described by a strain energy
function ψ(F) and through the constitutive relation that has been given in Eq. (2.75).

Similarly to inequality in Eq. (2.74), assuming that there is no change in deformation, i.e.
Ḟ = 0, but that the temperature may vary so that Θ̇ can take any arbitrary value (positive or
negative), then Eq. (2.73) leads to the definition of entropy as

N +
∂ψ(F,Θ)

∂Θ
= 0 → N = −∂ψ(F,Θ)

∂Θ
. (2.76)

In the following discussion isothermal behaviour is assumed (Θ̇ = 0) and the effect of
the temperature is neglected for simplicity. Other stress tensors can be expressed, e.g. the 2nd
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Piola-Kirchhoff stress tensor S. First, the strain energy ψ is expressed in terms of the right
Cauchy-Green deformation tensor C through the time derivative ψ̇ as

ψ̇ =
∂ψ(F)
∂F

: Ḟ = tr

[(
∂ψ(F)
∂F

)T

Ḟ

]
, (2.77)

ψ̇ =
∂ψ(C)
∂C

: Ċ = tr
[
∂ψ(C)
∂C

Ċ
]
= tr

[
∂ψ(C)
∂C

(
˙FTF+ FT Ḟ

)]
=

= 2 tr
[
∂ψ(C)
∂C

FTḞ
]
,

(2.78)

where the useful property of the trace tr (ATB) = tr (BTA) (i.e. the diagonal is always the same
in the trace regardless of the transpose) is used. Also, note thatC is symmetric, so the derivative
of ψ with respect to C is also symmetric. From Eqs. (2.77) and (2.78) the relation between the
strain energy defined in terms of F and C can be obtained as(

∂ψ(F)
∂F

)T

= 2
∂ψ(C)
∂C

FT. (2.79)

Substituting Eqs. (2.79) and (2.75) into Eq. (2.26) the expression for the 2nd Piola-Kirchhoff
stress tensor is defined using the strain energy as

S = 2
∂ψ(C)
∂C

. (2.80)

This can be further expressed in terms of the principal invariants of C as

S = 2
∂ψ(I1, I2, I3)

∂C
= 2

[
∂ψ

∂I1

∂I1
∂C

+
∂ψ

∂I2

∂I2
∂C

+
∂ψ

∂I3

∂I3
∂C

]
=

= 2

[(
∂ψ

∂I1
+ I1

∂ψ

∂I2

)
I− ∂ψ

∂I2
C+ I3

∂ψ

∂I3
C−1

]
,

(2.81)

which will later be used. Furthermore, the material tangent c or C (spatial or material con-
figuration) is necessary for calculations involving the 1st derivatives of the stresses and can be
computed by further deriving the stresses with respect to the appropriate deformation measure.
The material tangent in the material configuration is given as

C = 2
∂S
∂C

= 4
∂2ψ(C)
∂C∂C

, (2.82)

and in the spatial configuration it can be obtained through a push-forward transformation as

c = J−1χ∗(C) → cabcd = J−1FaAFbBFcCFdDCABCD. (2.83)

A note on incompressibility In the case of incompressibility the stress can be determined up to
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an extra component (cf. [66], Sections 30. and 80.) as already presented in Eq. (2.27). In terms
of the strain energy this can be expressed with Eqs. (2.24) and (2.75) as

P =
∂ψ (F)
∂F

− JpF−T. (2.84)

The value of the extra component p is determined either through equilibrium conditions
(e.g. in a plane stress setting) or with the use of specialised numerical techniques. The extra
component p can also be viewed as a Lagrange multiplier that enforces the incompressibility
constraint that no volume change should occur, i.e. det(C) = 1.
A note on the behaviour of rubber-like materials Rubber-like materials are polymers and
consist of intertwined molecular chains. Their behaviour is often characterised as hyperelastic
since they are often described through a strain energy function ψ(F) and the relation Eq. (2.75).
Some characteristic properties which are common to all rubber-like materials include:

• Near-incompressibility - although some volume change may occur during deformation
[7,52] these materials are often times regarded as incompressible since their bulk modulus
is several orders of magnitude greater than their shear modulus [50]. Due to this large
difference incompressibility is considered as a valid assumption when modelling such
materials.

• Stress in these materials is caused by a change in entropy with deformation, due to the
straightening of the aforementioned intertwined molecular chains, so these materials are
referred to as entropic, whereas in metals the entropy does not change with deformation.

• A piece of rubber first cools and then warms upon stretching, this is shown later in Sec. 3.3
Fig. 3.3. Also, when a piece of stretched rubber is warmed it contracts and if it is cooled
it extends, contrary to the usual behaviour of materials.

These are some of the characteristics which must be considered when modelling the be-
haviour of rubber materials. In the majority of this thesis the hyperelastic behaviour is assumed
to be incompressible. Appropriate measures of deformation must be considered whenmodelling
hyperelasticity and an investigation is made between different admissible measures. Addition-
ally, the influence of self-heating during deformation is investigated.
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3 Implementation of Conventional Neural Networks

Neural networks are a potent mathematical tool inspired by the way the brain functions. They
were first proposed as a model for the brain by neurophysiologist WarrenMcCulloch and mathe-
matician Walter Pitts in 1943 [47]. Since then they slowly found their way into the field of solid
mechanics with papers on various applications in computational mechanics in the late 1970’s
and in the 1980’s [71], and in 1989 they were proposed as universal approximators in the work of
Hornik [28]. With the advent of larger computational capabilities and the recent advancements
in other sciences, machine learning applications gathered a strong interest in the computational
mechanics community. For a thorough explanation of neural networks the reader is referred
to [22]. In this work the machine learning library TensorFlow [2] is used to develop and train
neural networks.

3.1 Feedforward Neural Networks

In this chapter the Feedforward Neural Network (FNN) (also called a MultiLayer Perceptron,
MLP) is explained and the way in which it will be used to model hyperelasticity is shown. In
Fig. 3.1 an illustration of a FNN is given. It is comprised of multiple sequentially ordered layers
that are filled with neurons. The depth of a neural network is the number of hidden layers it
has and the width of a layer is the number of neurons inside it. The neurons are depicted as
circles, while the layers are enclosed with a dashed line. Values are passed from the input layer
to the hidden layer while at the same time multiplying the weights between the layers. An
activation function can also be applied to each layer, passing the neurons through the activation
function before forwarding their values to the next layer (in Fig. 3.1 the activation function is
not depicted). This is repeated between all layers in a forward manner (depicted by the arrow in
Fig. 3.1) until the output layer is reached. These chained operations can be described with the
expression on how to calculate the values of an arbitrary hidden layer:

h(l) = g(l)
(
W (l)Th(l−1) + b(l)

)
, l = 1, ..., n. (3.1)

In the equation given above h(l) is the l-th layer of a FNN, g(l) is the activation function corre-
sponding to that layer,W (l) are the weights between the current h(l) and previous layer h(l−1),
b(l) are the biases added to the neurons of the current layer, l is the number of the layer with h(0)

being the input layer, and h(n) the output layer. The total number of layers after the input layer
is denoted with n.

A neural network is used in this work as a regression model with many parameters (e.g.
the weights inW (l)) which can be optimised to better describe certain behaviour. This is done
through minimising an objective function, also called a loss function. For example, let L(ŷ,y)
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Figure 3.1: Illustration of a Feedforward Neural network (FNN).

be such an objective function in the form of

L (ŷ,y) =
1

N

N∑
i=1

(
ŷi − yi (x;w)

)2

, (3.2)

where ŷ are the ”true” (or target) values from the data that represent the function to be approx-
imated, y (x;w) are the predicted values of the neural network with x being the inputs to the
network andw all the trainable parameters of the network, andN is the number of training sam-
ples. This presented function is called themean squared error (MSE). Starting from some initial
values of the trainable parameters of the neural network, the objective is to find such parameters
w that minimise the value of a loss function L(w), which is the same loss function given before
just rewritten to state the dependency of the loss to the tranable parameters. In order to find
the direction in which the loss function decreases the fastest the problem changes to finding the
minimum of the directional derivative

min
u,uTu=1

∂

∂α
[L(w + αu)] |α=0, (3.3)

where u is the unit vector defining the direction with α being equal to 0. The directional deriva-
tive leads to

∂

∂α
[L(w + αu)] |α=0 =

[
∂L(w + αu)

∂(w + αu)
· ∂(w + αu)

∂α

]
α=0

=
∂L(w)

∂w
· u = ∇wL(w) · u,

(3.4)
which is a scalar product. Expanding the last part of the previous equation to the definition of a
scalar product and substituting it into Eq. (3.3) leads to

min
u,uTu=1

|∇wL(w)| |u| cos θ (3.5)
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and since |u| = 1 and |∇wL(w)| does not depend on u, the expression further simplifies to
minu,uTu=1 cos θ, for which the minimum is achieved when the unit vector u is pointing in the
opposite direction of the gradient∇wL(w), i.e. when cos θ = −1. This leads to the conclusion
that the loss function decreases most when moving in the negative direction of its gradients
leading to the relation

w := w − ϵ∇wL(ŷ,y), (3.6)

where ϵ is a small number called the learning parameter (or step size), and the operator ”:=”
denotes the variable update in an algorithm. The gradients of the loss function with respect to
the trainable parameters are calculated using automatic differentiation built into TensorFlow.
Apart from the basic version of the stochastic gradient descent algorithm shown in Eq. (3.6),
there are multiple versions which incorporate some improvements. The variant that proved to be
most effective in this work for training the presented neural networks is the Adam optimizer [35]
which is described in Algorithm 1.

Algorithm 1 Adam optimizer.
Adam introduces 2 moments during training, the first moment estimate s and the second
moment estimate r. The required variables are β1 and β2 (decay rates), and the parameter
η used in this algorithm to prevent division by zero. The learning rate ϵ is borrowed from
Eq. (3.6). This algorithm is performed during each training step. Variables are initialised at
the start of training, common values are β1 = 0.9, β2 = 0.999, η = 10−7, ϵ = 0.001.

1: t := t+ 1 ▷ Update the step during training.
2: g = ∇wL(w) ▷ Get gradients.
3: s := β1s+ (1− β1)g ▷ Update biased first moment estimate.
4: r := β2r + (1− β2)g

2 ▷ Update biased second moment estimate.
5: ŝ := s/(1− βt

1) ▷ Correct bias in first moment.
6: r̂ = r/(1− βt

2) ▷ Correct bias in second moment.
7: w := w − ϵ · ŝ/(

√
r̂ + η)

With this the basic function of the neural network is explained as well as the training algo-
rithm.

3.2 Choice of the Activation Function

Neural networks can be looked at as simple regressionmodels that can be relatively easily trained
on a large number of samples while having a large number of trainable parameters. They should
be able to capture a wide range of functions simply by expanding the width (number of neurons
per layer) [28]. Also, using the automatic differentiation tool built into modern machine learning
libraries such as TensorFlow, the neural network can easily be incorporated into finite element
calculations. For example, learning the stress-strain relationship via a neural network enables
the calculation of the material tangent. Having a neural network that calculates the stresses and
material tangent makes it an ideal drop-in replacement for conventional models in finite element
software such as Abaqus.
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Figure 3.2: Prediction of the sine function using an FNN with PReLU and tanh activation func-
tions, and the gradients of the respective FNNs.

In Section 3.1 the activation function is mentioned but not studied in detail. The importance
of the activation function is considerable when attempting tomodel any type of behaviour. In this
work the underlying hyperelastic behaviour is always nonlinear so it is important to choose an
activation function that can correctly capture nonlinearities. The sine is used as a toy example
to highlight the importance of choosing an adequate activation function. An overview of the
possible candidate functions that are widely used is given in [42]. To illustrate the importance
of the choice 2 functions are studied, the Parametric Rectified Linear Unit (PReLU) and the
hyperbolic tangent (tanh). The PReLU function is defined as

f(x) =

αx if x < 0

x if x ≥ 0,
,

∂f(x)

∂x
=

α if x < 0

1 if x ≥ 0,
(3.7)

whereas the tanh is a well known function defined as

tanh(x) =
ex − e−x

ex + e−x
,

∂tanh(x)
∂x

= 1−
(
ex − e−x

ex + e−x

)2

. (3.8)

Comparing the functions it can be seen that the main difference is that the PReLU is linear and
discontinuous at 0 with a sharp jump in its derivative, while the tanh is nonlinear and continuous
at 0. Based solely on this the tanh seems to be the proper candidate to describe the sine function.
Plotting the predictions of the sine function in Fig. 3.2a both FNNs correctly capture the sine
and the choice of function seems arbitrary. However, looking at the gradients of the FNNs (i.e.
the cosine function) in Fig. 3.2b it can be seen that the gradients of the FNN using PReLU are
constants that somewhat approximate the cosine curve, while the FNN using the tanh correctly
captures the gradients rendering it the preferred activation function for such a task.

When training an NN the loss function is a key element. Although it is intuitive that the loss
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function contains the quantity it predicts, it can be formulated that it contains the derivatives of
the NN. In the case of solid mechanics this would mean that if the NN predicts the strain energy
the loss function would contain the stresses. This will be explored in the later sections of this
work.

3.3 Adiabatic Thermoelasticity

In order to properly asses the abilities of NNs they are firstly applied to capture the difference be-
tween isothermal rubber behaviour and adiabatic thermoelasticity, incompressibility is assumed.
This behaviour is chosen because the differences are small and occur during various loading con-
ditions [23]. When considering thermoelasticity the deformation gradient can be decomposed
into a mechanical and thermal part, i.e. F = FMFθ. In the incompressible case det(FM) = JM =

1. The thermal volume change can be calculated as det(Fθ) = Jθ = exp[3α0 (Θ−Θ0)], where
α0 is the coefficient of thermal expansion, Θ is the current temperature and Θ0 is the reference
temperature. The volume change from Eq. (2.7) can be defined as J = JMJΘ.

In the non-isothermal case the strain energy must be augmented by a thermal contribution
here denoted as T (Θ) with the expression

T (Θ) = c0

[
(Θ−Θ0)−Θ ln

(
Θ

Θ0

)]
, (3.9)

where c0 is the specific heat capacity. The expanded expression is referred to as the free en-
ergy function ψ(F,Θ). In order to somewhat simplify the behaviour to only include changes in
temperature due to deformation an adiabatic process is considered, i.e. the entropy N is kept
constant during the process.

In this work the principal stretches (λa, a = 1, 2, 3) based Ogden hyperelastic model [51]
is taken as the base hyperelastic behaviour and then expanded to account for the thermal contri-
bution [26]. The specific free energy function now takes the form

ψ (λ1, λ2, λ3,Θ) =
3∑

p=1

µp(Θ)

αp

(λ
αp

1 + λ
αp

2 + λ
αp

3 − 3)︸ ︷︷ ︸
ψOgden

+ c0

[
(Θ−Θ0)−Θ ln

(
Θ

Θ0

)]
︸ ︷︷ ︸

T (Θ)

.

(3.10)
The Ogden model is defined by the shear moduli µp and dimensionless constants αp. All the

values for the material parameters are given in Table 1. The reference temperature Θ0 is taken
as 293.15 K.

Additionally, it is assumed that the shear moduli takes linear variation with temperature
[12, 26, 53]:

µp(Θ) = µp(Θ0)
Θ

Θ0

. (3.11)

It should be noted that the linearity of shear moduli as a function of temperature is valid
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Table 1: Material parameters.

µ µ1 µ2 µ3

[MPa] 0.63 0.0012 -0.01
α α1 α2 α3

[−] 1.3 5 -2

α0 22.3333e-5 K−1 c0 1.83 Nmm
kgK

exclusively for small and medium strains. This results from the application of Gaussian statisti-
cal theory to long-chain molecules, which provides a considerable simplification. Behaviour of
rubber at extreme strains requires the application of non-Gaussian theory. Nevertheless, in order
to provide comparison to results of other authors, the linearity assumption is also applied to the
large strain regime. The reader’s attention is drawn to the fact that this may lead to discrepancies
with the real behaviour of rubber.

As mentioned earlier the entropy is kept constant and is defined in Eq. (2.76). The thermoe-
lastic behaviour is demonstrated on uniaxial tension where λ2 = λ3 =

(
JΘ
λ1

)0.5
, this comes from

Eq. (2.7). Also, in the uniaxial case λ1 is referred to simply as λ. For the uniaxial case the free
energy function now takes the form

ψ(λ,Θ) =
3∑

p=1

µp(Θ)

αp

[
λαp + 2

(
JΘ
λ

)αp
2

− 3

]
+ c0

[
(Θ−Θ0)−Θ ln

(
Θ

Θ0

)]
, (3.12)

and the expression for the entropy is obtained as

N(λ,Θ) = − 1

Θ0

3∑
p=1

µp(Θ0)

αp

[
λαp + (2 + 3α0Θαp)

(
JΘ
λ

)αp
2

− 3

]
+ c0 ln

(
Θ

Θ0

)
. (3.13)

Given the isentropic condition N = const. the expression for the temperature Θ is obtained as:

Θ(λ) = Θ0 exp

{
c−1
0

[
N(1,Θ0) + Θ−1

0

3∑
p=1

[
λαp + (2 + 3α0Θαp)

(
JΘ
λ

)αp
2

− 3

]]}
, (3.14)

with N(1,Θ0) being the entropy at the beginning of the deformation process. The evolution of
temperature during uniaxial loading is shown in Fig. 3.3 for a stretch of λ = 1.6 in order to show
the temperature inversion effect where the during the initial loading the temperature begins to
fall and afterwards increases.

The expression for the 1st Piola-Kirchhoff stress is obtained by differentiating the free energy
function w.r.t. the stretch λ. The expression is obtained as

P1 =
3∑

p=1

µp(Θ)

λ

[
λαp −

(
JΘ
λ

)αp
2

]
. (3.15)
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Figure 3.3: Temperature change for a uniaxially loaded specimen.

The isothermal and thermoelastic stress responses are shown in Fig. 3.4a, the difference in
stresses is quite small as seen in the figure, only manifesting near the very end of loading. For
λ = 8 the stress difference is 2.61%. In Fig. 3.4b the temperature changes are shown, and the
highest is just below 8 K for a stretch of 8, i.e. 700% deformation. Note that since entropic
materials shrink during heating the stress values for the thermoelastic case are slightly higher.
Given that the differences are small and produced by introducing a real-world behaviour rather
than just slightly adjusting the material parameters, these two behaviours serve as a baseline to
test how well can neural networks capture small differences in data. That is, if neural networks
can properly capture two different but very similar behaviours.

In order to test the approximation properties of NNs, plane stress conditions are assumed
which allow to easily calculate the Lagrange multiplier p from the condition σ3 = 0. An NN is
constructed that predicts components of the Cauchy stress tensor from logarithmic strain. These
two were chosen because because they are used by the FE software Abaqus thus implementing
the NNs within the UMAT (User MATerial) subroutine of Abaqus is easier. In order to generate
a large and diverse amount of data a number of deformation gradients of the following form
were generated:

1. Uniaxial deformation

F =

λ 0 0

0 (JΘ
λ
)0.5 0

0 0 (JΘ
λ
)0.5

,
2. Biaxial deformation
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Figure 3.4: Isothermal and thermoelastic response during uniaxial loading are shown in the top
figure, the temperature change during the deformation is shown in the bottom figure.

F =

λx 0 0

0 λy 0

0 0 JΘ/λxλy

,
3. Simple shear - 2 variations

F =

λx γ 0

0 λy 0

0 0 JΘ/λxλy

,

26



F =

λx 0 0

γ λy 0

0 0 JΘ/λxλy

,
4. General shear

F =

λx γ/2 0

γ/2 λy 0

0 0 λz

,
5. No deformation

F =

1 0 0

0 1 0

0 0 1

,
all of these five types of deformation gradients were generated in equal parts. The values for
generating the training dataset were randomly chosen from λ ∈ [0.5, 8], which would correspond
to the maximum values in Treloars experiment [65], and the shear deformation γ was chosen
from γ ∈ [−0.5, 0.5]. The logarithmic strain tensor is calculated from the left stretch tensor V
as

εL = ln(V) =
3∑

i=1

ln(λi)ninTi . (3.16)

An FNN is used to predict the output consisting of three stress componentsσNN = [σx, σy, τxy]
T

from the input consisting of three logarithmic strain components εL = [εx, εy, 2εxy]. The NN
architecture consists of the following:

• 3 hidden layers, 60 neurons per layer, referred to as (3-60-60-60-1) - for thermoelastic
behaviour

• 2 hidden layers, 60 neurons per layer, referred to as (3-60-60-1) - for isothermal hypere-
lastic behaviour

• 3 separate neural networks, 1 for calculating each stress component

• no biases are included

• tanh used as the activation function

• Adam optimizer used during training

• Glorot initialisation used for the weights [21]
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Figure 3.5: Thermoelastic and isothermal uniaxial responses, comparison of reference solutions
to the NN solutions.

By omitting the biases, and using the tanh with the property tanh(0) = 0, for no deformation
(εL = 0) the stresses will be 0, therefore the normalisation condition for the stresses is satisfied
a priori with the NN construction. The loss function takes the form of:

L(εL,σ) =
1

N

N∑
i=1

(
σNN,k

(
εLi
)
− σi,k

)2
, (3.17)

where the loss function is reused 3 times for each neural network and the index k stands for the
possible predicted stresses, i.e. k = x, y, xy.

Results for the uniaxial case are shown in Fig. 3.5 and they show good agreement with an
error for the isothermal case of 0.008% and for the thermoelastic case of 0.08%. The results are
obtained from finite element analysis using Abaqus with both the NN and analytical solution
implemented via UMAT. The corresponding temperature change during uniaxial deformation is
shown in Fig. 3.4b.

Given that the NN was trained on uniaxial data the good results are expected. A simple
test to see if the NN captured the material behaviour would be to test it on a deformation mode
it did not see during training. One such mode of deformation is planar tension defined by the
following deformation gradient:

F =

λ 0 0

0 1 0

0 0 JΘ
λ

 . (3.18)

The results are shown in Fig. 3.6 and the relative error for the isothermal case is 0.005%,
and for the thermoelastic case the error is 0.015%. Although a simple test, this shows that the
NN captured the underlying behaviour.

It must be noted that 1 000 000 examples were generated and split into a 75/25 train/test split.
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Figure 3.6: Thermoelastic and isothermal planar tension responses, comparison of reference
solutions to the NN solutions.

Such a high number of examples was necessary not to capture simple modes of deformation such
as uniaxial or biaxial loading, but rather in order to capture more complexmodes of deformation.
The presented NN is not objective by design, it does not distinguish between rotated states. By
enriching the database with many samples this problem is alleviated.

3.4 Cook Membrane Example

In order to further verify the NNmodel it was tested on more complex problems such as the stan-
dard Cook’s membrane, geometry shown in Fig. 3.7. The dimensions are given in millimetres,
the small letter t notes the traction on the right boundary, the red dot marks the corner where
stress results were taken and the blue dot where the displacement results were taken.

48

1616
44

t

Figure 3.7: Geometry of Cook’s membrane problem.

The neural network does not take the temperature as a separate input since in the adia-
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Figure 3.8: Diagrams showing the displacements at the upper right corner (blue dot), and the
von Mises stress and temperature evolutions at the lower right corner (red dot).

batic case the temperature itself is a function of the stretch λ, i.e. the deformation, as shown
in Eq. (3.14). Inversely, the temperature can be obtained by post-processing the results to see
what temperature would correspond to a certain state of deformation. In this manner it can
further be checked if the NN has captured the desired behaviour.

The results for the displacements, von Mises stress and temperature are shown in Fig. 3.8.
The results show good agreement for all the quantities.

3.5 Rubber Seal Numerical Example

Cook’s membrane is a standard benchmark test, but the validity of the approach can be tested
on other numerical examples. One such example is taken from real-world applications and is

30



2
2

8.735

4.235

9

u x
= 

0
u x

= 
0

uy= 0

uy= u

Figure 3.9: Geometry of the rubber seal example.

the rubber seal example used in [56]. It consists of one half of a rubber seal with a symmetry
boundary condition on its left edges and fixed in the vertical direction at the bottom edge. The
seal is then loaded on the top edge with a prescribed displacement mimicking conditions in
operation. The geometry is shown in Fig. 3.9 and is given in millimetres with the prescribed
displacement u shown at the top. The downward displacement u is equal to 2.2 mm. Plane
stress conditions are assumed and the FE mesh size is 0.5 mm.

In Fig. 3.10, a plot of the reaction force at the top edge versus the displacement is shown.
It can be seen that both the hyperelastic and thermoelastic behaviors are well described. The
final relative error for the hyperelastic model is 0.6% and 1.4% for the thermoelastic model.
The stretch is relatively small, so the effect of adiabatic heating on the total reaction force is not
noticeable. The accuracy of the model may be better evaluated in the region with the highest
stress at the top edge.
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Figure 3.10: Reaction force at the top edge where the displacement is prescribed. An insert
is shown of the deformed rubber seal FE mesh with the direction an position of the prescribed
vertical direction shown.
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The results over the entire FE mesh domain are given in Fig. 3.11 comparing the thermally
expanded Ogden model and the thermoelastic NN. The results are in good agreement with very
little difference between the stress and temperature distributions.
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Figure 3.11: Plots of the von Mises stresses and temperatures over the deformed FE mesh. The
thermally expanded Ogden and thermoelastic NN solutions are given side by side for compari-
son.

In summary, NNs can be used for hyperelastic behaviour and can capture even minute dif-
ferences in behaviours, as shown by the results so far. This is done with classical NN activation
functions without custom loss functions, i.e. everything can be done with already existing tools
in machine learning libraries.
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3.6 Introducing Invariants as Inputs

Although the results presented so far have shown good agreement with the reference analytical
models, the resulting NN models are still classical NNs without taking benefit of any knowl-
edge of solid mechanics. For example, a large database is needed to train the NNs containing
many examples of different states of deformation. Additionally, a material is not defined by
its stress-strain relation, but the presented 3-60-60-1 or 3-60-60-60-1 NN models simply give
us this relation. As a possible improvement, the inputs can be replaced with invariants of the
right Cauchy-Green deformation tensor C instead of using the strain tensor, an example of the
invariant domain is given in Fig. 3.12. This would reduce the number of examples needed to
train the NN as many states of deformation would be similar or have the same invariants since
the invariants do not change with a rotation of a reference system.
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Figure 3.12: Invariant domain for an uniaxial stretch up to λ = 7, and equibiaxial stretch up to
λ = 5.

Additionally, as shown before the material behaviour is defined through the strain energy or
the free energy in case of thermoelasticity. Thus changing the neural network so that it has the
invariants of C as inputs and the free energy ψNN as output gives an objective function, i.e. it
does not change regardless of the change with the change of basis. This means that now only
one quantity would need to be predicted, the free energy, reducing the amount of NNs to train to
only one. The stress tensor and material tangent matrix can be constructed using the derivatives
of the energy w.r.t. the invariants. It can be easily implemented in Abaqus through the existing
UHYPER (User HYPERelastic) subroutine. Thus the new invariant based (IB) NN architecture
details are as follows:

• invariants used as input, but adapted to be (I1 − 3, I2 − 3) so that in the undeformed state
the energy is equal to 0

• 2 hidden layers, 60 neurons per layer, referred to as (2-60-60-1) - for both isothermal
hyperelastic and thermoelastic behaviour
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• no biases are included

• tanh used as the activation function

• Adam optimizer used during training

• Glorot initialisation used for the weights [21]

Again, the hyperbolic tangent was used without biases since for an undeformed state the energy
should be zero, i.e. ψNN(I) = 0. With the inputs taken as (I1 − 3, I2 − 3) and the fact the
invariants are equal to 3 in an undeformed state the predicted energy is zero for an undeformed
state. When training the IB NN only 30 000 training samples were needed to obtain an accurate
NN. This is more than 30 times less data than for the stress-strain (SS) trained NNs presented
earlier (NNs 3-60-60-60-1 and 3-60-60-1). Also, the 3-60-60-60-1 NNs had in total 22 320
trainable parameters across the 3 trained NNs, whereas the IB approach 2-60-60-1 NN has only
3 780 trainable parameters which is approximately 5.9 times less. The loss function would now
take the form of:

L =
1

N

N∑
i

(ψNN,i − ψi)
2 , (3.19)

where ψNN,i is the energy predicted by the NN for a sample, and ψi is the true value known
during training.

3.6.1 Sheet with a Hole Numerical Example

To test and compare the performance between the SS and IB NNs other numerical examples are
introduced. The first one is the 2D one quarter of a sheet with a hole used in [40, 55, 69]. The
geometry and boundary conditions of the problem are given in Fig. 3.13. Symmetry boundary
conditions are applied to the left and bottom edge, and the displacement u of 100 mm is pre-
scribed at the right edge. The mesh consists of 8×12 quadrilateral FEs, plane stress conditions
are assumed.

In Fig. 3.14 the reaction force is shown at the right edge where the displacement was pre-
scribed. The results are for the SS NNs, but the differences are minute and the IB approach
would give the same curve. In order to compare the 2 approaches in more detail plots over the
entire domain may prove to be more informative.

Fig. 3.15 shows the temperature change at the end of the simulation and it is from the SS NN.
It illustrates the magnitude of the temperature change that occurs. The temperature errors are
shown in Fig. 3.16. The upper figures show the relative errors compared to the thermodynam-
ically expanded Ogden reference model. In Fig. 3.16a it can be seen that the maximum errors
reach 30% in an area where the temperature values are moderate, i.e. between the maximum
and minimum temperature values. This is counterintuitive as the largest errors are expected at
the extremes. This may indicate that although a large database was used to train the stress-strain
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Figure 3.13: Geometry of the sheet with a hole in the middle. One quarter shown, symmetry
boundary conditions are applied.
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Figure 3.14: Reaction force at right edge where the displacement is prescribed.

neural networks it is not sufficient to obtain consistently accurate results. On the other hand,
Fig. 3.16b shows the relative errors of the invariant based neural network with the largest error
of 2.9% at the bottom edge where the temperature change values are the smallest. This means
that the highest relative error is achieved in the area where the absolute values are the smallest,
so that small absolute errors lead to large relative errors, which is to be expected. This is also
confirmed when looking at the absolute errors of the IB NN in Fig. 3.16c, where it can be seen
that the absolute errors are smallest at the bottom edge, where the relative errors are largest.
This example leads to the conclusion that in addition to the fact that IB NNs are numerically
less burdening they are also more accurate and require less data to be trained on. This is still
one example so further investigation is necessary.
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Figure 3.15: Temperature change [K], results obtained using the SS (3-60-60-60-1) NN.
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Figure 3.16: Relative errors of the SS (3-60-60-60-1) and IB (2-60-60-1) NNs shown in the top
2 figures. The bottom figure presents the absolute error of the IB NN.
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3.6.2 Punch Problem Numerical Example

The second additional numerical example is the 2D punch problem benchmark [56, 67], a 3D
version is also available [61]. The geometry is shown in Fig. 3.17. Horizontal displacement is
constrained on the left and top edge, while vertical displacements are constrained on the bottom
edge. Half of the top edge is loaded with a downward facing distributed load q which is set to 2
N/mm. The problem is different from the other problems with half the domain being compressed
whilst the other half can freely expand. Also, it is the first numerical example where the loading
is compressive.

1

2

u x
=

 0

ux = 0

uy = 0

q

Figure 3.17: Geometry of the 2D punch problem.

Fig. 3.18a shows the evolution of the σx and σy (S11 and S22 in Abaqus) at the bottom
left corner using isothermal hyperelastic behaviour. The horizontal axis shows the stretch λ,
i.e. the deformation of the left edge of the domain. An interesting event occurs where the NN
driven simulation does not fully complete the calculation but breaks shortly after passing the
50% compression mark that is where λ = 0.5. Coincidentally that is also the lower bound of
the generated training data. This shows the expected behaviour from NNs where they cannot
correctly predict values outside of the range they were trained on which is also demonstrated
here. However, the solutions are accurate until that point. When adding thermoelastic behaviour
the quality only further decreases and the analysis breaks a bit before the value of λ = 0.5 as
shown in Fig. 3.18b. However, looking at the postprocessed results for the temperature change
in Fig. 3.20 the material behaviour has been correctly captured.

On the other hand, the results of the IB NN are quite opposite as shown in Fig. 3.21 where the
analysis not only finished, but has done so without any numerical difficulties unlike Fig. 3.18b
where step times were cut back. This is attributed to the fact that the IB NN is an objective func-
tion that takes the invariants as input and thus has effectively seen the data but in the invariant
domain shown in Fig. 3.12, where the uniaxial and biaxial deformation modes bound the entire
domain, and the lowest value of invariants in the incompressible case occur in the undeformed
state when I1 = I2 = 3. This is a major highlight of the IB NN since they can be trained on one
set of data which may not be rich in different modes of deformation, but nevertheless adequately
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Figure 3.18: Stress evolution at the bottom left corner of the punch problem. Only results for
the SS (3-60-60-1) and (3-60-60-60-1) NNs shown. The vertical green line represents the lower
bound of the generated training data.
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Figure 3.19: Distribution of σy (S22) stresses at the point where the analysis breaks for the SS
NN model.
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(a) Thermoelastic Ogden, ϑ [K].
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Figure 3.20: Distribution of temperature changes ϑ at the point where the analysis breaks for
the SS NN model.

captures material behaviour outside of the given deformation modes as shown in Fig. 3.21. Ad-
ditionally, the stress distribution over the domain is given in Fig. 3.22 where the solutions can
be directly compared and it can be confirmed that the material behaviour is correctly captured.
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Figure 3.21: Stress evolution at the bottom left corner of the punch problem. Results of the
IB (2-60-60-1) NN shown. The vertical green line represents the lower bound of the generated
training data.

So far all the numerical examples were calculated under the assumption of plane stress con-
ditions. This is indeed a limiting factor for the SS NN model since it cannot predict outside of
the data it was trained on. The neural network based on invariants however is not bound by such
limitations as the predicted energy and invariants are not restricted by the assumption of plane
stress in the same manner the strain or stress tensors are.
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Figure 3.22: Distribution of σy (S22) stresses at the end of analysis with the IB NN model.

3.6.3 Cracked Bar - a 3D Numerical Example

In order to test the behaviour of the IB model in a very different type of analysis, a full 3D
example with a hybrid finite element formulation is studied. This is also the last numerical
example in this section and it was taken from [26], the cracked bar example. It consists of a
tensile test of a bar with cracks added at the middle, the geometry is shown in Fig. 3.23a. The
FE mesh is shown in Fig. 3.23b, only one eighth was modelled as in the original paper, and
symmetry boundary conditions were imposed. The model here is treated as an incompressible
one while the original one presented in [26] was treated as compressible. The prescribed load
u shown on Fig. 3.23a was set to 175 mm. Results for the reaction force, von Mises stress and
temperature change are given in Fig. 3.24. In Fig. 3.24a the characteristic S shape can seen,
similar to the one from a simple uniaxial test in Fig. 3.4a although less pronounced since the
stretch of the bar at the centre node is not as high. Also in Fig. 3.24c at the beginning the small
inversion effect can be seen, the same one shown in Fig. 3.3. Looking more closely at the crack
and comparing with the original work of [26], the maximum stretch was 796% which agrees
with the result from the original of about 800%. The highest temperature change was 6.88 K
which is a difference of 9.6% from the original one of 6.21 K. At the outer ends of the crack
convex curvatures occur which also agrees with the original work, this can be seen in Fig. 3.25.

In summary, neural networks are capable of correctly capturing even very small differences
in material behaviour. Using conventional architectures and readily available activation func-
tions from well established machine learning libraries was sufficient to reproduce the desired
behaviour with excellent agreement. However, adopting the invariant based neural network
opens up other possibilities. If simply considering invariants to fulfil objectivity has greatly
improved the performance of the NN then how much would the consideration and introduction
of other existing knowledge from solid mechanics impact the behaviour of NNs when applied
to hyperelasticity? This is the area of investigation in the rest of this thesis.
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Figure 3.23: Geometry and FE mesh of the cracked bar example, thickness perpendicular to the
plane is 10 mm. The mesh consists of 3D hybrid formulation (type C3D8H in Abaqus) finite
elements.
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Figure 3.24: Diagrams of the reaction force (a), von Mises stress (b) and temperature change
evolution (c) for the cracked bar. Results of the stress and temperature evolution are shown for
the centre node of the cracked bar (not at the crack tip).
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Figure 3.25: Temperature change distribution for the deformed cracked bar.
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4 Physically Augmented Neural Networks for Hyperelastic-
ity

In order to answer the question which was posed at the end of the previous section the concept of
a Physics-Augmented Neural Network (PANN) is introduced, the term was suggested by [44].
This type of NN implies that the architecture of the NN has been changed in such a way that it
satisfies a number of conditions from solid mechanics in an exact way. Some of these conditions
might be:

1. thermodynamic consistency

2. symmetry of the stress tensor

3. objectivity

4. normalisation of energy

5. normalisation of stress

6. non-negativity of strain energy

7. polyconvexity

8. growth condition

These conditions can vary given that different assumptions can be made during analysis or
modelling, e.g. the symmetry of the stress tensor is meaningful only if a symmetric stress tensor
is used, the 1st Piola-Kirchhoff tensor is not symmetric by default while the 2nd Piola-Kirchhoff
or Cauchy tensors are, the growth condition is associated with compressibility and it does not
exist if incompressibility is assumed, and so on.
Thermodynamic consistency is satisfied by fulfilling Eq. (2.75), i.e. the stress tensor should
be derived from the energy with respect to a deformation measure. If invariants of the right
Cauchy-Green tensor are employed to obtain the 2nd Piola-Kirchhoff stress tensor S from the
energy predicted by the NN then Eq. (2.81) can simply be rewritten to

S = 2
∂ψNN(I1, I2, I3)

∂C
= 2

[
∂ψNN

∂I1

∂I1
∂C

+
∂ψNN

∂I2

∂I2
∂C

+
∂ψNN

∂I3

∂I3
∂C

]
=

= 2

[(
∂ψNN

∂I1
+ I1

∂ψNN

∂I2

)
I− ∂ψNN

∂I2
C+ I3

∂ψNN

∂I3
C−1

]
,

(4.1)

or in the incompressible case in the form

S = 2

[(
∂ψNN

∂I1
+ I1

∂ψNN

∂I2

)
I− ∂ψNN

∂I2
C
]
− pC−1, (4.2)
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which will be used later throughout this work when training the NNs.
It should be noted that the principal invariants ofC can be defined in terms of the deformation

gradient F:

I1 = F : F, I2 =
1

2

[
I21 −

(
FTF

)
:
(
FTF

)︸ ︷︷ ︸
tr(C2)=C:C

]
, I3 = det(FTF) = J2, (4.3)

so that Eq. (2.75) can also be defined in terms of the principal invariants of C, as was imple-
mented in [46]. Since the derivatives can be calculated as

∂I1
∂F

= 2F, ∂I2
∂F

= 2[I1F− FFTF], ∂I3
∂F

= 2I3F−T , (4.4)

then P can be defined as

P =
∂ψNN(I1, I2, I3)

∂F
=
∂ψNN

∂I1

∂I1
∂F

+
∂ψNN

∂I2

∂I2
∂F

+
∂ψNN

∂I3

∂I3
∂F

=

= 2

[(
∂ψNN

∂I1
+ I1

∂ψNN

∂I2

)
F− ∂ψNN

∂I2
FFTF+ I3

∂ψNN

∂I3
F−T

]
,

(4.5)

or in the incompressible case

P = 2

[(
∂ψNN

∂I1
+ I1

∂ψNN

∂I2

)
F− ∂ψNN

∂I2
FFTF

]
− pF−T . (4.6)

Thermodynamic consistency is fulfilled since the model is trained on its derivatives using
auto-differentiation. In that way the loss function takes the form

L(SNN, S) =
1

N

N∑
i=1

(SNN,i − Si)2 , (4.7)

where tensors with 6 independent components are used, unlike before when in Eq. (3.17) only
an individual stress component was used in the loss function.
Symmetry of the stress tensor is not necessarily needed to be fulfilled since different stress
tensors can be used in the loss. E.g., in [46] the 1st Piola-Kirchhoff stress tensor is used which is
not symmetric. In this work the 2nd Piola-Kirchhoff stress tensor is used which is a symmetric
tensor and this is guaranteed through construction, see Eq. (4.2).
Objectivity is fulfilled by using the invariants of the right Cauchy-Green deformation tensor
as a measure of deformation since these are principal values of a characteristic polynomial and
thus not affected by arbitrary rotations of the reference. An example of a body that is simply
rotated after being deformed is shown in Fig. 4.1.
Normalisation of energy means that for an undeformed state the strain energy should be equal
to zero. This was briefly mentioned previously when describing the choice of the inputs for the
invariant based NN. This can be satisfied by choosing an appropriate activation function and by
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Figure 4.1: An arbitrary body is deformed and then rotated. The deformation itself is not affected
by the rotation. An objective strain energy should not give a different results for a rotated body.

adapting the inputs. It is known that for an undeformed state the invariants I1 and I2 are equal to
3, therefore when using them as inputs to the NN they were subtracted by 3, i.e. (I1−3, I2−3),
and when passed to the tanh activation function this would yield zero for an undeformed state.
In [45] many activation functions were proposed for modelling hyperelasticity, of which the
exponential linear unit was chosen as a possible candidate for an activation function instead of
the conventional tanh, sigmoid or ReLU:

h(x) = eαx − 1, (4.8)

where α is a trainable parameter. In [46] the function was proposed and used without the train-
able parameter α being a part of the activation unction. The linear exponential function is used
in different forms when modelling hyperelasticity and also satisfies the normalisation condition
by using the adapted input (I1−3, I2−3) since for an undeformed state h(0) = 0. To satisfy the
normalisation of energy biases should be omitted in the NN architecture. A visual illustration
of the normalized and non-normalized functions is given in Fig. 4.2.
Normalisation of stress means that for an undeformed state there should be no stress in the
body. In the incompressible case this is a priori satisfied from the Lagrange multiplier p. The
stress tensor S can be expressed in the spectral form as

S =
3∑

i=1

SiNi ⊗ Ni, (4.9)

with Si being the principal stress. It can be expressed as

Si = 2

[(
∂ψNN

∂I1
+ I1

∂ψNN

∂I2

)
− ∂ψNN

∂I2
λ2i

]
− pλ−2

i , (4.10)
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ψ

λ1

Figure 4.2: A non-negative function normalized at the undeformed state (F = I) is shown in
black, while an undesirable function with negative values that is not normalized at the unde-
formed state is shown in dashed red. The stretch λ is shown on the horizontal axis and the strain
energy ψ is shown on the vertical axis.

and using Eq. (2.15)1 and the plane stress condition S3 = 0, the Lagrange multiplier p can be
expressed in the isotropic case under plane stress conditions as

p = 2λ23

[
∂ψ

∂I1
+
(
λ21 + λ22

) ∂ψ
∂I2

]
. (4.11)

Combining Eqs. (4.11) and (4.2) and assuming the undeformed state where C = I (and by
extension λi = 1) leads to the following

S|C=I = 2

[(
∂ψNN

∂I1
+ 3

∂ψNN

∂I2

)
I− ∂ψNN

∂I2
I
]
− 2

(
∂ψ

∂I1
+ 2

∂ψ

∂I2

)
︸ ︷︷ ︸

p

I = 0, (4.12)

thus showing that for the incompressible case the normalisation of stress is always satisfied in
an exact way. For completeness the necessary treatment is presented in case of compressibility.
For the compressible case a stress normalisation term is needed to satisfy S(I) = 0. As presented
in the works of [33, 38, 44] an additional term for the stress correction in the form of

ψstr = −n(J − 1) (4.13)

is added to the energy calculated by the NN with the constant n defined as

n = 2

(
∂ψNN

∂I1
+
∂ψNN

∂I2
+
∂ψNN

∂I3
+
∂ψNN

∂I∗3

)∣∣∣∣
F=I

, (4.14)

where I∗3 is an additional polyconvex invariant defined as I∗3 = −2
√
I3 = −2J introduced to

represent negative stresses.
An example illustration for a normalized and non-normalized stress response is shown in

Fig. 4.3, with the stretch λ = 1 representing the undeformed state F = I.
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Figure 4.3: Illustration for the stress normalization during uniaxial tension. The black curve
represents a normalized stress function where stress is zero for the undeformed state (F = I).
The dashed red curve represents a non-normalized curve, i.e. a non-zero stress in the undeformed
state. The stretch λ is shown on the horizontal axis and the 1st Piola-Kirchhoff stress is shown
on the vertical axis.

Non-negativity of strain energy means that the strain energy can not be negative during the
deformation process, i.e. ψ (F) ≥ 0. This is ensured by using the exponential linear unit as
the activation function since it is zero for an undeformed state, and since in an incompressible
setting the smallest value of the invariants is 3 the exponent is strictly non-negative, if the values
of the previous weights w[1]

1,i and w
[1]
2,i are enforced to be non-negative. An example of a non-

negative strain energy response is shown in Fig. 4.2 with a black curve, while the dashed red
curve shows a similar energy response that contains negative values.
Polyconvexity is a condition that ensures the existence of at least one minimum of energy, i.e.
at least one possible equilibrium solution. It is proposed in [4] in order to replace the condition
of quasi-convexity proposed by [31]. The condition of polyconvexity is thoroughly discussed
in [24], where exponential functions are also given as possible polyconvex functions that can
be implemented for modelling hyperelasticity. It can be stated that a function is polyconvex if
it is convex in (F, adj(F), detF), illustration given in Fig. 4.4. Note that the first and second
invariants can be expressed as I1 = ||F||2 and I2 = ||adj(F)||2, hence they themselves are
convex in F and adj(F).
The growth condition is presented for the sake of completeness and is only needed in case of
compressibility. The growth condition requires the following:

ψ(F) → ∞ as detF → 0+ or detF → ∞. (4.15)

This can be simply satisfied by adding a growth term to the energy which can be as simple as

ψ(J) =

(
J +

1

J
− 2

)2

, (4.16)

which also satisfies polyconvexity. Other growth terms can be used, some are presented and
investigated in regards to the polyconvexity condition in [24]. The growth of energy towards
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Figure 4.4: Illustration of a polyconvex black curve that is convex in (F, adj(F), detF) and a
non-polyconvex dashed red curve that is not convex in the same arguments.

infinity is shown in Fig. 4.2 where the energy starts significantly increasing as the stretch λ tends
towards zero or infinity.

The proposed neural network has the same base architecture as the FNN shown in Fig. 3.1
without the biases, with the input layer consisting of the invariants (I1−3, I2−3), the activation
functions

hi(I1 − 3, I2 − 3) = exp
{
αi

[
w

[1]
1,i (I1 − 3) + w

[1]
2,i (I2 − 3)

]}
− 1, (4.17)

with αi being the additional trainable parameter within each neuron, and the expression for the
output strain energy can be written as

ψNN =
n∑

i=1

w
[2]
i,1hi. (4.18)

Having included all the proposed changes into the architecture of the NN it would take
the form shown in Fig. 4.5. In the figure the NN consists of 5 neurons but the actual number
of neurons can be arbitrarily chosen. The network is referred to as LINEXP-PANN (LINear
Exponential Physics-Augmented Neural Network.)

The 1st order derivatives of ψNN are needed for training the NN, and the 2nd order derivatives
are needed for the implementation into Abaqus. They are easily obtained as

∂ψNN

∂Ij
=

n∑
i=1

w
[2]
i,1

∂hi
∂Ij

,
∂2ψNN

∂Ij∂Ik
=

n∑
i=1

w
[2]
i,1

∂2hi
∂Ij∂Ik

, j, k = 1, 2, (4.19)

and the partial derivatives of the activation functions are further obtained as

∂hi
∂Ij

= αiw
[1]
j,i exp

{
αi

[
w

[1]
1,i (I1 − 3) + w

[1]
2,i (I2 − 3)

]}
,

∂2hi
∂Ij∂Ik

= α2
iw

[1]
j,iw

[1]
k,i exp

{
αi

[
w

[1]
1,i (I1 − 3) + w

[1]
2,i (I2 − 3)

]}
.

(4.20)
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Figure 4.5: Illustration of the proposed NN architecture referred to as LINEXP-PANN.

It should be noted that a composition of functions is convex if all the functions are convex
and non-decreasing. Also, a sum of convex functions is a convex function. From Eq. (4.20)
it can be seen that the activation function is polyconvex (i.e. convex in F and cof(F))as long
as the weights w[1]

1,i, w
[1]
2,i and the trainable parameters αi are positive. Additionally, since the

exponential function is convex and non-decreasing then a composition of functions such as eI1

or eI2 is also a polyconvex function. Finally, if the weightsw[2]
i,1 from Eq. (4.18) are positive then

the strain energy ψNN predicted by the neural network is polyconvex.
The chosen LINEXP-PANN for modelling ordinary hyperelastic materials consists of 5 neu-

rons in the hidden layer. The NN model contains a total of 20 parameters that can be trained.
Unlike the model in Sec. 3.3, this model is trained solely on simpler tests such as in [65], i.e.
uniaxial tension, equibiaxial tension and planar tension (pure shear).

The invariant space it was trained on is presented in Fig. 4.6, the data are gathered only from
the curves representing each deformation mode thus the training space is rather sparse compared
to the one from Sec. 3.3 shown in Fig. 3.12.

The network is trained on data generated artificially from several material models to mimic
different materials, namely the neo-Hookean, Mooney-Rivlin and Ogden models were used.
The coefficients for the neo-Hookean and Mooney-Rivlin models were taken from [63]. The
neo-Hookean is the simplest one with linear dependence on only the first invariant I1:

ψNH =
µ

2
(I1 − 3) , (4.21)

where µ is the shear modulus taken as 0.525 MPa. The Mooney-Rivlin model is a bit more
complex with the inclusion of the second invariant I2:

ψMR = c10 (I1 − 3) + c01 (I2 − 3) , (4.22)

with the coefficients c10 = 0.2659MPa and c01 = −0.0017MPa. Note that this material is not
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Figure 4.6: Diagrams showing the respective curves from which the proposed NN model was
trained on. The number of samples can vary and is different for different material behaviours.

polyconvex since the coefficient c01 is negative. The Ogden material is reused from Sec. 3.3
with the strain-energy defined by Eq. (3.10)1, i.e. the strain energy is of the form

ψOgden =
3∑

p=1

µp

αp

(λ
αp

1 + λ
αp

2 + λ
αp

3 − 3), (4.23)

with the material constants given in Table 1 and the temperature dependence is of the shear
moduli is removed. Note that this model is polyconvex, this is shown explicitly in [4] for the
samematerial parameters that were used in this work. The results for the simple tests in Figs. 4.7,
4.8 and 4.9 are presented with the 1st Piola-Kirchhoff stress as done in [51, 65].

4.1 Simple Tests

In Fig. 4.7 the results for the uniaxial (UT), equibiaxial (ET) and planar tension (PT) tests for
the Neo-Hookean model are shown. The results show good agreement with a relative error of
3.15 %, 1.48 % and 0.05 %, respectively.

In Fig. 4.8 results UT, ET and PT for the Mooney-Rivlin model are shown. The results
show good agreement with an error of 3.38%, 6.62% and 4.38%, respectively. The base model
from which the data was generated is not polyconvex, nevertheless with the proposed NN a
polyconvex model is obtained that correctly captures the desired behaviour.

In Fig. 4.9 results for UT, ET and PT are shown when the model is trained on data generated
by the Ogden model. The results show poor agreement with an error of 32.01%, 25.77% and
20.38%, respectively. In the work [44] it has been noted that when polyconvexity is included
in the NN a priori by limiting certain weights to be only positive the accuracy worsens. In that
same work results are presented when considering the Neo-Hookean model, which is captured
quite well by the PANN proposed in this work as seen in Fig. 4.7. In the work of [64] the used
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Figure 4.7: Results for the polyconvex model trained on data generated by the neo-Hookean
model. Results include the uniaxial (UT), equibiaxial (ET) and planar (PT) tension tests.
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Figure 4.8: Results for the polyconvex model trained on data generated by the Mooney-Rivlin
model. Results include the uniaxial (UT), equibiaxial (ET) and planar (PT) tension tests.

Ogden model has only a single term (i.e. in Eq. (4.23) there is no summation but rather the
summation index p = 1, and µp = αp = 1 ) so a much simpler model then the one used in this
work.

Following the results when using a polyconvex NN, the results are presented for the NN
models where the polyconvexity constraint is not enforced, i.e. the weights are not restricted
to be positive. When giving the NN more freedom it captures the desired material behaviours
excellently regardless of the underlying material behaviour.

In Fig. 4.10 results UT, ET and PT are shown with the Neo-Hookean model used to generate
the training data and a non-polyconvex NN model is used. The results show good agreement
with an error of 1.03%, 0.07% and 0.21%, respectively.

In Fig. 4.11 results UT, ET and PT are shownwith theMooney-Rivlin model used to generate
the training data and a non-polyconvex NNmodel is used. The results show excellent agreement
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Figure 4.9: Results for the polyconvex model trained on data generated by the Ogden model.
Results include the uniaxial (UT), equibiaxial (ET) and planar (PT) tension tests.

1 2 3 4 5 6 7
 [-]

0

2

4

6

P 
[M

Pa
]

NH - UT
NH - ET
NH - PT
NN

Figure 4.10: Results for the non-polyconvex model trained on data generated by the Neo-
Hookean model. Results include the uniaxial (UT), equibiaxial (ET) and planar (PT) tension
tests.

with an error of 0.37%, 0.17% and 0.01%, respectively.
In Fig. 4.12 results UT, ET and PT are shown with the Ogden model used to generate the

training data and a non-polyconvex NN model is used. The results show excellent agreement
with an error of 1.04%, 0.06% and 0.54%, respectively.

Relaxing the polyconvexity constraint has shown to be beneficial in terms of capturing the
stress curves. However, relaxing these constraint also allows the possibility that the activation
functions take on negative values thus the non-negativity of energy is no longer strictly enforced.
To somewhat alleviate this problem the NNs can be numerically tested on a domain, such as the
one shown in Fig. 3.12, to see if it predicts negative values for the energy on an are of interest.
When this simple test was done none of the non-polyconvex NNs predicted negative values for
the strain energy. Although not strictly enforced, this result is attributed to the fulfilment of
thermodynamic consistency, i.e. training the NNs on stresses which are the 1st derivatives thus
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Figure 4.11: Results for the nonpolyconvex model trained on data generated by the Mooney-
Rivlin model. Results include the uniaxial (UT), equibiaxial (ET) and planar (PT) tension tests.
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Figure 4.12: Results for the nonpolyconvex model trained on data generated by the Ogden
model. Results include the uniaxial (UT), equibiaxial (ET) and planar (PT) tension tests.

weakly enforcing the NN model to grow around zero energy.
The polyconvexity condition also impacts the losses during training and the training time

of the NNs. In Fig. 4.13 both the polyconvex and non-polyconvex models trained until the
maximum pre-set limit of 1 000 000 epochs. However, there are two clear differences between
the models, the non-polyconvex model achieved losses two orders of magnitude lower than the
polyconvex model, and the error between epochs had a greater variance.
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Figure 4.13: Graphs showing the loss function over a certain number of epochs until the training
terminated for the NNs trained on data generated by the Neo-Hookean model. Note that the
models were trained until the limit of 1 000 000 epochs and the loss is still decreasing. The top
figure presents the train/test losses for the polyconvex NN model, and the bottom figure for the
non-polyconvex NN model.

This training behaviour on the simpler Neo-Hookean model from Fig. 4.13 is contrasted
by the training behaviour from the Mooney-Rivlin model in Fig. 4.14 where the training er-
ror and duration were comparable for the polyconvex model, but were much lower for the
non-polyconvex model in Fig. 4.14b where the error is 3 orders of magnitude lower than for
the polyconvex model and the training time is shortened by half, the model terminated once it
reached the patience of 20 000 epochs. When the more complex Ogden model is used as the
baseline then this is even more exaggerated, the differences between the training and validation
errors is about 3 orders of magnitude and the training time is cut by more than half. In Fig. 4.15
the training took more about 10 times less, but this can vary between individual trainings.

Another quantity of interest would be the strain energy itself. Since the NN is trained on the

54



0.0 0.2 0.4 0.6 0.8 1.0
1e6

10 4

10 3

10 2

Test
Train

(a)

0 100000 200000 300000 400000 500000

10 7

10 5

10 3

Train
Test

(b)

Figure 4.14: Graphs showing the loss function over a certain number of epochs until the training
terminated for the NNs trained on data generated by the Mooney-Rivlin model. Note that the
patience before termination was set to 20 000 epochs. The top figure presents the train/test losses
for the polyconvex NN model, and the bottom figure for the non-polyconvex NN model. The
red dot in the bottom figure represents the best validation loss obtained during training.

stresses, i.e. 1st derivatives of the strain energy, and is normalized at 0 for an undeformed state,
it is expected to have correctly captured the evolution of the strain energy. Thus, it is expected
that the energy predictions are as accurate as the stress predictions. Taking the simplest Neo-
Hookean model would imply that the strain energy is correctly captured for both the polyconvex
and non-polyconvex models, whereas the predictions of the NNs trained on Ogdens model are
expected to be worse for the polyconvex model. The results are shown on Fig. 4.16 for the
models trained on data generated by the Neo-Hookean model, and in Fig. 4.17 for the models
trained on data generated by the Ogden model. The energy predictions behave as expected, with
no noticeable difference for the Neo-Hookean NN models, but large differences for the Ogden
NN models.
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Figure 4.15: Graphs showing the loss function over a certain number of epochs until the training
terminated for the NNs trained on data generated by the Ogden model. Note that the patience
before termination was set to 20 000 epochs. The top figure presents the train/test losses for the
polyconvex NN model, and the bottom figure for the non-polyconvex NN model. The red dot
represents the best validation loss obtained during training of the respective models.
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Figure 4.16: Strain energy predictions by the polyconvex (top) and non-polyconvex (bottom)
NN models trained on data generated by the Neo-Hookean model.
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Figure 4.17: Strain energy predictions by the polyconvex (top) and non-polyconvex (bottom)
NN models trained on data generated by the Ogden model.
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4.2 Cracked Bar Numerical Example

The amount of data needed to train these NNs is also be significantly reduced compared to the
first results presented in Sec. 3.6.3. Taking the cracked bar example from the same section,
without the thermoelastic effect, and training the non-polyconvex NN on 15 examples in total
(5 per uniaxial, equibiaxial and planar tension cases) the obtained results show good agreement
with the base Ogden model, as shown in Fig. 4.18. The highest stress values differ by 3.84%
whereas the minimum values are the same.
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Figure 4.18: Solutions for the cracked bar example first shown in Sec. 3.3, without the thermoe-
lastic effect. The top figure shows the stress plot with the NN model trained on 15 samples and
the bottom figure shows the reference Ogden solution.

4.3 Torsion of a Cuboid Numerical Example

Another example with complex loading conditions is given in Fig. 4.19 where a brick (cuboid)
is at the same time under a tensile and torsional load. Hybrid finite elements were used (type
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Figure 4.19: Geometry and loading conditions of the brick under torsion, dimensions given in
millimetres. The displacement u is equal to 100 mm and the angle φ is equal to 2π, i.e. a full
circle.

C3D8H in Abaqus), same as for the cracked bar example. The load is prescribed at the top
surface via a reference point so the top surface is rigid, and the bottom surface is fixed. The
final results with the stress plots are shown in Fig. 4.20 with the error of the maximum stress
values of 5.2%.
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Figure 4.20: Plots of von Mises stress for the torsion brick example. The left figure shows the
Ogden solution and the right figure shows the solution using a non-polyconvex NN.
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5 Extension to the Mullins effect

The results presented until now support the LINEXP-PANN as a suitable candidate for the gen-
eral modelling of hyperelastic behaviour for various behaviours. However, until now only basic
hyperelastic behaviour has been covered. In this section the novel NN architecture is used to
model the Mullins effect, a simple isotropic damage model for rubbers. Furthermore, a novel
training method is presented which was first proposed in [74].

The Mullins effect is a strain-induced softening effect first described in [49]. It is character-
ized by two responses, a primary response during the loading cycle, and a secondary response
during unloading and reloading. The effect is shown in Fig. 5.1 with two unloading phases.
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Figure 5.1: Illustration of the Mullins effect.

This effect is described by the introduction of damage in the simple form of

ψMullins = (1− ζ (γ))ψ0, (5.1)

where ψ0 is the base underlying energy described by the Neo-Hookean, Mooney-Rivlin, Ogden,
or any othermodel, ζ is the damage parameter and γ is the historical variable used to calculate the
damage parameter. The Mullins effect can be described with many expressions for the damage
parameter (for a comprehensive overview the reader is referred to [16]), but in this work the one
shown in [27] is taken. It has the form

ζ(γ) = ζ∞

(
1− exp

(
−γ
ι

))
, (5.2)

where ζ∞ is the maximum attainable value of the damage parameter and ι is referred to as the
saturation parameter. These are material constants that define the Mullins effect. The historical
variable γ can be expressed as

γ = max
s∈[0,t]

ψ0(s), (5.3)
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Figure 5.2: Evolution of the underlying undamaged strain energy ψ0 from the deformation pro-
cess shown in Fig. 5.1.

that is as the maximum value of the underlying undamaged strain energy attained during the
entire observed deformation process until the current time t. In Fig. 5.1 the value of γ rises
during the first loading until λ = 3, and during unloading it does not change since the values
of the undamaged energy are lower. During the second loading the value of γ does not change
until the point where the material was first unloaded is reached. The evolution of the underlying
undamaged energy is shown in Fig. 5.2. The ordinary Ogden model with the material properties
given in Table 1 is used with the parameters ζ∞ = 0.8 and ι = 1.

The first Piola-Kirchhoff stress is defined as in Eq. (2.75) so when considering the Mullins
effect it simply follows as

PMullins =
∂ψMullins

∂F
= (1− ζ (γ))

∂ψ0

∂F
= (1− ζ (γ))P0, (5.4)

where P0 is the stress of the undamaged material behaviour that is used in the previous sections.
The evolution of Cauchy stress with the Mullins effect included is shown in Fig. 5.3a, while the
undamaged Cuahcy stress evolution is shown in Fig. 5.3b. It should be noted that in case of
incompressible behaviour it is defined as in Eq. (2.84)

P = (1− ζ (γ))
∂ψ0 (F)
∂F

− JpF−T = (1− ζ (γ))P0 − JpF−T, (5.5)

where the damage does not impact the volumetric part of the stress tensor with the Lagrange
multiplier p, but only the part that follows from the strain energy.
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Figure 5.3: Cauchy stress evolution with the Mullins effect included is shown in the top figure,
the results follow the loading in Fig. 5.1. The undamaged Cauchy stress evolution is shown in
the bottom figure.

The Neural Network Architecture of the LINEXP-PANN can be reused and adapted for the
Mullins effect. Drawing inspiration from the Constitutive Artificial Neural Network (CANN)
presented in [46], the LINEXP-PANN can be used as a base energy prediction NN while the
rest of the NN architecture can be directly taken from existing models and adapted in the NN
framework. This means that the value of ψ0 in Eq. (5.1) can be replaced by the LINEXP-PANN
while retaining all other elements. The manner in which this is modified to include the existing
description of the Mullins effect is illustrated in Fig. 5.4. Note that the NN block shown in the
figure refers to the LINEXP-PANN presented in Fig. 4.5 and only one such block exists but is
shared for the calculation of bothψ0 andψ0,max, whereψ0,max is the variable used in theNN to note
the value γ introduced in Eq. (5.1) and explicitly defined in Eq. (5.3). Amore detailed illustration
containing the names of the weights and better illustrating the fact that only one LINEXP-PANN
is used is shown in Fig. 5.5. Additionally, the values ζ∞ and ι used for modelling the Mullins
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Figure 5.4: Illustration of the NN architecture for the Mullins effect. Only one NN block exists
and its weights are used for calculating both ψ0,max and ψ0.

effect are included in the NN as ζmax and ιNN and are trainable parameters.
Given that the parameter γ is the largest historical value of the undamaged strain energy (cf.

Eq. (5.3)) then it can be effectively recalculated using the invariants at the time it occurred, hence
the use of I1,max and I2,max as the input variables that serve as historical variables. In practice,
when conducting an experiment, it is more straightforward to calculate the stress rather than the
strain energy. Also, when simple tests are used such as uniaxial, equibiaxial and planar tension,
then it is easy to tell when themaximumwas reached, which is when the largest stretch is applied.
Thus, all the data needed for training the NN is gathered in a more accurate manner since the
invariants can be calculated from the prescribed stretch using Eq. (2.15), and the stresses can be
defined with respect to the reference configuration, i.e. using the stress tensor P.

Following the detailed description in Fig. 5.5 the expression for the undamaged energy ψ0

is

ψ0 =
n∑

i=1

w
[2]
i,1hi(I1 − 3, I2 − 3), (5.6)

for the maximum value of the undamaged energy ψ0,max is

ψ0,max =
n∑

i=1

w
[2]
i,1hi(I1,max − 3, I2,max − 3), (5.7)

with the activation function hi(I1 − 3, I2 − 3) being the same as shown in Eq. (4.17). Also, in
Fig. 5.5 the weights are shown as arguments for each activation function to emphasize the fact
that they are shared for calculating the values ψ0 and ψ0,max. The expression for the damage
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Figure 5.5: Detailed illustration of the NN architecture for the Mullins effect.

variable ζ is

ζ = ζmax

[
1− exp

(
−ψ0,max

ιNN

)]
. (5.8)

The final value for the energy ψNN is

ψNN =

[
1− ζmax + ζmax exp

(
−
∑n

i=1w
[2]
i,1hi(I1,max − 3, I2,max − 3)

ιNN

)]
n∑

i=1

w
[2]
i,1gi(I1−3, I2−3).

(5.9)
Given that the LINEXP-PANN is used as the basic building block all the physical condi-

tions mentioned in Sec. 4 can be fulfilled in the same manner. The addition of the Mullins
effect related variables such as ψ0,max and ζ does not affect any of the previously mentioned and
incorporated conditions.

The training data is gathered from the artificial uniaxial, equibiaxial and planar tension tests,
all plane stress cases. The energy responses can be viewed in Fig. 5.6 and the stress responses
(that were used to train the NN) are shown in Fig. 5.7. The following loadings were performed
for the training data:

• uniaxial λ: 1 load−−→ 3
unload−−−−→ 1

load−−→ 5
unload−−−−→ 1

load−−→ 7

• equibiaxial λ: 1 load−−→ 2
unload−−−−→ 1

load−−→ 3
unload−−−−→ 1

load−−→ 4

• planar tension λ: 1 load−−→ 2
unload−−−−→ 1

load−−→ 3
unload−−−−→ 1

load−−→ 5
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Figure 5.6: Energy responses of the of the training samples using the Ogden model with Mullins
effect. These are shown for completeness and are not used during training.
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Figure 5.7: Cauchy stress responses of the of the training samples using the Ogden model with
Mullins effect. These data are used during training.
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Several other NN architectures or combinations of the NN parameters are introduced to com-
pare other possible options of modelling the undamaged strain energy and to compare against
the LINEXP-PANN. They are organised into 6 different cases as follows:

1. polyconvex LINEXP-PANN with the weights w[l]
i,j and αi constrained to be non-negative,

this NN fulfils all the conditions mentioned in Sec. 4.

2. LINEXP-PANN with only the weights w[2]
i,j constrained to be non-negative, this preserves

convexity in the invariants rendering it an input convex neural network (ICNN), but does
not a priori preserve polyconvexity or non-negativity of the strain energy.

3. LINEXP-PANN where the weights w[1]
i,j are constrained to be non-negative but w

[2]
i,j are

not, this NN does not preserve any convexity in any argument nor does it preserve non-
negativity of the strain energy but is simply shown for completeness so all the combina-
tions of parameters are investigated.

4. LINEXP-PANNwithout any constraints on the weightsw[l]
i,j or αi, polyconvexity and non-

negativity of the strain energy are not a priori fulfilled, but this unconstrained network
has the most adaptability.

5. An NN where the invariants are not summed in the exponent but passed into the hidden
layer separately, effectively having two layers in the NN architecture that are later con-
catenated, see Fig. 5.8. This is done to test an NN with the linear exponential activation
function while keeping the strain energy a sum of individual subfunctions ψ(I1, I2) =

ψ(I1) + ψ(I2), similar to [46].

6. The isotropic perfectly incompressible CANN model from [46] is used in the NN block
to verify against another NN model .

The diagrams showing the losses during training are shown in Fig. 5.9. In Fig 5.9a, case 1,
the polyconvex LINEXP-PANN results are shown, training reached the limit of 106 epochs with
the best loss of 5.44 · 10−5. In Fig. 5.9b, case 2, the ICNN version of the LINEXP-PANN where
convexity with respect to the invariants is guaranteed (the weights w[2]

i,j are constrained to be
non-negative), but non-negativity of the strain energy is not, the best loss was slightly lower at
5.3 · 10−5. For the sake of completeness the NN where the weights w[1]

i,j are constrained, but w
[2]
i,j

are not, is shown in Fig. 5.9c with a higher loss at 5.7 · 10−5. This particular NN is not suitable
for use as neither polyconvexity nor non-negativity of the strain energy are guaranteed while
at the same time performing worse than other cases. In Fig. 5.9d the unconstrained LINEXP-
PANN immediately shows the best results of all the cases with the lowest loss of 7.24 · 10−7

thus compensating for the fact that polyconvexity and non-negativity of the strain energy are no
longer guaranteed. This is in line with results from other authors that used PANNs, as noted
in [44] where relaxing the polyconvexity requirement rendered an NN with greater accuracy. It
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Figure 5.8: The architecture of the NN block in case 5 where the invariants are passed to the
hidden layer separately and are not added in the exponent of the activation function.

should also be noted that in this work the normalisation of energy and stress are fulfilled a priori
using the LINEXP-PANN while in [44] such an NN model was not presented. Additionaly, in
Fig. 5.9e, case 5, the NN where the invariants are separated in shown. By doing so and adding
the subfunctions asψ(I1, I2) = ψ(I1)+ψ(I2), the training loss is not impactedmuch and the best
loss is still on par with case 1 at 5.56·10−5. Finally, in Fig. 5.9f, case 6, the CANN is shown and it
encountered difficulties during training where it was not guaranteed to start training properly on
each run, instead starting to diverge. The best training run that was obtained is shown in Fig. 5.9f
with the best loss at 2.77 · 10−4, after which it started to diverge and NaN values appeared in
the loss. It should be noted that these exact values are not reproducible since the weights w[l]

i,j

are randomly initialised during each training run, but the orders of magnitudes of the errors are
always the same.

In regards to the non-negativity of the energy all the NNs were numerically tested on the
invariant domain, see Fig. 3.12, to see if the NNs calculate negative values for the energy, and
all NNs passed the test, i.e. none have predicted negative values. This is attributed to the ther-
modynamic consistency where the NNs are trained on stress data, i.e. the derivatives of energy,
thus indirectly enforcing the non-negativity of energy.
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Figure 5.9: Train and test losses during the training of the various proposed NN architectures.
Case 4, LINEXP-PANN without constraints, shows lowest losses while case 6, the CANN
model, shows highest losses during training. The red dots, where present, show the epoch where
the lowest test loss was reached.
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To evaluate the performance of the framework proposed in Fig. 5.4 for the different cases of
NNs, a verification of the results via Abaqus is done on simple UT, ET and PT tests with different
loadings than the training data. These simple verification tests are done with the following
loadings:

• uniaxial λ : 1
load−−→ 2

unload−−−−→ 1
load−−→ 3

unload−−−−→ 1
load−−→ 6

• equibiaxial λ : 1
load−−→ 1.5

unload−−−−→ 1
load−−→ 2.5

unload−−−−→ 1
load−−→ 4

• planar tension λ : 1
load−−→ 1.75

unload−−−−→ 1
load−−→ 2.5

unload−−−−→ 1
load−−→ 5

First, an overview of the NNs from case 1, 4, 5, and 6 is given on the aforementioned simple
tests with the uniaxial tests shown in Fig. 5.10. To recall, these cases were taken because of their
individual importance, case 1 is a polyconvex model with the LINEXP-PANN serving as the
base, case 4 also has the LINEXP-PANN as its base but without any imposed restrictions, case 5
is a polyconvexmodel utilizing the linear exponential activation function but where the functions
of the invariants are separated and added which is a more standard approach to modelling (e.g.
the Mooney-Rivlin model, the CANN model), and case 6 uses a state of the art CANN model
from the literature as a base model.
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(a) Uniaxial.
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Figure 5.10: Comparison of the different cases with the base Ogden model with Mullins effect.
Case 4, the unconstrained LINEXP-PANN, shows best behaviour in all scenarios. Separating
the invariants, case 5, does not show any improvement over the basic polyconvex LINEXP-
PANN, case 1. The CANN model shows the worst behaviour, which follows the trend from the
training diagram in Fig. 5.9f.

It is also prudent to check if the various models managed to capture the underlying strain
energy behaviour even though it was trained on the stresses, and the evolution of the internal
damage variable ζ . The ultimate stretch was increased to λ = 7 to show the evolution of ψ0 in
Fig. 5.11b where all the cases successfully captured the beginning and end of the energy curve,
and that in general the deviations were much smaller than those that occur with the inclusion
of the Mullins effect or with the stresses. Combining Figs. 5.11b and 5.11c it can be seen that
the CANN model, case 6, underestimates the energy in Fig. 5.11a because it overestimates the
damage parameter ζ . After examining the results in Figs. 5.10 and 5.11 it can be concluded that
case 4, the unconstrained LINEXP-PANN model, is the best performing model.
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Figure 5.11: Evolution of the damage energy ψ, undamaged energy ψ0 and damage parameter
ζ .
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To find out how well has the NN captured the energy evolution, a numerical test can be
performed on the invariant domain from Fig. 3.12 since the underlying strain energy function is
known. The results are presented in Fig. 5.12 where a highest error of 1.18% is reported at the
area in the domain that is furthest from the training bounds noting that although the model was
trained on the boundaries of the I1− I2 domain it successfully captured the full behaviour of the
underlying model. All further results related to the Mullins effect will be presented using the
unconstrained LINEXP-PANN model given the accuracy and overall better performance when
compared to the other models.

Figure 5.12: Relative error of the predictedMullins energy, unconstrained LINEXP-PANN from
case 4.

The NN is implemented into Abaqus via the UHYPER subroutine which requires the deriva-
tives of the energywith respect to the invariants, these derivativeswere already given in Eqs. (4.19) and (4.20).
The outline of the UHYPER subroutine is shown in Algorithm 2. All the numerical examples
are performed in 3D using mixed formulation brick elements of type C3D8H.

Algorithm 2 UHYPER procedure.
1: PSIM = 0

Calculating undamaged strain energies.
2: DO J = 1, NNEUR ▷ NNEUR is the number of neurons.
3: H = EXP(ALPHA(J)*(W11(J)*(I1MAX-3)+W21(J)*(I2MAX-3))) -1
4: PSIM = PSIM + W3(J)*H ▷Maximum energy.
5: H = EXP(ALPHA(J)*(W11(J)*(BI1-3)+W21(J)*(BI2-3))) - 1
6: DUDI(1) = DUDI(1) + W3(J)*H ▷ Current energy.
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7: END DO
Check for new maximum energy.

8: IF (DUDI(1).GT.PSIM) THEN
9: I1MAX = BI1
10: I2MAX = BI2
11: PSIM = DUDI(1)
12: STATEV(1) = I1MAX ▷ User variable.
13: STATEV(2) = I2MAX ▷ User variable.
14: END IF

Calculate damage parameter.
15: A = 1D0-ZETA_MAX+ZETA_MAX*EXP(-PSIM/IOTA)

Calculate the derivatives.
16: DO I = 1, NNEUR
17: H = EXP(ALPHA(I)*(W11(I)*(BI1-3)+W21(I)*(BI2-3))) - 1
18: CI = EXP(ALPHA(I)*(W11(I)*(BI1-3)+W21(I)*(BI2-3)))
19: DUDI(2) = DUDI(2) + W3(I)*ALPHA(I)*W11(I)*CI
20: DUDI(3) = DUDI(3) + W3(I)*ALPHA(I)*W21(I)*CI
21: DUDI(4) = DUDI(4) + W3(I)*ALPHA(I)**2*W11(I)**2*CI
22: DUDI(5) = DUDI(5) + W3(I)*ALPHA(I)**2*W21(I)**2*CI
23: DUDI(6) = DUDI(6) + W3(I)*ALPHA(I)**2*W11(I)*W21(I)*CI
24: END DO

Apply damage.
25: DO I = 1, 6
26: DUDI(I) = A*DUDI(I)
27: END DO

The results for the basic Abaqus tests should be the same as in Fig. 5.10, which would
confirm that the application is sound. The results in Fig. 5.13 are shown for the UT, ET and PT
cases.
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Figure 5.13: Simple test results in Abaqus to confirm the implementation validity.
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Another simple test related to the Mullins effect is cyclic loading with an increasing am-
plitude, i.e. a detailed look into whether the NN model correctly captured the Mullins effect
although it is only given 2 unloading curves to train on. The results using the unconstrained
LINEXP-PANN are presented in Fig. 5.14 with 20 cycles and a maximum stretch reaching
λ = 5. The results are in agreement with the base Ogden model thus once again proving the
LINEXP-PANN has successfully captured the Mullins effect.

More complex loading scenarios would be more indicative of the generalisation capabilities
of the approach. As such, 2 numerical examples with complex loading conditions are used
to further test the LINEXP-PANN. These are the solid rubber disc example and the diabolo
example.

5.1 Solid Rubber Disc Numerical Example

The 1st example is taken from Abaqus’ examples [1]. It is a solid rubber disc that is pressed
against an analytical surface and then rotated by one full circle. The geometry is shown in
Fig. 5.15 with the downward displacement u = 3.84 mm shown. The disc is constrained with a
rigid tie between the reference point in the centre (S) and the inner circle.

The reaction forces of the LINEXP-PANN model compared to the original Ogden model
are given in Fig. 5.16. They are taken at the reference point where the displacement and rota-
tion are prescribed. The NN model shows excellent agreement with the median relative error
for the reaction forces of 0.92% and for the reaction moments of 1.03%. For a more detailed
insight into the predictive quality of the LIENXP-PANN model the von Mises stress plots are
given in Fig. 5.17. The maximum relative stress error is 0.6%. In Fig. 5.17c the absolute stress
differences are shown and the largest absolute error is 2.6 · 10−3 MPa. Additionally the damage
parameter values can also be plotted over the geometry and this is shown in Fig. 5.18 where the
damage plots are nearly indistinguishable. The values of the damage differ slightly since the
values of ζ∞ and ι that the NN learned are not the identical to those in the material from which
the data was generated, but as in Fig. 5.11c the NN successfully captured the behaviour.
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Figure 5.14: Cyclic test in Abaqus with an increasing amplitude, 20 cycles performed.

S

S'

Figure 5.15: Geometry of the solid rubber disc with the deformed configuration shown in dashed
lines with the undeformed configuration in full solid lines. Dimensions are given in millimetres.
The thickness of the disc is 17.78 mm. A displacement of 3.84 mm followed by a rotation of
one full circle are prescribed in the reference point S.
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Figure 5.16: Reaction force and reaction moment at the reference point. Comparison between
the original Ogden model with Mullins effect and the LINEXP-PANN model.
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Figure 5.17: Von Mises stress plots of the NN and referent solution, the absolute difference of
the solutions is given as well. The relative error of maximum stress is 0.6% and of the minimum
0.88%.
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Figure 5.18: Plots of damage variable ζ of the NN model and reference Ogden model.
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5.2 Diabolo Numerical Example

The second numerical example with complex loading is the diabolo example that was adopted
from [13]. It is a simple cylindrical object which is loaded uniaxially and then torsionally. The
geometry is given in Fig. 5.19 as well as the position of the uniaxial displacement u and torsional
load θ. Multiple loading combinations were presented in the original work where the example
is introduced, but in this work only the first loading combination of u = 30 mm and θ = 5 rad
is taken. As shown in Fig. 5.19 the lower base is fixed and the upper base is rigidly tied to a
reference point on which the loads are introduced, similarly to the solid rubber disc example.

60⌀30

u

θ

Figure 5.19: Geometry of the diabolo example, fixed boundary condition shown at the bottom
and the prescribed displacement u and rotation θ shown at the top.

The reaction forces of the LINEXP-PANNmodel compared to the original Ogden model are
given in Fig. 5.20. They are taken at the reference point where the displacement and rotation
are prescribed. The NN model shows excellent agreement with the median relative error for the
reaction forces of 0.42% and for the reaction moments of 0.33%.

The von Mises stress plots of the diabolo example are shown in Fig. 5.21 where the solu-
tions with the LINEXP-PANN and Ogden models are shown side by side. The maximum stress
values are 0.8864 MPa and 0.8882MPa, and minimum values are 0.0766MPa and 0.0769MPa,
respectively. The relative error of the maximum stresses is 0.01% and of the minimum stresses
0.48%.

Additionally, the evolution of the damage parameter ζ is taken at the centre node on the
cylinder surface and shown in Fig. 5.22. The median relative error is 0.39%.

Plots of the damage parameter ζ over the entire domain at the end of the simulation are given
in Fig. 5.23 and shows agreement between the LINEXP-PANN and Ogden results.

Lastly, plots of the strain energy over the entire domain are given in Fig. 5.24 with a relative
median error of 1.05%. This shows that even for complex loading conditions the LNEXP-PANN
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Figure 5.20: Diagram of the reaction force and moment for the diabolo numerical example.
Results are taken at the node where displacement and rotation are prescribed.
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Figure 5.21: Von Mises stress plots of the diabolo example using the LINEXP-PANN and the
Ogden model with Mullins effect.
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Figure 5.22: Evolution of the damage parameter ζ for the diabolo example. Comparison between
the LINEXP-PANN and Ogden model with Mullins effect.

successfully captured the energy evolution even though it was trained only on simple UT, ET
and PT tests in plane stress.
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Figure 5.23: Plots of the damage variable ζ on the full diabolo geometry at the end of the
simulation.
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Figure 5.24: Evolution of the Mullins strain energy during simulation for the diabolo example.
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5.3 General damage modelling - Mullins subnetworks

In the presented results it is clear that the LINEXP-PANN is a suitable candidate for the gen-
eral modelling of hyperelastic behaviour. However, the formula for the damage parameter ζ ,
Eq. (5.8) is simply taken from the literature and implemented as a custom layer in a NN frame-
work. This can be done for any of the candidate functions presented in [16] but this does not
truly allow for a general model of the damage parameter ζ in the same sense as the strain en-
ergy ψ0 is modelled by the LINEXP-PANN. In order to obtain a general model for the damage
parameter ζ a separate FNN will be introduced that is from this point onwards referred to as a
subnetwork.

The architecture of the subnetwork must be such that it satisfies the requirement ζ ∈ [0, 1]

and ζ (ψ0,max) = 0. The sigmoid function might seem appropriate since it exactly fulfils the
first requirement, but fails to fulfil the second one. A normalization term might be added, but
this would violate the first one since its lower bound would not be 0. The hyperbolic tangent
satisfies both conditions. It is centred around 0 for an input of 0, thus satisfying the second
condition. It is also within the bounds [−1, 1] thus satisfying the first condition, but only if it
can be guaranteed that a non-negative argument is passed to it. Since the maximum undamaged
strain energy ψ0,max would be the argument of the function then this is satisfied. However, this
would still be an assumption that the damage evolution takes the form of a tanh function which
might not be sufficient to capture it. To solve this, a hidden layer is added between the tanh
function andψ0,max, see Fig. 5.25. The linear exponential from Eq. (4.8) is taken as the activation
function since it can be restrained to give only positive values and also it has already proven to
be capable in capturing non-linear behaviour. Also, using it as the activation function satisfies
the requirement ζ (ψ0,max) = 0. In the subnetworks the activation functions are denoted using
gi to avoid confusion with the activation functions used in LINEXP-PANN in the NN block in
Fig. 5.4. The number of neurons in the hidden layer is arbitrary, but in this work it was chosen
to be 5. An additional parameter β ∈ [−1, 1] is added as a multiplicator to the tanh in order
to restrict the maximum value of damage in a similar manner to ζ∞ in Eq. (5.2) and ζmax in
Eq. (5.8). The architecture is illustrated in Fig. 5.25.

The remainder of this section examines the approach to modelling the damage parameter
using an NN approach that meets only the most basic physically meaningful requirements. The
test previously done in Sec. 5 will be repeated. Also, two versions of the subnetwork are inves-
tigated. The first one is the one presented in Fig. 5.25 with β being a trainable parameter, and
in the second version β is omitted (it is fixed to be equal to 1 and non-trainable) to allow the
NN more freedom in capturing the damage evolution, since it already satisfies the conditions
ζ ∈ [0, 1] and ζ (ψ0,max) = 0. For the basic NN block only the unrestricted LINEXP-PANN is
taken for modelling ψ0 as it is the best performing of the previously investigated NN architec-
tures.

The training is performed on the same datasets as for the NNs presented in Fig. 5.9. The

88



ψmax β•tanh

g1

gn

Figure 5.25: Architecture of the damage subnetwork.

training curves for the NNs are presented in Fig. 5.26 and they show that the training losses are
about the same with the one in Fig. 5.26a being somewhat lower. Also, it is noted that when β is
included the training becomes smoother, i.e. the loss does not oscillate much which is different
than when β is omitted. After training, the parameter β was obtained as 0.86 which, although
different from the base ζ∞ of 0.9 is somewhat close.
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(a) β is omitted.
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(b) β is included.

Figure 5.26: Training histories of the two versions of the Mullins subnetwork. In the bottom
case at the end of training β = 0.86.

The approach is first presented on uniaxial tension, with the results presented in the same
manner as before in Fig. 5.11. In all the results presented in Fig. 5.27 the NN where β is omit-
ted has outperformed the one where it is included as a trainable parameter. It is interesting to
compare ψMullins and ψ0 and the parameter β. The NN recovered a higher value of the maximum
damage and thus it compensated by predicting a stronger material so ψ0 is overestimated. In this
way the stress is recovered but the learned ψMullins is still underestimated at the largest stretch.
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Figure 5.27: Results of the Cauchy stress (a), damaged (b) and undamaged (c) energy, and
damage parameter (d) evolution for the LINEXP-PANN with a subnetwork for modelling the
damage parameter ζ in place of the expression from Eq. (5.2). The value of β obtained by the
NN where it is a trainable parameter is 0.86.
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The errors of ψMullins predicted by the NNs with a subnetwork are given in Fig. 5.28 over the
invariant domain. Following the previous results from Fig. 5.27, when using the subnetwork
with β omitted the results are much better. The largest error is larger from LINEXP-PANN
with ζ defined by Eq. (5.8) which is expected, but it allows for the capture of more complicated
behaviours and a general approach to modelling the damage evolution.

(a) β is omitted.

(b) β = 0.86.

Figure 5.28: Relative errors of the predicted ψMullins over the invariant domain from Fig. 3.12.

Following the results presented so far it is safe to assume that using a subnetwork with β
omitted is the preferable option due to the lower errors and better prediction qualities. This
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is further investigated using more complex numerical examples. Following the outline of the
previous results from Sec. 5.1, the reaction forces and moments of the solid rubber disc example
using the subnetworks are shown in Fig. 5.29. The reaction force and moment median errors
for the subnetwork with β omitted are 0.9% and 1.8%, and for the subnetwork with β = 0.86

the errors are 1.5 % and 1.74%. Just by comparing the reaction force and moment curves it is
difficult to distinguish between the results of the subnetworks showing that both can be used in
this scenario.
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(a) β is omitted.
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(b) β = 0.86.

Figure 5.29: Reaction force and moment for the solid rubber disc example at the reference point
where the displacement and rotation are prescribed. Results shown using the subnetworks for
modelling the damage parameter ζ .

Moving on to the diabolo example taken from Sec. 5.2, the reaction force and moment are
shown in Fig. 5.30 with the median errors of 0.24% and 0.15% for the subnetwork with β omit-
ted, and 0.76% and 0.65% for the subnetwork with β = 0.86. As in the previous example, this
shows excellent agreement regardless of the chosen modelling strategy. The evolution of the
damage variable ζ is shown in Fig. 5.31 for both subnetworks with the subnetwork where β is
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omitted showing better agreement with the reference model on par with what the specialised
function from Eq. (5.8).
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(a) β is omitted.
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(b) β = 0.86.

Figure 5.30: Reaction force andmoment for the diabolo example at the reference point where the
displacement and rotation are prescribed. Results shown using the subnetworks for modelling
the damage parameter ζ .
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Figure 5.31: Damage evolution for the diabolo example at the centre node of a side surface.
Results shown using the subnetworks for modelling the damage parameter ζ .
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Finally, it can be concluded that using the subnetworks to model the parameter ζ is a viable
and potentially the preferable option since it allows for a more flexible approach without a priori
assuming the damage evolution function.

5.3.1 On the Implementation of Subnetworks

When implementing a NN with a subnetwork that models the damage a slight modification is
necessary. In place of the specialized function implemented in Algorithm 2 line 15, that line of
code is replaced with the code snippet given in Algorithm 3. It is the code representation of the
FNN presented in Fig. 5.25.
Remark 1 If the subnetworkwithout the trainable parameter β is implemented, then it is possible
that for high values of ψ0,max the damage ζ is equal to 1 and in Algorithm 3 in line 6 the value
can be 0 thus rendering all the derivatives 0. This does not occur when simple tests like uniaxial,
equibiaxial or planar tension are calculated but it does occur in complex loading scenarios such
as the solid disc example. To avoid this the variable W6 should be set to nearly 1 (e.g. 0.99999).
Remark 2 If an NN with β is trained it is possible that it trains to mimick the situation from
Remark 1 so that β is trained to be nearly 1 (i.e. 0.99999 or similar) and the NN behaves exactly
like the one where β is omitted, i.e. it correctly predicts the Mullins energy, the undeformed
energy and the damage variable, as in Fig. 5.27. This is however a niche situation and in most
cases β is less than 1 like in Fig. 5.27, so it is not necessarily reproducible. However, train-
ing without β always yields almost the same result (a small variance exists due to the random
initialization of the weights) and is therefore preferred.

Algorithm 3 Subnetwork snippet.
Subnetwork is used to calculate energy from PSIM.

1: AUX = 0D0
2: DO I = 1, 5
3: AUX = AUX + (EXP(ALPHA2(I)*W4(I)*PSIM)-1)*W5(I)

▷W4, ALPHA2, W5 are the subnetwork weights.
4: END DO
5: ZETA = W6*TANH(AUX) ▷W6 is either β or 0.99999.
6: A = 1D0 - ZETA
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6 Extension to Compressible Hyperelasticity and Compari-
son with Data-Driven Computational Mechanics

An ICNN based on the LINEXP-PANN architecture from Sec. 4 is used to model compressible
hyperelasticity, similar to case 2 in Sec. 5. The inputs are expanded to include the third invariant
I3 since compressible behaviour will be modelled. Note that in the undeformed state I3 = 1,
so the input is actually taken as (I3 − 1). The final NN architecture is a modification of the
NN proposed in Fig. 4.5 and is shown in Fig. 6.1. The convexity of the NN w.r.t. its inputs
is guaranteed by constraining the weights in between the hidden and output layer w[2]

i,j to be
non-negative. Objectivity is accounted for by using the invariants as inputs, normalisation of
the energy is guaranteed in the same manner as introduced in Sec. 4, with the third invariant in
the input as (I3 − 1). Thermodynamic consistency is accounted for by training the NN on its
derivatives, the expression for the 2nd Piola-Kirchhoff stress in case of compressibility is taken
as

S = 2
∂ψ(I1, I2, I3)

∂C
= 2

[
∂ψ

∂I1

∂I1
∂C

+
∂ψ

∂I2

∂I2
∂C

+
∂ψ

∂I3

∂I3
∂C

]
=

= 2

[(
∂ψ

∂I1
+ I1

∂ψ

∂I2

)
I− ∂ψ

∂I2
C+ I3

∂ψ

∂I3
C−1

]
.

(6.1)

The normalisation of stress in the undeformed configuration was not performed so the normal-
isation constant n from Eq. (4.14) is not included in the energy as in Eq. (4.13). It should be
noted that in [72] the behaviour of NNs trained directly on energy was also investigated, i.e.
without fulfilling thermodynamic consistency which is similar to the invariant based NN model
presented in Sec. 3.3, but it proved to be a significantly less accurate model with large variance
between different NN models trained on the same dataset.
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Figure 6.1: Illustration of the ICNN (Input ConvexNeural Network) used tomodel compressible
hyperelasticity. Convexity w.r.t. the inputs is guaranteed by choosing the linear exponential
activation function and constraining the weights w[2]

i,j to be non-negative.
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In this section a short comparison is shown with another emerging approach to data-driven
modelling called Data-Driven Computational Mechanics (DDCM) which was first published
in [36]. The approach was expanded to hyperelasticity in [57] and further refined in [72]. This
section presents the results of [72], where a comparison was made between two data-based
approaches, the NN model and data-driven model-free approaches.

The aim of DDCM is to minimise the distance between points in a (experimental) dataset.
For the one dimensional linearly elastic case, as taken from [36]. The distance is defined as

Fe(εe, σe) = We(εe − ε′e) +W ∗
e (σe − σ′

e), (6.2)

where εe is the small strain tensor of a bar finite element (in this particular case it is a scalar
given that the problem is one-dimensional), σe is the Cauchy stress of a bar element, and ε′e and
σ′
e are values from a dataset (that could have been obtained experimentally). The metrics We

andW ∗
e are defined as

We =
1

2
Ceε

2
e, W ∗

e =
σ2
e

2Ce

, (6.3)

which are usually defined as the strain energy and complementary strain energy densities andCe

is a material constant that could be identified as the Young’s modulus in case of uniaxial linear
elasticity, but in the context of DDCM it is simply a numerical constant since DDCM is driven
by data alone.

The goal is to find values of strain εe and stress σe (a local state (εe,σe)) that minimise
the distance Fe while at the same time satisfying the equilibrium constraint (balance of linear
momentum). A goal function is expressed as

F =
m∑
e=1

weFe(εe, σe), (6.4)

with we being the volume of a bar element andm the total number of elements. The constrained
minimisation problem can be posed as

Minimize:
m∑
e=1

weF (εe, σe), (6.5)

subject to: εe =
n∑

i=1

Beiui and
m∑
e=1

weBeiσe = fi, (6.6)

with Bei being the derivatives of interpolation functions, ui the displacement degrees of free-
dom with n being the number of degrees of freedom, fi the vector of applied forces. The final
minimization problem can be written as

m∑
e=1

weFe

(
n∑

i=1

Bei, ui, σe

)
−

n∑
i=1

(
m∑
e=1

weBeiσe − fi

)
ηi = 0, (6.7)
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where ηi are the Lagrange multipliers for solving the constrained minimization problem. Mini-
mization with respect to the displacements and stresses would then lead to two sets of equations
that can then be solved with a detailed procedure outlined in [36].

The problem statement is altered in [74] to account for finite strain and the local state is
defined by the 2nd Piola-Kirchhoff stress tensor S and the Green-Lagrange strain tensor E =
1
2
(FTF− I). The distance is expressed as

d((E, S), (Ê, Ŝ)) =

√∫
Ω

||(E, S)− (Ê, Ŝ)||2locdΩ, (6.8)

with ||(A,B)|| =
√
A : C : A+ B : C−1 : B where A = E− Ê and B = S− Ŝ, with the hat (•̂)

sign noting the local states from a dataset. The procedure is explained in detail in [74] and the
basic implementation is referred to as DD (Data-Driven). Additional enhancements to the basic
DD method includes enriching the dataset by further rotating the available data into discretised
orbits similar to [57], this can be done if an isotropic material is assumed and this approach is re-
ferred to as DDiso (Data-Driven isotropic). This would make the approach objective, i.e. frame
indifferent. Another enhancement called locally convex embedding that was proposed in [25]
is implemented to augment the datasets, this is referred to as DDLC (Data-Driven Locally Con-
vex). Combining the two enhancements renders the DDLCiso implementation (Data-Driven
Locally Convex isotropic). The DDCM approach does not include physical considerations in
the same manner as the NN approaches. It is built upon the idea to minimize a distance with
the constraint being the balance of linear momentum, if objectivity is to be included then the
dataset needs to be artificially enriched by rotating the existing available data further increas-
ing the computational burden. For other details of the used DDCM approaches see [72]. The
development of the DDCM solvers was done by Felipe Rocha and Laurent Stainier and their
contribution is gratefully acknowledged.

6.1 Cook Membrane Numerical Example

The 1st numerical example on which the performance of the NN and DDCM approach is com-
pared on is the Cook membrane with the Ciarlet law, from which datasets were gathered to train
the NNs and to run the data-driven solvers. This example was taken from [61]. The Ciarlet law
is a compressible invariant based model with the energy expression

ψCiarlet(I1, J) =
µ

2
(I1 − 3) +

λ

4
(J2 − 1)−

(
λ

2
+ µ

)
log J, (6.9)

with µ = 185.185 MPa and λ = 432.099 MPa. The geometry and finite element meshes are
shown in Fig. 6.2. The dataset which was used by both the NNs and the DDCM implementations
was obtained from solving the Cook membrane on the mesh shown in blue in Fig. 6.2. After-
wards the mesh is slightly altered to the one shown in white, otherwise the DDCM approach
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would obtain 100% agreement with the reference solution.

48

t

16

44

→

Figure 6.2: Illustration of the Cook membrane geometry and mesh used for comparing NNs and
DDCM. Dimensions are given in millimetres. The source mesh from which data was gathered
is shown in blue and the overlayed white mesh is the one on which the comparison was done.

The vertical displacement of the top right point (at the end of the applied traction t) is shown
in Fig. 6.3 for different solutions. Only the results of the DDLC and DDLCiso implementations
are shown in the displacement diagrams as they are the most advanced techniques that are as-
sumed to give the best results among the DDCM implementations. A close up is shown to better
illustrate the performance between the various solutions, with the DDLCiso solution showing
best agreement with an error of 0.01% while the NN solution had an error of 0.27%.
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Figure 6.3: Diagram showing the displacement vs. traction load for the Cook problem. Solutions
of various DDCM implementations along with the NN solution are shown.

Relative L2 norm error values of the displacements, strain and stress over the entire domain
are given in Fig. 6.4 for the DDLCiso solution and in Fig. 6.5 for the NN solution. Additional
results are shown when a random normally distributed multiplicative noise is added to the un-
derlying datasets. Also, the original dataset of 3944 data was sliced into smaller datasets to
test the impact of the dataset size on DDCM and NNs. This means that for each dataset, i.e.
combination of noise level and dataset size, a separate NN had to be trained, but to account
for the random initialization of weights at the beginning of training 10 NNs were trained per
dataset. The one with the lowest loss was chosen and the results were presented using it. The
DDCM implementations simply use the available dataset without any special preparation. For
nearly all the datasets except the reference dataset with no added noise, the neural networks
outperformed the DDCM implementations. From Fig. 6.4 it can be seen that the approach is
very sensitive to the quality of the data. More specifically when looking at the displacement
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errors from Fig. 6.4a at the datasets without added noise the smallest dataset with 100 samples
has an error of 1.32 · 10−5 and the largest dataset an error of 1.9 · 10−8, which is 3 orders of
magnitude difference. Looking at the datasets with 1% noise the errors change, but remain in
the same order of magnitude on the smallest dataset with 100 samples. For the largest dataset the
error increases to 1.505 · 10−3 which is 5 orders of magnitude worse than the original noise-free
dataset and even worse than the noisy small dataset. This leads to an unexpected result where
if lower quality data is available, i.e. more noise in the dataset, then smaller datasets seem to
lead to better results. On the other hand the errors from Fig. 6.5 are much less varied and seem
to be more or less the same in spite of the added noise with all the errors being within one order
of magnitude falling in the range of 5 · 10−5 to 1 · 10−6 when looking at the displacement errors
in Fig 6.5a. The ICNN approach thus lends models which are resilient to the worse quality of
the underlying datasets with an observable trend in Fig. 6.5c where the errors for stress data are
lesser with an increasing size of the dataset across all noise levels.

Relative errors comparing the accuracy of DDCM and NNs are compared in Fig. 6.6 where
the values are calculated as

error =
(•)DDCM − (•)NN

(•)DDCM
· 100%, (6.10)

so that the value describes how well the NNs perform relative to the DDCM implementation. A
negative value would mean that the DDCM implementation outperforms the NNs. In nearly all
the datasets and values in Fig. 6.6 the NNs outperform DDCM, the only situation where DDCM
has an advantage is for larger datasets without added noise.
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(a) (b)

(c)

Figure 6.4: Relative L2 norms of displacement, strain and stress errors for the DDLCiso imple-
mentation. Reference dataset contains 3944 data points.
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(a) (b)

(c)

Figure 6.5: Relative L2 norms of displacement, strain and stress errors for the DDLCiso imple-
mentation. Reference dataset contains 3944 data points.
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(a) (b)

(c)

Figure 6.6: Relative errors of DDCM vs NNs for displacement, strain and stress. Reference
dataset contains 3944 data points.
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6.2 Punch Problem Numerical Example

The 2nd example is the punch problem that was already solved in Sec. 3.6.2. It is also taken
from [72], the geometry, mesh and continuos load q = 100 N/mm are shown in Fig. 3.17. It is
solved with the same Ciarlet model as the Cook problem before, using the same dataset gathered
from the Cook model from Fig. 3.7. This is done in order to see generalisation capabilities of
both the DDCM and NN approaches. The downward vertical displacement of the top left corner
is shown in Fig. 6.8, and the relative errors (relative to the maximum value obtained for each
respective plot) over the entire domain for the DDLCiso and NN approaches is shown in Fig. 6.9.
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Figure 6.7: Geometry, mesh and load of the punch problem. Dimension are in millimetres.
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Figure 6.8: Downward vertical displacement of the top left corner of the punch problem.

From the curve evolutions in Fig. 6.8a it is evident that the base data-driven solver without
simulated isotropy is inadequate for general calculations, as shown by the divergence and fail-
ure of the DDLC implementation. The DDLCiso implementation is much more general in its
application as it successfully completes the calculation with an error of 3.14%. The NN shows
even better generalisation properties as it completed the calculation with an error of 1.61%. This
points to the general properties and application of the NN and DDCM approaches, where the
DDCM approaches are better applied to specialised cases where the behaviour is more or less
known and the data-sets of the deformations that occur is rich and detailed. The application of
NNs is on the other hand more general and are to be used in cases of sparse or noisy data, or
when a general model is required. Another difference that further supports this notion is that
the presented NN models have been trained on plane strain data but can be used in any type of
analysis, whereas DDCM can only be successfully applied to the model analysis/deformation
type from which the data was gathered.

Looking at the relative error plots in Fig. 6.9 the DDLCiso results are not smooth but are
rather discontinuous, another property of the DDCM implementations which is indicative that
the underlying dataset is insufficient for the given problem. This is reflected in the higher errors
that occur in the DDLCiso solution for displacement, strain and stress.
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(a) Relative displacement error for DDLCiso, largest
error is 3.18%.

(b) Relative displacement error for stress trainedNN,
largest error is 1.91%.
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(c) Relative strain error for DDLCiso, largest error is
23.5%.

(d) Relative strain error for stress trained NN, largest
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Relative stress error

(e) Relative error stress for DDLCiso, largest error is
27.8%.

(f) Relative stress error for stress trained NN, largest
error is 10.9%.

Figure 6.9: Relative stress errors for the DDLCiso and stress trained NN for the punch problem
using the Ciarlet material model.
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7 Summary and Conclusion

The thesis starts with themost general frameworks for machine learning and neural networks and
carefully examines and compares the capabilities of different neural network architectures and
training strategies. The first NN model was a strain-stress based NN which managed to capture
the underlying isothermal hyperelastic and thermoelastic behaviour which were taken from Og-
den’s hyperelastic model and its thermally expanded version. However, this stress-strain based
NN was limited to plane stress applications and required a large database of 1 000 000 samples
to ensure reproducibility each time it was trained. A significant improvement to the model was
made with the introduction of invariants of the right Cauchy-Green deformation tensor as inputs
and predicting the strain energy/free energy instead of the stresses. This invariant based neural
network was trained on energy and managed to capture the behaviours it was trained on with
a much smaller dataset of about 30 000 samples, roughly 33 times smaller than for the stress-
strain based NN. Utilising the fact that invariants are objective the invariant based NN offers the
significant advantage that it can be applied to any other state other than plane stress. This was
demonstrated by performing an analysis of a 3D cracked bar with mixed finite elements, while
the data on which the NN was trained on was gathered from plane stress.

A further improvement was made by introducing the modified linear exponential function
as an activation function. The linear exponential is used in hyperelastic material models, has
convenient properties that are useful for satisfying normalisation of the energy, non-negativity
of the energy and convexity, and by extension polyconvexity of the entire hyperelastic model.
Additionally, the fact that using invariants of the right Cauchy-Green deformation tensor is a
convenient way to calculate the stress tensor S (as well as σ or P) the NNs can easily be trained
on stresses instead of the energy directly, i.e. the NNs are trained on their derivatives. This
last property enforces thermodynamic consistencymeaning that the stresses are calculated from
the energy. All of these improvements lead to the development of the LINEXP-PANN (LINear
EXPonential Physics-Augmented Neural Network) model which was extensively discussed in
Sec. 4, and which was successfully applied to several material models of different complexity,
namely the Neo-Hookean, Mooney-Rivlin and Ogden models. The best performing model man-
aged to capture the underlying isothermal Ogden model and needed just 15 samples obtained
from three simple modes of deformation, more precisely uniaxial, equibiaxial and planar ten-
sion. Five samples were taken from each mode of deformation. Also, the LINEXP-PANN is a
shallow NN since it contains only one hidden layer with five neurons for a total of 20 trainable
parameters. Comparing with the first functional NN presented in this thesis, the stress-strain
based NN, this presents a reduction in data size of roughly 66 000 times and a reduction in the
number of trainable parameters of 1 116 times, while still providing excellent performance.

The LINEXP-PANN was further tested against its own variations and the Constitutive Ar-
tificial Neural Network (CANN) [46] in Sec. 5 for modelling the Mullins effect, a simple type
of damage in hyperelastic materials. They were used as a model for the underlying undamaged
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energy and the LINEXP-PANN which was found to be the best performing NN in Sec. 4 was
also found to be the best for modelling the Mullins effect. Additionally, a novel type of training
NNs for damage was presented in Sec. 5 where certain weights in the NN were reused to model
both the undamaged energy and the damage evolution.

The application of NNs to hyperelasticity in this thesis was focused on incompressible be-
haviour, but for completeness in Sec. 6 the extension to compressibility is made using a input
convex variation of the LINEXP-PANN. In the same section the performance of the NNs was
compared to results obtained by other authors using an alternative approach to data-driven mod-
elling calledData-driven Computational Mechanics (DDCM). The benefits of the NNs, such as
the insensitivity to the quality of the underlying dataset, are shown and the overall advantage of
using NNs in case of smaller or lesser quality datasets is demonstrated.

To conclude, both the hypotheses in this work were proven correct. The first hypothesis
of this work has been proven correct since general neural network models were successfully
applied as material models to thermoelasticity and the Mullins effect. In Sec. 3.3 a general neu-
ral network model was used to capture the thermoelastic behaviour. The same neural network
model was used on both ordinary isothermal hyperelastic behaviour and on thermoelastic be-
haviour. Even though the differences in the two behaviours are small the same general neural
network model described them and captured the small differences. In Sec. 5 the newly devel-
oped LINEXP-PANN model, which was introduced by modelling ordinary hyperelasticity, was
also applied to model the Mullins effect. Further in the same section two different ways of mod-
elling the damage evolution using the LINEXP-PANN as a basis were proposed and successfully
implemented further showing the generality of neural networks as a hyperelastic material model.
The second hypothesis was proven correct with the development of the LINEXP-PANN where
the linear exponential custom activation function was introduced. The LINEXP-PANN model
are very small shallow neural networks consisting of only 5 neurons in one hidden layer. It
is able to capture ordinary hyperelastic behaviour with a considerably smaller number of pa-
rameters and training data when compared to more conventional neural networks which was
commented on in Sec. 4.2.

Neural networks have proven to be flexible, accurate and practical to use. They enable en-
gineers to streamline their workflows. Instead of spending time deciding which material model
would be best, they can simply use a neural network and be confident that they will get reliable
results. The material behaviours discussed in this thesis are a small sample of the various com-
plex phenomena that can no longer be ignored in the development of modern systems that drive
our industry. Neural network modelling will undoubtedly prove to be an irreplaceable tool in
the modern engineer’s toolbox.
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