
UNIVERSITY OF RIJEKA

FACULTY OF ENGINEERING

Sandi Baressi Šegota

Determining the Energy-Optimal

Path of Six-Axis Industrial Robotic

Manipulators Using Machine

Learning and Memetic Algorithms

DOCTORAL THESIS

Rijeka, 2025.









UNIVERSITY OF RIJEKA

FACULTY OF ENGINEERING

Sandi Baressi Šegota

Determining the Energy-Optimal

Path of Six-Axis Industrial Robotic

Manipulators Using Machine

Learning and Memetic Algorithms

DOCTORAL THESIS

Supervisor: Prof. dr. sc. Zlatan Car

Rijeka, 2025.
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algoritama

DOKTORSKI RAD

Mentor: prof. dr. sc. Zlatan Car

Rijeka, 2025.





Supervisor: Prof. dr. sc. Zlatan Car

This doctoral thesis was defended on at the Faculty

of Engineering, University of Rijeka, in front of the Committee consisting of::

1.

2.

3.





Words of Appreciation

First, I would like to thank my mentor, Prof. dr. sc. Zlatan Car, for his guidance, support,

and encouragement throughout my doctoral studies. I am grateful for his pinyatience,

understanding, and expertise, which have been invaluable to me.

I would also like to thank my mother, Marisa Baressi, for her unwavering love and

support. Her encouragement and belief in me have been a constant source of strength

and inspiration. To my late grandfather Mario for his wisdom and guidance, and to my

late grandmother Ana for her love and kindness.

I would like to thank my collaborators and colleagues, especially dr.sc. Nikola And̄elić,
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Sažetak — Ovaj rad bavi se energetskom optimizacijom putanja serijskih robot-

skih manipulatora. Zbog čestog ponavljanja putanja, njihova optimizacija može

donijeti značajne uštede. Prvi korak je modeliranje potrošnje energije manipu-

latora u odnosu na putanju definiranu pozicijama, brzinama i akceleracijama u

zglobovskom prostoru. Predstavljena su dva pristupa: klasični analitički model

temeljen na Lagrange-Eulerovom algoritmu te metode strojnog učenja. Korišteni

su višeslojni perceptron, strojevi potpornih vektora, pasivno-agresivni regresor

i gradijentno pojačana stabla. Algoritmi su primijenjeni na tri skupa podataka:

stvarni (prikupljen u laboratoriju), simulirani i sintetički (generiran iz stvarnih po-

dataka). Modeli su trenirani višestrukom validacijom i optimizirani pretragom

rešetke, a testirani na stvarnim podacima. Rezultati pokazuju da su modeli treni-

rani na simuliranim podacima slabiji zbog odstupanja od stvarnog industrijskog

robotskog manipulatora, dok su sintetički podaci omogućili modele gotovo jed-

nake kao stvarni. Najbolji modeli temelje se na višeslojnom perceptronu i ko-

riste se u optimizacijskom procesu kao dio funkcije pogodnosti. Optimizacija

se provodi genetskim algoritmom, pri čemu se najboljom pokazala nasumična

rekombinacija gena (95%) uz mutaciju (5%). Algoritam se nadograd̄uje memet-

skim pristupom s lokalnim pretraživanjem. Informirano pretraživanje poboljšava

putanju u prosjeku za 59% u odnosu na nasumične parametre, što ukazuje na

potencijal memetskog pristupa za optimizaciju putanja.

Ključne riječi — energetska optimizacija; evolucijsko računarstvo; industrijski

robotski manipulatori; strojno učenje; memetički algoritmi
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Abstract — This dissertation focuses on the energy optimization of serial robotic

manipulators’ trajectories. Due to the frequent repetition of trajectories, their op-

timization can lead to significant energy savings. The first step is modeling the

energy consumption of the manipulator concerning the trajectory defined by posi-

tions, velocities, and accelerations in joint space. Two approaches are presented:

a classical analytical model based on the Lagrange-Euler algorithm and ma-

chine learning methods. The applied algorithms include a multilayer perceptron,

support vector machines, a passive-aggressive regressor, and gradient-boosted

trees. These algorithms were tested on three datasets: real (collected in a lab-

oratory), simulated, and synthetic (generated from real data). The models were

trained using cross-validation and optimized via grid search, then tested on real

data. Results indicate that models trained on simulated data perform worse due

to deviations from the real IRM, whereas synthetic data allowed for models nearly

identical to those trained on real data. The best-performing models were based

on a multilayer perceptron and were incorporated into the optimization process

as part of the fitness function. Optimization was performed using a genetic algo-

rithm, with the best performance achieved through random gene recombination

(95%) and mutation (5%). The algorithm was further enhanced with a memetic

approach featuring local search. Informed search improved trajectories by an

average of 59% compared to randomly selected parameters, demonstrating the

potential of the memetic approach for trajectory energy optimization.

Keywords — energy optimization; evolutionary computing; industrial robotic ma-

nipulators; machine learning; memetic algorithms

III



Prošireni Sažetak — Ovaj doktorski rad se fokusira na problem energetske op-

timizacije putanja serijskih robotskih manipulatora u načinu rada pokupi i ostavi.

Zbog velikog broja manipulatora i čestog ponavljanja putanja, optimizacija može

dovesti do značajnih ušteda. Prvi korak ka cilju optimizacije je odred̄ivanje mod-

ela potrošnje energije robotskog manipulatora u odnosu na putanju zadanu pozi-

cijama, brzinama i akceleracijama u zglobovitom prostoru. Predstavljena su dva

pristupa – prvi je klasični analitički pristup temeljen na Lagrange-Eulerovom it-

erativnom algoritmu za proračun torzije zglobova. Drugi pristup je korištenje

metoda strojnog učenja. Primijenjena su četiri algoritma - višeslojni perceptron,

strojevi potpornih vektora, pasivno agresivni regresor, te stabla ojačana gradijen-

tom. Navedeni algoritmi se primjenjuju na tri odvojena skupa podataka – stvarni,

prikupljen u laboratorijskom okruženju; simuliran, iz računalne simulacije istog

robota; te sintetički, generiran na mikro-skupu podataka sa stvarnog robota. Svi

modeli su trenirani višestrukom validacijom, te su im hiperparametri odred̄eni

procesom pretrage rešetke. Dobiveni modeli su testirani na odvojenom skupu

podataka, prikupljenom sa stvarnog robota. Cilj ovoga je ispitati je li moguće

razviti modele temeljene na podacima prikupljenima ili simulacijom ili na manjem

skupu podataka, kako bi se smanjila invazivnost kod potencijalne primjene na

robote korištene u radnim okruženjima. Evaluacijom svih modela se pokazuje da

modeli trenirani na simulacijskim podacima daju slabije rezultate u usporedbi s

onima treniranim na stvarnim podacima. Ovo je najvjerojatnije uzrokovano raz-

likama izmed̄u simuliranog i stvarnog industrijskog robotskog manipulatora, što

je potvrd̄eno statističkom analizom podataka. Modeli trenirani na sintetičkim po-

dacima daju rezultate koji su gotovo jednaki rezultatima modela sa stvarnih po-

dataka. Najbolji modeli su oni bazirani na višeslojnom perceptronu. Stoga se

ti modeli koriste u optimizacijskom procesu, kao dio funkcije pogodnosti. Opti-

mizacijski proces se temelji na genetskom algoritmu kod kojega su ispitane ra-

zličite postavke, te je odred̄eno da najbolje performanse daje genetski algoritam

s nasumičnom rekombinacijom gena koja se dogad̄a u 95% slučajeva, te mutaci-

jom u 5% slučaja. Ovaj algoritam se nadograd̄uje memetičkim algoritmom koji
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koristi dva načina lokalne pretrage u okolini prostora rješenja najboljeg potenci-

jalnog rješenja na kraju svake generacije – nasumično pretraživanje i informirano

pretraživanje temeljeno na analizi utjecaja varijabli na izlaz modela. Informirano

pretraživanje polučuje bolje rezultate, s prosječnim poboljšanjem putanje od 59%

u odnosu na putanju s nasumično odabranim parametrima. Zaključak doktorskog

rada je da ovakav, memetički, pristup potencijalno vrlo koristan za energetsku

optimizaciju putanja.
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CHAPTER 1
Introduction

Industrial robotic manipulators (IRMs) are programmable robotic manipulators, used

in industry to perform repetitive and complex tasks for which manipulators with lower

capabilities would not be satisfactory. According to the European Commission energy

directive, reducing energy consumption to achieve energy savings is one of the key

steps in delivering the goals of European Green Deal 1. There are many different areas

and sectors which use large amounts of energy, but one of the larger ones is industry.

According to European Commission, according to data collected in 2021, industry as

a sector used 25.6% of the total energy consumption in the European Union 2. With

the growing automation and robotization of the industry, the energy consumption of

industrial robots is not to be neglected. IRMs have a large application in the modern

automation of manufacturing processes, due to a high applicability, flexibility and adap-

tivity [11, 57]. According to the International Federation of Robotics (IFR) in 2023, the

record of 553,052 robots were newly installed – approximately 82,958 of which were

installed in Europe for a growth of more than 5%. The projected growth in 2023 is

expected to be 7% or 590,000 new units worldwide. Based on the same source, it is

approximated that the number of industrial robotic units in Europe is around 650,000

units 3. With the IRMs easily reaching the power consumption of 5kW, assuming a total

of 1,000 work hours a year, the power consumption at the level of European Union, just

1European Commission – Energy, https://energy.ec.europa.eu/, last accessed March 14th 2025.
2Eurostat – Energy statistics, https://ec.europa.eu/eurostat/statistics-explained/index.php?

title=Energy_statistics_-_an_overview, last accessed March 14th 2025.
3International Federation of Robotics – World Robotics 2023, https://ifr.org/ifr-press-releases/

news/world-robotics-2023-report-asia-ahead-of-europe-and-the-americas, last accessed March

14th 2025.

1

https://energy.ec.europa.eu/
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview
https://ec.europa.eu/eurostat/statistics-explained/index.php?title=Energy_statistics_-_an_overview
https://ifr.org/ifr-press-releases/news/world-robotics-2023-report-asia-ahead-of-europe-and-the-americas
https://ifr.org/ifr-press-releases/news/world-robotics-2023-report-asia-ahead-of-europe-and-the-americas
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for the industrial robots without any of the supporting infrastructure and equipment, can

be approximated at over 15 TWh.

The high power use of industrial robotic systems has not gone unnoticed by the re-

searchers. Sihag and Sangwan note that the tuning of machines for energy efficiency

has become an integral part in planning of industrial processes with the goal of eco-

nomic and environmental performance improvements, because machine tools are a

major energy consumer with a very low efficiency and a dynamic energy consumption

behavior [67]. Chutima notes how the energy consumption of IRMs, mainly six degree-

of-freedom (DOF) robotic arms, is by far the highest energy consumption element of

all elements of robotic assembly lines [17]. Swanborn and Malavolta state that one

of the biggest source of energy innefficiency in industrial robotic environments is the

inneficient movement of the IRMs. They also note a large interest within the research

community regarding the focus on optimization of industrial robots, despite them hav-

ing a constant power supply compared to mobile robots – despite functional unimpor-

tance of energy consumption [69]. According to previously mentioned research, this

corroborates the fact that energy use of IRMs has a high economical and environmen-

tal impact. Lakshmi Srinivas and Jabed note that there are three ways of optimizing

the energy use of IRMs – optimizing the topology of the production space, use of

lightweight components and trajectory optimization [68]. Topology optimization is lim-

ited in two ways. First, it cannot easily be applied to existing solutions due to the need

to rearrange the production space which requires significant ti me investment requir-

ing the production to be paused for a longer length of time, and potentially financial

investment as well, depending on the environment. In addition to that, the topology

of the production environment is usually optimized for the speed of production, and

most factories would be unwilling to sacrifice the optimization in the area of production

speed to preserve energy. Similar issues plague the use of lightweight robot parts –

sometimes light end-effectors can be designed, but replacing entire IRMs can be far

from economically viable, and can only be considered when the manipulator currently

in use has reached the end of it’s lifecycle. Additionally, the lightweight components are

2
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1.1. OVERVIEW OF EXISTING RESEARCH

not necessarily applicable in many cases, as the production processes may need more

robust components. This leaves the trajectory optimization as the only viable solution

for applications on existing robotic manipulators, where the modification of the tools or

environment is not possible.

Based on the above research, the goal of this doctoral dissertation is to establish

a framework for robot trajectory optimization. Further sections will provide a deeper

overview of the techniques and results applied by the researchers in the past.

1.1 Overview of existing research

This section provides a look into the state-of-the-art of the research in optimization

of IRMs. The review will start with comparing and contrasting the path optimization

techniques which were used by the authors of published work in the field, followed by

reviews into other elements of the research.

1.1.1 Optimization of robotic manipulators with regards to energy and

related quantities

There are multiple papers that indicate the possibility of tuning the path of a robotic

arm with the goal of optimizing the energy expenditure. Vysockyy et al. [73] present

the application of a particle swarm optimization (PSO) algorithm. The main goal of the

researchers is to execute a point-to-point robot path optimization. Instead of optimizing

the whole path of the robotic manipulator, the authors instead focus on optimizing just

non-technological movements, or in other words, the parts of the movement where the

robot is not actively performing an action related to the industrial, technical process it is

performing. The authors apply a PSO algorithm to generate the parameters which are

then used for the generation of a Bezier curve which is used as a path. The authors ver-

ify the results on the UR3 industrial robotic arm and demonstrate that energy savings

range between 10 and 40%, when the non-technological paths are considered. Based

on the presented research it can be concluded that additional savings can be achieved

3
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using a similar approach but applying it to the technological parts of the industrial pro-

cesses as well, if the process in question allows for it. Garriz and Domingo [22] optimize

the process of applying sealant in automotive industry. Three separate tasks of sealant

application with an IRM are observed by the researchers, and a Kalman algorithm is

applied on the simulated paths. The authors limit the results of the algorithm to ensure

that the paths taken will results in a sealant application of satisfying quality. The pre-

dicted energy for the robot path is then compared between the original path and the

planned path, showing that the path can be optimized with regards to the energy, ob-

taining an optimization of up to 20% depending on the trajectory, given the limitations of

the environment, but at the cost of increased operation time. The authors note that the

increased operation time is not necessarily good, depending on the optimization and

note that possible savings should be weighed against the lower production values –

especially in an assembly line environment where the following tasks are influenced by

the increased time. A solution that achieves similar results, without increasing the op-

eration time, would be more applicable to a wider range of scenarios. Shrivastava and

Dalla [66] illustrate another use of genetic algorithm (GA) for the energy optimization

of a multi-axes manipulator. The authors base their research on simulation obtained

kinematic and dynamic data based on the bond graph technique. The optimization is

performed using a classic recombination GA, which uses the positions of the joints in

the tool space as the tuned parameters which define the trajectory of the robot. In the

same manner as the authors in [22], Shristava and Dalla propose a system for com-

pliance using realistic robot limits, but also demonstrate that the GA can be tuned with

different limits in an automated manner in case the generated path is not viable. The

authors achieve an improvement of 38% compared to direct path planning. Nonoyama

et al. [54] also apply the tuning of trajectories with the goal of increasing the energy

efficiency. The authors demonstrate the use of K-ROSET simulation environment for

the application of GA, as that can significantly lower the optimization time and mea-

surement time in comparison to using an experimental setup. The authors apply PSO

and GA algorithms, with the goal of tuning the parameters of the Proportional - Integral

4
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- Derivative (PID) controller. The simulated movement of the robot arm is verified using

a real robot. The authors show that, for a real robot, the GA algorithm is less com-

putationally expensive and shows better results, improving the energy consumption by

18%, compared to the untuned trajectory. The main limitation of the presented work is

that it is performed for a SCARA robot which is a configuration used significantly less

compared to the articulated IRMs, in addition to tuning PID controller parameters which

may not necessarily be easy to adjust for most robots in comparison to trajectory ad-

justments. While not focused on IRMs, but instead hexapod robots, some conclusions

can be drawn from Luneckas et al. [46], who applied heuristic algorithms to lower the

energy consumption during movement. The authors focus on the application of red fox

algorithm to adjust the gait switching behavior of the hexapod robot. The authors show

that an improvement in energy consumption of up to 21% can be achieved with the ap-

plication of this type of algorithm, compared to other heuristic algorithms. Based on the

demonstrated information, it can be concluded that the application of more advanced

algorithms, compared to the classical GA and PSO algorithms can show improvements

in the optimization performance, and should be tested if possible.

Lu et al. [45] show the application of a memetic algorithm (MA) for the energy optimiza-

tion of an IRM tuned for the application in a collaborative welding process. The authors

applied a MA, which is set to combine two algorithms in two stages – a GA as the

first stage algorithm for wide search of the solutions space and variable neighborhood

search (VNS) to search the immediate neighborhood of the solution found by the GA.

Due to the complex and highly-variable search spaces of the area of application, the

authors propose that searching the immediate area can result in finding a solution with

a lower energy use. It is shown that the application of the second stage can improve

the optimization results by up to 10%. Still, the authors do not test the performance of

different algorithm types for the first and second stage, despite some research demon-

strating that different evolutionary algorithms, such as differential evolution (DE) can

provide significantly better results [8]. The overview of the best achieved results, ex-

pressed as the improvement between optimized and unoptimized paths has been given

5
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in Table 1.1.

Table 1.1: The best results from the reviewed research focused on application of evolutionary computing

algorithms on robot energy efficiency improvement. Improvement between the unoptimized and opti-

mized paths is expressed as percentage and rounded to closest value.

Reference Approach Improvement [%]

Vysocky et al. [73] GA, PSO, Bezier curves 40

Garriz and Domingo [22] Kalman 20

Shrivastava and Dalla [66] GA 38

Nonoyama et al. [54] K-ROSET, GA, PSO 18

Luneckas et al. [46] Red Fox 21

Lu et al. [45] MA – GA+VNS 10

1.1.2 Energy modeling of robotic manipulators

Gadaleta et al. [19] demonstrate a creation of an experimental setup for energy opti-

mization of IRMs. The goal of the paper is to demonstrate the possibility of creating an

experimental dataset, that can be analyzed with the goal of optimizing the energy use.

The authors note the importance of creating a robust framework for energy savings dur-

ing the operation of IRMs. Through the analysis of this dataset, based on experiments

performed in a test cell in which a KUKA KR210 R2700 Prime IRM performed different

operations on various loads, the authors conclude that base level optimizations in oper-

ation, especially in temperature control, can be utilized to achieve large optimizations –

up to 50% of energy can be saved. In addition to that, the authors note that further op-

timizations, such as path planning level optimizations can be used to save even more

energy during the operation of the robot. This paper demonstrates the need for creation

of well-rounded datasets and their analysis to form conclusions as to which variables

have the greatest influence on the energy use. Zhang and Yan [77] demonstrate an

example of a direct applications of artificial neural networks (ANNs) for the purposes

of energy consumption prediction. The authors collect a dataset which uses different
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velocities (5, 10, and 15% of the maximum velocity) and 25 or 50% of maximum ac-

celeration to perform three cycles of operation on the Epson C4 IRM. The prediction is

then performed using the ANN, with velocity and acceleration as inputs. The authors

demonstrate that the R-value of the data can reach 0.9699 using the methodology

on the predicted dataset. The presented work could be significantly improved using

more modern approaches to modeling. Additionally, the lack of additional procedures

such as cross-validation (CV) along with the presented data shapes indicate a possible

overfitting issue. Gao et al. [20] apply a Long-short term memory (LSTM) ANN for the

prediction of a planar parallel manipulator (PPM). Their approach is based on torque

optimization. The dataset consists of the change of total torque of the robotic manipu-

lator in time, as calculated based on the Newton-Euler method for dynamics calculation

of IRMs. The authors achieve the root mean squared error (RMSE) error of 41 · 10−6

and mean absolute percentage error (MAPE) of 2.5%. Lin et al. [38] also apply a type

of LSTM to the problem of predicting the energy consumption of the robot, opting for

a BN (batch-normalized) LSTM. The authors compare the results and the modeling on

64,600 data points of a public dataset collected on the Yaskawa GP7 dataset, achieving

the best RMSE score of 3.67 – a 23% improvement compared to state-of-the-art results

on the dataset. LSTM is applied yet again, as a basis of a custom deep ANN applied by

Jiang et al. [35], on a dataset collected on a KUKA KR60-3 IRM, measuring the energy

use of the robot in time. The authors achieve a MAPE score of 4.21% on the collected

dataset using the described methodology. While the application of LSTMs seems to be

extremelly popular for energy prediction, it has its shortcomings. Jaramillo-Morales et

al. [34] demonstrate the application of a direct numeric model for the prediction of the

power use in a differential drive robot. The authors note a significant benefit of using a

model which can estimate the momentary energy use in comparison to a time-series

model, such as the possibility of using such models in rapidly changing environments

or for optimization purposes. The authors perform the modeling of Nomad Super Scout

II robot, but their results are lower compared to the ML-based approaches, with accu-

racy falling as low as 81.25% along curved trajectories. From the reviewed papers, it

7
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is easy to conclude that an ML-based model, developed for a prediction of momentary

energy use of an industrial manipulator could be applied in much the same way, while

achieving significantly higher scores. As before, the results achieved in the reviewed

research are provided in Table 1.2.

Table 1.2: The best results from reviewed research focused on the energy use modeling of robots. RMSE

– Root Mean Squared Error, MAPE – Mean Absolute Percentile Error.

Reference Approach Score

Zhang et al. [77] ANN 𝑅-score = 0.97

Gao et al. [20] LSTM MAPE = 2.5%

Lin et al. [38] BN-LSTM RMSE = 3.67

Jiang et al. [35] LSTM MAPE = 4.24%

Jaramillo et al. [34] Numeric Accuracy = 82.15%

1.1.3 Synthetic data application in robot modeling using machine learning

Synthetic data can come from two main sources. The first is the use of simulations (also

sometimes referred to as digital twins [72]) to simulate the real process in using the so-

called in-silico process, while the second is using statistical methods for the creation of

data which follows similar trends and statistics as the original sets of data [49]. In this

doctoral thesis, the first type of the data (synthetic data sourced from simulations) will

be referred to as “simulation” data, while the second type (synthetic data created with

a statistical method) will be referred to as “synthetic” data. Application of simulation

data as a data source for ML in robotics is extremely common practice in research –

laboratory setups with IRMs can be expensive, and the IRMs installed in the industrial

environments are commonly reserved for the industrial process, and they might not

be available for data-collection purposes if the measurements cannot be performed

during the operation [16]. Kleeberger et al [36] provide a survey on collection of data

using simulated environments, with the goal of learning-based robotic grasping. The

authors note how the use of simulation data allows for easier tuning and adjustment

8
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of grapsing approaches, allowing for an iterative approach which increases the final

precision of models. Another application is noted by Osinski et al. [56], who discuss

the benefits (safety and precision) of using a simulated environement for the tuning of

autonomous driving robots. Still, as noted by Zhao et al. [78] the models developed

on simulation data must be validated in a real-world environment – either directly or

using the data collected in a real-world environment, as pure simulation data in both

training and validation can lead to exacerbation of errors introduced by the simulation,

and generally have a smaller variation due to ignoring a number of elements of real-

world data such as noisiness. Synthetic data on the other hand has been discussed at

length by a number of researchers. Some of the examples related to electrical energy

consumption modeling include Haghi et al. [25] who utilized synthetic data regression

based on the Gaussian process to determine the energy-load of a wind turbine, with

the authors pointing out how the use of hybrid data allows for a great expansion of

the dataset. Rubio et al. [21] apply synthetic data generation for electrical energy

consumption. This approach allows them to obtain a well performing model despite

that the data they are modeling has different ranges of data. The authors note that

the approach used, based on trace generation, generally performs well but has issues

when the anomalous situations are attempted to be predicted based on the synthetic

data. This is expected behaviour, as the synthetic methods commonly generalize the

data in an attempt to model it. In the area of robotics synthetic data has not been widely

applied and tested for industrial robots, despite showing promise in other areas – such

as a creation of odometrical datasets consisting of inertial data for a mobile robot,

as demonstrated by Schofield et al. [64]. Schoettler et al. [63] apply synthetic data

for meta-reinforcement learning of IRM insertion tasks. This approach allows for the

improvement of precision, through testing in environments that were not available for

testing in a laboratory environment. Despite showing promise in other areas of robotics

and the tasks such as energy consumption models, synthetic data of this type has not

been applied in the modeling of energy efficiency for IRMs. One of the only researches

published regarding the optimization based in part on synthetic data is by Barenji et

9
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al. [7]. The authors in this paper discuss the possibility of using digital twins, or in other

words applying the models developed in a simulated environment with the final goal of

energy use optimization. The authors propose using a simulated environment for the

purpose of both simplifying data collection in realistic setups, as well as expanding the

datasets with more extreme setups. The model is created using SolidWorks computer

aided design (CAD) model, along with the MATLAB software for calculating the energy

use. The authors then apply a genetic algorithm for the tuning process of movement

and manage to lower the energy consumption by a minimum of 4.8%, maximum of

11.0%. When applied to the real-world robot, this translates to the minimum saving

of 3.8% and the maximum of 7.7%, indicating that optimizations performed on the

created digital twin can translate into real-world optimization. The research shows how

the simulated environments can be applied in the field of robotics to obtain valid data

and test the procedures. The question arises if this approach can be repeated using a

less complex system than full digital twin of the robot, or simply by using statistical data

synthetization avoiding the process of simulation completely.

1.1.4 Identification of knowledge gap and setting hypotheses

Observing the EC application there are a few notable gaps in the researched areas.

The main one is that most of the developed methods significantly increase the time of

the trajectory. In an industrial manufacturing environment this is often times unnacept-

able, as even a small increase in the time needed for a single operation can cause

large delays on a daily or monthly basis. The methods that do not increase the time

have a certain optimization restraint, such as only optimizing a part of the trajectory.

When MA is applied to a similar problem, the performance is good – but there are a

lot of unexplored configurations which could serve to improve the energy efficiency of

a trajectory significantly.
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Problem definition

In this a dataset will be collected using three different approaches – synthetized data,

simulation-based data and real-world collected data. Through testing the performance

of models developed in other parts of the presented work, it will be determined which

of these approaches is more viable, and can the collection of data on real IRMs be

replaced with a significantly simpler approaches. By implementing an approach that

requires much shorter stopping of production to obtain measurements, the proposed

solution is more viable for application. In addition to the research in comparing the

datasets, presented research will aim at development of regression-based model for

prediction of electrical energy being used by the operation of IRM at any given mo-

ment. Compared to time-series based approaches, the regression model will have

wider applicability, especially for the problem of optimization. Finally, the viability of

applying MA algorithm to the problem of energy efficiency optimization for the IRM

trajectories will be tested. Different algorithms will be described and tested for both

stages of the algorithm, to conclude which approach provides the best optimization

results. The developed MA will consist of the regression ML-based model used as a

fitness function, making this a novel hybrid approach to the development of MA-based

optimization systems. Based on the above review the goals of the research described

in this doctoral thesis are as follows:

• Develop a methodology for collection and creation of appropriate datasets for

application of modeling the energy optimal path of a six-axis IRM,

• Determine a new model of energy use for a six-axis IRM based on the collected

datasets,

• Develop an algorithm based on memetic principles and the aforementioned en-

ergy use model for determining an optimal path with regard to the energy use.
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Scientific hypotheses

Based on the defined problem and the goals of this doctoral thesis, the following re-

search hypotheses can be defined:

• The ML-based, data-driven, models achieve higher performance and are faster in

determining the energy use of a six-axis IRM compared to classic mathematical

models.

• Synthetic data can be generated models which can have scores as high as the

models trained on real-world data.

• The application of an optimization algorithm based on a memetic principle can

optimize paths better than the algorithms based just on the evolutionary princi-

ples.

The thesis consists of four parts, each aiming to describe the total scientific contri-

bution of this doctoral thesis. In the first part, "Methodology", the focus will be given

on describing the developed method for determining the energy consumption of an

IRM, based on a data-driven method. For comparison, the conventional, analytical,

approach will be described, allowing for better illustration and comparison of strengths

of data-driven approaches. This part will also describe the idea behind the newly de-

veloped optimization algorithm. This, MA-based algorithm will use the aforementioned

data-driven method as the fitness function, with the main goal of lowering energy con-

sumption. "Dataset collection and analysis", will serve to define the third scientific

contribution – methodology for the collection and creation of datasets that can be used

for the development of data-driven methods. In "Results and discussion" the scientific

contributions will be fully realized and presented through the presentation of individ-

ual results, and comparison of tested approaches to determine the final proposal of

the system for energy optimization of six DOF IRMs. "Conclusions" will serve to sum-

marize the presented work and its scientific contributions, along with a discussion of

possible future research directions.
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CHAPTER 2
Methodology

2.1 Mathematical model of industrial robotic manipulator

Energy consumption in robotic systems can often be evaluated using the product of

torque and joint velocity. The torque, 𝑀 (𝑞, ¤𝑞, ¥𝑞), is a function of the joint angle 𝑞, an-

gular velocity ¤𝑞, and angular acceleration ¥𝑞. The relationship between these variables

encapsulates the dynamic and inertial properties of the robotic system, as well as ex-

ternal forces. Energy can then be determined by integrating the product of torque and

angular velocity over time:

𝐸 =

∫
𝑀 (𝑞, ¤𝑞, ¥𝑞) × ¤𝑞 𝑑𝑡. (2.1)

Here, 𝐸 represents the total energy consumed by the robotic joint over the time interval

of interest. The torque 𝑇 accounts for contributions from inertial forces, Coriolis and

centrifugal effects, gravitational forces, and external load torques. These components

are typically modeled using equations derived from the Lagrangian or Newton-Euler

formulations [75]. The term ¤𝑞, representing the angular velocity, is critical because en-

ergy consumption is proportional to the rate at which the joint moves. This implies that

both high torque and high speeds significantly increase energy usage. For practical ap-

plications, understanding this relationship enables the optimization of energy efficiency

in robotic systems, particularly for tasks involving repetitive or high-speed motions [5].

By substituting specific dynamic equations into 𝑀 (𝑞, ¤𝑞, ¥𝑞), the energy model can be tai-

lored to different robotic designs. This flexibility allows researchers to adapt the model

to various use cases.
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For discrete values of 𝑚 and ¤𝑞, the integral form of energy calculation is replaced

by a summation. This is because, in discrete systems, the continuous variables are

sampled at specific time intervals, resulting in a sequence of discrete values. The

energy calculation then becomes:

𝐸 =

𝑁∑︁
𝑖=1

𝑀 (𝑞𝑖, ¤𝑞𝑖, ¥𝑞𝑖) × ¤𝑞𝑖 · Δ𝑡,

where:

• 𝑀 (𝑞𝑖, ¤𝑞𝑖, ¥𝑞𝑖) is the torque at the 𝑖-th time step,

• ¤𝑞𝑖 is the angular velocity at the 𝑖-th time step,

• Δ𝑡 is the time interval between consecutive data points, and

• 𝑁 is the total number of data points.

In this form, the energy computation is practical for numerical implementation in sim-

ulations or real-time control systems where data is discretized. The accuracy of the

calculation depends on the sampling frequency, with smaller Δ𝑡 providing a closer ap-

proximation to the continuous integral.

2.1.1 Torque calculation

Inertia Tensors and Centers of Mass

Both algorithms require the use of three values dependent on the robotic manipulator

itself: the link inertia tensors, link masses, and centers of mass of the links. The inertia

tensor of link 𝑘 is defined based on the mass of link 𝑚𝑘 , the linear velocity of the center

of mass of link 𝑘 relative to the base coordinate system 𝐿0 – 𝑣𝑘 , the angular velocity of

the center of mass of link 𝑘 relative to 𝐿0 – 𝜔𝑘 , and the center of mass of link 𝑘 relative

to 𝐿0. These elements are illustrated in Figure [55] 2.1.
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Figure 2.1: Elements of the inertia tensor (𝐿0 – coordinate system origin (base of the industrial robotic

manipulator), 𝐿𝑘 – coordinate system at the end of link 𝑘 , 𝑐𝑘 – center of mass of link 𝑘 , 𝜔𝑘 – angular

velocity of link 𝑘 , 𝑣𝑘 – linear velocity of link 𝑘) [6].

To define the inertia tensor, it is necessary to define the angular momentum. If 𝑚𝑖

represents the mass of a particle moving with angular velocity 𝜔𝑖 and linear velocity 𝑣𝑖,

the angular momentum is defined as the vector product of the particle’s distance from

the center of mass 𝑟′
𝑖

and its linear momentum 𝑝′
𝑖
, as per [55]:

𝐿𝑖 = 𝑟
′
𝑖 × 𝑝′𝑖 = 𝑟′𝑖 × 𝑚𝑖𝑣′𝑖 = 𝑟′𝑖 × 𝑚𝑖 (𝜔 × 𝑟′𝑖 ). (2.2)

Since a body consists of multiple individual particles, these must be summed. If we as-

sume that the body consists of 𝑛 particles, the total angular momentum can be defined

as [55]:

𝐿 =

𝑛∑︁
𝑖=1

𝐿𝑖 =

𝑛∑︁
𝑖=1

𝑟′𝑖 × 𝑚𝑖 (𝜔 × 𝑟′𝑖 ) =
𝑛∑︁
𝑖=1

𝑚𝑖𝑟
′2
𝑖 𝜔. (2.3)

The parameter
∑𝑛
𝑖=1 𝑚𝑖𝑟

′2
𝑖

defines the body’s moment of inertia 𝐽. Assuming the number

of particles is infinitesimal, the angular momentum can be defined as [55]:

𝐿 =

∫
𝑚

(𝑟′ × 𝑣′)𝑑𝑚. (2.4)

Using the homogeneity rule of vector products, the above expression can be rewritten

as [55]:
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𝐿 =

∫
𝑚

(𝑟′ × 𝑣′)𝑑𝑚 =

∫
𝑚

𝑟′ × (𝜔 × 𝑟′)𝑑𝑚 =

∫
𝑚

[(𝑟′𝑟′)𝜔 − (𝑟′𝜔)𝑟′]𝑑𝑚. (2.5)

If the parameters 𝑟′ and 𝜔 are resolved into components as 𝑟′ = 𝑥′𝑖 + 𝑦′ 𝑗 + 𝑧′𝑘 and

𝜔 = 𝜔𝑥𝑖 +𝜔𝑦 𝑗 +𝜔𝑧𝑘, and these are substituted into the angular momentum expression,

we obtain:

𝐿 =(𝜔𝑥
∫
𝑚

(𝑦′2 + 𝑧′2)𝑑𝑚 − 𝜔𝑦
∫
𝑚

𝑦′𝑥′𝑑𝑚 − 𝜔𝑧
∫
𝑚

𝑧′𝑥′𝑑𝑚)𝑖

+(−𝜔𝑥
∫
𝑚

𝑦′𝑥′𝑑𝑚 + 𝜔𝑦
∫
𝑚

(𝑥′2 + 𝑧′2)𝑑𝑚 − 𝜔𝑧
∫
𝑚

𝑦′𝑧′𝑑𝑚) 𝑗

+(−𝜔𝑥
∫
𝑚

𝑥′𝑧′𝑑𝑚 − 𝜔𝑦
∫
𝑚

𝑦′𝑧′𝑑𝑚 + 𝜔𝑧
∫
𝑚

(𝑥′2 + 𝑦′2)𝑑𝑚)𝑘

(2.6)

This expression can be simplified as:

𝐿 =(𝐼𝑥𝑥𝜔𝑥 − 𝐼𝑥𝑦𝜔𝑦 − 𝐼𝑥𝑧𝜔𝑧)𝑖

+(−𝐼𝑦𝑥𝜔𝑥 + 𝐼𝑦𝑦𝜔𝑦 − 𝐼𝑦𝑧𝜔𝑧) 𝑗

+(−𝐼𝑧𝑥𝜔𝑥 − 𝐼𝑧𝑦𝜔𝑦 + 𝐼𝑧𝑧𝜔𝑧)𝑘,

(2.7)

which can be defined as the product of the inertia tensor matrix 𝐷 and the angular

velocity vector 𝜔 [55]:

𝐿 =


𝐼𝑥𝑥 −𝐼𝑥𝑦 −𝐼𝑥𝑧
−𝐼𝑦𝑥 𝐼𝑦𝑦 −𝐼𝑦𝑧
−𝐼𝑧𝑥 −𝐼𝑧𝑦 𝐼𝑧𝑧



𝜔𝑥

𝜔𝑦

𝜔𝑧


= 𝐷𝜔 (2.8)

Obtaining Values

Since robotic manipulators consist of links with complex three-dimensional shapes and

non-homogeneous mass distribution within each link, calculating the inertia tensors is

complex. To avoid errors and increase the accuracy of the model, the values of inertia

tensors, centers of mass, and link masses were obtained using the 3D STEP model of

the industrial robotic manipulator ABB IRB 120, downloaded from the manufacturer’s

website. The model itself is shown in Figure 2.2.
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Figure 2.2: Robot model representation in the Solidworks software package.

Kinematics Model

To define dynamic models, it is also necessary to define and model the kinematics

model of the industrial robotic manipulator. The kinematics model describes the move-

ment of the robotic manipulator in space. This model defines and allows the trans-

formation from the joint coordinate space to the tool space (i.e., the global coordinate

space). In other words, the kinematics model enables calculating the position of the

robotic manipulator’s end-effector based on the joint angles (forward kinematics) and

calculating the joint angles required to place the end-effector in a desired position (in-

verse kinematics). This model can be defined using the Denavit-Hartenberg method.

The goal of the Denavit-Hartenberg method is to determine four kinematic parameters

used to construct transformation matrices. These parameters for link 𝑘 of the robotic

manipulator are defined as follows [39]:

• 𝜃𝑘 – joint angle, describing the rotation around the 𝑧𝑘−1 axis to align the 𝑥𝑘−1 axis

parallel to the 𝑥𝑘 axis,

• 𝑑𝑘 – joint distance, or the translation along the 𝑧𝑘−1 axis required to intersect the

𝑥𝑘−1 and 𝑥𝑘 axes,

• 𝑎𝑘 – link length, defined as the translation along the 𝑥𝑘 axis needed to intersect

the 𝑧𝑘 axes (this parameter is sometimes denoted as 𝑟𝑘 ), and
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• 𝛼𝑘 – link twist, given as the rotation around the 𝑥𝑘 axis to align the 𝑧𝑘−1 axis parallel

to the 𝑧𝑘 axis.

Figure 2.3 illustrates the parameters and associated axes described above.

Figure 2.3: Illustration of Denavit-Hartenberg kinematic parameters [6].

The obtained parameters are placed into a transformation matrix defined as [75]:

𝑇 𝑒𝑛𝑑𝑏𝑎𝑠𝑒 =


𝑅(𝑞) 𝑝(𝑞)

𝑣𝑇1 𝜎

 , (2.9)

where:

• 𝑅(𝑞) = [𝑟1 𝑟2 𝑟3] is a 3 × 3 orientation matrix of the tool, with vectors:

– 𝑟1 – normal vector,

– 𝑟2 – sliding/moving vector, and

– 𝑟3 – approaching vector,

• 𝑝(𝑞) is the position of the robotic manipulator’s end-effector (or tool) of size 3× 1,

• 𝑣 is the perspective vector, usually [0 0 0], and
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• 𝜎 is the scaling coefficient, usually set to 1.

The vectors 𝑟1, 𝑟2, and 𝑟3 are also shown in Figure 2.4.

Figure 2.4: Representation of the normal vector (𝑟1), sliding/moving vector (𝑟2), and approaching vector

(𝑟3).

The transformation matrix is defined between each two links 𝑘 and 𝑘 − 1, based on the

parameters:

𝑇 𝑘𝑘−1 =



𝑐𝑜𝑠(𝜃𝑘 ) −𝑐𝑜𝑠(𝛼𝑘 )𝑠𝑖𝑛(𝜃𝑘 ) 𝑠𝑖𝑛(𝛼𝑘 )𝑠𝑖𝑛(𝜃𝑘 ) 𝑎𝑘𝑐𝑜𝑠(𝜃𝑘 )

𝑠𝑖𝑛(𝜃𝑘 ) 𝑐𝑜𝑠(𝛼𝑘 )𝑐𝑜𝑠(𝜃𝑘 ) −𝑠𝑖𝑛(𝛼𝑘 )𝑐𝑜𝑠(𝜃𝑘 ) 𝑎𝑘 𝑠𝑖𝑛(𝜃𝑘 )

0 𝑠𝑖𝑛(𝛼𝑘 ) 𝑐𝑜𝑠(𝛼𝑘 ) 𝑑𝑘

0 0 0 1


, (2.10)

and to obtain the total transformation matrix, the product of all transformation matrices

from joint 𝑘 = 1 to the total number of joints is calculated [75]:

𝑇 𝑒𝑛𝑑𝑏𝑎𝑠𝑒 =

𝑛∏
𝑘=1

𝑇 𝑘𝑘−1 = 𝑇1
0 · 𝑇

2
1 · · ·𝑇

𝑛−1
𝑛−2 · 𝑇

𝑛
𝑛−1. (2.11)

Parameters are determined using an iterative two-part process. Before starting, each

joint is numbered from 1 to 𝑛, from the manipulator base to the end-effector. At the

base, a coordinate system 𝐿0 is placed, and another at the end-effector, 𝐿𝑛, aligning

its axes according to the approach, sliding, and normal vectors. The parameters are

then determined iteratively, as described, ensuring precise alignment for all kinematic

parameters.

After all joints have been assigned coordinate systems, the procedure returns to the

first joint, and an additional point necessary for determining the parameter 𝑏𝑘 is placed
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at the intersection of the axes 𝑥𝑘 and 𝑧𝑘−1. If the axes 𝑥𝑘 and 𝑧𝑘−1 do not intersect, the

point 𝑏𝑘 is placed at the intersection of the axis 𝑥𝑘 and the common perpendicular to

the axes 𝑥𝑘 and 𝑧𝑘−1. Once the points 𝑏𝑘 are determined for each link, the Denavit-

Hartenberg parameters can be determined [50]:

• 𝜃𝑘 is the rotation angle around the axis 𝑧𝑘−1, from the axis 𝑥𝑘−1 to the axis 𝑥𝑘 ,

• 𝑑𝑘 is the distance from the origin of the coordinate system 𝐿𝑘−1 to the point 𝑏𝑘 ,

along the axis 𝑧𝑘−1,

• 𝑎𝑘 is the distance from the point 𝑏𝑘 to the origin of 𝐿𝑘 , along the axis 𝑥𝑘 ,

• 𝛼𝑘 is the rotation angle around the axis 𝑥𝑘 , from the axis 𝑧𝑘−1 to the axis 𝑧𝑘 .

It is important to note that the values of 𝑑𝑘 , 𝑎𝑘 , and 𝛼𝑘 are constants for most configu-

rations of industrial robotic manipulators, while 𝑞𝑘 is variable. Once these parameters

are determined for each joint, the procedure is complete. An example of the Denavit-

Hartenberg method applied to the ABB IRB 120 robotic manipulator is presented be-

low. A simplified robot scheme is shown in Figure 2.5, illustrating the placement of the

coordinate systems in joints of the IRM, with the determined parameters provided in

Table 2.1.

Figure 2.5: Simplified kinematic diagram of the industrial robotic manipulator.

20



ENERGY EFFICIENCY IMPROVEMENT OF INDUSTRIAL
ROBOTIC MANIPULATORS THROUGH THE APPLICATION
OF MACHINE LEARNING AND MEMETIC ALGORITHMS

CHAPTER 2. METHODOLOGY

2.1. MATHEMATICAL MODEL OF INDUSTRIAL ROBOTIC MANIPULATOR

Table 2.1: Calculated Denavit-Hartenberg parameters for the ABB IRB 120 robotic manipulator, with

link lengths obtained from [40, 42].

𝜃 [rad] d [mm] a [mm] 𝛼 [rad]

𝜃1 = 𝑞1 𝑑1 = 290 𝑎1 = 0 𝛼1 = − 𝜋2
𝜃2 = 𝑞2 𝑑2 = 0 𝑎2 = 270 𝛼2 = 0

𝜃3 = 𝑞3 𝑑3 = 0 𝑎3 = 70 𝛼3 = − 𝜋2
𝜃4 = 𝑞4 𝑑4 = 302 𝑎4 = 0 𝛼4 = 𝜋

2

𝜃5 = 𝑞5 𝑑5 = 0 𝑎5 = 0 𝛼5 = − 𝜋2
𝜃6 = 𝑞6 𝑑6 = 72 𝑎6 = 0 𝛼6 = 0

Lagrange-Eulerov dynamics model for serial robotic manipulators

The Lagrange-Euler dynamic model of an industrial robotic manipulator is based on

the Lagrange function 𝐿, which is defined as [18]:

𝐿 (𝑞, ¤𝑞) = 𝑇 (𝑞, ¤𝑞) −𝑈 (𝑞). (2.12)

In other words, the model consists of the energy generated during motion (kinetic en-

ergy) 𝑇 and potential energy 𝑈, which can be expressed in expanded form as [18]:

𝐿 (𝑞, ¤𝑞) = 𝑇 (𝑞, ¤𝑞) −𝑈 (𝑞) =
∑𝑛
𝑘=1

∑𝑛
𝑗=1 [𝐷𝑘 𝑗 (𝑞) ¤𝑞𝑘 ¤𝑞 𝑗 ]

2
− ©­«−

𝑛∑︁
𝑘=1

𝑛∑︁
𝑗=1
𝑔𝑘𝑚 𝑗𝑐

𝑘
𝑗 (𝑞)

ª®¬ . (2.13)

In the above equation, 𝐷𝑘 𝑗 (𝑞) defines the link inertia tensor between joints 𝑖 and 𝑗 as

a function of the joint position vector 𝑞. The potential energy consists of the product of

gravitational acceleration 𝑔, link mass 𝑚, and the center of mass of individual links 𝑐

relative to joint positions given in 𝑞. The Lagrange-Euler model, along with the elements

described above, is then defined as [18]:

𝑛∑︁
𝑗=1
[𝐷𝑖 𝑗 (𝑞)𝑞 𝑗 ] +

𝑛∑︁
𝑘=1

∑︁
𝑗=1
𝐶𝑖𝑘 𝑗 (𝑞)𝑞𝑘𝑞 𝑗 + ℎ𝑖 (𝑞) + 𝑏𝑖 (𝑞) = 𝜏𝑖, 𝑖 ≤ 𝑖 ≤ 𝑛. (2.14)
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In the above definition, the term
∑𝑛
𝑗=1 [𝐷𝑖 𝑗 (𝑞)𝑞 𝑗 ] defines inertial forces and torques,

while the term
∑
𝑗=1𝐶

𝑖
𝑘 𝑗
(𝑞)𝑞𝑘𝑞 𝑗 defines Coriolis forces (𝑘 ≠ 𝑗) or centrifugal forces

(𝑘 = 𝑗). The terms ℎ𝑖 (𝑞) and 𝑏𝑖 (𝑞) define the influence of gravity on the manipulator

and friction within the manipulator’s joints, respectively. The resultant value 𝜏𝑖 defines

the torque in the actuator joint, where 𝑖 represents the manipulator joint, which ranges

from 1 to the total number of manipulator joints 𝑛.

The process of calculating the Lagrange-Euler model consists of three parts, two of

which are iterative.

In the first part, which can be defined as the initial setup, the base transformation matrix

𝑇0
0 = 𝐼, the iterator 𝑖 = 1, and the tensor 𝐷 (𝑞) = 0 are set. Then, for each link of the

robotic manipulator 𝑖, the coordinate system 𝐿𝑖, the center of mass relative to the link

Δ𝑐𝑖, and the link inertia tensor 𝐷′
𝑖

are defined. Once all these values are determined,

further calculation can begin by entering the first iterative part of the Lagrange-Euler

process. This part serves to define the transformation of mass property coordinates

based on the kinematic model of the industrial robotic manipulator [75].

The first step is to calculate the joint transformation vector 𝑧 as:

𝑧𝑖−1(𝑞) = 𝑅𝑖−1
0 (𝑞) × 𝑖

3. (2.15)

Additionally, the matrix of composite homogeneous transformation for a given joint is

calculated as the product of individual transformation matrices up to the current joint:

𝑇 𝑖0(𝑞) = 𝑇
𝑖−1
0 (𝑞)𝑇

𝑖
𝑖−1(𝑞), (2.16)

the coordinate of the center of mass of the current link relative to the global coordi-

nate system (assuming the manipulator base is located at the origin of that coordinate

system):

𝑐𝑖 (𝑞) = 𝐻1𝑇
𝑖
0(𝑞)Δ𝑐

𝑖 . (2.17)

and the link inertia tensor relative to the base coordinate system:
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𝐷𝑖 (𝑞) = 𝑅𝑖0(𝑞)𝐷
′
𝑖 [𝑅𝑖0(𝑞)]

𝑇 . (2.18)

At the end of this section, the Jacobian matrix is defined. The Jacobian matrix al-

lows for the connection between infinitesimal joint displacements and infinitesimal tool

displacements (both angular and linear), as:

𝐽𝑘 (𝑞) =

𝐴𝑘 (𝑞)

𝐵𝑘 (𝑞)

 =


𝜕𝑐𝑘 (𝑞)
𝜕𝑞1

· · · 𝜕𝑐𝑘 (𝑞)
𝜕𝑞𝑘

0 · · · 0

𝜉1𝑧
0(𝑞) 0 𝜉𝑘 𝑧

𝑘−1(𝑞) 0 · · · 0

 , (2.19)

where 𝜉 represents the joint type – 𝜉 = 1 for a rotary joint, and 𝜉 = 0 for a linear joint.

Since the modeled robot, like most modern industrial robotic manipulators, uses only

rotary joints, this value will mostly be set to 1. In the final step of the first part, the

manipulator inertia tensor up to the current joint 𝐷 (𝑞) is calculated:

𝐷 (𝑞) =
𝑛∑︁
𝑘=1
[𝐴𝑘 (𝑞)]𝑇𝑚𝑘𝐴

𝑘 (𝑞) + [𝐵𝑘 (𝑞)]𝑇𝐷𝑘 (𝑞)𝐵𝑘 (𝑞). (2.20)

After calculating this element, the counter 𝑖 is incremented by one. If the counter is less

than the number of robotic manipulator joints 𝑛, the process returns to the beginning

of this section, and the calculation is repeated for the remaining joints. If the counter

equals 𝑛, the procedure proceeds to the second iterative process, resetting the counter

value 𝑖 to 1.

In the second iterative part, the first step is to calculate the velocity coupling matrix for

the 𝑖-th joint:

𝐶𝑖𝑘 𝑗 =
𝜕𝐷𝑖 𝑗 (𝑞)
𝜕𝑞𝑘

− 1
2
𝜕𝐷𝑘 𝑗 (𝑞)
𝜕𝑞𝑖

, (2.21)

along with the gravity vector:

ℎ𝑖 (𝑞) =
3∑︁
𝑘=1

𝑛∑︁
𝑗=1
[𝑔𝑘𝑚 𝑗 𝐴

𝑗

𝑘𝑖
(𝑞)] . (2.22)

The final element of the total torque is the friction within the joint. The model used for

modeling friction in a robot is the Elasto-Plastic (EP) friction model, which was selected

23



ENERGY EFFICIENCY IMPROVEMENT OF INDUSTRIAL
ROBOTIC MANIPULATORS THROUGH THE APPLICATION
OF MACHINE LEARNING AND MEMETIC ALGORITHMS

CHAPTER 2. METHODOLOGY

2.1. MATHEMATICAL MODEL OF INDUSTRIAL ROBOTIC MANIPULATOR

due to previous research into the application of friction models on IRMs, as it has

shown to be the best performing amongst the other tested models [9]. The EP friction

model is based on the so-called bristle model, which simulates microscopic contacts

between two surfaces, where each contact is considered a flexible interaction between

two elements. Assuming that each of these elements is elastic, each element acts like

a spring, resisting the relative displacement of the surfaces. The EP model separates

friction into two components: one where the aforementioned springs behave like elastic

bodies and another where they behave like plastic bodies. The model incorporates two

coefficients: 𝜇𝑠, the static friction coefficient, and 𝜇𝑘 , the kinetic friction coefficient.

Depending on the velocity 𝑣, the model is defined as [32]:

𝐹𝐸𝑃 =


0, 𝑣 → 0,

−𝜇𝑠 · 𝑣/|𝑣 |, 𝑣 < 𝜇𝑠,

−𝜇𝑘 · sgn(𝑣), 𝑣 > 𝜇𝑠 .

For simpler implementation, especially since we want to obtain a single equation we

can export as a model for later use in optimization, the Elasto-Plastic model can also

be expressed in a single equation as [32]:

𝐹𝐸𝑃 = −𝜇𝑘 · sgn(𝑣) ·
(
1 − 𝑒

−|𝑣 |−𝜇𝑠

𝜇𝑘

)
.

The parameters of the model determining based on the existing research in the area,

and the manufacturer provided approximations at 𝜇𝑘 = 0.504 and 𝜇𝑠 = 0.302 [40, 42]

This allows the Lagrange-Euler equation to be defined as [75, 18]:

𝜏𝑖 =

𝑛∑︁
𝑗=1
[𝐷𝑖 𝑗 (𝑞) ¥𝑞 𝑗 ] +

3∑︁
𝑘=1

𝑛∑︁
𝑗=1
[𝐶𝑖𝑘 𝑗 (𝑞) ¤𝑞𝑘 ¤𝑞 𝑗 ] + ℎ𝑖 (𝑞) + 𝑏𝑖 (𝑞, ¤𝑞). (2.23)

In the above equation, the term 𝑏𝑖 (𝑞, ¤𝑞) represents friction calculated according to the

friction model. The specific friction models used in this work are defined later and are

incorporated into the calculations. Once this value is computed, the process proceeds

to the calculation for the next joint (𝑖 ← 𝑖 + 1). If the values have been calculated for all

joints, the computation is complete.
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Industrial robot markup language for notation of robot properties

While the ML algorithms that will be described below can easily be modified for different

IRMs through substitution of training data and re-training of models, the described LE

algorithm requires adjustment of many individual variables to allow for the tuning. The

algorithm, as realized into Python is given in Appendix B. It can be noted that the code

for loading parameters for calculation reads those from a file, robot.irml. This is a

custom XML-based format developed for this application, with the goal of storing all of

the information describing the robot and its kinematic and dynamic properties in one

document.

The document is structured as a tree split into two parts. First part contains direct

information about the robot - such as robot name, manufacturer, reach, capacity and

other elements. Each of these metrics are given between descriptive tags, as shown

in the Listing 2.1.

1 <robot>

2 <!--General information-->

3 <name>IRB 120</name>

4 <manufacturer>ABB</manufacturer>

5 <carrying -capacity>3.0</carrying -capacity>

6 <reach>0.6</reach>

7 <configuration>Articulated</configuration>

8 <ir-type>Serial</ir-type>

9 <manipulator -mass>25</manipulator -mass>

10 ...

11 </robot>

Listing 2.1: Base information about the robot as written in IRML.

Beyond the general information about the robot, individual information about each joint

of the robotic manipulator is given. The document can handle any number of joints,

and it contains the following information: joint ID – which is a unique ID, identifying

joint, usually a number of the joint when counted from the base, joint type – ’T’, ’R’,

or ’L’ indicating a torsion joint (twisting motion around an axis), rotational joint (angular
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motion around an axis), or linear joint (straight line movement along an axis), respec-

tively; xi (𝜉) – a numerical value indicating whether the joint is revolute (in which case

the value is 1) or translational (in which case the value is 0). This is then followed

by a subset of kinematics values, which contain the four kinematic parameters men-

tioned previously when discussing the D-H procedure – joint angle q, distances 𝑑 and

𝑎 (here expressed as "r" instead of "a" to avoid confusion with the following variable),

and the angle 𝛼 – expressed as ’a’ within the IRML. This values are a minimal set of

values which allow for the recalculation of kinematic transformation matrices. Finally,

the properties related to dynamics of the link are given, including the mass of the link,

center of mass (given as 𝑥, 𝑦 and 𝑧), and tensor of inertia (as used in equation 2.18,

with each individual element given separately. The example of this for the first joint of

ABB IRB 120 is given in Listing 2.2

1 <joint ID="1">

2 <type>T</type>

3 <xi>1</xi>

4 <kinematics>

5 <q>q1</q>

6 <d>0.29</d>

7 <r>0</r>

8 <a>-pi/2</a>

9 </kinematics>

10 <dynamics>

11 <link-mass>3.06700626</link-mass>

12 <center>

13 <x>0.00009765</x>

14 <y>0.23841163</y>

15 <z>0.00011925</z>

16 </center>

17 <inertia>

18 <xx>-0.00615871</xx>

19 <xy>0.99996896</xy>

20 <xz>-0.00491487</xz>

21 <yx>-0.99767761</yx>
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22 <yy>-0.00647786</yy>

23 <yz>-0.06780436</yz>

24 <zx>-0.06783409</zx>

25 <zy>0.00448587</zy>

26 <zz>0.99768653</zz>

27 </inertia>

28 </dynamics>

29 </joint>

Listing 2.2: Information about the first joint of the ABB IRB 120 as written in IRML.

The full example of the IRML document for the ABB IRB 120 is given in Appendix C.

IRML documents such as this can be created for different robots and used as an input

for the calculation of dynamic properties, or other similar calculations. The format of

the IRML document is such that it can be easily modified and expanded to fit different

types of industrial robots, simplifying the usage and application of previously described

methodology.

2.1.2 Speed interpolation

As sown in the previous chapter, the elements necessary to determine the torque of

individual robot joints are the intrinsic values connected to the IRM such as link di-

mensions, mass, centres of mass, and tensors of inertia and the position, speed and

accelerations. While the first of these are defined by the selected robot, the positions,

speeds and accelerations need to be determined through a path planning technique.

While there are multiple techniques that can be used to determine the movement be-

tween two points, the selected technique needs to be capable of satisfying the following

conditions:

1. the internal parameters need to be easily adjustable, to allow for easier tuning of

parameters using optimization algorithms,

2. the complexity of the techniques needs to be low, avoiding iterative parts, in order

to not increase the algorithm complexity, as new paths will need to be calculated
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within it multiple times,

3. determining the speed and acceleration from the technique needs to be simple,

avoiding complex calculations to determine it from positions, and

4. it has to allow the change of the path without lengthening the time of the trajectory.

In other words, the selected interpolation technique needs to allow for easy tuning via

numeric parameters and easy calculation of derivatives. Out of the common path plan-

ning techniques for industrial robots [70], the method that satisfies this is polynomial

interpolation [23].

The polynomial interpolation works by calculating the positions between them using a

polynomial of a general shape:

𝑓 (𝑥) = 𝑎1 · 𝑥𝑛 + 𝑎2 · 𝑥𝑛−1 + · · · + 𝑎𝑚 · 𝑥0, (2.24)

where the coefficients 𝑎𝑖, 𝑖 ∈ [1, 𝑚] are the adjustable parameters that will dictate the

shape of the interpolated path. In this instance, the selected order of the polynomial

for interpolating the path is five, resulting in the equation for joint position (in the joint

space, expressed in radians):

𝑞 = 𝑎1 · 𝑡5 + 𝑎2 · 𝑡4 + 𝑎3 · 𝑡3 + 𝑎4 · 𝑡2 + 𝑎5 · 𝑡1 + 𝑎6 · 𝑡0, (2.25)

where 𝑡 represents the time the movement is being performed in. In the fifth-order

polynomial, each coefficient plays a distinct role in shaping the behavior of the model.

The leading coefficient 𝑎1 determines the end behavior of the polynomial as 𝑡 → ±∞,

with its sign dictating the direction of growth and its magnitude influencing the steep-

ness. The coefficient 𝑎2 affects the overall curvature of the polynomial, contributing to

bending patterns and influencing inflection points. The coefficient 𝑎3 introduces asym-

metry, affecting the skewness and balance between rising and falling sections. The

quadratic term 𝑎4 adds curvature that impacts the spread and steepness near the cen-

tral regions, contributing to the formation of local minima and maxima. The linear term

𝑎5 governs the general slope or tilt of the curve, while the constant term 𝑎6 shifts the
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graph vertically and defines the 𝑦-intercept at 𝑓 (0). Together, these coefficients deter-

mine the polynomial’s roots, turning points, inflection points, and overall shape, with

higher-order terms dominating the behavior at large |𝑡 | and lower-order terms refining

the central and local features. The main benefit of determining path using polynomial

interpolation, is that the speed can be expressed as a derivation of the equation 2.25:

¤𝑞 = 5𝑎1 · 𝑡4 + 4𝑎2 · 𝑡3 + 3𝑎3 · 𝑡2 + 2𝑎4 · 𝑡 + 𝑎5, (2.26)

,

and the acceleration can be expressed as the second derivation:

¥𝑞 = 20𝑎1 · 𝑡3 + 12𝑎2 · 𝑡2 + 6𝑎3 · 𝑡 + 2𝑎4. (2.27)

This allows for a simple calculation of the position, speed and acceleration during the

iterative process of optimization in which this calculation will be used. As mentioned the

tuning of the paths can be performed by adjusting the values. An example of different

paths obtainable with interpolation is given in Figure 2.6. It can be seen that a number

of different paths can be generated, with different speed and acceleration profiles.

Obviously, each of these paths would have a different energy use. Still, manually

determining the path would require adjusting of a lot of values. If we assume that each

of the parameters can range from -10 to 10, and this range is discrete with a step of 0.1,

the total number of solutions is approximately 6.4 × 1013 for six separate paths (since

we are discussing a path of a six-joint IRM). This shows that a need may arise for a

more advanced selection algorithm, which will be described in the following sections.
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Figure 2.6: A comparison of interpolated paths, speeds and accelerations for different values of polyno-

mial parameters.
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2.2 Machine learning approach

Machine learning is one of the approaches used in modeling complex systems. This

approach is data-driven. This means that the developed model is directly based on

the data that describes the phenomena being modeled. Compared to the classical

approach of developing mathematical models, ML algorithms have a simpler applica-

tion with less room for error, they are adjusted to data, and the solutions may be less

computationally expensive when compared to the conventional approach of calculating

energy – depending on the approach, the ML-based model may use less memory and

computational resources.

In general, the approach of ML algorithms is based on creating a model with a set

of internal parameters. How these internal parameters are expressed varies on the

particular model, and the descriptions for individual models used in this thesis are

given going forward. The goal of ML is to adjust these model parameters, with the goal

of achieving the lowest possible error [26]. For a set of data, where each data point

represents a single data vector (e.g. in tabular data, as the one used in this thesis,

a single data vector equals a row of data), the ML algorithm will calculate a predicted

value. Then, the error, commonly referred to as a loss function, will be calculated as

the difference between the predicted value and the expected value – the output which

corresponds to the input vector. This process is illustrated in Figure 2.7. In the figure,

𝑦 is the output representing the output associated with the data point 𝑋𝑖,: – a single

row of data in the dataset 𝑋. When this data point is used as an input to the model

𝑀, the model will generate an output 𝑦̂ based on its current parameters 𝑤. These two

values are used to calculate the error 𝜖 , also sometimes referred to as the model loss

L. Based on the type of the used model and/or optimization, this value is then used

to adjust the parameters of the model. This process is iterative, and is repeated for all

data points in the dataset, multiple times. The entire process of parameter adjustment

is commonly referred to as the training process [33].
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𝑦

𝑀 (𝐻, 𝑤)
𝑦̂

Figure 2.7: The illustration of the basic ML training process on a point of data. 𝑥 – the input data point,

𝑦 – the real output value associated with the data point 𝑋𝑖,:, from the dataset, 𝑦̂ – the value predicted by

model 𝑀 – the model, defined by the parameter sets 𝐻 and 𝑤.

In addition to the parameters of the model which get adjusted during the training pro-

cess, each ML model also has an additional, separate, set of parameters that define

its general characteristics (e.g. the number of adjustable parameters) and behavior

during the training process. To differentiate between the two sets of the parameters,

these additional parameters are referred to as hyperparameters [1]. These hyperpa-

rameters have a high influence on the final performance of the model – for example,

defining a model that is too small (low number of parameters) can result in a model

that is not complex enough to describe the information contained within the data. The

proper selection of hyperparameter values is a key part of ML modeling. While some

general rules exist, it is hard to pick the correct value of hyperparameters. For this

reason, many hyperparameter selection techniques exist. The one selected to use in

this thesis is the grid search algorithm. This algorithm works by taking a discrete set

of possible values for each hyperparameter that is being adjusted, as a set of lists of

possible values 𝐻 = [ℎ1, ℎ2, · · · , ℎ𝑛]. Then, an 𝑛-dimensional grid is constructed, and

the ML algorithm is trained for each intersection. In simpler terms, training is repeated

for each possible combination of hyperparameters [1]. The total number of hyperpa-

rameter combinations, or the number of models 𝑁 that will be trained, is calculated

as:

𝑁 = Π𝑛
𝑖=1 |ℎ𝑖 |. (2.28)

32



ENERGY EFFICIENCY IMPROVEMENT OF INDUSTRIAL
ROBOTIC MANIPULATORS THROUGH THE APPLICATION
OF MACHINE LEARNING AND MEMETIC ALGORITHMS

CHAPTER 2. METHODOLOGY

2.2. MACHINE LEARNING APPROACH

The model trained for each hyperparameter combination will be evaluated and their

performance noted, together with the hyperparameter set. The possible values of hy-

perparameters that were adjusted in the presented study will be given in in the following

sections that describe the individual algorithms used.

Model evaluation is commonly done on separate data than the one that was used for

training. Detailed information on the data used for training models in this thesis is given

in Chapter 3. Basically, it needs to be understood that the data is split in the part used

for model training – the training set, and the data used for evaluating the model – the

validation set. The validation set consists of the vectors 𝑋𝑉 = [𝑋1,:, 𝑋2,:, · · · , 𝑋𝑛,:], and

the corresponding pairs of output values 𝑌𝑉 = [𝑦1, 𝑦2, · · · , 𝑦𝑛]. After the model that

was trained on training data set 𝑋𝑇𝑅, 𝑌𝑇𝑅 is used on the validation data, generating the

set of output values 𝑌𝑉 = [𝑦1, 𝑦2, · · · , 𝑦𝑛]. The model performance can be evaluated by

comparing the values of the datasets 𝑌 and 𝑌 . To assist in determining the performance

of the models, certain metrics may be used to quantify the performance, with the two

used in this thesis being the coefficient of determination 𝑅2 and the mean absolute

error 𝑀𝐴𝐸 .

The coefficient of determination – 𝑅2, is a statistical measure that indicates the pro-

portion of variance in the 𝑌 dataset that is predicted within the model output set 𝑌 . It

provides a measure of how well the observed outcomes are replicated by the model,

based on the proportion of total variation explained by the regression model. It can be

expressed as the complement of the ratio between the residual sum of squares (un-

explained variance) 𝑆𝑆𝑟𝑒𝑠, and the total sum of squares (total variance in data) 𝑆𝑆𝑡𝑜𝑡 ,

defined as [52]:

𝑅2 = 1 − 𝑆𝑆𝑟𝑒𝑠
𝑆𝑆𝑡𝑜𝑡

= 1 −
Σ𝑛
𝑖=1(𝑦𝑖 − 𝑦𝑖)

2

Σ𝑛
𝑖=1(𝑦𝑖 − 𝑌 )2

, (2.29)

with 𝑌 being the mean of the target values contained in the dataset. 𝑅2 ranges between

0 and 1, where the value closer to 1 indicates a better fit of the model (such value would

indicate that all of the variance in target data has been contained in the predicted data),

while a value closer to zero indicates a poor fit.
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The other mentioned metric, 𝑀𝐴𝐸 , defines the error as the mean absolute difference

between the elements of actual values, and predicted values. This metric is useful

because it directly illustrates the mean error, in terms of the physical quantity being

modeled. According to [30], it is defined as:

𝑀𝐴𝐸 =
Σ𝑛
𝑖=1 |𝑦𝑖 − 𝑦𝑖 |

𝑛
, (2.30)

or in words – the sum of absolute error values divided by the number of elements in

the dataset. The value of 𝑀𝐴𝐸 is defined between 0 and ∞, with the values closer to

zero indicating a better model.

A possible issue with evaluating data models is accidentally splitting the dataset in

such a way that the validation set happens to score well despite actual performance

being worse, causing an overestimation of its performance. There are multiple ways

to avoid this issue that have been implemented. First, the data is shuffled to avoid

testing on similar data. The second is the application of a cross-validation procedure.

In the cross-validation procedure the dataset is split into 𝑘 equal parts. The selection

of data for each of these parts is done uniformly randomly – with each data point in the

original dataset being equally likely to be placed into one of the five new sets. Now,

with the dataset split, we can apply the cross-validation procedure. In this approach the

train-test set is split in such a way that it is constructed of four dataset splits – 80% of

data. In the first step, this will be the first four data splits. The remaining, fifth, data split

(20%) will be used as the validation score. After the training is completed on this data

configuration, the training is repeated, except this time, the validation set is changed to

another part of the dataset, while the training set is made by combining the remaining

four data splits. This process is repeated again, until all 𝑘 dataset splits have been

used as a validation set. This process is illustrated in Figure 2.8, where the dataset

(illustrated with a blue square), is split into five parts. Then, the process is shown to

repeat five times, with a different data split used for validation being shown in red, while

the remaining dataset parts in the data fold, given in green, are combined into the set

used for model training.
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Figure 2.8: An illustration of a cross-validation process, using dataset split into five folds. The dataset

parts used for training in each of the steps are indicated with green color, while the dataset parts used for

validation are indicated with a red color.

Final thing to note before moving onto the algorithms used for modeling is the use of

scaling on the input data. Standard scaling is a fundamental preprocessing step in

ML that ensures features have comparable magnitudes, preventing any single feature

from disproportionately influencing a model due to differences in scale. This is particu-

larly important in algorithms that rely on distance metrics, such as k-nearest neighbors

and support vector machines, where large-magnitude features can dominate smaller

ones, leading to biased model behavior [3]. Similarly, gradient-based optimization tech-

niques, including those used in logistic regression and neural networks, benefit from

standard scaling, as it facilitates faster convergence by reducing the likelihood of fea-

tures with different scales causing erratic gradient updates. Without proper scaling,

optimization algorithms may struggle to reach an optimal solution efficiently, especially

when features exhibit widely varying ranges.

Mathematically, standard scaling transforms a given feature 𝑋:, 𝑗 by subtracting its mean

𝜇 𝑗 and dividing by its standard deviation 𝜎𝑗 , as expressed by:
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𝑋′:, 𝑗 =
𝑋:, 𝑗 − 𝜇 𝑗
𝜎𝑗

.

This transformation results in features with zero mean and unit variance, where the

mean of the transformed feature satisfies 1
𝑁

∑𝑁
𝑖=1 𝑋

′
𝑖, 𝑗

= 0 and the variance satisfies
1
𝑁

∑𝑁
𝑖=1(𝑋′𝑖, 𝑗 − 0)2 = 1 [3]. By centering the data at zero and normalizing its spread,

standard scaling enhances numerical stability, reducing the risk of numerical overflow

in computations involving exponentiation or high-dimensional matrices. Additionally, it

aligns features with the assumptions of many ML algorithms, such as principal com-

ponent analysis, which assumes that data is standardized to avoid features with larger

variances dominating the principal components.

In the contiuation of this chapter the details of algorithms that were used to create

regression models. For each algorithm, the description of how the algorithm works will

be given, followed with the hyperparameters used in the grid search process.

2.2.1 Multilayer perceptron algorithm

A multilayer perceptron (MLP) is a type of feed-forward ANN characterized by its lay-

ered architecture, consisting of an input layer, one or more hidden layers, and an output

layer. Each layer in an MLP is fully connected to the next, forming a dense network of

weighted connections. The ability of MLPs to model complex, non-linear relationships

between input and output data stems from the use of non-linear activation functions

in the nodes of hidden layers. These activation functions introduce non-linearity into

the model, enabling it to capture intricate patterns and dependencies in data [76]. The

structure and adaptability of MLPs make them widely applicable in supervised learning

tasks, such as classification and regression.

The function of an MLP can be expressed mathematically. For a given neuron 𝑗 in layer

𝑙, its output 𝑎 (𝑙)
𝑗

is computed as:

𝑎
(𝑙)
𝑗

= 𝜙

(
𝑛∑︁
𝑖=1

𝑤
(𝑙)
𝑖 𝑗
𝑎
(𝑙−1)
𝑖
+ 𝑏 (𝑙)

𝑗

)
, (2.31)
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where 𝑤 (𝑙)
𝑖 𝑗

is the weight connecting neuron 𝑖 in layer 𝑙 − 1 to neuron 𝑗 in layer 𝑙, 𝑏 (𝑙)
𝑗

is

the bias term for neuron 𝑗 , 𝑎 (𝑙−1)
𝑖

is the output of neuron 𝑖 in the previous layer, and 𝜙

is the activation function. Typical choices for 𝜙 include the rectified linear unit (ReLU),

sigmoid, and hyperbolic tangent (tanh) functions, each offering different benefits de-

pending on the application [53].

The training of an MLP involves adjusting its weights and biases to minimize the dif-

ference between its predictions and the actual target values, a process guided by a

loss function. Common loss functions include mean squared error (MSE) for regres-

sion problems and cross-entropy loss for classification problems. The training process

typically employs the backpropagation algorithm combined with gradient-based opti-

mization techniques such as stochastic gradient descent (SGD) or adaptive moment

estimation (Adam) [60]. The training begins with a forward pass, during which the in-

put data propagate through the network. The network’s output is computed layer by

layer by applying the weighted sums and activation functions until the final output is

produced. The computed output is then compared to the target values using the loss

function. For instance, in a binary classification task with cross-entropy loss, the loss

L is given by:

L = − 1
𝑁

𝑁∑︁
𝑖=1
[𝑦𝑖 log 𝑦̂𝑖 + (1 − 𝑦𝑖) log(1 − 𝑦̂𝑖)] , (2.32)

where 𝑁 is the number of data points, 𝑦𝑖 represents the true label, and 𝑦̂𝑖 is the pre-

dicted output for the 𝑖-th sample.

After the forward pass, the backpropagation algorithm computes the gradients of the

loss function with respect to all trainable parameters in the network. Using the chain

rule of differentiation, the algorithm calculates these gradients layer by layer, starting

from the output layer and propagating backward to the input layer. The gradient for a

weight 𝑤 (𝑙)
𝑖 𝑗

connecting neuron 𝑖 in layer 𝑙 − 1 to neuron 𝑗 in layer 𝑙 is computed as:

𝜕L
𝜕𝑤
(𝑙)
𝑖 𝑗

= 𝛿
(𝑙)
𝑗
𝑎
(𝑙−1)
𝑖

, (2.33)

where 𝛿
(𝑙)
𝑗

represents the error term for neuron 𝑗 in layer 𝑙. This error term captures
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how much the loss would change if the output of that neuron were altered, and it is

given by:

𝛿
(𝑙)
𝑗

= 𝜙′(𝑧(𝑙)
𝑗
)
𝑚∑︁
𝑘=1

𝛿
(𝑙+1)
𝑘

𝑤
(𝑙+1)
𝑗 𝑘

, (2.34)

where 𝜙′(𝑧(𝑙)
𝑗
) is the derivative of the activation function with respect to the weighted

input 𝑧(𝑙)
𝑗

, and 𝛿(𝑙+1)
𝑘

is the error term for neuron 𝑘 in the subsequent layer.

Once the gradients are calculated, the optimization algorithm updates the weights and

biases to reduce the loss. For example, in stochastic gradient descent, the weight

update rule is:

𝑤
(𝑙)
𝑖 𝑗
← 𝑤

(𝑙)
𝑖 𝑗
− 𝜂 𝜕L

𝜕𝑤
(𝑙)
𝑖 𝑗

, (2.35)

where 𝜂 is the learning rate, a hyperparameter controlling the step size of the updates.

The biases are updated similarly. Modern optimization algorithms such as Adam im-

prove upon basic SGD by adapting the learning rate for each parameter based on past

gradient information, often leading to faster convergence. Training is an iterative pro-

cess that continues for multiple epochs, where each epoch involves a complete pass

over the training dataset. The goal is to reduce the loss function as much as possible,

enabling the MLP to learn a mapping that generalizes well to unseen data [2].

As mentioned previously, hyperparameters can have a high rate of the influence on the

performance of the model, as they dictate not only the number of internal parameters,

but also the way in which the learning is performed. The hyperparameters that are

tuned using GS for MLP are the size of hidden layers, activation, solver, alpha, learn-

ing rate and initial learning rate value (given as 𝜂 previously). The hidden layer sizes

hyperparameter specifies the architecture of the network by determining the number of

neurons in each hidden layer, which directly influences the model’s capacity to capture

complex patterns. The activation hyperparameter defines the function applied to the

outputs of the neurons in the hidden layers, introducing non-linearity to the model and

enabling it to learn complex relationships in the data. The solver hyperparameter de-

termines the optimization algorithm used to adjust the model’s weights during training,
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influencing the speed and convergence of the learning process. The alpha parameter

regulates the complexity of the model by penalizing large weight magnitudes, which

helps to improve generalization and prevent overfitting. The learning rate parameter

controls how the step size for weight updates changes over time, affecting the stability

and convergence of training. Finally, the initial learning rate parameter sets the initial

value of the step size, impacting the scale of updates to the model’s weights at the

start of the training process [60]. The possible values of these hyperparameters, which

were used in the tuning process, are given in Table 2.2. The hyperparameter values

in question were selected to provide a comprehensive yet computationally feasible ex-

ploration of MLP performance across different configurations. Hidden layer sizes were

chosen to evaluate the effect of both network depth and width on learning capacity,

with values ranging from shallow and narrow architectures such as (10) to deeper and

wider networks like (100, 100, 100, 100), allowing for assessment of underfitting and

overfitting tendencies. Activation functions included identity, logistic, tanh, and relu to

compare linear and non-linear activation behaviors, with relu being widely used for its

efficiency and logistic and tanh for their suitability in smaller networks or for capturing

smoother transitions. The solvers lbfgs and adam were selected based on their distinct

optimization approaches: lbfgs is effective for smaller networks due to its quasi-Newton

method, while adam is adaptive and well-suited for larger datasets with potentially noisy

gradients. The alpha values of 0.0001, 0.001, 0.01, and 0.1 span several orders of

magnitude to examine how different regularization strengths influence the trade-off be-

tween model complexity and generalization, with smaller values allowing more flexibility

in weight magnitudes and larger values enforcing stricter regularization. Both constant

and adaptive learning rate schedules were tested to observe the impact of static ver-

sus responsive learning dynamics, while initial learning rates of 0.01, 0.1, and 1 were

included to assess training stability and convergence speed, with 1 · 10−2 serving as

a conservative baseline and 1 testing the limits of fast learning. Overall, the selected

values reflect commonly used ranges present in previous research by the author.
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Table 2.2: Hyperparameter values tested in the GS process for MLP.

Hyperparameter Values

Hidden Layer Sizes (10), (50), (100), (10, 10), (50, 50), (100, 100),

(10, 10, 10), (50, 50, 50), (100, 100, 100),

(10, 10, 10, 10), (50, 50, 50, 50), (100, 100, 100, 100)

Activation function identity, logistic, tanh, relu

Solver lbfgs, adam

Alpha 0.0001, 0.001, 0.01, 0.1

Learning rate type constant, adaptive, invscaling

Initial Learning rate 0.01, 0.1, 1

As the table shows, in addition to the learning rate remaining constant, it can also

be adjusted using two different strategies. In the adaptive schedule, the learning rate

remains constant unless the training loss does not improve for a specified number of

iterations (patience). When this occurs, the learning rate is typically reduced by a factor

(e.g., halved). Although this behavior varies by implementation, a simplified form is:

𝜂𝑡+1 =


𝜂𝑡 , if improvement

𝛾 · 𝜂𝑡 , otherwise

where 𝜂𝑡 is the learning rate at iteration 𝑡, 𝛾 ∈ (0, 1) is the reduction factor (e.g., 𝛾 =

0.5). In the inverse scaling (given in code as invscaling) schedule, the learning rate

decreases smoothly over time based on the inverse of a scaling factor:

𝜂𝑡 = 𝜂0 · 𝑡−𝛾

where: - 𝜂0 is the initial learning rate, - 𝑡 is the current iteration number, - 𝛾 ∈ (0, 1] is

the power of the inverse scaling.

This schedule gradually slows down learning as training progresses, which can help

fine-tune the model and avoid overshooting minima. Both methods aim to balance

fast initial learning with stable convergence, but adaptive learning adjusts based on
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performance, while inverse scaling depends solely on iteration count [60]. The regu-

larization parameter alpha controls the strength of L2 regularization, which penalizes

large weights to help prevent overfitting. The regularization term is added to the loss

function, modifying it as follows:

Lreg = L + 𝛼
∑︁
𝑖

𝑤2
𝑖

where L is the original loss (e.g., mean squared error or cross-entropy), 𝑤𝑖 are the

model weights, and 𝛼 is the regularization strength. A larger alpha increases the

penalty on large weights, encouraging the model to keep weights smaller, which typ-

ically improves generalization but may limit the model’s ability to fit complex patterns.

Conversely, a smaller alpha allows the model more flexibility to fit the training data, at

the risk of overfitting. The selection of alpha balances model complexity and general-

ization, with typical values chosen across several orders of magnitude (e.g., 0.0001 to

0.1) to explore this trade-off.

2.2.2 Support vector regressor algorithm

Support Vector Regressor (SVR) is a supervised learning algorithm that extends the

principles of Support Vector Machines (SVMs) to regression tasks. The main idea

behind SVR is to find a function 𝑓 (𝑋𝑖,:) that approximates the relationship between

the input data 𝑋𝑖,: and the target values 𝑦 within a specified margin of tolerance 𝜖 .

Unlike other regression methods that minimize the prediction error directly, SVR aims

to achieve a balance between model complexity and prediction accuracy by penalizing

deviations beyond the 𝜖-margin while keeping the model’s parameters as simple as

possible [74].

In SVR, the optimization objective is to minimize the following function:

1
2
∥𝑤∥2 + 𝐶

𝑁∑︁
𝑖=1
(𝜉𝑖 + 𝜉∗𝑖 ), (2.36)

where 𝑤 represents the weight vector defining the model, 𝜉𝑖 and 𝜉∗
𝑖

are slack variables
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that measure the extent of deviation from the 𝜖-margin, 𝐶 is the regularization parame-

ter that controls the trade-off between margin violations and model complexity, and 𝑁 is

the number of training data points. The term 1
2 ∥𝑤∥

2 ensures that the model complexity

is minimized, encouraging a simpler solution.

The function 𝑓 (𝑋𝑖,:) that SVR learns is expressed as:

𝑓 (𝑋𝑖,:) = 2⊤𝜙(𝑋𝑖,:) + 𝑏, (2.37)

where 𝜙((𝑋𝑖,:)) is a non-linear transformation mapping the input data to a higher-

dimensional feature space, enabling the algorithm to model non-linear relationships.

The bias term 𝑏 shifts the decision boundary, and both 𝑤 and 𝑏 are determined dur-

ing training. The kernel trick allows computation in the original feature space without

explicitly transforming 𝑋𝑖,:, using a kernel function 𝐾 (𝑋𝑖, 𝑗 ) = 𝜙((𝑋𝑖,:))⊤𝜙(𝑋:, 𝑗 ) [74].x

The optimization is subject to the following constraints for each data point (𝑋𝑖,:, 𝑦𝑖):

𝑦𝑖 − 𝑓 (𝑋𝑖,:) ≤ 𝜖 + 𝜉𝑖,

𝑓 (𝑋𝑖,:) − 𝑦𝑖 ≤ 𝜖 + 𝜉∗𝑖 ,

𝜉𝑖, 𝜉
∗
𝑖 ≥ 0.

(2.38)

Here, 𝜖 defines the margin of tolerance around the true value 𝑦𝑖, within which predic-

tions are not penalized. The slack variables 𝜉𝑖 and 𝜉∗
𝑖

represent the deviations from the

𝜖-margin for over-predictions and under-predictions, respectively. These constraints

ensure that the model focuses only on errors outside the margin, while ignoring smaller

deviations [60].

To solve this constrained optimization problem, SVR employs Lagrange multipliers, a

mathematical tool used to optimize a function subject to equality or inequality con-

straints. The dual formulation of the problem allows for efficient computation, focusing

on support vectors, which are the data points lying on or outside the 𝜖-margin. These

support vectors directly influence the model’s predictions, while other data points do

not contribute to the solution [15].

The regression function in the dual formulation is expressed as:
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𝑓 (𝑋𝑖,:) =
𝑁∑︁
𝑖=1
(𝛼𝑖 − 𝛼∗𝑖 )𝐾 (𝑋𝑖, 𝑗 ) + 𝑏, (2.39)

where 𝛼𝑖 and 𝛼∗
𝑖

are the Lagrange multipliers corresponding to the slack variables 𝜉𝑖

and 𝜉∗
𝑖
. The sparsity of the solution arises because many 𝛼𝑖 and 𝛼∗

𝑖
are zero, leaving

only the support vectors to define the regression function [15].

Hyperparameters such as 𝐶, 𝜖 , and the kernel parameters significantly influence the

SVR’s performance. The regularization parameter 𝐶 determines the trade-off between

the flatness of the regression function and the tolerance for margin violations. A smaller

𝜖 creates a narrower margin, focusing the model on more accurate predictions but po-

tentially overfitting the data. The choice of the kernel function, whether linear, polyno-

mial, or radial basis function (RBF), determines the nature of the mapping 𝜙((𝑋𝑖,:)) and

hence the types of relationships the model can capture [60].

By training on a dataset, SVR learns to approximate the target function with minimal

complexity and deviations beyond the tolerance margin. Its formulation makes it partic-

ularly effective for regression problems where robustness to outliers and generalization

to unseen data are critical. With proper tuning of its hyperparameters, SVR can provide

accurate and interpretable solutions for complex regression tasks.

When it comes to the tuned hyperparameters for the SVM regressor, they can be seen

in Table 2.3. The kernel hyperparameter specifies the type of kernel function used

to map input data into a higher-dimensional space, influencing the model’s ability to

capture complex relationships. The degree parameter is relevant for the polynomial

kernel, defining the degree of the polynomial and controlling the flexibility of the deci-

sion boundary, with higher values allowing for more complex patterns. The 𝛾 parameter

determines the influence of a single training example, effectively controlling how far the

impact of a single support vector extends: a higher 𝛾 focuses on closer points, while a

lower 𝛾 considers a broader range. The 𝐶 hyperparameter represents the regulariza-

tion parameter, balancing the trade-off between achieving a low error on the training

data and maintaining a smooth model. Finally, the 𝜀 parameter defines a margin of tol-

erance around the predicted values within which no penalty is given for errors, allowing
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the model to focus on capturing significant patterns and ignore small fluctuations. To-

gether, these hyperparameters allow fine-tuning of the SVM regressor for performance

and generalization [60]. The hyperparameter values were selected to enable an explo-

ration of SVM regression behavior. The kernel choices—linear, polynomial, RBF, and

sigmoid – represent a range of transformations from simple linear mappings to complex

non-linear functions, allowing the model to adapt to various data patterns. The degree

parameter, relevant for the polynomial kernel, was varied between 2 and 4 to control

the flexibility of the decision boundary, with higher degrees enabling more complex re-

lationships. The 𝛾 parameter, which influences the shape of the decision boundary in

RBF, poly, and sigmoid kernels, was tested using the scale and auto options: scale

sets 𝛾 to 1/(𝑛features · Var(𝑋)), while auto sets 𝛾 to 1/𝑛features, both of which adapt to

data characteristics to avoid manual tuning. The regression parameter 𝐶 was varied

from 0.1 to 10 to control the trade-off between minimizing the training error and main-

taining a smooth regression function, with smaller values allowing more tolerance for

error and larger values enforcing stricter fitting. Finally, the epsilon parameter 𝜀 defines

the width of the epsilon-insensitive tube within which no penalty is given for errors; val-

ues ranging from 0.1 to 1 were tested to examine how tolerant the model is to small

deviations from the target, with smaller values aiming for higher precision and larger

values promoting sparsity in the support vectors.

Table 2.3: Hyperparameters and their values for SVM Regressor.

Hyperparameter Values

Kernel linear, poly, rbf, sigmoid

Degree 2, 3, 4

𝛾 scale, auto

𝐶 0.1, 0.5, 1, 10

𝜀 0.1, 0.2, 0.5, 1
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2.2.3 Passive-aggressive regressor

Passive Aggressive Regressor (PAR) is an efficient and robust algorithm designed for

regression tasks, particularly in online learning scenarios where data arrives sequen-

tially. Unlike traditional regression methods that minimize a loss function over an entire

dataset, PAR updates its model parameters incrementally by processing one data point

at a time. The term "passive-aggressive" reflects the algorithm’s behavior: it remains

passive if the current prediction is within an acceptable error margin and becomes

aggressive when the prediction error exceeds a predefined threshold [29].

The goal of PAR is to minimize a hinge-loss-based objective function while keeping

the model’s updates constrained. Given a single data point (𝑋𝑖,:, 𝑦𝑖), the optimization

objective for PAR can be expressed as:

min
𝑤

1
2
∥𝑤 − 𝑤prev∥2 subject to |𝑦𝑖 − 𝑤⊤(𝑋𝑖,:) | ≤ 𝜖, (2.40)

where 𝑤 represents the current weight vector, 𝑤prev is the weight vector from the previ-

ous step, 𝑦𝑖 is the true target value, (𝑋𝑖,:) is the input feature vector, and 𝜖 is the margin

of tolerance for the prediction error. The term 1
2 ∥𝑤−𝑤prev∥2 ensures that updates to the

model are minimal, preserving stability while adapting to new data [29].

When the prediction error exceeds the margin 𝜖 , the algorithm updates 𝑤 to correct the

prediction. The update rule for the weight vector is derived by introducing a Lagrange

multiplier 𝜏 to enforce the margin constraint, leading to the following closed-form solu-

tion:

𝑤 ← 𝑤prev + 𝜏 · 𝑋𝑖,:, (2.41)

where 𝜏 is the step size, calculated as:

𝜏 =
max(0, |𝑦𝑖 − 𝑤⊤𝑋𝑖,: | − 𝜖)

∥𝑋𝑖,:∥2 + 1
𝐶

, (2.42)

and 𝐶 is a regularization parameter that controls the aggressiveness of updates. Larger

values of 𝐶 result in more significant updates, while smaller values encourage conser-
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vative adjustments. The denominator ∥𝑋𝑖,:∥2 + 1
𝐶

ensures that updates are proportional

to the magnitude of the input features, preventing overly large weight changes.

The hinge-loss-based constraint ensures that the model focuses only on instances

where the prediction error is large, making it robust to outliers and noise in the data.

The use of 𝜖 defines a tolerance margin, within which predictions are considered sat-

isfactory. This mechanism prevents unnecessary updates for minor deviations, con-

tributing to the algorithm’s computational efficiency [71].

While PAR does not explicitly involve kernel methods or transformations, its linear for-

mulation can be extended to non-linear regression tasks through the application of the

kernel trick. This extension involves substituting the dot product 𝑤⊤𝑋𝑖,: with a kernel

function 𝐾 (𝑋𝑖, 𝑗 ), enabling the algorithm to capture non-linear relationships while main-

taining its online learning capabilities.

Again, the table for possible hyperparameters is given for PAR as well, in Table 2.4.

The 𝐶 hyperparameter represents the regularization strength, balancing the trade-off

between minimizing training error and controlling model complexity. Smaller values of

C encourage stronger regularization, which can improve generalization but may lead to

higher training error, while larger values reduce regularization, allowing the model to fit

the training data more closely. The fit_intercept hyperparameter in the PAR determines

whether an intercept term is included in the model. If set to True, the model learns an

additional bias term that shifts the decision boundary or prediction function, which can

be crucial when the features are not centered or the target values are offset. For exam-

ple, if the input data has a non-zero mean, enabling the intercept allows the model to

align predictions better with the target values by accounting for this offset. Conversely,

if set to False, the model assumes that the data is already centered, and no bias term

is added, which may simplify the model but risks introducing systematic errors if the

data requires centering. This setting is particularly relevant for datasets that have been

preprocessed or standardized, where excluding the intercept can improve computa-

tional efficiency without sacrificing accuracy. The tolerance hyperparameter specifies

the tolerance for stopping criteria, defining how small the changes in the optimization
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objective must be to stop further iterations, with lower values leading to potentially more

accurate but computationally intensive solutions. The loss parameter determines the

type of loss function used to measure prediction errors, such as epsilon-insensitive

loss or squared epsilon-insensitive loss, which affect how deviations from the true tar-

get within the epsilon margin are penalized. Finally, the epsilon hyperparameter de-

fines the margin of tolerance, where predictions falling within this range of the true

values are not penalized. This allows the model to focus on capturing significant trends

while ignoring minor deviations, which is particularly useful when dealing with noisy

data [60]. The hyperparameter values were selected to explore the behavior of PAR

under different settings. The parameter 𝐶, ranging from 0.1 to 10, controls the trade-

off between staying close to the current model (passive) and aggressively updating

it when errors occur; smaller values allow more tolerance for deviations, while larger

values enforce stricter corrections. The tolerance parameter, tested at 10−3, 10−4, and

10−5, defines the stopping criterion for the optimization process, with smaller values

enabling more precise convergence at the cost of longer computation time. Two loss

functions were included: epsilon_insensitive, which ignores errors within a margin of 𝜀,

and squared_epsilon_insensitive, which squares errors outside the margin, penalizing

larger deviations more heavily. The epsilon parameter 𝜀, varied from 0.1 to 1, specifies

the width of the epsilon-insensitive zone where errors incur no penalty; smaller values

demand more precise predictions, while larger values tolerate more deviation from the

target.

Table 2.4: Hyperparameters and their values for PAR.

Hyperparameter Values

𝐶 0.1, 0.5, 1, 10

fit_intercept True, False

Tolerance 10−3, 10−4, 10−5

Loss epsilon_insensitive, squared_epsilon_insensitive

𝜀 0.1, 0.2, 0.5, 1
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2.2.4 Gradient boosted trees

Gradient Boosted Trees (GBT) are an ensemble learning technique designed for re-

gression and classification tasks, combining the predictions of multiple weak learners,

typically decision trees, to produce a strong predictive model. The fundamental idea

behind GBT is to iteratively build new trees that minimize the residual errors of the en-

semble model. XGBoost (Extreme Gradient Boosting) is a widely used implementation

of GBT that incorporates advanced optimization techniques and system-level improve-

ments for enhanced performance and computational efficiency [24].

In GBT, the model is constructed iteratively, starting with a simple base model, often

a constant prediction. At each iteration 𝑡, a new decision tree 𝑓𝑡 (𝑋𝑖,:) is added to the

ensemble to reduce the residual errors from the previous predictions. The model at

iteration 𝑡 can be expressed as:

𝑦̂ (𝑡) = 𝑦̂ (𝑡−1) + 𝜂 𝑓𝑡 𝑓𝑡 (𝑋𝑖,:), (2.43)

where 𝑦̂ (𝑡) is the prediction of the ensemble at iteration 𝑡, 𝑦̂ (𝑡−1) is the prediction from

the previous iteration, 𝑓𝑡 (𝑋𝑖,:) is the newly added tree, and 𝜂 𝑓𝑡 is the learning rate that

controls the contribution of each individual tree [48]. The objective is to minimize a loss

function L(𝑦, 𝑦̂), such as MSE for regression or log-loss for classification.

In XGBoost, the optimization process involves a regularized objective function to im-

prove generalization and prevent overfitting. The objective at iteration 𝑡 is given by:

L (𝑡) =
𝑁∑︁
𝑖=1

𝑙 (𝑦𝑖, 𝑦̂ (𝑡−1)
𝑖
+ 𝑓𝑡 ((𝑋𝑖,:))) +Ω( 𝑓𝑡), (2.44)

where 𝑙 (𝑦𝑖, 𝑦̂𝑖) is the loss function measuring the difference between the true value 𝑦𝑖

and the predicted value 𝑦̂𝑖, and Ω( 𝑓𝑡) is a regularization term penalizing the complexity

of the tree 𝑓𝑡 (𝑋𝑖,:). The regularization term is expressed as:

Ω( 𝑓𝑡 (𝑋𝑖,:)) = 𝛾𝑇 +
1
2
𝜆

𝑇∑︁
𝑗=1
𝑤2
𝑗 , (2.45)
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where 𝑇 is the number of leaves in the tree, 𝑤 𝑗 is the weight of the 𝑗-th leaf, 𝛾 controls

the penalty for the number of leaves, and 𝜆 penalizes the magnitude of leaf weights [48].

These regularization parameters improve the model’s robustness by controlling overfit-

ting.

To optimize the objective, XGBoost uses a second-order Taylor expansion of the loss

function. For a given tree structure, the objective can be approximated as:

L (𝑡) ≈
𝑁∑︁
𝑖=1

[
𝑔𝑖 𝑓𝑡 (𝑋𝑖,:) +

1
2
ℎ𝑖 𝑓

2
𝑡 ((𝑋𝑖,:))

]
+Ω( 𝑓𝑡), (2.46)

where 𝑔𝑖 =
𝜕𝑙 (𝑦𝑖 ,𝑦̂𝑖)
𝜕𝑦̂𝑖

and ℎ𝑖 =
𝜕2𝑙 (𝑦𝑖 ,𝑦̂𝑖)
𝜕𝑦̂2
𝑖

are the first and second derivatives of the loss

function with respect to the predictions, often referred to as the gradient and Hessian,

respectively. These derivatives guide the optimization by quantifying the direction and

magnitude of the loss change [14].

The optimal weight 𝑤 𝑗 for each leaf 𝑗 in the tree is determined by solving:

𝑤 𝑗 = −
∑
𝑖∈𝐼 𝑗 𝑔𝑖∑

𝑖∈𝐼 𝑗 ℎ𝑖 + 𝜆
, (2.47)

where 𝐼 𝑗 is the set of data points assigned to leaf 𝑗 . The corresponding optimal loss

reduction for a split is:

R =
1
2

( (∑
𝑖∈𝐼𝐿 𝑔𝑖

)2∑
𝑖∈𝐼𝐿 ℎ𝑖 + 𝜆

+
(∑

𝑖∈𝐼𝑅 𝑔𝑖
)2∑

𝑖∈𝐼𝑅 ℎ𝑖 + 𝜆
− (

∑
𝑖∈𝐼 𝑔𝑖)2∑

𝑖∈𝐼 ℎ𝑖 + 𝜆

)
− 𝛾, (2.48)

where 𝐼𝐿 and 𝐼𝑅 are the sets of data points in the left and right child nodes, and 𝐼 is the

parent node. This formula determines the quality of a split and is used to grow the tree

in a greedy manner, selecting splits that maximize the reduction in loss [14].

Finally, the hyperparameters which were adjusted for GBT, along with their values are

given in Table 2.5. In the context of gradient boosting models, the n_estimators hy-

perparameter specifies the number of boosting iterations or decision trees used in the

ensemble, controlling the model’s capacity and complexity. The max_depth parame-

ter limits the maximum depth of each individual tree, helping to balance underfitting

(shallow trees) and overfitting (deep trees). The learning_rate controls the contribution
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of each tree to the final prediction, with smaller values requiring more trees for con-

vergence but potentially improving generalization. The subdata point parameter deter-

mines the fraction of the training data sampled to grow each tree, which can reduce

overfitting and increase robustness by introducing randomness. The colsample_bytree

hyperparameter specifies the fraction of features considered for splitting at each tree

level, while colsample_bylevel and colsample_bynode control the fraction of features

used at each level of the tree and for each split, respectively, allowing fine-grained con-

trol over feature sampling. The reg_alpha parameter adds L1 regularization to the loss

function, encouraging sparsity in the model and reducing overfitting by shrinking less

important weights. Similarly, reg_lambda applies L2 regularization, penalizing large

weights to enhance generalization and stability. Together, these hyperparameters pro-

vide flexibility to tune the gradient boosting model for various datasets and tasks [60].

The hyperparameter values were selected to provide meaningful control over model

complexity, regularization, and feature sampling, while remaining within ranges that are

commonly effective in practice. The values for n_estimators—10, 50, and 100—were

chosen to explore the impact of ensemble size on performance and training time. A

small value like 10 allows quick training and evaluation, useful for rapid prototyping,

while 100 provides a more thorough boosting process capable of reducing bias. The

max_depth values from 3 to 7 were selected because shallow trees (depth 3 — 4) help

prevent overfitting, especially on noisy or small datasets, while deeper trees (up to 7)

allow modeling of more intricate patterns in the data. The learning_rate values of 0.01,

0.1, and 1 span from conservative to aggressive learning. A rate of 1 · 10−2 typically

requires more estimators but leads to better generalization, 0.1 is a standard default

offering a balance of speed and accuracy, and 1 is included to test the limits of rapid

convergence, although it can risk instability. For subsample, values of 0.5, 0.75, and 1

were selected to explore how reducing the training sample size per tree affects variance

and robustness. Lower values introduce stochasticity that can reduce overfitting, while

1 uses the full data, maximizing information per iteration. Similarly, colsample_bytree,

colsample_bylevel, and colsample_bynode—each set to 0.5, 0.75, and 1—control fea-
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ture subsampling at different granularities. These values allow examination of how lim-

iting feature usage influences model diversity and generalization. Lower values help

reduce correlation between trees and often improve performance on high-dimensional

data. Lastly, the regularization parameters reg_alpha and reg_lambda were tested at

0, 0.1, 0.5, and 1 to understand how L1 and L2 penalties influence overfitting. A value

of 0 implies no regularization, while increasing values progressively enforce sparsity

(via L1) and weight shrinkage (via L2), encouraging simpler models. These specific

values span typical operational ranges and were selected based on empirical evidence

from practical applications to ensure both efficiency and effectiveness during hyperpa-

rameter tuning.

Table 2.5: Hyperparameters and their values for GBT.

Hyperparameter Values

n_estimators 10, 50, 100

max_depth 3, 4, 5, 6, 7

learning_rate 0.01, 0.1, 1

subsample 0.5, 0.75, 1

colsample_bytree 0.5, 0.75, 1

colsample_bylevel 0.5, 0.75, 1

colsample_bynode 0.5, 0.75, 1

reg_alpha 0, 0.1, 0.5, 1

reg_lambda 0, 0.1, 0.5, 1

2.3 Optimization

2.3.1 Defining a fitness function and selection

As the ML models had certain elements in common, so do the evolutionary algorithms

that will be used for the optimization process. The key elements that will be covered in

this section are the terms of population, generations, solutions space, fitness function
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and element selection.

The evolutionary algorithms operate using the process of natural selection from the

solution space. The solution space is an 𝑛-dimensional space containing all possible

solutions that can be present. In the presented study, we know that each joint has its

movement defined with a fifth-order polynomial. Each of these polynomials will have

six coefficients, according to the equation 2.25. As the robot has six joints, this means

that a single path can be defined with a 6 × 6 matrix of coefficient values, as each joint

of the IRM can have a different path:



𝑎1
1 𝑎1

2 𝑎1
3 𝑎1

4 𝑎1
5 𝑎1

6

𝑎2
1 𝑎2

2 𝑎2
3 𝑎2

4 𝑎2
5 𝑎2

6

𝑎3
1 𝑎3

2 𝑎3
3 𝑎3

4 𝑎3
5 𝑎3

6

𝑎4
1 𝑎4

2 𝑎4
3 𝑎4

4 𝑎4
5 𝑎4

6

𝑎5
1 𝑎5

2 𝑎5
3 𝑎5

4 𝑎5
5 𝑎5

6

𝑎6
1 𝑎6

2 𝑎6
3 𝑎6

4 𝑎6
5 𝑎6

6


, (2.49)

with each individual element having a form o 𝑎 𝑗
𝑖
, where 𝑖 is the order of the coefficient,

and 𝑗 is the robot joint the path of which the coefficient is associated with. If this is a

form of one solution (set of paths in the joint space), expressed as a mathematical form

(also known as a chromosome in the evolutionary computing), we can approximate the

number of possible solutions. The possible range of each coefficient is < −10.0, 10.0 >.

This range needs to be discretized. The discretization step between solutions was se-

lected as 0.05. The step has been selected so that the difference between two possible

paths is visible, but not so significantly different that it would be possible to miss a good

solution. This is demonstrated in Figure 2.9, which shows how modifying the param-

eters 𝑎1 to 𝑎6 of the path, by a certain value, influences a certain path. The leftmost

subfigure, for the discretization parameter value of 0.01, shows that the modified paths

barely show any difference, even in detailed, zoomed in views of certain areas. On the

other hand, the right-most subfigure, for the value of 0.1, shows visible empty space

between the lines (apparent in the detail of the figure). The central subfigure does not

show any of those gaps, while still demonstrating that most paths are at least visibly
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different, which is why it was selected as the used discretization value.

Figure 2.9: A comparison of the influence of different discretization steps on the paths.

With this, we can calculate that each coefficient in the solution can have 400 possible

discrete values. Considering that the total number of coefficients is 36, the number of

possible solutions is 40036 or approximately 4.72× 1093. The sheer number of solutions

means that it would not be possible to perform an exhaustive search of all possible

solutions, indicating a need for a different search algorithm.

Evolutionary algorithms perform the optimization by taking a number of solutions, with

this set of candidate solutions being called a population. Then, they create new solu-

tions by combining existing solutions and generating new ones. Each replacement of

population with new solutions indicates a new iteration of the algorithm – called a gen-

eration (𝑡) [37]. While the generation of new solutions may differ between algorithms,

two more elements are common and key to the improvement, first being the fitness
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𝑓𝑖 = 10
𝑃𝑖 ≈ 0.273

𝑓𝑖 = 5
𝑃𝑖 ≈ 0.546

𝑓𝑖 = 20
𝑃𝑖 ≈ 0.137

𝑓𝑖 = 15
𝑃𝑖 ≈ 0.183

Figure 2.10: RWS illustration, with values of fitness and probability as given in Table 2.6.

function, and the other being the fitness proportional selection.

Fitness function, also known as the criterion function, is a function used to evaluate

how well does a candidate solution fit the given problem. In other words, it is the

function that the algorithm is optimizing against, looking to either increase or decrease

the value. In the presented research this function is the total energy of certain joint

path. The goal of the application of the algorithm is lowering the output value of this

function. The improvement in fitness function is the main goal, and the key step in

achieving this is the fitness proportional selection. By selecting the individual with a

better (in the presented case, smaller) fitness function value to be used as operators in

the evolutionary calculations used to generate new populations of candidate solutions,

the entirety of the system should tend towards a better solution.

There are numerous ways of achieving this, such as elitism, ranking, and tournament

selection [37], but the one selected for the algorithm at hand is the roulette wheel se-

lection. The roulette wheel selection (RWS) works by creating assigning a likelihood of

selection proportional to the individual candidate solutions fitness, with the better fitting

solutions having a higher likelihood of being selected. In other words, it is equivalent

of creating a wheel, sectioned in the parts equal to the number of elements in the pop-

ulation, and then adjusting the width of each of this sections to be proportional to their

fitness, as shown in Figure 2.10.
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Mathematically and programatically this is achieved by taking the total sum of adjusted

fitness values (𝐹𝑇𝑂𝑇𝐴𝐿) per:

𝐹𝑇𝑂𝑇𝐴𝐿 = Σ𝑁𝑖=1 𝑓
′
𝑖 , (2.50)

where 𝑓 ′
𝑖

is the adjusted fitness value. This value is used because our real fitness value,

the energy of the robot movement, is being minimized, so in reality we are creating the

inverse of the standard RWS, since the likelihood of selection is inversely proportional

to the fitness function. So, the adjusted fitness value of the 𝑖-th population member is:

𝑓 ′𝑖 =
1
𝑓𝑖

(2.51)

The above equation will commonly have the term 𝜀, representing an extremely small

value, added to the denominator, to avoid division by zero errors. In the presented

research this is not necessary, as the energy of any joint path cannot be equal to zero.

The probability of a 𝑖-th solution being selected is then calculated as:

𝑃𝑖 =
𝑓 ′
𝑖

𝐹𝑇𝑂𝑇𝐴𝐿
. (2.52)

To perform the actual selection on the "wheel", the cumulative probability of the 𝑖-th

individual is calculated as the sum of the individual solutions’ fitness values:

𝐶𝑖 = Σ𝑖𝑗=1𝑃 𝑗 . (2.53)

Then, a random value 𝑟 is generated uniformly randomly on the range [0, 1], and the

selected individual is the one satisfying the condition of being the first element that

has the value 𝐶𝑖 equal or greater than the value 𝑟. An example of how these values

are calculated is shown in Table 2.6, which shows how the different values of fitness

change the probability of the solution being selected in an algorithm whose goal is the

minimization of the fitness value.
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Table 2.6: Example of Fitness Proportional Selection for Minimization.

Individual ( 𝑓𝑖) ( 𝑓 ′
𝑖
) (𝑃𝑖) (𝐶𝑖)

1 10 1
10 = 0.1 0.1

0.366 ≈ 0.273 0.273

2 20 1
20 = 0.05 0.05

0.366 ≈ 0.137 0.410

3 5 1
5 = 0.2 0.2

0.366 ≈ 0.546 0.956

4 15 1
15 ≈ 0.067 0.067

0.366 ≈ 0.183 1.000

In the presented case, fitness can be described as function of a single value (F (§)),

or multiple ones (F (§∞, §∈, · · · , §\)). When the system is optimized against a single

value, this process is referred to as as a single-objective optimization, while the latter is

referred to as multi-objective optimization. Both approaches are tested in the presented

research, with single-objective using a single function for the total energy, while the

multi objective uses multiple optimization functions (one for each joint’s energy) and

sorts the candidate solutions according to the values.

2.3.2 Genetic algorithm

GA is a search and optimization technique inspired by the principles of natural selection

and genetics. It operates on a population of candidate solutions, evolving them over

generations to optimize a given objective. The fundamental components of GA include

selection, crossover, and mutation, which mimic biological processes to explore and

exploit the search space efficiently [37].

The algorithm begins by initializing a population P of size 𝑁, where each individual

represents a potential solution encoded as a chromosome. At each generation 𝑡, the

fitness of each individual in the population is evaluated to determine its quality con-

cerning the objective. A selection mechanism is then applied to choose individuals for

reproduction based on their fitness. Common selection methods include roulette wheel

selection, tournament selection, and rank-based selection, each ensuring that individ-

uals with higher fitness have a greater likelihood of being chosen while maintaining

diversity in the population [37].
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Once the parents are selected, the crossover operation is performed to generate off-

spring by combining the genetic material of the parents. For two parents p1 and p2, the

offspring o1 is created via a crossover operation:

o1 = 𝐶 (p1 + p2) (2.54)

Mutation introduces variability into the population by randomly altering some genes in

the offspring. For a gene 𝑔 in the offspring chromosome, its mutated value 𝑔′ can be

expressed as:

𝑔′ = 𝑔 + 𝛿, (2.55)

where 𝛿 is a small random perturbation drawn from a predefined distribution, such as

a Gaussian or uniform distribution. Mutation helps the algorithm escape local optima

and explore unexplored regions of the search space [4].

After generating the offspring, the population for the next generation P (𝑡+1) is formed

by combining the offspring and selected parents. This process can follow different

strategies, such as generational replacement, where the entire population is replaced,

or elitist selection, where the top-performing individuals are preserved to ensure con-

vergence [4].

The algorithm iterates over generations until a stopping criterion is met, such as reach-

ing a maximum number of generations or achieving a target fitness level. The final

output is the best individual in the population, which represents the optimal or near-

optimal solution to the problem. This process is illustrated in Figure 2.11. As shown,

the initial population P0 is generated. As this population is generated randomly, we

do now know how good of a solution is each candidate solution in it. So, for each

p0
𝑖
, where 0 indicates the order of population – 0 for the starting population, is calcu-

lated using the fitness function F . After this, the generational operation starts, with

the number of generations equal to 0. Then, we iterate over the population. Then we

randomly select one operation to perform – reproduction 𝑅 copies an existing solution

in the population, with the goal of keeping some of the well-performing solutions in the
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population going forward, assuring that different solutions are kept. Crossover opera-

tion 𝐶 combines two solutions. Two different strategies were tested – the average and

random recombination.

start

Generate initial population

P0

Calculate fitness for population

∀p0
𝑖
∈ P0 : F (p0

𝑖
)

Start generational optimization,

𝑡 = 0

For each element of

population perform selection

∀𝑁 = | |P | | : 𝑆(P)
With probability

𝑃(𝑀)𝑃(𝐶) 𝑃(𝑅)

Do

pi ← 𝑀 (pi)

Do

pi ← 𝐶 (pi)

Do

pi ← 𝑅(pi)
Insert into population

P𝑡 ← pi

Recalculate fitness for population

∀p𝑡
𝑖
∈ P𝑡 : F (p𝑖)𝑡

End condition satisfied? 𝑡 = 𝑡 + 1

end

Figure 2.11: The illustration of the GA algorithm.
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Let us assume that we have selected two candidate solutions (p𝐴 and p𝐵) whose chro-

mosomes are shaped according to Equation 2.49 𝐴 and 𝐵:

𝐴 =


𝑎1

1 · · · 𝑎1
6

...
. . .

...

𝑎6
1 · · · 𝑎6

6


, 𝐵 =


𝑏1

1 · · · 𝑏1
6

...
. . .

...

𝑏6
1 · · · 𝑏6

6


. (2.56)

With these two, the random recombination can be described as iterating over each

of the possible values and selecting the value from the matrix 𝐴 or 𝐵 with the equal

corresponding indexes 𝑖 and 𝑗 to insert in the new equation. This means that the

output solution 𝑌 is selected as:

𝑌 =


𝑦1

1 ∈ {𝑎
1
1, 𝑏

1
1} · · · 𝑦1

6 ∈ {𝑎
1
6, 𝑏

1
6}

...
. . .

...

𝑦6
1 ∈ {𝑎

6
1, 𝑏

6
1} · · · 𝑦6

6 ∈ {𝑎
6
6, 𝑏

6
6}


, (2.57)

with {𝑎, 𝑏} indicating a selection between two possible values 𝑎 and 𝑏 with equal likeli-

hood. This results in a new candidate solution that is the mix of the parameters, offering

a wider search range. The other tested recombination manner is the average recom-

bination. Instead of recombining by randomly selecting existing parameters, the new

parameters are calculated as the average between the two selected solutions, allowing

for a more direct convergence to a solution between them. This can be expressed as:

𝑌 =


𝑦1

1 =
𝑎1

1+𝑏
1
1

2 · · · 𝑦1
6 =

𝑎1
6+𝑏

1
6

2
...

. . .
...

𝑦6
1 =

𝑎6
1+𝑏

6
1

2 · · · 𝑦6
6 =

𝑎6
6+𝑏

6
6

2


. (2.58)

The crossover is performed with the probabilities of 𝑃(𝐶) = [90%, 95%], and muta-

tion with the probability 𝑃(𝑀) = [1%, 5%]. In the remaining cases, reproduction is

performed. These values have been selected based on the previous research on the

similar problem [8]. If the obtained solutions show to be better than the current popu-

lation element according to the fitness function, the current element is replaced. We

then sort the solutions to find the best current solution and note it. The end condition in
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the presented case is given as the lack of change in the last ten generations or more

than 200 generations passing in total. This is also given as algorithm 1.

Algorithm 1 Genetic Algorithm.
Require: Population size 𝑁 , Crossover probability 𝑝𝑐, Mutation probability 𝑝𝑚, Maximum

generations 𝐺

Ensure: Best solution found

1: Initialize population 𝑃 of size 𝑁 randomly

2: Evaluate fitness of each individual in 𝑃

3: for 𝑔 = 1 to 𝐺 do

4: Select parent individuals from 𝑃 based on fitness

5: Create offspring population 𝑃offspring using crossover with probability 𝑝𝑐
6: Mutate individuals in 𝑃offspring with probability 𝑝𝑚
7: Evaluate fitness of each individual in 𝑃offspring

8: Select next generation population 𝑃 from 𝑃 and 𝑃offspring

9: end for

10: return Best individual from the final population 𝑃

2.3.3 Differential evolution

DE is a variant of the evolutionary algorithms, similar to the GA. It functions very simi-

larly to GA, with the same process of creating a population and improving it over gen-

erations. The difference between the two algorithms is in the way that the evolutionary

part of the algorithm, the recombination of the candidate solutions, is realized. Instead

of basing the new solution on two candidate solutions, the DE algorithm bases it on

three – 𝑎, 𝑏 and 𝑐. Unlike the GA, where the manner in which the selected candidate

solutions can be recombined in various ways, in addition to being reproduced and mu-

tated, the only operation the DE performs is the singular recalculation based on the

three selected values [61]:

𝑦′ = 𝑎 + 𝐹 · (𝑏 − 𝑐), (2.59)
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which is performed with the rate equal to the crossover rate in the GA, with the repro-

duction (propagation of the currently selected solution into the next population) happen-

ing otherwise. If the newly formed solution has a better fitness than the current solution

the algorithm is iterating over, it is inserted into the population. There is no separate

mutation mechanic, as the same function mutation achieves is achieved with the mu-

tation factor 𝐹, that multiplies the difference between 𝑏 and 𝑐. It plays a crucial role

in controlling the step size of the perturbations applied to candidate solutions, directly

influencing the balance between exploration and exploitation. A higher 𝐹 value (typi-

cally in the range (0, 2]) increases the magnitude of the differential mutation, allowing

the algorithm to explore a broader search space and escape local optima. However,

excessively large values can lead to instability and divergence, as solutions may be

perturbed too aggressively. Conversely, a smaller 𝐹 encourages fine-tuned exploita-

tion by making smaller adjustments to candidate solutions, improving convergence sta-

bility but increasing the risk of premature stagnation in suboptimal regions. Empirical

studies suggest that an adaptive or self-adaptive 𝐹, which dynamically adjusts based

on the progress of the optimization, can enhance DE’s performance by maintaining an

optimal balance throughout the search process [61].

2.3.4 Memetic algorithm

MA is an advanced optimization technique that combines the global search capabilities

of evolutionary algorithms with local refinement methods to enhance solution quality

and convergence speed. This hybrid nature allows MA to address both exploration and

exploitation challenges more effectively than traditional methods. By leveraging evo-

lutionary mechanisms to explore the search space and incorporating local search to

exploit promising regions, MA achieves a level of efficiency and precision that makes

it particularly suitable for solving complex and large-scale optimization problems. The

flexibility of MA lies in its ability to integrate domain-specific knowledge and heuris-

tics into its framework, tailoring the algorithm to the characteristics of specific problem

domains [47].
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The algorithm begins with an initial population P of candidate solutions, where each

individual represents a potential solution to the optimization problem. Similar to the

GA, the population is initialized either randomly or through a heuristic process to en-

sure diversity. At each generation, the population undergoes evolutionary operations,

including selection, crossover, and mutation, to generate offspring. However, what

distinguishes MA from GA is the incorporation of a local search phase. After the ge-

netic operators are applied, each individual undergoes a refinement process guided by

problem-specific information. This local search phase fine-tunes the solutions by iter-

atively improving them based on a neighborhood exploration mechanism or gradient-

based methods, effectively reducing the likelihood of premature convergence and in-

creasing the algorithm’s ability to find near-optimal solutions [13].

A defining characteristic of MA is its ability to balance the trade-off between global

and local search. The global search component, governed by evolutionary operators,

ensures that the algorithm explores a wide area of the solution space, avoiding en-

trapment in local optima. Conversely, the local search phase targets specific regions

of interest, refining solutions within these areas to achieve higher rate of optimization.

This dual approach is particularly advantageous in multi-modal optimization problems

where the search space contains multiple peaks. The effectiveness of MA hinges on

the seamless integration of these two components, as well as the adaptability of the

local search strategy to the problem domain. The comparison between how a classic

evolutionary algorithm may work (e.g. GA) is shown in Subfigure 2.12a. In the figure, a

two-dimensional space is given as a solution space, with each square indicating a pos-

sible solution, and lighter squares indicating a better solution, with the best solutions

given in the center four squares. The GA performs a wide search, with the example of

the best found solution in each generation indicated with yellow arrows, and the best

solution found at the end of the algorithm presented with a green square. As shown,

GA does not guarantee that the best solution found will be the optimal solution, but

merely close to it, indicating that further improvement may be possible. Due to this,

when MA is applied to the best possible solution, as shown in 2.12b, the solution found
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(a) GA example on two-dimensional search space. (b) MA example on two-dimensional search space.

Figure 2.12: Illustration of operation between GA and MA, lighter color indicating a better solution, the

optimal solution found by algorithm shown with green.

has a local search applied in its surroundings, finding a better solution nearby. Please

note that the local search can be applied as shown in the figure – at the end of the

algorithm run, or in each step. While slower, applying it in each step can lead to find-

ing of better solutions in each step which will significantly differentiate the path of the

algorithm through the search space, and may be beneficial in some cases.

Mathematically, the local search phase can be formalized as follows. Let p𝑖 ∈ P denote

an individual in the population. The local search operator, denoted as LocalSearch(·),

is applied to p𝑖 to produce a refined solution p′
𝑖
[47]:

p′𝑖 = LocalSearch(p𝑖), (2.60)

where LocalSearch(·) is a function that maximizes a fitness objective 𝑓 (p) within a

defined neighborhood N(p𝑖). Formally, this can be expressed as:

p′𝑖 = arg max
q∈N (p𝑖)

𝑓 (q), (2.61)

where N(p𝑖) is the set of all potential candidates in the neighborhood of p𝑖. This en-
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sures that the refined solution p′
𝑖

is the most fit among the considered neighbors. The

different ways in which a local search can be performed will be analyzed in the following

subsections. The versatility of MAs makes them applicable to a wide range of problem

domains, including different problem domains. Their ability to adapt the local search

component to the specific characteristics of the problem at hand allows for significant

performance improvements compared to traditional evolutionary algorithms. Further-

more, the incorporation of domain knowledge within the local search phase adds an

extra layer of customization, making MAs a highly effective tool for tackling complex

optimization tasks. As mentioned, MA is just an upgraded version of GA, with local

search added as a step after a candidate solution is found. Besides that, all of the

values are equal to the GA, including its hyperparameters. The details on the ways the

local search was performed in this research, using exhaustive search and knowledge-

based search, are given in the following sections. It has to be noted that while most of

the above explanation described MA as an extension of GA, any evolutionary algorithm,

including DE can be used as the first, stochastic, part of the algorithm.

Random local search

Ideally, the local search part of the MA would search all of the possible values in the

solution space neighboring the candidate solution found by the evolutionary part of the

algorithm. While this is possible for simpler solution spaces, the solution space in the

presented research is too complex for this. For example, with the discretization step

of 0.05, if we wanted to search just five steps around the found solutions space in

positive and negative direction this would yield 𝑛𝑖 𝑗 , possible combinations – where 𝑛 is

the number of possible steps, in this case 11 ( 𝐼 = [±0.25,±0.20,±0.15,±0.10,±0.05, 0]),

and 𝑖 𝑗 is the total dimensionality of the gene chromosome – 36 in the presented case.

In other words, exhaustively searching just the local area would require the search of

1136, which is approximately 3 × 1037 solutions. As this is impossible to accomplish in a

realistic span of time, a randomized local search is applied. In this case, a randomized

sampling is performed according to:
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𝑌 ′ =


𝑦1

1 ±𝑈 (𝐼) · · · 𝑦1
6 ±𝑈 (𝐼)

...
. . .

...

𝑦6
1 ±𝑈 (𝐼) · · · 𝑦6

6 ±𝑈 (𝐼)2


, (2.62)

where𝑈 (𝐼) represents the random selection of an element of 𝐼 with uniform probability.

This can be performed 𝑁 times, to search more possible solutions in the neighborhood,

with 𝑁 being set to 1,000 for the presented research.

Informed local search

Unlike random local search which aims at searching the immediate neighborhood of

the found candidate solution, informed search works by targeting the elements which

may be of significant importance. In the presented research, this means that we will

observe how individual paths influence the energy use. This will be done by determin-

ing which of the input variables have the highest influence, and then the adjustment will

be made to a specific coefficients that may have a direct influence on it. For example,

if the coefficients show that the position and speed of the fourth joint have the high-

est influence on the energy use of the IRM, then the coefficients of that specific joints

path may be targeted, lowering them, in order to lower the influence of that particular

joint, with the goal of lowering the overall energy use. Four methods will be used to

determine the feature importance, and design the cultural algorithm selection – Pear-

son’s, Spearman’s and Kendall’s correlation, and the Random forests (RF) algorithm.

The first three are used to determine the linear, monotonic and non-linear correlation

between the variables, while the RF algorithm is used to determine the importance of

the variables in the dataset in regards to the targeted output. Pearson’s coefficient of

correlation is used to determine the linear correlation between an input variable and

the energy consumption of the IRM. It is defined on the range of [−1, 1], where −1

indicates a perfect negative linear correlation, 1 indicates a perfect positive linear cor-

relation, and 0 indicates no linear correlation. The formula for the Pearson’s coefficient

of correlation is given as:
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𝜌𝑃
𝑋𝑑:, 𝑗 ,𝑌

𝑑 =

∑𝑛
𝑖=1(𝑥𝑖 − 𝜇𝑋𝑑:, 𝑗 ) (𝑦𝑖 − 𝜇𝑌𝑑 )√︃∑𝑛

𝑖=1(𝑥𝑖 − 𝜇𝑋𝑑:, 𝑗 )
2
√︁∑𝑛

𝑖=1(𝑦𝑖 − 𝜇𝑌𝑑 )2
, (2.63)

where 𝑌 𝑑 = [𝑦1, 𝑦2, · · · , 𝑦𝑛] represents the output variable of the dataset 𝑑, with the

length 𝑛 equal to the dimension of 𝑗-th input variable 𝑋𝑑:, 𝑗 . To determine the monotonic

correlation between the variables, the Spearman’s coefficient of correlation is used. It

is defined on the same range, and in the same manner, as the Pearson’s coefficient.

Spearmans’s coefficient of correlation is defined as:

𝜌𝑆
𝑋𝑑:, 𝑗 ,𝑌

𝑑
=

∑𝑛
𝑖=1(𝜚(𝑥𝑖) − 𝜚(𝜇𝑋𝑑:, 𝑗 )) (𝜚(𝑦𝑖) − 𝜚(𝜇𝑌𝑑 ))√︃∑𝑛

𝑖=1(𝜚(𝑥𝑖) − 𝜚(𝜇𝑋𝑑:, 𝑗 ))
2
√︁∑𝑛

𝑖=1(𝜚(𝑦𝑖) − 𝜚(𝜇𝑌𝑑 ))2
, (2.64)

where 𝑅(𝑥𝑖) and 𝑅(𝑦𝑖) are the ranks of the variables within 𝑋𝑑:, 𝑗 and 𝑌 𝑑, and 𝜚(𝜇𝑋𝑑:, 𝑗 ) and

𝜚(𝜇𝑑
𝑌
) are the mean ranks of the variables. The rank of the variable is the position of

the variable in the sorted vector, and the mean rank is the mean value of the ranks.

Finally, the Kendall’s coefficient of correlation is used to determine the non-linear cor-

relation between the variables. It is also defined on the range of [−1, 1], as:

𝜌𝐾
𝑋𝑑:, 𝑗 ,𝑌

𝑑 =
2

𝑛(𝑛 − 1)

𝑛−1∑︁
𝑖=1

𝑛∑︁
𝑘=𝑘+1

sgn((𝑥𝑖 − 𝑥𝑘 ) (𝑦𝑖 − 𝑦𝑘 )), (2.65)

where 𝑠𝑔𝑛 is the sign function, which returns 1 if the argument is positive, −1 if the

argument is negative, and 0 if the argument is zero.

RF regression is an ensemble learning technique that combines predictions from mul-

tiple decision trees to produce a robust and accurate model for continuous target vari-

ables. It builds each tree using a random bootstrap sample from the training data,

where each sample is drawn with replacement. Additionally, at each split in a tree,

a random subset of features is considered, ensuring diversity in the structure of the

trees. This randomness, coupled with the ensemble averaging, reduces overfitting and

improves the generalization capability of the model [65].

The prediction of a RF regression model is obtained by aggregating the predictions

from all the individual trees in the forest. For a single input (𝑋𝑖,:), the prediction from
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the 𝑡-th tree is denoted as 𝑓𝑡 (𝑋𝑖,:). The overall prediction of the RF for (𝑋𝑖,:), denoted

as 𝑦̂, is given by:

𝑦̂ =
1
𝑇

𝑇∑︁
𝑡=1

𝑓𝑡 (𝑋𝑖,:), (2.66)

where 𝑇 is the total number of trees in the forest. This averaging mechanism reduces

variance, as the ensemble tends to smooth out the errors of individual trees, leading to

more stable predictions [65].

Each tree in the forest is constructed using a random bootstrap data point of the data.

For the 𝑖-th bootstrap sample, let 𝐷𝑖 denote the subset of data used to train tree 𝑡. At

each split in the tree, a random subset of features 𝐹𝑠𝑝𝑙𝑖𝑡 ⊆ 𝐹 is selected, where 𝐹 is

the set of all features. The split is chosen to minimize the impurity of the resulting child

nodes, measured using the variance of the target variable. For a split at node 𝑣 with

left child 𝐿 and right child 𝑅, the reduction in impurity Δ𝐼𝑚 is calculated as:

Δ𝐼𝑣 = 𝐼𝑣 −
(
|𝐿 |
|𝑣 | 𝐼𝐿 +

|𝑅 |
|𝑣 | 𝐼𝑅

)
, (2.67)

where 𝐼𝑣, 𝐼𝐿, and 𝐼𝑅 are the variances of the target variable in the parent node 𝑣, left

child 𝐿, and right child 𝑅, respectively, and |𝑣 |, |𝐿 |, and |𝑅 | denote the number of data

points in these nodes. The split that maximizes Δ𝐼𝑣 is selected [27].

To ensure robust performance, RF regression uses Out-of-Bag (OOB) data points to

evaluate model performance during training. OOB data points are the data points not

included in the bootstrap data point for a specific tree. The prediction for an OOB data

point is obtained by aggregating the predictions from all trees that did not use it in

training. The OOB error is then computed as the mean squared error between the true

target values and the OOB predictions, providing an unbiased estimate of the model’s

performance.

One of the significant advantages of RF is its ability to estimate feature importance,

providing insights into which features contribute most to the predictive model. Two

widely used methods for computing feature importance in RF are the Mean Decrease

in Impurity (MDI) and Feature Permutation Importance.
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MDI leverages the reduction in impurity achieved by splits involving a particular fea-

ture. Impurity measures, such as Gini impurity for classification tasks or variance for

regression tasks, quantify the homogeneity of the target variable within a node. For a

given feature 𝑋:, 𝑗 , the importance score 𝐼𝑀𝐷𝐼 (𝑋:, 𝑗 ) is computed as:

𝐼𝑀𝐷𝐼 (𝑋:, 𝑗 ) =
𝑇∑︁
𝑡=1

∑︁
𝑛∈N𝑡

Δ𝐼𝑛 · ⊮(𝑛 splits on 𝑋:, 𝑗 ), (2.68)

where 𝑇 is the total number of trees in the forest, N𝑡 is the set of nodes in tree 𝑡, Δ𝐼𝑛

represents the impurity reduction achieved by node 𝑛, and ⊮ is an indicator function

that equals 1 if 𝑛 splits on 𝑋:, 𝑗 , and 0 otherwise [27]. The computed importance scores

are normalized to facilitate comparison among features.

Feature Permutation Importance is another method that evaluates the impact of each

feature on the model’s predictive performance. It permutes the values of a feature 𝑋:, 𝑗

randomly, breaking the association between 𝑋:, 𝑗 and the target variable, and measure

the resulting decrease in model accuracy. The importance of 𝑋:, 𝑗 , denoted 𝐼𝑝𝑒𝑟𝑚 (𝑋:, 𝑗 ),

is calculated as:

𝐼𝑝𝑒𝑟𝑚 (𝑋:, 𝑗 ) =
1
𝑇

𝑇∑︁
𝑡=1

(
𝐴
(𝑡)
𝑜𝑟𝑖𝑔
− 𝐴(𝑡)𝑝𝑒𝑟𝑚

)
, (2.69)

where 𝐴
(𝑡)
𝑜𝑟𝑖𝑔

is the accuracy (or another performance metric) of tree 𝑡 on the original

data, and 𝐴
(𝑡)
𝑝𝑒𝑟𝑚 is the accuracy after permuting 𝑋:, 𝑗 . The averaged difference across

all trees quantifies the decrease in performance caused by disrupting 𝑋:, 𝑗 , indicating its

contribution to the model [27].

While MDI provides a computationally efficient measure of feature importance by ex-

amining splits during training, it can sometimes be biased toward features with more

categories or higher variability. Feature Permutation Importance, on the other hand,

directly assesses the impact of a feature on the model’s performance and is model-

agnostic, but it requires additional computations involving out-of-bag data points or a

separate validation dataset.

Both methods provide valuable insights into feature importance, helping practitioners

interpret the model and identify the most influential features for decision-making or
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further analysis. By comparing the results of these methods, one can gain a compre-

hensive understanding of the role each feature plays in the predictive model.

The code implementing the MA, with all the parts involving the individual GA parts and

the local searches are given in Appendix F.

2.3.5 Summary of presented methods

This chapter served to discuss two main parts of the methodology – the MA optimiza-

tion approach, together with the supporting approaches for determining the influence

of individual features on the output. In addition, multiple possible approaches for de-

termining the fitness function have been discussed – including four different ML ap-

proaches for developing a data-driven model, and the LE approach for developing a

numerical model. The full realization of the scientific contributions of these described

approaches will be given in the "Results and discussion" chapter.
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CHAPTER 3
Dataset collection and analysis

This chapter will describe the process in which the experiment was setup for the collec-

tion of data within a virtual simulation environment and a real-world, laboratory environ-

ment – along with the description of the used equipment. Following that, the process of

generating synthetic data will be shown and described. Finally, the statistical analysis

will be performed, with a detailed description of used evaluation metrics, and the results

will serve to compare the datasets which will be used in the research going forward.

3.1 Simulation setup

The initial setup for the experimental data collection and the data collection within the

simulation are the same, which is why they will be described together. For both of the

data collection schemes, the setup is performed within the RobotStudio software. The

robot used is a ABB IRB 120 industrial robotic manipulator. The IRM in question is a

small IRM, with a maximum reach of 0.58 meters, and a maximal handling capacity

of 3 kilograms. It is designed as an articulated robot with six axis, and six degrees

of freedom. This is achieved by the following joint configuration, where T denotes a

T-Type joint (joint which rotates the wrist about the arm axis) and R denoting an R-type

joint (joint which rotates perpendicularly to the arm axis): T-R-R-T-R-T – which is a

standard configuration of articulated IRMs, when observed from the base to the end-

effector. The IRB 120 IRM is powered by electricity, with each of the joints having an

individual electric motor. The nominal power consumption of the robot is 0.24 kW [41].

The robot is controlled with an IRC5 controller unit. The controller is connected with

two user input devices – a laptop connected over the local network and a FlexPendant

70



ENERGY EFFICIENCY IMPROVEMENT OF INDUSTRIAL
ROBOTIC MANIPULATORS THROUGH THE APPLICATION
OF MACHINE LEARNING AND MEMETIC ALGORITHMS

CHAPTER 3. DATASET COLLECTION AND ANALYSIS

3.1. SIMULATION SETUP

controller.

The first step of the simulation setup process is the creation of a virtual environment

for the used IRM, equal to the laboratory setup. This process matters to assure no

impacts happen during the simulation. Despite the limits of the of the robot allowing

a wider movement, the reality of the laboratory setup and the robot configuration as

given limits certain motions of the joints, lowering their realistic range. To simulate the

laboratory environment the robot is placed on the 800.00 mm by 800.00 mm base that

is 100 mm tall. Below the base, a 2000,00 mm by 2400,00 mm floor object is added.

This object has no height, and serves only for collision detection. Then, three fences

are added surrounding the base of the IRM, with the height of 1000,00 mm. The IRM

sits on the middle pedestal which is removed from the left wall 416 mm, the right wall

by 786 mm and the back wall by 378 mm. The floor plan of the laboratory is given in

Appendix A.

The described environment is designed in the RobotStudio software package [43]

which will be used for the data collection process – both within the simulation and

the laboratory environment. The comparison between the real and simulated labo-

ratory environements are shown in Figure 3.1, with the laboratory environment as it

appeared during the data collection procedure (March 2024) shown in subfigure 3.1a,

and the created simulated environment shown in subfigure 3.1b. The figure shows that

the specific elements and textures weren’t replicated perfectly. This was not the goal of

environment modeling. The goal was to simply set the objects in the same position as

the real environment, as in this way they can serve as collision detection. This allows

for testing of various positions of the used IRM, in order to determine the real ranges

in which the movement can be performed without any danger of collision between the

robot and the environement.
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(a) Laboratory environment (b) Simulated environment

Figure 3.1: Comparison between the laboratory and the simulated environment.

In addition to the environment elements shown in the floor plan, Subfigure 3.1a shows

that there are power and signal cables, as well as pneumatic lines connected to the

used IRM. These elements were also added to the simulation, in order to avoid and

potential snags due to their position in the environment. Then, the IRM was moved

in the simulation environment, by each individual joint, testing a multitude of positions

to determine which ranges of movement will not results in any possible collision or a

near miss between the IRM and other elements. The determined ranges are given in

Table 3.1.

Table 3.1: Comparison of the nominal joint range, as given by the manufacturer, and the joint range that

was determined for use in simulation and laboratory data collection. Joints numbered from base towards

the end-effector in ascending order.

Joint
Nominal Joint Range Actual Joint Range

Minimum [°] Maximum [°] Minimum [°] Maximum [°]

1 -165 +165 -90 90

2 -110 110 -10 45

3 -110 70 -100 40

4 -160 160 -160 160

5 -120 120 -120 120

6 -400 400 -400 400
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3.2 Data collection program in RAPID

The data collection procedure was realised within the RAPID programming language

– a proprietary functional programming language created by ABB for the purpose of

automating robotic tasks [44]. RAPID programs are written as modules. While no

parallelization of features is allowed within a module, multiple modules can be added to

the controller, and ran concurrently – if the virtual controller supports parallel execution.

To allow for the data collection process to be executed while the robot the data is

being collected from is in motion, this parallelization feature is used. As shown in the

Figure 3.2, the robot controller (virtual – within the simulation or a real one) controls

the execution of the robot. It is directly controlling the robot through the instructions

generated within the control module. Meanwhile, the relevant measurements from the

robot are collected within the measurement module. These values are stored within a

comma-separated values (CSV) file.

Virtual

controller

Control

Module

(RAPID)

Measure

Module

(RAPID)

Figure 3.2: The two modules used for data collection.

First, the control module needs to be discussed, in order to understand how the oper-

ation of the robot is controlled in order to obtain the measurements. The goal of the

code is to generate a random position in the joint space of the industrial robotic manip-

ulator, or in other words, get six random values within the ranges provided in Table 3.1,
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and then move the robot from the current position to the other. This process should be

repeated 1,000 times. In other words, the algorithm for obtaining the dataset can be

defined as:

Algorithm 2 Pseudocode of the algorithm for generating a random value of path.
𝑛← 1

𝑖 ← 1

𝑗𝑜𝑖𝑛𝑡ℎ𝑖𝑔ℎ𝑒𝑟 , 𝑗𝑜𝑖𝑛𝑡𝑙𝑜𝑤𝑒𝑟 ← array of joint limits

𝑅𝐴𝑁𝐷_𝑀𝐴𝑋 ← 32767

𝑉 ← array of possible speeds, 𝑁𝑠𝑝𝑒𝑒𝑑𝑠 ← length of speed array

𝑍 ← array of possible zones, 𝑁𝑧𝑜𝑛𝑒𝑠 ← length of zone array

while 𝑛 ≤ 1, 000 do

for 𝑖 ≤ 6, 𝑖 + + do

𝑅𝑖 ← 𝑅𝑎𝑛𝑑𝑜𝑚()/𝑅𝐴𝑁𝐷_𝑀𝐴𝑋 ∗ ( 𝑗𝑜𝑖𝑛𝑡ℎ𝑖𝑔ℎ𝑒𝑟 [𝑖] − 𝑗𝑜𝑖𝑛𝑡𝑙𝑜𝑤𝑒𝑟 [𝑖]) + 𝑗𝑜𝑖𝑛𝑡𝑙𝑜𝑤𝑒𝑟 [𝑖]

end for

𝐽 = [𝑅1 · · · 𝑅6, 𝑉 [𝑅/𝑅𝐴𝑁𝐷_𝑀𝐴𝑋 ∗ 𝑁𝑠𝑝𝑒𝑒𝑑𝑠], 𝑍 [𝑅/𝑅𝐴𝑁𝐷_𝑀𝐴𝑋 ∗ 𝑁𝑧𝑜𝑛𝑒𝑠]]

Move Robot to 𝐽

n+=1

end while

Regarding the code itself, first, the constants need to be defined. These variables

include the joint ranges (as already noted, given in Table 3.1) – an example of this is

given in the Listing 3.1, as well as the possible values of speed and zoning. The ’...’

symbol in the listing is used to skip through similar, repetitive code.

1 ! Define the upper and lower bounds of joints,

2 ! grabbed by observing kinematics

3 CONST num J1_LO := -120;

4 CONST num J1_HI := 120;

5 ...

6 CONST num J6_LO := -400;

7 CONST num J6_HI := 400;

Listing 3.1: Setting joint value limits
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The parameter speed controls the speed of the tool center point (TCP) along the de-

fined path. The speed is given as v𝑋, where 𝑋 represents the desired speed, in mm/s.

For example, ’v150’ means that the target speed is 150 mm/s; while ’v3000’ means

that the target speed is 3000 mm/s or 3 m/s. The actual TCP speed may vary, due to

the path planning considerations [43]. The zone parameter refers to the precision, or

how close should the TCP path follow the pre-calculated path between the assigned

points. Smaller zone value means that the robot will follow the path more precisely,

but will slow down – especially in corners, leading to slower execution. A larger zone

allows for smoother, faster motion by rounding corners or blending paths. In addition to

the value definition similar to speed with z𝑋, it is possible to assign the value of ’fine’. If

positioning is given as ’fine’ the robot stops precisely at the programmed point, ensur-

ing maximum accuracy – no blending occurs between this and the following point. If

the value is provided with z𝑋 then 𝑋 indicates the amount of deviation (in millimeters)

allowed to be used for path smoothing. In the provided simulation, random variables of

these two parameters are selected in order to simulate as many different applications

and path programming approaches as possible. To achieve this, the possible values

are stored in an array. The array of the values needs to have the number of values

defined at the start. This can be seen in the Listing 3.2, which shows the array con-

taining the possible values of the zone parameter. Do note that the ’ZONE_NUMBER’

could be given explicitly as a number of values when defining the array, but in the given

example it was defined separately. In addition to that, note that the specific variable

type for zone is ’zonedata’, which is an internally defined RAPID variable type for zone

information – speed information has the equivalent type defined as ’speeddata’.

1 CONST num ZONE_NUMBER:=14;

2 CONST zonedata ZONE_ARR{ZONE_NUMBER}:=[fine, z0, z1, z5, z10, z20, z30,

3 z40, z50, z60, z80, z100, z150,

z200];

Listing 3.2: Example of defined array of zones

In addition to the defined constant values, the variables need to be defined. The defined
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variables are the target joint positions (J1, J2, J3, J4, J5, and J6), the speeddata V

and zonedata Z as holders for the appropriate values, along with some helper string

variables for storing the execution times, as shown in Listing 3.3.

1 !Define variables for storing generated random values

2 VAR num J1;

3 ...

4 VAR num J6;

5 VAR speeddata V;

6 VAR zonedata Z;

7

8 VAR string starttime;

9 VAR string endtime;

Listing 3.3: Defining variables.

The control of the robot happens going forward, within he main process (defined as

’PROC main()’) of the module. We perform the iteration for the amount of ties, defined

by the constant SIMULATION_COUNT, using a FOR loop. We perform the random

selection of the joint value within the ranges given as constants (defined as shown in

Listing 3.1), according to Algorithm 1. This is done using the ’RAND’ command. This

command uniformly randomly selects the value between 0 and 32767 (215). To use

this to get a real value, first the value is defined with the maximum possible value,

normalizing it to the range of [0, 1]. This value is multiplied with the posible range of

the joint value 𝐽. To move the randomly selected value into the range of the joint, the

lower value of the joint is added to it, per:

𝑗 ∼ min(𝐽) + 𝑈 (0, 32767)
32767

· [max(𝐽) −min(𝐽)], (3.1)

where 𝑈 indicates a uniform selection.

The same process is done for the selection of values from ’SPEED_ARR’ and ’ZONE_ARR’

arrays of values. Then, these values are used with the command ’MoveAbsJ ’. The

command ’MoveAbsJ ’ takes four parameters. The second and third parameter are the

previously defined values of speed and zone, randomly selected from the variable ar-

76



ENERGY EFFICIENCY IMPROVEMENT OF INDUSTRIAL
ROBOTIC MANIPULATORS THROUGH THE APPLICATION
OF MACHINE LEARNING AND MEMETIC ALGORITHMS

CHAPTER 3. DATASET COLLECTION AND ANALYSIS

3.2. DATA COLLECTION PROGRAM IN RAPID

ray containing possible values. It should be noted that the values could be selected

directly here, using the defined command – but the variables ’V ’ and ’Z ’ are used for

readability. The tool parameter (given as ’tool0’) allows the command to calculate the

TCP, which is necessary to achieve the target speed and zone defined with the previ-

ous two parameters. In other words, this is a parameter used in internal path planning

used for moving the joints into the position given as the first parameter. This position

is defined with a two dimensional array. The first sub-array of six values contains the

target values of robot joints J1 through J6. The second sub-array is used to control the

external axes (e.g. tilt tables, conveyor axes, gripper axes, etc.). Up to six of these axes

can controlled. In case an axis is not present, the convention of the RAPID language

dictates that its value should be set to 9×109 (’9E9’ in RAPID), with this value indicating

that no axis is present. This loop is shown in the Listing 3.4

1 FOR i FROM 0 TO SIMULATION_COUNT DO

2

3 !Randomly select joint 1--6, speed and zone

4 J1 := ((RAND()/RAND_MAX)*(J1_HI-J1_LO))+J1_LO;

5 ...

6 J6 := ((RAND()/RAND_MAX)*(J6_HI-J6_LO))+J6_LO;

7

8 V := SPEED_ARR{1+ROUND((RAND()/RAND_MAX)*(SPEED_NUMBER -1))};

9 Z := ZONE_ARR{1+ROUND((RAND()/RAND_MAX)*(ZONE_NUMBER -1))};

10

11 MoveAbsJ [[J1,J2,J3,J4,J5,J6],

12 [9E9,9E9,9E9,9E9,9E9,9E9]],V,Z,tool0;

13

14 ENDFOR

Listing 3.4: Main loop for moving the robot in the randomly selected position.

The second module deals with obtaining the values from the industrial robot unit. These

values include: position (in degrees), speed (in /s), and joint torque (in Nm) for joints 1

through six; and 𝑥, 𝑦 and 𝑧 position (in mm), the angle defined via quarterions 𝑞1, 𝑞2,

𝑞3, and 𝑞4, and the angle defined via Euler angles 𝜓, 𝜃, 𝜙 for TCP. Quaternions and
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Euler angles are two mathematical representations used to describe rotations in three-

dimensional space. While Euler angles express rotations through a sequence of angles

about coordinate axes, quaternions provide a compact and computationally efficient

representation that avoids singularities and ambiguities inherent in Euler angles [10].

A quaternion is a four-dimensional extension of complex numbers and is represented

as:

𝑞 = 𝑤 + 𝑥i + 𝑦j + 𝑧k, (3.2)

where 𝑤 is the scalar part, 𝑥, 𝑦, 𝑧 are the vector components, and i, j, k are the imaginary

unit vectors satisfying:

i2 = j2 = k2 = ijk = −1. (3.3)

For unit quaternions, which are often used to represent rotations, the constraint is:

∥𝑞∥ =
√︁
𝑤2 + 𝑥2 + 𝑦2 + 𝑧2 = 1. (3.4)

A rotation in three-dimensional space can be expressed using a quaternion 𝑞 derived

from the axis-angle representation. For a rotation by an angle 𝜃 about a unit axis

u = (𝑢𝑥 , 𝑢𝑦, 𝑢𝑧), the quaternion is given by:

𝑞 = cos
(
𝜃

2

)
+ sin

(
𝜃

2

)
(𝑢𝑥i + 𝑢𝑦j + 𝑢𝑧k). (3.5)

Euler angles, on the other hand, represent rotations using three angles (𝜙, 𝜃, 𝜓), corre-

sponding to rotations about fixed axes. A common convention is the ZYX order, where

the angles correspond to rotations about the 𝑧-axis, 𝑦-axis, and 𝑥-axis, respectively.

The composite rotation matrix 𝑅 for Euler angles is given by:

𝑅 = 𝑅𝑧 (𝜙)𝑅𝑦 (𝜃)𝑅𝑥 (𝜓), (3.6)

where 𝑅𝑧 (𝜙), 𝑅𝑦 (𝜃), and 𝑅𝑥 (𝜓) are the rotation matrices for individual axes:

𝑅𝑧 (𝜙) =


cos 𝜙 − sin 𝜙 0

sin 𝜙 cos 𝜙 0

0 0 1


, 𝑅𝑦 (𝜃) =


cos 𝜃 0 sin 𝜃

0 1 0

− sin 𝜃 0 cos 𝜃


, 𝑅𝑥 (𝜓) =


1 0 0

0 cos𝜓 − sin𝜓

0 sin𝜓 cos𝜓


.

(3.7)
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Quaternions can be converted to Euler angles and vice versa. For a quaternion 𝑞 =

(𝑤, 𝑥, 𝑦, 𝑧), the Euler angles (𝜙, 𝜃, 𝜓) in the ZYX convention are computed as:

𝜙 = arctan 2(2(𝑤𝑥 + 𝑦𝑧), 1 − 2(𝑥2 + 𝑦2)), (3.8)

𝜃 = arcsin(2(𝑤𝑦 − 𝑧𝑥)), (3.9)

𝜓 = arctan 2(2(𝑤𝑧 + 𝑥𝑦), 1 − 2(𝑦2 + 𝑧2)). (3.10)

Conversely, a quaternion can be derived from Euler angles using:

𝑞 = cos
(
𝜙

2

)
cos

(
𝜃

2

)
cos

(
𝜓

2

)
+ sin

(
𝜙

2

)
sin

(
𝜃

2

)
sin

(
𝜓

2

)
i + . . . , (3.11)

with additional terms for the j and k components following a similar pattern. While Euler

angles are intuitive and easy to interpret, they suffer from gimbal lock, a condition where

the rotation axes become degenerate. Quaternions, being free from such singularities,

are widely used in applications requiring smooth and continuous rotations [10]. In

addition to numerical variables used to store the joint positions, speeds and torques,

some additional variables, and variable types, are necessary, as shown in Listing 3.5.

1 VAR NUM POS1;

2 VAR NUM SPD1;

3 VAR NUM TOR1;

4 ...

5 VAR NUM POS6;

6 VAR NUM SPD6;

7 VAR NUM TOR6;

8

9 VAR IODEV LOGFILE;

10

11 VAR robtarget TCP;

12 VAR clock sim_clock;

13 VAR num time;

Listing 3.5: Example of writing the values.

As the code snippet shows, the file is defined via the variable type ’IODEV ’. The de-

sired information about the position and orientation of the TCP is stored in the variable
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type ’robtarget ’. The clock variable, with the type of the same name is needed as the

simulation time may not equal real time. The simulation wthin the RobotStudio package

can be sped up by a certain factor provided that the hardware of the workstation the

simulation is executed on allows this. The sped up simulation will physically perform

identically to a real-world one, with the benefit of the measurement being completed

sooner. In case when this code is used on the real controller and robot, the clock

variable will simply track the real time. The output value of this will be stored in the

variable time. In the start of the main process the logfile location and name is defined

with command ’Open’. The file name is formatted as:

< Date of measurement > _ < Hour > _ < Minute > _ < Second > _MEASUREMENT.CSV,

with the time being the start of the simulation. In the opened logfile, using the ’Write’

command, the header containing the names of variables that will be stored in each

column of the CSV file are written, per code snippet shown in Listing 3.6.

1 Open "HOME:" \File:=CDate()+"-"+

2 NumToStr(GetTime(\Hour),0)+"-"+

3 NumToStr(GetTime(\Min),0)+"-"+

4 NumToStr(GetTime(\Sec),0)+

5 "_MEASUREMENT.CSV", logfile \Write;

6

7 Write logfile, "t,q1,dq1,tau1,q2,dq2,tau2,"\NoNewLine;

8 ...

9 Write logfile, "x,y,z,e1,e2,e3,e4,psi,theta,phi";

Listing 3.6: The opening of the logfile which stores the measured data

Then, to assure that there are no mistakes or issues with the clock, it is reset and

restarted, before entering the data collection loop. In this loop, the data for each of the

six joints is collected and stored in the appropriate variable. In addition to this, the data

for TCP position and orientation is stored in a variable along with time, per Listing 3.7

1 GetJointData \MechUnit:=ROB_1, 1
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2 \Position:=POS1

3 \Speed:=SPD1

4 \Torque:=TOR1;

5 ...

6 GetJointData \MechUnit:=ROB_1, 6

7 \Position:=POS6

8 \Speed:=SPD6

9 \Torque:=TOR6;

10

11 TCP := CRobT(\Tool:=tool0 \WObj:=wobj0);

12

13 time := ClkRead(sim_clock);

Listing 3.7: The commands for measuring the values from the robot unit

The values for position and orientation are obtained from the TCP variable at the time

of writing to the logfile – the 𝑥, 𝑦, and 𝑧 psitions are obtained from the TCP object

’TCP.trans.x ’, while the quarternions are obtained with ’TCP.rot.q1’. The Euler angles

are calculated using the ’EulerZYX ’ command, which takes two values – the desired

angle (given as ’X ’, ’Y ’, or ’Z ’), and the ’TCP.rot ’ object. All of the numerical values

are converted to strings, with five decimal places of precision. These strings are joined

together, separated with commas, using the ’+’ operator. The execution of the code is

paused, until 0.025 seconds have elapsed, to assure the measurement frequency of

40Hz. This value was selected to balance the amount of collected datapoints and their

variety, with the amount of time long enough to perform the measurements. The time

was mostly influenced by the amount of measurements desired for further processing

and model creation, as a higher frequency may result in a large number of similar

datapoints, especially in those path segments that use slower speeds. The complete

program codes for both modules are given in Appendix D.

As the goal is to model the energy of the individual joint, as well as the full energy used

to move the whole IRM, additional values need to be calculated. These value include

the output values of energy – both per each joint and the total used energy. In addition o

this, some additional supporting values are calculated in order to potentially assist the
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simplicity of modeling using the previously detailed techniques. Additional variables,

even if they are derived from the existing ones, can have a more direct influence on the

output, easing the process of model training. These values are:

• the measurement time between two data points Δ𝑡,

• acceleration of each axis 𝜔𝑖∀𝑖 ∈ [1, · · · , 6],

• the change in linear position of TCP since the last measurement Δ𝑥,Δ𝑦, and Δ𝑧,

• the change in angle of the TCP Δ𝜙,Δ𝜃, and Δ𝜓,

• the linear components of TCP speed and acceleration Δ ¤𝑥,Δ ¤𝑦, and Δ ¤𝑧, and

• the angular speeds and accelerations Δ ¤𝜙,Δ ¤𝜃, and Δ ¤𝜓.

The calculation of these values is done within using Python, namely the Pandas library.

The measurement time between two data points is calculated by subtracting the time of

the first data point 𝑡1, from the second data point 𝑡2 – Δ𝑡 = 𝑡2−𝑡1. The changes in position

and speeds are calculated in the same manner, subtracting the previous measurement

value from the current one. While this sacrifices a single, first, datapoint, considering

a large amount of data points in the dataset, this does not influence the measurement

in any significant way. Final thing to note is that the energy cannot be directly written

for individual joints in the robot studio. What can be written is the individual joint torque

𝜏𝑖∀𝑖 ∈ [1, · · · , 6], which can then be used to calculate the momentary power and the

energy as a product of it with speed.

3.3 Statistical analysis and comparison between datasets

One of the key indicators of the quality of simulation or synthetic datasets is the simi-

larity between the datasets. Since the research presented in this thesis includes both

simulated synthetic and statistically generated synthetic data, comparisons of this type

are extremely important. To achieve a good performance on real validation data when
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the model has been trained using synthetic data, the training set should be statisti-

cally similar to the original data [28]. For this reason three analyses were performed to

test the data similarity and determine if it is satisfactory – calculation and comparison

of descriptive statistics between datasets, variable pair comparisons and distribution

comparisons. Descriptive statistics are a set of brief coefficients and metrics that sum-

marize a given dataset – usually describing the central tendency of the set and its

spread. The central tendency refers to the point in which the main part of the distri-

bution is centered – or, in other words, where the probability density function (PDF) is

at its maximum, while the spread indicates how wide is the domain of PDF for a given

set of data. The metrics used for descriptive statistics in this paper are mean, median,

mode, variance, standard deviation, range (minimum and maximum values), kurtosis

and skewness [31].

First, we will define symbols which will be used throughout the description. The dataset

will be defined as 𝑋. Each variable within the dataset (a column), will be defined

as a vector 𝑋:, 𝑗 . If 𝑋:, 𝑗 consists of 𝑁 elements per 𝑋:, 𝑗 = [𝑥1, 𝑗 , 𝑋2, 𝑗 , · · · 𝑋𝑁, 𝑗 ]𝑇 . The

number of elements 𝑁 is equal for each feature 𝑋:, 𝑗 . Then, the dataset can be noted

as 𝑋 = [𝑋𝑖,1, 𝑋𝑖,2, · · · 𝑋𝑖,𝑚], where 𝑚 is the number of variables within the dataset.

The mean value of the variable 𝑋𝑑:, 𝑗 where 𝑗 indicates the variable and 𝑑 indicates the

dataset, is given as:

𝜇𝑋𝑑:, 𝑗
=

1
𝑛

𝑛∑︁
𝑖=1

𝑋𝑑𝑖, 𝑗 . (3.12)

While mean provides information to the central tendency of the variable, it is extremely

sensitive to the extreme values (outliers) of the dataset, as only a few extreme values

can significantly change the mean of the variable. For that reason, mode and median

are also calculated, as it allows us to gain insight into the skewness and spread of the

variable – e.g. a mean greater than the median indicates a positively skewed variable.

Median of the variable represents the value that is found in the middle of the sorted set.

If (𝑋𝑑) indicates the set 𝑋𝑑 sorted in an ascending order, median is defined as:
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𝑀𝑋𝑑 =


𝑋
𝑑 𝑛+1

2
𝑖, 𝑗

, ∀𝑛 mod 2 = 0,

𝑋
𝑑 𝑛

2
𝑖, 𝑗
+𝑋

𝑑 𝑛
2 +1

𝑖, 𝑗
2

,
∀𝑛 mod 2 = 1

(3.13)

The mode 𝑚 of the variable represents the value of the variable that occurs most fre-

quently. A variable can be unimodal – if it only has a single value that appears most

often, or multimodal – if there are more values that appear wth the largest frequency.

Alternatively, a variable can be nonmodal, if it does not posses a mode (frequency

𝑓𝑋𝑑
𝑖,:
= 1∀𝑖). Mode is obtained algorithmically, by creating a dictionary of values in the

variable vector, and increasing the value of the dictionary for each value that is found

during iteration through the vector. The value with the largest dictionary value is the

mode of the variable.

The above define the metrics for the central tendency of the variable. But, a more im-

portant metric, especially when discussing comparison to the snythetic and simulation

data is the dispersion of the data. If the original data is significantly more dispersed

than the generated data, the model trained on it will have issues predicting the values

which were not contained within the original dataset. The variance of the variable is

defined as:

𝑉𝑋𝑑:, 𝑗
=

1
𝑛

𝑛∑︁
𝑖=1
(𝑋𝑑𝑖, 𝑗 − 𝜇𝑋𝑑:, 𝑗 )

2. (3.14)

A commonly used expression of the variance is a standard deviation. It is defined as

the square root of the variance:

𝜎𝑋𝑑:, 𝑗
=

√√
1
𝑛

𝑛∑︁
𝑖=1
(𝑋𝑑

𝑖, 𝑗
− 𝜇𝑋𝑑:, 𝑗 )

2, (3.15)

and it provides a more precise measure. Generally, the lower value indicates less

spread (lower dispersion) of the data around the mean, while the higher dispersion in

regards to the central tendency. The standard deviation is commonly compared to the

range – the difference between the maximum and minimum value of the variable:
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≬𝑋𝑑:, 𝑗= max(𝑋𝑑:, 𝑗 ) −min(𝑋𝑑:, 𝑗 ). (3.16)

If the range is much higher than the range indicated by the standard deviation, this is a

good indicator of statistical outliers within the dataset. In the context of generated data,

the ranges should be similar, if not equal to the original data, to assure that the model

trained on the generated data has the ability to predict all possible values.

Final two descriptive statistics used are skewness and kurtosis. The skewness mea-

sures the asymmetry of a distribution, where a value of 0 indicates a fully simetrical

distribution. If the value of skewness is positive, it indicates a PDF with a tail on the

right side (a positively/right skewed), while a negative value indicates a negatively/left

skewed distribution. Skewness 𝑆𝑘 is defined as:

𝑆𝑘𝑋𝑑:, 𝑗
=

1
𝑛

∑𝑛
𝑖=1(𝑋𝑑𝑖, 𝑗 − 𝜇𝑋𝑑:, 𝑗 )

3

𝜎3
𝑋𝑑:, 𝑗

. (3.17)

Finally, kurtosis measures the degree of outliers in the distribution. It indicates whether

the data has heavy tails or if it’s concentrated around the mean. A value of 3 indicates

a normal distribution, while a value greater than 3 indicates a leptokurtic distribution

(heavy tails), and a value less than 3 indicates a platykurtic distribution (light tails)

Kurtosis 𝐾 is defined as:

𝐾𝑋𝑑:, 𝑗
=

1
𝑛

∑𝑛
𝑖=1(𝑋𝑑𝑖, 𝑗 − 𝜇𝑋𝑑:, 𝑗 )

4

𝜎4
𝑋𝑑:, 𝑗

. (3.18)

3.4 Synthetic data generation

3.4.1 Generating synthetic data using Copulas

The gaussian copula is a powerful statistical framework for modeling dependencies

among random variables, widely used in areas like finance, risk analysis, and, impor-

tantly for the presented research, synthetic data generation. It builds on the concept
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of a copula, which is a function that joins univariate marginal distributions to form a

multivariate distribution. By separating the dependency structure from the marginal

distributions, the gaussian copula allows for flexibility in modeling multivariate data

with varying marginal behaviors. This separation makes it particularly suitable for sce-

narios where different variables follow distinct distributions but exhibit some level of

interdependence [62].

Mathematically, let 𝑋 = (𝑋:,1, 𝑋:,2, . . . , 𝑋:,𝑑) be a random vector with joint cumulative

distribution function (CDF) 𝐹𝑋 (𝑋𝑖,1, 𝑋𝑖,2, . . . , 𝑋𝑖,𝑑) and marginal CDFs 𝐹𝑋𝑖, 𝑗 (𝑋𝑖, 𝑗 ) for 𝑖 =

1, 2, . . . , 𝑑. The gaussian copula models the joint CDF as:

𝐹𝑋 (𝑋1, 𝑋2, . . . , 𝑋𝑑) = 𝐶
(
𝐹𝑋1 (𝑋𝑖,1), 𝐹𝑋2 (𝑋𝑖,2), . . . , 𝐹𝑋𝑑 (𝑋𝑖,𝑑)

)
, (3.19)

where 𝐶 is the copula function. For the gaussian copula, 𝐶 is defined as:

𝐶 (𝑢1, 𝑢2, . . . , 𝑢𝑑) = ΦΣ

(
Φ−1(𝑢1),Φ−1(𝑢2), . . . ,Φ−1(𝑢𝑑)

)
, (3.20)

where 𝑢𝑖 = 𝐹𝑋𝑖, 𝑗 (𝑋𝑖, 𝑗 ) are uniform random variables on [0, 1], Φ−1 is the quantile function

(inverse CDF) of the standard normal distribution, and ΦΣ is the CDF of a multivariate

normal distribution with mean vector 0 and covariance matrix Σ. The matrix Σ encodes

the dependency structure among the variables and is typically parameterized by a

correlation matrix R, with entries 𝜌𝑖 𝑗 representing the Pearson correlation coefficients

between variables 𝑋𝑖, 𝑗 and 𝑋:, 𝑗 .

The practical application of the gaussian copula begins with fitting it to empirical data.

This involves two primary steps: (1) estimating the marginal distributions for each vari-

able, and (2) determining the correlation structure. The marginal distributions can be

modeled parametrically, such as using normal or exponential distributions, or non-

parametrically through kernel density estimation. The dependency structure is cap-

tured by the correlation matrix R, which is estimated from the transformed data. Once

the gaussian copula model is fit, synthetic data can be generated by sampling from the

copula.

To generate synthetic data, one starts by sampling from a multivariate normal distribu-
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tion with mean vector 0 and covariance matrix Σ. Let Z = (𝑍1, 𝑍2, . . . , 𝑍𝑑) represent the

sampled vector. Each component 𝑍𝑖 is then transformed to the uniform scale using the

standard normal CDF Φ:

𝑈𝑖 = Φ(𝑍𝑖), 𝑖 = 1, 2, . . . , 𝑑. (3.21)

These uniform variables are subsequently transformed to match the original marginals

by applying the inverse CDFs:

𝑋𝑖, 𝑗 = 𝐹
−1
𝑋𝑖, 𝑗
(𝑈𝑖), 𝑖 = 1, 2, . . . , 𝑑. (3.22)

The resulting 𝑋 constitutes a synthetic dataset that mirrors the statistical properties of

the original data, including the dependency structure encoded in Σ and the marginal

distributions.

The gaussian copula’s primary strength lies in its ability to model complex dependency

structures while preserving the marginal characteristics of the data. However, its re-

liance on the multivariate normal distribution introduces limitations. One key limitation

is its inability to accurately capture tail dependencies, particularly in cases involving

extreme values. For instance, in financial modeling, where joint extreme events (e.g.,

simultaneous market crashes) are of significant interest, the gaussian copula may un-

derestimate the likelihood of such co-occurrences due to its symmetric dependency

structure. This has motivated the development of alternative copulas, such as the t-

Copula, which accounts for heavy tails and exhibits stronger tail dependence [62].

Despite these limitations, the gaussian copula remains a foundational tool in multivari-

ate modeling due to its computational efficiency, interpretability, and flexibility. Its ability

to model dependencies across a wide range of applications, from synthetic data gen-

eration to stress testing in finance, underscores its versatility. Further research has

extended its capabilities, integrating it with ML methods to better capture non-linear de-

pendencies and improve robustness in high-dimensional settings [59]. In summary, the

gaussian copula provides a powerful framework for modeling dependencies in multi-

variate data while maintaining individual marginal properties. Its theoretical foundations
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and practical implementation continue to make it a cornerstone of statistical modeling

and data analysis.

3.4.2 Generative artificial network approach to tabular data generation

The Conditional Tabular Generative Adversarial Network (CTGAN) is a sophisticated

generative model designed specifically to address the challenges of generating syn-

thetic tabular data. Unlike traditional generative adversarial networks (GANs), which

struggle with the complexities of tabular data due to its mixed data types and inher-

ent statistical characteristics, CTGAN introduces innovations tailored for this domain.

Tabular data often includes both continuous and categorical variables, with categorical

variables exhibiting highly imbalanced distributions. Moreover, relationships between

features can be non-linear and involve intricate dependencies. CTGAN resolves these

issues through a combination of conditional sampling, mode-specific normalization,

and specialized training techniques, providing a robust framework for generating real-

istic synthetic tabular datasets [59].

The architecture of CTGAN comprises two key components: the generator 𝐺 and the

discriminator 𝐷. The generator takes as input a noise vector 𝑍 ∼ 𝑝𝑍 sampled from a

prior distribution, typically a standard Gaussian, and produces a synthetic data point

𝐺 (𝑍). The discriminator, on the other hand, aims to distinguish between real data

points 𝑋 ∼ 𝑝data and synthetic data points generated by 𝐺. The model is trained in

an adversarial setting, where 𝐺 attempts to generate realistic data to fool 𝐷, and 𝐷

works to improve its classification of real versus synthetic data points. This adversarial

training framework can be expressed through the minimax objective:

min
𝐺

max
𝐷

E𝑋∼𝑝data [log𝐷 (𝑋)] + E𝑍∼𝑝𝑍 [log(1 − 𝐷 (𝐺 (𝑍)))], (3.23)

where 𝑝data represents the real data distribution and 𝑝𝑍 the noise distribution. To han-

dle the unique challenges of tabular data, CTGAN extends this framework by intro-

ducing a conditional vector that guides the generation process. This vector encodes

specific categories or ranges of values for certain features, enabling the generator to
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produce data that accurately reflects the conditional distributions present in the real

dataset. This approach is particularly effective in addressing class imbalance, as it

ensures that even underrepresented categories are modeled appropriately.

Another key innovation in CTGAN is mode-specific normalization, which is applied to

continuous features. Continuous variables in tabular data often exhibit multimodal dis-

tributions, making standard normalization techniques inadequate. CTGAN addresses

this by clustering the values of a continuous feature into distinct modes and normalizing

each mode independently. Let 𝑋:, 𝑗 represent a variable, and assume that it belongs to

one of 𝑀 modes. For a data point 𝑋𝑖, 𝑗 from mode 𝑚, the normalized value is computed

as:

𝑋
(𝑚)
𝑖, 𝑗

=
𝑋𝑖, 𝑗 − 𝜇𝑚
𝜎𝑚

, (3.24)

where 𝜇𝑚 and 𝜎𝑚 are the mean and standard deviation of mode 𝑚, respectively. This

normalization ensures that the generator learns each mode separately, preserving the

original feature’s multimodal characteristics in the synthetic data.

CTGAN also incorporates logits-based representation for categorical features. Instead

of representing categorical variables through one-hot encoding, which can lead to spar-

sity and gradient vanishing issues, CTGAN uses a continuous representation of the

logits before applying the softmax function. This strategy enhances the generator’s

ability to capture complex interactions between categorical and continuous features,

improving the quality of the synthetic data.

To further stabilize training and improve the quality of generated data points, CTGAN

employs the Wasserstein GAN with gradient penalty (WGAN-GP) objective. Unlike the

original GAN objective, which relies on the Jensen-Shannon divergence, WGAN-GP

uses the Wasserstein distance as a measure of divergence between real and synthetic

data distributions. The Wasserstein distance provides smoother gradients, making

the optimization more stable and less prone to mode collapse. The gradient penalty

term ensures that the discriminator function 𝐷 satisfies the 1-Lipschitz constraint, as

required by the Wasserstein GAN framework. The updated objective function is:
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L = E𝑍∼𝑝𝑍 [𝐷 (𝐺 (𝑍))] − E𝑋∼𝑝data [𝐷 (𝑋)] + 𝜆E𝑋̂∼𝑝𝑋̂
[
(∥∇𝑋̂𝐷 ( 𝑋̂)∥2 − 1)2

]
, (3.25)

where 𝑋̂ represents interpolated data points between real and synthetic data, and 𝜆 is

a regularization parameter controlling the gradient penalty.

The training process for CTGAN alternates between optimizing the generator and the

discriminator. During each iteration, the generator data points a noise vector 𝑍 and a

conditional vector that specifies the feature values to be generated. These inputs guide

the generator in producing a synthetic data point. The discriminator then evaluates the

data point along with real data, providing feedback that helps the generator improve

its outputs. Over successive iterations, the generator learns to approximate the true

data distribution, resulting in high-quality synthetic data that preserves the statistical

properties and dependencies of the original dataset.

CTGAN has demonstrated superior performance in generating realistic synthetic tab-

ular data compared to traditional methods and other GAN-based models. It is par-

ticularly effective in scenarios involving high-dimensional data, imbalanced categorical

features, and complex feature interactions. By maintaining the statistical integrity of the

data while ensuring diversity, CTGAN enables the safe and effective use of synthetic

data in a variety of applications, including ML model training, data augmentation, and

privacy-preserving data sharing [58].

3.4.3 Combining copulas and generative networks for data generation

The CopulaGAN builds upon the foundational ideas of generative adversarial networks

(GANs) and introduces a copula-based mechanism to explicitly model dependencies

between variables in tabular data. Unlike CTGAN, which primarily relies on conditional

sampling and mode-specific normalization to handle mixed data types and complex

relationships, CopulaGAN leverages copulas to directly capture the joint dependency

structure between features. This integration of statistical copulas into the GAN frame-

work allows CopulaGAN to model non-linear and potentially asymmetric dependencies

more effectively [59].
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At the core of CopulaGAN is the transformation of the original data into a copula space,

where the marginal distributions of each variable are uniform over the interval [0, 1].

This is achieved by applying the CDF of each feature to the original data. Let 𝑋 =

(𝑋1, 𝑋2, . . . , 𝑋𝑑) represent the tabular data, and let 𝐹𝑋𝑖, 𝑗 (𝑋𝑖, 𝑗 ) denote the marginal CDF

of the 𝑖-th variable. The transformed data in copula space, U = (𝑈1,𝑈2, . . . ,𝑈𝑑), is

computed as:

𝑈𝑖 = 𝐹𝑋𝑖, 𝑗 (𝑋𝑖, 𝑗 ), 𝑖 = 1, 2, . . . , 𝑑. (3.26)

In this space, the dependency structure among the variables is captured using a copula

function 𝐶, as described by Sklar’s theorem:

𝐶 (𝑢1, 𝑢2, . . . , 𝑢𝑑) = 𝐹𝑋
(
𝐹−1
𝑋1
(𝑢1), 𝐹−1

𝑋2
(𝑢2), . . . , 𝐹−1

𝑋𝑑
(𝑢𝑑)

)
. (3.27)

CopulaGAN models this dependency structure explicitly, often using parametric cop-

ulas such as the gaussian copula, which is defined by its correlation matrix R. The

copula-based approach enables CopulaGAN to preserve complex interdependencies

that would be challenging to capture using only the adversarial framework of a standard

GAN.

The generator and discriminator in CopulaGAN operate in this copula-transformed

space. The generator learns to produce data points U = (𝑈1,𝑈2, . . . ,𝑈𝑑) that follow

the dependency structure encoded in the copula, while the discriminator distinguishes

between real and synthetic data points. Once synthetic data is generated in copula

space, it is transformed back to the original data space by applying the inverse marginal

CDFs:

𝑋𝑖, 𝑗 = 𝐹
−1
𝑋𝑖, 𝑗
(𝑈𝑖), 𝑖 = 1, 2, . . . , 𝑑. (3.28)

This mapping ensures that the synthetic data not only preserves the dependency struc-

ture but also aligns with the original marginal distributions of each feature.

A key advantage of CopulaGAN over CTGAN is its ability to explicitly model tail depen-

dencies and asymmetric relationships, which are common in financial and risk-related
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datasets. By utilizing copulas, CopulaGAN can better capture the joint behavior of vari-

ables under extreme conditions, an area where CTGAN’s reliance on mode-specific

normalization and conditional sampling may fall short. This makes CopulaGAN partic-

ularly suitable for applications that require accurate modeling of rare but critical events,

such as stress testing and risk analysis [51].

Despite its advantages, CopulaGAN shares some of the typical challenges of GAN-

based methods, including sensitivity to hyperparameter tuning and potential instability

during training. Additionally, the need to estimate and work with copula parameters,

such as the correlation matrix R, introduces computational overhead compared to more

straightforward GAN architectures. Nevertheless, its ability to combine the statistical

rigor of copulas with the flexibility of GANs makes it a powerful tool for generating

high-quality synthetic tabular data that preserves both the marginal properties and the

dependency structure of the original data.

3.4.4 Tabular Variational Autoencoder approach to data generation

The Tabular Variational Autoencoder (TVAE) is a generative model specifically de-

signed to handle the complexities of tabular data by leveraging the principles of vari-

ational autoencoders (VAEs). Unlike traditional autoencoders, which aim to learn a

deterministic mapping between input data and a low-dimensional latent representa-

tion, VAEs introduce a probabilistic framework. This enables the generation of new

synthetic data points by sampling from a latent space that captures the underlying dis-

tribution of the original dataset. TVAE extends this framework to effectively model both

continuous and categorical variables, addressing the challenges posed by mixed data

types and preserving the dependencies among features [12].

The architecture of TVAE consists of two main components: an encoder and a decoder.

The encoder maps the input data 𝑋 = (𝑋1, 𝑋2, . . . , 𝑋𝑑) into a latent space by producing

a mean vector 𝝁 and a standard deviation vector 𝝈. The latent representation 𝑍 is then

sampled from a multivariate normal distribution parameterized by these vectors:
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𝑍 ∼ N(𝝁, diag(𝝈2)), (3.29)

where diag(𝝈2) is the diagonal covariance matrix. The decoder reconstructs the data

from the latent representation by mapping 𝑍 back to the original data space, producing

synthetic data points that resemble the original data distribution.

The training objective of TVAE is to optimize the evidence lower bound (ELBO), which

balances two terms: the reconstruction loss and the Kullback-Leibler (KL) divergence.

The reconstruction loss ensures that the synthetic data generated by the decoder

closely matches the original data, while the KL divergence regularizes the latent space

to follow a standard normal distribution. The ELBO is defined as:

LELBO = E𝑞(𝑍 |𝑋) [log 𝑝(𝑋 |𝑍)] − 𝐷KL(𝑞(𝑍 |𝑋)∥𝑝(𝑍)), (3.30)

where 𝑞(𝑍 |𝑋) is the approximate posterior distribution produced by the encoder, 𝑝(𝑍)

is the prior over the latent variables (typically standard normal), and 𝑝(𝑋 |𝑍) represents

the likelihood of the data given the latent representation. The first term measures how

well the model reconstructs the data, while the second term enforces the latent space

to align with the prior distribution.

A distinguishing feature of TVAE is its ability to handle categorical data effectively.

Instead of directly reconstructing the original categorical variables, TVAE uses a logits-

based approach to model categorical features in the decoder. Let y𝑖 be a one-hot

encoded representation of a categorical variable with 𝑘 possible categories. The de-

coder predicts logits l𝑖 ∈ R𝑘 , which are then converted to probabilities using the softmax

function:

𝑃(𝑦𝑖 = 𝑗 |𝑍) =
exp(𝑙𝑖 𝑗 )∑𝐾
𝑘=1 exp(𝑙𝑖𝑘 )

, (3.31)

where 𝑙𝑖 𝑗 represents the 𝑗-th logit for the 𝑖-th variable. This probabilistic treatment

ensures smooth gradients during training and helps maintain the relationships between

categorical and continuous features.
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For continuous variables, TVAE models their reconstruction as a Gaussian distribution

with mean and variance predicted by the decoder. This approach allows TVAE to

capture the statistical properties of continuous features, such as their variance and

multimodality, without requiring explicit mode separation as in CTGAN.

Once trained, TVAE can generate synthetic tabular data by sampling from the latent

space 𝑍 ∼ N(0, I), where I is the identity matrix. The decoder transforms these la-

tent data points into synthetic data that mimics the original data’s statistical properties

and feature dependencies. This capability makes TVAE particularly useful for applica-

tions such as data augmentation, privacy-preserving data sharing, and the generation

of synthetic datasets for machine learning model evaluation. A major advantage of

TVAE over other generative models like GANs is its stability during training. Since

VAEs are not adversarially trained, they avoid issues such as mode collapse, which

can occur in GAN-based models. Moreover, the probabilistic nature of VAEs allows

TVAE to produce a more continuous and smooth latent space, facilitating the gener-

ation of diverse and realistic synthetic data. However, TVAE may face challenges in

capturing highly complex dependencies, especially in datasets with intricate non-linear

relationships, where models like CTGAN or CopulaGAN might perform better [12]. In

summary, TVAE offers a robust and flexible framework for generating synthetic tabu-

lar data by leveraging the strengths of variational autoencoders. Its ability to handle

mixed data types, combined with a stable and interpretable training process, makes it

a valuable tool for a wide range of data-centric applications.

3.4.5 Methods of evaluating generated synthetic data

The quality of synthetic data is evaluated using metrics designed to measure its fi-

delity and utility. Two important metrics are the Column Pair Score and the Column

Shape Score, which assess the ability of the synthetic data to preserve the statistical

relationships and distributional properties of the original data. The Column Pair Score

evaluates the pairwise dependencies between columns by comparing the joint prob-

ability distributions of all column pairs in the real-world and synthetic datasets. Let
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𝑃real(𝑋𝑖, 𝑗 , 𝑋:, 𝑗 ) and 𝑃synthetic(𝑋𝑖, 𝑗 , 𝑋:, 𝑗 ) denote the joint distributions of columns 𝑋:, 𝑗 and

𝑋′:, 𝑗 in the real and synthetic datasets, respectively. The Column Pair Score, denoted as

Cpair, is calculated as the average Jensen-Shannon (JS) divergence across all column

pairs [59]:

Cpair = 1 − 1
𝑁pairs

∑︁
(𝑖, 𝑗)

𝐷JS(𝑃real(𝑋:, 𝑗 , 𝑋
′
:, 𝑗 )∥𝑃synthetic(𝑋𝑖, 𝑗 , 𝑋′:, 𝑗 )), (3.32)

where 𝑁pairs is the total number of column pairs, and 𝐷JS represents the JS diver-

gence, which measures the similarity between two probability distributions. A score

close to 1 indicates that the pairwise dependencies are well preserved. The Column

Shape Score, denoted as Cshape, evaluates how well the marginal distributions of indi-

vidual columns in the synthetic data match those of the real data. Let 𝑃real(𝑋:, 𝑗 ) and

𝑃synthetic(𝑋:, 𝑗 ) represent the marginal distributions of column 𝑋:, 𝑗 in the real and syn-

thetic datasets. The Column Shape Score is computed as [59]:

Cshape = 1 − 1
𝑁columns

∑︁
𝑖

𝐷JS(𝑃real(𝑋:, 𝑗 )∥𝑃synthetic(𝑋:, 𝑗 )), (3.33)

where 𝑁columns is the total number of columns. This metric quantifies how closely the

synthetic data replicates the distributional characteristics of the real data for each fea-

ture. Both metrics are crucial for ensuring that synthetic data accurately reflects the

underlying patterns and dependencies present in the original dataset.

3.5 Summary of created datasets

The goal of the presented chapter has been to realize the scientific contribution of defin-

ing the methodology for the collection of a dataset suitable for the development of an

energy-prediction model for six DOF IRMs. This was realized through the description

of three separate approaches – the collection of real-world data from a laboratory en-

vironment, collection from the simulated environment using the digital twin approach,

and data synthetization approach, with four different methods. The methodology for

the comparison of datasets was also given.
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CHAPTER 4
Results and discussion

4.1 Data analysis results

This section is dedicated to presenting the results of the data analysis and providing

commentary on the findings. The primary objective here is to assess the effectiveness

of synthetic method generation by comparing both types of synthetic datasets, with

the original dataset obtained from experiments on the real robot. This evaluation is

conducted using a variety of similarity metrics, including the column shape score and

the column pair score, alongside an examination of the overall data distribution and

key descriptive statistics. In addition to these metrics, feature importance serves as

a critical input in the more advanced analytical methods applied in this study. While

the aforementioned distributions and statistics are utilized as inputs during the data

synthetization process, feature importance metrics play a different role. as they help

identify which variables exert the most significant influence on a specific output. These

outputs include the energy consumption of individual joints, as illustrated in Subfigures

4.1a through 4.1b, and the total energy, depicted in Subfigure 4.2c. The visual repre-

sentations shown in these subfigures are derived by applying the feature importance

metrics introduced in the methodology chapter. These metrics are computed relative

to the targeted output, and their values are stacked to determine which features con-

tribute most prominently. The insights obtained from this process are subsequently

used within the MA (presumably a Model Architecture or Methodological Approach)

to guide the optimization process, focusing on the features deemed most influential.

Notably, this feature importance analysis is conducted on the real-world dataset, as it

represents the principal subject of the optimization efforts.
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(a) The influence of individual features on the en-

ergy of the first joint.

(b) The influence of individual features on the en-

ergy of the second joint.

(c) The influence of individual features on the energy

of the third joint.

(d) The influence of individual features on the en-

ergy of the fourth joint.

Figure 4.1: The influence of individual features on the energy of each joint.
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(a) The influence of individual features on the en-

ergy of the fifth joint.

(b) The influence of individual features on the en-

ergy of the sixth joint.

(c) The influence of individual features on the energy

of the entire manipulator.

Figure 4.2: The influence of individual features on the energy of each joint (cont.).
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After observing the figures there are a few key points to be taken away from. First, the

position and the speed of an individual joint generally shows the highest influence on

that joints energy use, which is to be expected, indicating that the data follows com-

mon sense. In the similar manner, it can be observed that the variables indicating the

position in the tool space (𝑥, 𝑦, and 𝑧) have a higher influence on the output of the first

three joints, while the orientation related variables (Euler’s angles and quarternions)

have a higher influence on the last three joints. In addition to it, it can be observed

that overall, the speed and position of the first two joints continues to have influence

on the joints. This is most apparent in the case of the total energy, where the speeds

of the first two joints have the highest influences. This indicates that the MA algorithm,

targeted optimization should focus on lowering the elements pertaining to these two

joints, especially their speeds – in other words, the algorithm will focus on optimizing

the parameters 𝑎1
1, 𝑎1

2, 𝑎1
3, 𝑎1

4, 𝑎1
5, 𝑎2

1, 𝑎2
2, 𝑎2

3, 𝑎2
4, and 𝑎2

5. This is done due to the assump-

tion that these parameters will have a higher influence on the speed and position of the

first two joints, directly lowering the two values.

4.2 Data synthetization results and comparison

4.2.1 Metrics comparison

The simplest way to indicate the performance of the synthetization algorithm is to eval-

uate the related metrics – column shape and column pair scores, which were defined

in the previous chapter. The column shape scores are calculated comparing the real-

world dataset collected from the IRM with the datasets generated by each of the four

algorithms utilized for the data synthetization, and shown in Figure 4.3a. Observing

the figure shows that the Copulas achieved a score of 0.82, CTGAN method achieved

the score of 0.80, and TVAE achieved a noticeably higher score of 0.93. This indicates

that the variables generated with TVAE had the highest similarities regarding the col-

umn shape. Evaluation based on a single metrics should always be avoided, so the

column pair scores are also calculated and presented in Figure 4.3b. The results show
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that Copulas achieved the highest score, with a value of 0.99, followed by TVAE with

0.98. CopulaGAN and CTGAN attained similar scores of 0.96 and 0.95, respectively.

The scores are much more uniform in the presented example, with the Copulas show-

ing the highest performance here. Still, it should be noted that Copulas showed a much

poorer score in the previous analysis, meaning that currently TVAE, has the best over-

all performance. While the TVAE-based dataset seems to show the best performance,

prior to the final selection of the synthetic dataset for further analysis, the distributions

across methods should be compared.

(a) Column shape scores of datasets generated using

different data synthetization methods.

(b) Column pair scores of datasets generated using dif-

ferent data synthetization methods.

Figure 4.3: Numerical evaluation of synthetization methods.

4.2.2 Distribution comparisons

Distribution comparisons can be started with the joint positions, as given in Figure 4.4.

In this, and following figures, the real dataset distribution is given using black color,

with overlays given in different colors for different methods – blue for Copulas, red for

CTGAN, green for CopulaGAN and purple for TVAE. The first noticeable change com-

pared to the real data is the tendency of CTGAN to group large amounts of variables

near the lower (for example, present in 4.4d) or higher (present in 4.4a) end of the

range. The CopulaGAN shows poorer performance again, tending towards a uniform
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distribution overall in some cases, showing a poor tracking of the scores. Copulas,

while not having these issues, shows the tendency towards the normal distribution,

while TVAE is the only dataset that follows the distribution closely in cases of more

complex distributions such as 4.4c.

(a) Distribution of 𝑞1 in the dataset. (b) Distribution of 𝑞2 in the dataset. (c) Distribution of 𝑞3 in the dataset.

(d) Distribution of 𝑞4 in the dataset. (e) Distribution of 𝑞5 in the dataset. (f) Distribution of 𝑞6 in the dataset.

Figure 4.4: The distribution of measured joint angle positions in the dataset.

The datasets corresponding to the speed measurements, as depicted in Figure 4.5,

exhibit a comparable overall behavior across the different generative methods. Among

these, TVAE demonstrates a notable ability to accurately model certain distributions

that are more complex in nature. This capability is particularly evident in subfigure 4.5b,

where TVAE is the sole method that successfully captures the characteristic decline

in speed values near zero, a feature that is clearly present in the real dataset. In

contrast, the performance of the other methods is generally less effective in this regard.

A particularly significant example is the Copulas approach, which tends to approximate

the normal distribution, resulting in a less accurate representation of the real data. This
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tendency is distinctly observable in Figure 4.5d, where the limitations of the Copulas

method become apparent.

(a) Distribution of ¤𝑞1 in the dataset. (b) Distribution of ¤𝑞2 in the dataset. (c) Distribution of ¤𝑞3 in the dataset.

(d) Distribution of ¤𝑞4 in the dataset. (e) Distribution of ¤𝑞5 in the dataset. (f) Distribution of ¤𝑞6 in the dataset.

Figure 4.5: The distribution of measured joint angle speeds in the dataset

Regarding the acceleration data, it can be observed that the values in the dataset are

generally quite low and are predominantly concentrated around zero. Only a relatively

small portion of the data extends toward the higher or lower extremes of the variable’s

possible range. This pattern is entirely expected, given the nature of the dataset, which

primarily records the robot’s movement during operation. Significant changes in accel-

eration, whether increases or decreases, are typically limited to moments when a new

trajectory is initiated, requiring sudden adjustments in both direction and speed. Due

to the simplicity of this distribution, it is generally not challenging to replicate it syn-

thetically. However, despite this, the Copulas method once again performs particularly

poorly. It consistently exhibits a strong tendency to approximate a standard normal

distribution centered at zero, which fails to accurately reflect the true distribution of the

data. In comparison, the remaining methods manage to achieve a noticeably better fit
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to the observed data distribution.

(a) Distribution of ¥𝑞1 in the dataset. (b) Distribution of ¥𝑞2 in the dataset. (c) Distribution of ¥𝑞3 in the dataset.

(d) Distribution of ¥𝑞4 in the dataset. (e) Distribution of ¥𝑞5 in the dataset. (f) Distribution of ¥𝑞6 in the dataset.

Figure 4.6: The distribution of measured joint angle accelerations in the dataset.

When analyzing the distributions of the positions of the robot’s end-effector within the

tool space, as illustrated in Figure 4.7, several important observations can be made.

One notable point is the behavior of CTGAN, which consistently demonstrates a ten-

dency to generate a disproportionately large number of values located near the outer

extremes of the variable ranges. This characteristic is indicative of its poor performance

in accurately modeling the real data distributions. This issue is especially apparent in

subfigures 4.7b and 4.7c, where CTGAN’s generated data diverges significantly from

the patterns observed in the actual dataset. Although CTGAN performs somewhat bet-

ter when modeling distributions that are more centrally concentrated, such as the one

shown in Figure 4.7d, where it manages a closer approximation to the real data, its

persistent tendency to favor extreme values undermines its overall effectiveness. Con-

sequently, despite some limited success in specific cases, this flaw renders CTGAN

unsuitable for continued use in this context.
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(a) Distribution of 𝑥 in the dataset. (b) Distribution of 𝑦 in the dataset. (c) Distribution of 𝑧 in the dataset.

(d) Distribution of ¤𝑥 in the dataset. (e) Distribution of ¤𝑦 in the dataset. (f) Distribution of ¤𝑧 in the dataset.

(g) Distribution of ¥𝑥 in the dataset. (h) Distribution of ¥𝑦 in the dataset. (i) Distribution of ¥𝑧 in the dataset.

Figure 4.7: The distribution of TCP positions, speeds and accelerations in the dataset.

In case of orientations and speeds, in Figure 4.8, the similar is shown, especially in

the case of 4.8a and 4.8b, where CopulaGAN and CTGAN tend to generate large

amounts of values at the extremes of the range. Copulas method shows the tendency

of generating normally distributed variables (4.8e, 4.8h) when faced with data that has

centrally focussed distribution. TVAE overall shows decent performance, with minimal

errors, such as the tendency to generate somewhat more data centrally in distributions

that are centered around 0.
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(a) Distribution of 𝜃 in the dataset. (b) Distribution of 𝜙 in the dataset

.

(c) Distribution of 𝜓 in the dataset.

(d) Distribution of ¤𝜃 in the dataset. (e) Distribution of ¤𝜙 in the dataset. (f) Distribution of ¤𝜓 in the dataset.

(g) Distribution of ¥𝜃 in the dataset. (h) Distribution of ¥𝜙 in the dataset. (i) Distribution of ¥𝜓 in the dataset.

Figure 4.8: The distribution of TCP orientations, speeds and accelerations in the dataset.

Finally, the energy analysis (Figure 4.9), shows similar information as previously noted.

Most interesting is the distribution of the sixth joint (4.9f), which is shown to be multivari-

ate, with additional peaks of data present near the extremes of the range. All methods,

except Copulas, show some values centered around these peaks, but fail to synthetize

enough data in a small enough area to truly recreate them, showing the limitation of

the synthetization methods.

105



ENERGY EFFICIENCY IMPROVEMENT OF INDUSTRIAL
ROBOTIC MANIPULATORS THROUGH THE APPLICATION
OF MACHINE LEARNING AND MEMETIC ALGORITHMS

CHAPTER 4. RESULTS AND DISCUSSION

4.2. DATA SYNTHETIZATION RESULTS AND COMPARISON

(a) Distribution of 𝐸1. (b) Distribution of 𝐸2. (c) Distribution of 𝐸3.

(d) Distribution of 𝐸4. (e) Distribution of 𝐸5. (f) Distribution of 𝐸6.

(g) Distribution of total used energy

in the dataset.

Figure 4.9: The distribution of measured joint angle accelerations in the dataset.

Based on the above analysis it can be concluded that TVAE is the best performing

method overall. CTGAN and CopulaGAN not only showed poor scores when tested

with evaluation metrics, but have also shown tendencies towards the generation of

non-existing data near the extremes of the real data range, which are not present in

the real data. Copulas, while scoring well when evaluated with metrics, fails to model

data with high central tendency in the distribution, defaulting to the modeling of normally

distributed data.
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The next step is to compare the TVAE selected data with the real data (collected in a

laboratory environment for the ABB IRB 120 IRM), and simulated data (collected within

a RobotStudio simulated environment).

4.2.3 Descriptive statistics comparison

Figure 4.10 shows the comparison of values for individual descriptive statistics, as

described in the previous chapter. Each of the graphs show a different statistic, with

values for individual variables in the dataset. The value of the statistic for the given

variable within the real dataset is given with a black dot, while the values from the

simulated dataset are indicated with the red cross, and the values from the synthetic

dataset are indicated with a cyan ’x’. The main point of the analysis is to observe if

there are large differences between certain values, as large differences in statistics

may indicate that one of the generated datasets does not represent the original set

well.

Subfigure 4.10a shows the difference in the mean values of the dataset, indicating the

central tendency of the datasets. Observing the values for all three datasets for differ-

ent variables, a significant overlap between most values can be seen. For example,

the position of the second joint (𝑞2) shows an almost perfect overlap across all three

datasets. Still, some of the other values show a difference. This is especially visible

for outputs 𝐸1 to 𝐸6. Most of the values that show a change show that the simulated

dataset differs more in comparison to the synthetic dataset. In some cases, such as 𝐸1,

or the total energy 𝐸 , the values show overlap on the graph when comparing synthetic

data and real data, while simulated data shows a different value. The values for mode

in Subfigure 4.10b, show similar trends, with the central tendency of the synthetic and

real dataset variables being significantly closer than the ones in the real dataset. This

difference is much less visible when observing the standard deviation of the variables

(4.10d) and the range (4.10c). These four points together indicate that while the ranges

follow a similar distribution in the real and simulated dataset, there are certain shifts be-

tween the real data (and synthetic data based on it), indicating that the simulation data
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is not necessarily the best representative of the real values.

(a) Comparison of mean values across datasets. (b) Comparison of mode values across datasets.

(c) Comparison of range values across datasets. (d) Comparison of 𝜎 for variables across datasets.

(e) Comparison of skewness across datasets. (f) Comparison of kurtosis across datasets.

Figure 4.10: The difference between the descriptive statistics of the real-world and synthetic datasets in

comparison to the real-world dataset.

This is confirmed by the kurtosis (4.10f), where all the values are similar. meaning that

most of the data has a similar wideness around the central point, even if the central

point may not necessarily overlap, suggesting a possible shift of data between the real

and synthetic data. This is further confirmed by the skewness as shown in subfigure

4.10e, showing, once more, similarity between synthetic and real-world data, with a
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shift visible in most variables. Overall, the similarities between datasets are visible,

but not so significant that it would be possible to automatically presume that modeling

the real data would not be possible with either dataset, although they indicate that

simulation data may have poorer performance.

4.3 Performance of ML models on validation and test data

4.3.1 Hyperparameter selection of ML models

The process of hyperparameter selection represents a fundamental component in the

analysis phase of any machine learning (ML) study. It provides critical insights into the

structural characteristics and configurations of the models that demonstrate the best

performance during the training phase. This information not only guides the interpreta-

tion of the results but is also essential for ensuring the repeatability and reproducibility

of the study, which are key aspects of any rigorous scientific investigation.

The real-world data and the simulation data used in this study were both generated

by selecting 1,000 random points from within the operating space of the IRM. At each

of these points, the measurement of relevant variables, as previously described in the

preceding chapter, was carried out at regular time intervals of 0.025 seconds. Due to

variations in the lengths of the paths followed during the experiments, the total num-

ber of data points collected differed slightly between the two datasets. Specifically, the

dataset obtained from the real-world operation of the IRM contains a total of 75,792

data points, whereas the dataset gathered from the simulation environment includes

75,141 data points. In contrast to these datasets, the synthetic dataset was not subject

to the same real-world constraints regarding the number of data points. Therefore, for

consistency and convenience, the number of data points in the synthetic dataset was

fixed at exactly 75,000. These synthetic data points were generated from an additional

dataset, which, like the real-world dataset, was collected through laboratory experi-

ments. This auxiliary dataset was created using 100 randomly selected points within

the operating space and resulted in a total of 6,998 data points. The separate test
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set was similarly constructed using 100 randomly selected points within the operating

space, which produced 7,297 data points in total.

For the purpose of cross-validation during model training, a five-fold cross-validation

procedure was employed across all datasets. In the case of the real-world dataset,

this involved dividing the data into two folds, each containing 15,159 data points, and

three folds, each comprising 15,158 data points. The simulation dataset was parti-

tioned into one fold with 15,029 data points and four folds, each with 15,028 data

points. The synthetic dataset, having an exact total of 75,000 data points, was evenly

split into five folds, each consisting of 15,000 data points. As a result, in each fold of

the cross-validation process, approximately 60,000 data points were used for training.

More precisely, this figure corresponds to the combined total of the four training folds

and amounts to 60,632 or 60,630 data points in the real-world dataset, and 60,111 or

60,112 data points in the simulation dataset, depending on the specific fold excluded

for validation. The validation set size in each fold corresponded exactly to the size of

the fold designated for validation in that particular iteration. The test set, used consis-

tently across all experiments, remained the same in every case, comprising 7,297 data

points collected directly from the real-world IRM system, as previously mentioned.

The results presented in Table 4.1 indicate consistently high performance across most

models, with the coefficient of determination (𝑅2) values reaching 0.999 and exhibiting

minimal variability (𝜎𝑅2 = 0.001) for nearly all outputs and data types (real-world, sim-

ulated, and synthetic). This exceptional consistency underscores the models’ ability to

generalize well across cross-validation folds, reflecting the stability and reliability of the

training process. Similarly, the mean absolute error (MAE) values are remarkably low

for most configurations, with the lowest value observed for 𝐸5 in the simulated dataset

(MAE = 0.001, 𝜎MAE = 0.001). These results highlight the precision of the models in

approximating the target outputs. One of the most significant trends is the uniform use

of the ‘identity‘ activation function (𝜙) across all models, suggesting its suitability for

this specific application and the nature of the data. The initial learning rate (𝛼 - init.)

also follows a consistent pattern, predominantly set to 1 · 10−4 for models with simpler
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architectures (e.g., hidden layer size = 10) and occasionally increased to 0.1 for larger

configurations (e.g., (50, 50, 50)). This indicates a deliberate balance between learn-

ing speed and convergence stability. The learning rate type (𝛼) is consistently constant

(‘const.‘), and the regularization rate (𝐿2) remains low (0.01), which likely contributes to

the stability and robustness of the models by preventing overfitting. The hyperparame-

ter configurations of the best-performing model, defined as the one with the lowest MAE

among models with equivalent 𝑅2, are found in the synthetic dataset for 𝐸5. This model

achieves 𝑅2 = 0.999, 𝜎𝑅2 = 0.001, MAE = 0.001, and 𝜎MAE = 0.001. Its hyperparameters

include the ‘identity‘ activation function (𝜙), an initial learning rate (𝛼 - init.) of 0.0001, a

single hidden layer size of 10, a constant learning rate (𝛼), an 𝐿2 regularization rate of

0.01, and the ‘lbfgs‘ solver. This combination represents an optimal balance between

simplicity and effectiveness, leading to superior performance. Notably, an outlier is ob-

served for the simulated dataset model for 𝐸 , where the MAE increases dramatically

to 4.348, with a standard deviation (𝜎MAE) of 0.316. This result is associated with a

distinct solver (‘adam‘) and a reduced hidden layer configuration ((10, 10)), combined

with a learning rate initialization of 0.0001. This deviation suggests potential challenges

in optimizing this specific output using the ‘adam‘ solver or an inadequacy of the se-

lected hyperparameters for this dataset. It may also reflect sensitivity to solver choice in

cases of more complex data behavior. In conclusion, while the models demonstrate re-

markable consistency and high performance across most configurations, the synthetic

dataset for 𝐸 highlights the importance of careful solver and hyperparameter selection.

The results emphasize the effectiveness of small, consistent learning rates, low regu-

larization, and the ‘lbfgs‘ solver in achieving robust performance. The hyperparameter

configuration of the best-performing model (synthetic 𝐸) can serve as a baseline for

further optimization, offering a reliable starting point for future model development and

tuning efforts.
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Table 4.1: The results of best models found using grid search and cross validation procedures, for MLP

(𝑅2 – average value of coefficient of determination across folds, 𝜎𝑅2 – standard deviation of 𝑅2 score

across folds, ¯MAE – mean absolute error, 𝜎MAE – standard deviation of MAE across folds, 𝜙 – activation

function, 𝛼 - init. – Initial learning rate, 𝛼 – learning rate type, 𝐿2 – regularization rate).

Data Out 𝑅2 𝜎𝑅2 MAE 𝜎MAE 𝜙 𝛼 - init. Hidden layer sizes 𝛼 𝐿2 Solver

real

𝐸1 0.999 1 · 10−3 1.6 · 10−2 1 · 10−3 identity 0.1 (50 50 50) const. 1 · 10−2 lbfgs

𝐸2 0.999 1 · 10−3 8 · 10−3 1 · 10−3 identity 0.1 (50 50 50 50) const. 1 lbfgs

𝐸3 0.999 1 · 10−3 6 · 10−3 1 · 10−3 identity 1 · 10−4 10 const. 1 · 10−2 lbfgs

𝐸4 0.999 1 · 10−3 3 · 10−3 1 · 10−3 identity 1 · 10−4 10 const. 1 · 10−2 lbfgs

𝐸5 0.999 1 · 10−3 2 · 10−3 1 · 10−3 identity 1 · 10−4 10 const. 1 · 10−2 lbfgs

𝐸6 0.999 1 · 10−3 5 · 10−3 1 · 10−3 identity 1 · 10−4 10 const. 1 · 10−2 lbfgs

𝐸 0.999 1 · 10−3 2.2 · 10−2 1 · 10−3 identity 0.1 (10 10) const. 1 · 10−2 lbfgs

synth

𝐸1 0.999 1 · 10−3 1.7 · 10−2 1 · 10−3 identity 0.1 (50 50 50) const. 1 · 10−2 lbfgs

𝐸2 0.999 1 · 10−3 9 · 10−3 1 · 10−3 identity 1 · 10−4 10 const. 1 · 10−2 lbfgs

𝐸3 0.999 1 · 10−3 6 · 10−3 1 · 10−3 identity 1 · 10−4 10 const. 1 · 10−2 lbfgs

𝐸4 0.999 1 · 10−3 3 · 10−3 1 · 10−3 identity 1 · 10−4 10 const. 1 · 10−2 lbfgs

𝐸5 0.999 1 · 10−3 2 · 10−3 1 · 10−3 identity 1 · 10−4 10 const. 1 · 10−2 lbfgs

𝐸6 0.999 1 · 10−3 5 · 10−3 1 · 10−3 identity 1 · 10−4 10 const. 1 · 10−2 lbfgs

𝐸 0.999 1 · 10−3 2.1 · 10−2 2 · 10−3 identity 0.1 (10 10 10) const. 0.1 lbfgs

sim

𝐸1 0.999 1 · 10−3 8 · 10−3 1 · 10−3 identity 1 · 10−4 10 const. 0.1 lbfgs

𝐸2 0.999 1 · 10−3 5 · 10−3 1 · 10−3 identity 1 · 10−4 10 const. 1 · 10−2 lbfgs

𝐸3 0.999 1 · 10−3 3 · 10−3 1 · 10−3 identity 1 · 10−4 10 const. 1 · 10−2 lbfgs

𝐸4 0.999 1 · 10−3 2 · 10−3 1 · 10−3 identity 1 · 10−4 10 const. 1 · 10−2 lbfgs

𝐸5 0.999 1 · 10−3 1 · 10−3 1 · 10−3 identity 1 · 10−4 10 const. 1 · 10−2 lbfgs

𝐸6 0.999 1 · 10−3 3 · 10−3 1 · 10−3 identity 1 · 10−4 10 const. 1 · 10−2 lbfgs

𝐸 0.993 1 · 10−3 4.348 0.316 identity 1 · 10−4 (10 10) const. 1 · 10−2 adam

The results for the PAR models, shown in Table 4.2, reveal strong performance across

nearly all configurations, with 𝑅2 values consistently reaching 0.999 and low variability

(𝜎𝑅2 = 0.001) across folds. Similar to the trends observed in the MLP models from

the previous tables, the PAR models maintain high accuracy, demonstrating their abil-

ity to generalize well across datasets. However, the MAE values for PAR models are

generally higher than those for MLP, ranging between 0.037 and 0.049 for most out-

puts—still within acceptable limits for many practical applications. A key observation

is the influence of hyperparameters 𝐶 and 𝜖 . Most models perform well with smaller 𝐶
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values (e.g., 𝐶 = 0.1 or 0.5), though certain outputs, such as 𝐸3 and 𝐸4 in the synthetic

dataset, achieve strong performance even with 𝐶 = 10, indicating that higher regular-

ization can be beneficial for specific cases. The value of 𝜖 is uniformly set to 0.1 across

all configurations, suggesting it is a robust choice for stability and precision. The best-

performing model, defined by the lowest MAE, is found in the synthetic dataset for 𝐸2

(MAE = 0.037, 𝜎MAE = 0.004). This model uses 𝐶 = 0.1, 𝜖 = 0.1, 𝜖insensitive = 𝜖 , and

a tolerance of 0.00001. This hyperparameter combination illustrates the effectiveness

of low regularization and tight tolerance in driving model precision. Notably, PAR mod-

els exhibit higher MAE than MLP for most outputs, indicating that MLP may be more

suitable for tasks requiring extremely low error margins. For 𝐸 in the synthetic dataset,

PAR shows significant degradation, with 𝑅2 = 0.991, MAE = 4.91, and increased vari-

ability (𝜎𝑅2 = 0.004, 𝜎MAE = 0.234). This outlier mirrors similar behavior in MLP models,

suggesting that synthetic 𝐸 data presents challenges for both architectures, likely due

to inherent complexity or inconsistencies in its generation. Compared to MLP mod-

els, PAR models use a simpler hyperparameter configuration, focusing mainly on 𝐶,

𝜖 , and 𝜖insensitive, unlike MLP’s broader set involving learning rates, hidden layers, and

solvers. While this simplicity aids tuning, it may limit fine-grained optimization, as seen

in the MAE comparison. In summary, PAR models demonstrate strong and consis-

tent performance, especially with low regularization and tolerance values. However,

MLP models achieve superior error minimization, making them more suitable for tasks

requiring exceptionally high accuracy. The persistent challenge of modeling 𝐸 in the

synthetic dataset highlights the need for further investigation into this particular case.

113



ENERGY EFFICIENCY IMPROVEMENT OF INDUSTRIAL
ROBOTIC MANIPULATORS THROUGH THE APPLICATION
OF MACHINE LEARNING AND MEMETIC ALGORITHMS

CHAPTER 4. RESULTS AND DISCUSSION

4.3. PERFORMANCE OF ML MODELS ON VALIDATION AND TEST DATA

Table 4.2: The results of best models found using grid search and cross validation procedures, for PAR

(𝑅2 – average value of coefficient of determination across folds, 𝜎𝑅2 – standard deviation of 𝑅2 score

across folds, ¯MAE – mean absolute error, 𝜎MAE – standard deviation of MAE across folds, 𝜙 – activation

function, LR - init. – Initial learning rate, LR – learning rate type, 𝐿2 – regularization rate).

Data Out 𝑅2 𝜎𝑅2 MAE 𝜎MAE 𝐶 𝜖 Fit intercept 𝜖insensitive Tolerance

real

𝐸1 0.999 1 · 10−3 4.2 · 10−2 5 · 10−3 0.5 0.1 True 𝜖insensitive 1 · 10−4

𝐸2 0.999 1 · 10−3 3.9 · 10−2 6 · 10−3 0.1 0.1 True 𝜖2
insensitive 1 · 10−4

𝐸3 0.999 1 · 10−3 3.8 · 10−2 2 · 10−3 0.5 0.1 True 𝜖insensitive 1 · 10−4

𝐸4 0.999 1 · 10−3 4.6 · 10−2 4 · 10−3 0.1 0.1 True 𝜖insensitive 1 · 10−5

𝐸5 0.999 1 · 10−3 4.5 · 10−2 4 · 10−3 0.1 0.1 True 𝜖insensitive 1 · 10−5

𝐸6 0.999 1 · 10−3 4.1 · 10−2 1.5 · 10−2 1 0.1 True 𝜖2
insensitive 1 · 10−5

𝐸 0.999 1 · 10−3 4.4 · 10−2 1.1 · 10−2 0.1 0.1 True 𝜖insensitive 1 · 10−5

synth

𝐸1 0.999 1 · 10−3 3.9 · 10−2 4 · 10−3 0.1 0.1 True 𝜖2
insensitive 1 · 10−5

𝐸2 0.999 1 · 10−3 3.7 · 10−2 7 · 10−3 1 0.1 True 𝜖insensitive 1 · 10−5

𝐸3 0.999 1 · 10−3 3.8 · 10−2 2 · 10−3 10 0.1 True 𝜖2
insensitive 1 · 10−5

𝐸4 0.999 1 · 10−3 4.4 · 10−2 4 · 10−3 10 0.1 True 𝜖insensitive 1 · 10−5

𝐸5 0.999 1 · 10−3 4.2 · 10−2 3 · 10−3 0.1 0.1 False 𝜖insensitive 1 · 10−5

𝐸6 0.999 1 · 10−3 3.9 · 10−2 5 · 10−3 0.5 0.1 True 𝜖2
insensitive 1 · 10−5

𝐸 0.999 1 · 10−3 4.9 · 10−2 6 · 10−3 1 0.1 True 𝜖2
insensitive 1 · 10−5

sim

𝐸1 0.999 1 · 10−3 3.9 · 10−2 3 · 10−3 1 0.1 True 𝜖2
insensitive 1 · 10−5

𝐸2 0.999 1 · 10−3 3.7 · 10−2 4 · 10−3 0.1 0.1 True 𝜖insensitive 1 · 10−5

𝐸3 0.999 1 · 10−3 3.8 · 10−2 2 · 10−3 0.5 0.1 True 𝜖insensitive 1 · 10−5

𝐸4 0.999 1 · 10−3 4.0 · 10−2 7 · 10−3 0.5 0.1 True 𝜖insensitive 1 · 10−5

𝐸5 0.999 1 · 10−3 4.1 · 10−2 3 · 10−3 0.1 0.1 True 𝜖insensitive 1 · 10−5

𝐸6 0.999 1 · 10−3 3.9 · 10−2 3 · 10−3 0.1 0.1 True 𝜖2
insensitive 1 · 10−5

𝐸 0.991 4 · 10−3 4.91 0.234 0.1 1 True 𝜖insensitive 1 · 10−5

Table 4.3 provides an overview of the results for SVR models, where the performance is

evaluated across real, synthetic, and simulated datasets. The results consistently show

𝑅2 values of 0.999 across almost all outputs, with a standard deviation (𝜎𝑅2) of 0.001,

reflecting robust and highly consistent performance across folds. However, the MAE

values display greater variability, ranging from 0.036 to 0.044 for most outputs, with a
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notable outlier for 𝐸 in the simulated dataset, where MAE = 4.423 and 𝜎MAE = 0.262.

This pattern mirrors challenges observed in earlier tables with the 𝐸 output in synthetic

and simulated datasets, highlighting it as a consistently problematic case across dif-

ferent modeling frameworks. The hyperparameter configuration across all models is

remarkably uniform, with 𝐶 = 10 for most cases and a polynomial kernel of degree 2

(𝐷𝑒𝑔𝑟𝑒𝑒 = 2) being employed universally. The 𝜀-insensitive loss is fixed at 𝜀 = 0.1,

while the kernel scale parameter (𝛾) is set to "scale" for all configurations. This unifor-

mity simplifies model interpretation and underscores the reliability of this specific SVR

configuration across diverse data types. The best-performing model, based on the low-

est MAE, is found in the synthetic dataset for 𝐸1, where MAE = 0.036 and 𝜎MAE = 0.003.

This model uses 𝐶 = 10, 𝐷𝑒𝑔𝑟𝑒𝑒 = 2, 𝜀 = 0.1, and a linear kernel. These parameters

align closely with the broader trend observed in the table, reinforcing the effectiveness

of this specific hyperparameter set. Compared to the PAR and MLP models discussed

in earlier tables, the SVR models show slightly higher MAE values for most outputs.

However, their performance remains competitive, particularly given their consistency in

achieving perfect or near-perfect 𝑅2 values. The challenges with the 𝐸 output, partic-

ularly in simulated datasets, persist, as evidenced by the significant increase in MAE

and variability (𝜎MAE) for this case. This outlier may suggest fundamental differences

in the characteristics of the 𝐸 output in synthetic and simulated datasets that all mod-

eling approaches struggle to address effectively. In summary, the SVR models exhibit

strong, consistent performance with minimal variability across outputs, driven by a uni-

form hyperparameter configuration. While slightly less precise than MLP models in

terms of minimizing MAE, SVR demonstrates robustness across datasets. The recur-

ring challenges with the 𝐸 output in synthetic and simulated datasets warrant further

investigation, as this issue transcends modeling frameworks. The hyperparameter set-

tings observed here, particularly for the best-performing model (synthetic 𝐸1), provide

a reliable baseline for future SVR implementations.
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Table 4.3: The results of best models found using grid search and cross validation procedures, for SVR

(𝑅2 – average value of coefficient of determination across folds, 𝜎𝑅2 – standard deviation of 𝑅2 score

across folds, ¯MAE – mean absolute error, 𝜎MAE – standard deviation of MAE across folds, 𝜙 – activation

function, LR - init. – Initial learning rate, LR – learning rate type, 𝐿2 – regularization rate).

Data Out 𝑅2 𝜎𝑅2 MAE 𝜎MAE 𝐶 Degree 𝜀 𝛾 Kernel

real

𝐸1 0.999 1 · 10−3 4.1 · 10−2 3 · 10−3 10 2

0.1 scale linear

𝐸2 0.999 1 · 10−3 3.9 · 10−2 5 · 10−3 1 2

𝐸3 0.999 1 · 10−3 4.4 · 10−2 3 · 10−3 10 2

𝐸4 0.999 1 · 10−3 4.0 · 10−2 6 · 10−3 10 2

𝐸5 0.999 1 · 10−3 4.1 · 10−2 1 · 10−3 10 2

𝐸6 0.999 1 · 10−3 3.8 · 10−2 3 · 10−3 10 2

𝐸 0.999 1 · 10−3 4.0 · 10−2 1 · 10−3 10 2

synth

𝐸1 0.999 1 · 10−3 3.6 · 10−2 3 · 10−3 10 2

𝐸2 0.999 1 · 10−3 3.8 · 10−2 4 · 10−3 1 2

𝐸3 0.999 1 · 10−3 4.2 · 10−2 1.2 · 10−2 1 2

𝐸4 0.999 1 · 10−3 4.0 · 10−2 1 · 10−3 1 2

𝐸5 0.999 1 · 10−3 3.9 · 10−2 6 · 10−3 10 2

𝐸6 0.999 1 · 10−3 3.7 · 10−2 1 · 10−3 10 2

𝐸 0.999 1 · 10−3 4.0 · 10−2 4 · 10−3 10 2

sim

𝐸1 0.999 1 · 10−3 4.0 · 10−2 2 · 10−3 10 2

𝐸2 0.999 1 · 10−3 4.0 · 10−2 1 · 10−3 10 2

𝐸3 0.999 1 · 10−3 4.1 · 10−2 5 · 10−3 10 2

𝐸4 0.999 1 · 10−3 4.1 · 10−2 7 · 10−3 10 2

𝐸5 0.999 1 · 10−3 4.0 · 10−2 5 · 10−3 1 2

𝐸6 0.999 1 · 10−3 3.9 · 10−2 3 · 10−3 10 2

𝐸 0.992 1 · 10−3 4.423 0.262 10 2

The results for the XGB models, given in Table 4.4, highlight their exceptional perfor-

mance across most outputs and datasets, with 𝑅2 values frequently nearing or achiev-

116



ENERGY EFFICIENCY IMPROVEMENT OF INDUSTRIAL
ROBOTIC MANIPULATORS THROUGH THE APPLICATION
OF MACHINE LEARNING AND MEMETIC ALGORITHMS

CHAPTER 4. RESULTS AND DISCUSSION

4.3. PERFORMANCE OF ML MODELS ON VALIDATION AND TEST DATA

ing 1 and very low variability (𝜎𝑅2 ≤ 0.002). These outcomes underline XGB’s ro-

bustness and its ability to consistently approximate ground truth relationships across

varied datasets (real, synthetic, and simulated). The MAE values show more variabil-

ity, ranging from 0.035 to 9.985, indicating generally high precision, though certain

outputs—particularly 𝐸—introduce challenges with consistently higher errors. Across

all datasets, the majority of models share uniform hyperparameters. The subsample

ratio (𝑆𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 = 1) and learning rate (𝛼 = 0.1) are fixed for nearly all configurations,

along with 𝑋%
𝐿
= 𝑋%

𝑁
= 𝑋%

𝑇
= 1, indicating the reliability of these choices. The maximum

tree depth (max(𝑑)) is predominantly set to 6 or 7, balancing complexity and overfitting

risk. Regularization terms 𝐿1 and 𝐿2 are sparsely used, typically 𝐿1 = 0 or 𝐿2 = 0.5,

and play a minimal role given the already high 𝑅2 values. For the simulated dataset,

𝐸5 achieves the best overall performance, with 𝑅2 = 0.999, 𝜎𝑅2 = 0.001, MAE = 0.035,

and 𝜎MAE = 0.012. This model uses 𝑆𝑢𝑏𝑠𝑎𝑚𝑝𝑙𝑒 = 1, max(𝑑) = 6, and minimal regu-

larization (𝐿1 = 0, 𝐿2 = 0.1). However, output 𝐸 remains challenging across datasets,

with high MAE values (e.g., 8.05 for real, 9.985 for synthetic, 8.575 for simulated),

suggesting intrinsic complexity or noise. Compared to SVR, PAR, and MLP models,

XGB shows higher error margins for 𝐸 , despite robust 𝑅2 values. While SVR and PAR

often yield lower MAE for many outputs, XGB’s scalability and ability to handle non-

linearities contribute to its broader applicability. For simpler outputs (e.g., 𝐸4, 𝐸5, 𝐸6),

XGB is competitive, often matching or outperforming other models. For instance, in

the synthetic dataset, 𝐸6 achieves perfect 𝑅2 with minimal error (MAE = 0.062). The

consistent performance gap for 𝐸 across models confirms it as a particularly difficult

case. Higher MAE and 𝜎MAE reflect instability, even with consistent hyperparameters.

Overall, XGB delivers reliable performance for most outputs, as seen in the optimal

simulated 𝐸5 model, underscoring the utility of modest tree depth, full subsampling,

and minimal regularization. However, for complex outputs like 𝐸 , further hyperparame-

ter tuning or data preprocessing may be needed to reduce error, as XGB, while strong

in general, struggles to minimize errors in such cases.
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Table 4.4: The results of best models found using grid search and cross validation procedures, for XGB

(𝑅2 – average value of coefficient of determination across folds, 𝜎𝑅2 – standard deviation of 𝑅2 score

across folds, ¯MAE – mean absolute error, 𝜎MAE – standard deviation of MAE across folds, 𝜙 – activation

function, LR - init. – Initial learning rate, LR – learning rate type, 𝐿2 – regularization rate).

Data Out 𝑅2 𝜎𝑅2 MAE 𝜎MAE 𝑋%
𝐿

𝑋%
𝑁

𝑋%
𝑇

𝛼 max(𝑑) 𝑛 𝐿1 𝐿2 Subsample

real

𝐸1 0.999 2 · 10−3 0.409 0.154 1

1

1 1 · 10−1 7 100 0 0.5 0.75

𝐸2 0.966 4 · 10−2 0.627 0.415 1 1 1 · 10−1 5 100 0 1 1

𝐸3 0.948 6.3 · 10−2 0.601 4.8 · 10−2 0.75 1 1 · 10−1 3 100 0.5 1 1

𝐸4 0.999 2 · 10−3 7.6 · 10−2 5.2 · 10−2 1 1 1 · 10−1 7 100 0 1 1

𝐸5 0.997 2 · 10−3 7.4 · 10−2 1.7 · 10−2 1 1 1 · 10−1 6 100 1 1 1

𝐸6 1 0 5.2 · 10−2 2.1 · 10−2 1 1 1 · 10−1 7 100 0 0.5 1

𝐸 0.928 1.3 · 10−2 8.05 1.663 1 1 1 · 10−1 6 100 0 0.5 0.5

synth

𝐸1 0.983 2.4 · 10−2 0.868 0.687 1 1 1 · 10−1 7 50 0.5 0.5 1

𝐸2 0.959 5.5 · 10−2 0.791 0.635 1 1 1 · 10−1 5 100 0.5 0 1

𝐸3 0.993 1.7 · 10−2 0.189 0.2 1 1 1 · 10−1 7 100 0.5 1 · 10−1 1

𝐸4 0.999 1 · 10−3 6.3 · 10−2 3.3 · 10−2 1 1 1 · 10−1 7 100 0.5 1 · 10−1 1

𝐸5 0.999 1 · 10−3 8.7 · 10−2 2.9 · 10−2 1 7.5 · 10−1 1 · 10−1 5 100 1 · 10−1 0.5 1

𝐸6 1 0 6.2 · 10−2 2.3 · 10−2 1 1 1 · 10−1 7 100 1 0 1

𝐸 0.879 3.3 · 10−2 9.985 2.312 1 7.5 · 10−1 1 · 10−1 3 100 1 0.5 0.5

sim

𝐸1 1 1 · 10−3 0.25 7.4 · 10−2 1 1 1 · 10−1 5 100 0 0.5 1

𝐸2 0.999 4 · 10−3 0.15 5.6 · 10−2 1 1 1 · 10−1 6 100 0 1 1

𝐸3 0.999 2 · 10−3 9.6 · 10−2 3.9 · 10−2 1 1 1 · 10−1 7 100 0 1 · 10−1 1

𝐸4 0.999 2 · 10−3 4.8 · 10−2 4.6 · 10−2 1 1 1 · 10−1 6 100 0 1 · 10−1 1

𝐸5 0.999 1 · 10−3 3.5 · 10−2 1.2 · 10−2 1 1 1 · 10−1 6 100 0 1 · 10−1 1

𝐸6 1 0 4.9 · 10−2 1.9 · 10−2 1 1 1 · 10−1 6 100 0.5 1 · 10−1 1

𝐸 0.968 4 · 10−3 8.575 0.384 1 1 1 · 10−1 3 100 1 · 10−1 0 0.5

To summarize results from PAR, SVR, MLP, and XGB models, a comprehensive as-

sessment of different machine learning approaches applied to real, synthetic, and sim-

ulated datasets can be given. Across these models, a number of consistent trends,

strengths, and challenges emerge, offering valuable insights into their performance

characteristics and suitability for various tasks. Across all models and datasets, the

average 𝑅2 values (𝑅2) are consistently high, typically reaching 0.999 for most outputs.

This demonstrates all models’ ability to explain the variance in the data effectively, re-

gardless of the dataset type (real, synthetic, or simulated). However, XGB occasionally

shows slightly lower 𝑅2 values (e.g., 𝑅2 = 0.928 for real 𝐸 and 𝑅2 = 0.879 for synthetic

𝐸), indicating reduced model fit for more complex outputs. While 𝑅2 remains consis-
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tently high, the mean absolute error (MAE) and its variability (𝜎MAE) differ significantly

across models. MLP achieves the lowest MAE values overall, with outputs like syn-

thetic 𝐸5 attaining MAE = 0.001. PAR and SVR show slightly higher MAE values but

maintain robust performance, with minimal variability. XGB demonstrates greater vari-

ability in MAE, especially for 𝐸 , where errors spike significantly (e.g., MAE = 9.985 for

synthetic 𝐸). This suggests that while XGB is highly effective for general tasks, it strug-

gles with outputs requiring extreme precision. Across all models and datasets, the 𝐸

output consistently exhibits higher MAE values and greater variability. This is particu-

larly evident for synthetic and simulated datasets, where the performance of all models

degrades. This recurring trend suggests inherent challenges in modeling 𝐸 , possibly

due to its complexity, noise, or irregularities in the dataset itself. Each model relies on

distinct hyperparameter configurations to achieve optimal performance. PAR models

show consistent results with small regularization (𝐶), fixed 𝜖 = 0.1, and low tolerances

(0.00001). SVR models excel with linear kernels, small 𝜀, and moderate 𝐶 values (e.g.,

𝐶 = 10). MLP models benefit from constant learning rates, small hidden layer sizes

(e.g., 10 neurons), and the use of the ‘lbfgs‘ solver. XGB models rely on modest tree

depths (6 or 7), subsampling, and minimal regularization, though occasional outliers

(e.g., synthetic 𝐸) highlight sensitivity to task-specific configurations. The simulated

datasets generally exhibit slightly better performance than synthetic datasets, except

for outputs like 𝐸 . This aligns with the clarified distinction between "synthetic" and "sim-

ulated" datasets, as the synthetic data likely retains stronger consistency with the real

data distribution. MLP demonstrates the best overall precision, achieving the lowest

MAE values across outputs and datasets, making it ideal for tasks requiring extreme

accuracy. SVR and PAR show competitive performance with high 𝑅2 values and mod-

erate errors, excelling in simplicity and stability. XGB offers strong generalization and

scalability but exhibits higher error variability for complex outputs like 𝐸 , suggesting it

is better suited for tasks prioritizing interpretability and computational efficiency over

extreme precision. The results highlight the strengths and limitations of each model.

MLP emerges as the most precise option, while SVR and PAR provide robust and
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stable alternatives. XGB demonstrates strong performance for general tasks but strug-

gles with complex outputs like 𝐸 . The recurring challenges with 𝐸 across all models

and datasets underscore the need for further investigation into this output’s character-

istics and the potential benefits of task-specific tuning or data preprocessing. These

findings emphasize the importance of selecting models based on task requirements,

balancing precision, scalability, and robustness.

4.3.2 Results of developed ML models on prepared test data

While the hyperparameter analysis is important to determine which exact model con-

figuration should be selected for deployment, the performance metrics derived from

training and validation are not necessarily fully indicative of real-world behavior. In

practical applications, factors such as data noise, distribution shifts, and measurement

inaccuracies can influence outcomes. Because of this, additional testing is essential

to validate model robustness and generalization. To this end, testing is conducted on

a completely separate testing dataset, distinct from both the training and validation

datasets. This dataset was collected using the real IRM in a controlled laboratory en-

vironment, following the same methodology described in detail earlier in this thesis.

The models evaluated and scored in the following section are those trained on their

respective datasets—real, synthetic, or simulated—using the best-performing hyper-

parameters identified in the previous section. These models are then applied to the

new test dataset to evaluate their generalization capabilities.

In other words, the results depicted in the following figures summarize the performance

metrics of four machine learning methods—XGB, PAR, SVR, and MLP—when tested

on data originating from three sources: real, simulated, and synthetic datasets. The

performance of each method is assessed using two key evaluation metrics: the coeffi-

cient of determination (𝑅2) and the mean absolute error (MAE). Figure 4.11 specifically

presents the evaluation results for the energy of the first joint. In the real-world dataset,

all methods except XGB achieve a perfect 𝑅2 score of 1.0, meaning they completely

account for the variability in the target variable. XGB, while still performing well, trails
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slightly with an 𝑅2 of 0.98. In terms of MAE, XGB demonstrates a higher error of 0.7,

whereas PAR, SVR, and MLP maintain minimal errors of 0.04, 0.04, and 0.03, respec-

tively, indicating higher predictive accuracy. For the simulated dataset, a similar pattern

emerges. PAR, SVR, and MLP again achieve perfect 𝑅2 scores of 1.0, showing strong

consistency in model performance. XGB, however, shows a drop in performance with

an 𝑅2 of 0.92. The MAE for XGB rises significantly to 1.49, contrasting with the low

errors of 0.03 for both PAR and SVR, and an error of 0.0 for MLP, which effectively

predicts the target values without measurable deviation. In the synthetic dataset (Fig-

ure 4.11c), the trend continues. PAR, SVR, and MLP sustain their perfect 𝑅2 scores

of 1.0, while XGB slightly improves compared to the simulated dataset, reaching an 𝑅2

of 0.99. For MAE, XGB records a moderate error of 0.55, while PAR, SVR, and MLP

again display very low errors of 0.03, 0.03, and 0.02, respectively. A clear and con-

sistent trend across all datasets is the superior performance of PAR, SVR, and MLP,

which not only maintain perfect 𝑅2 scores but also exhibit minimal MAE values, under-

scoring their precision and robustness. These results suggest that these methods are

highly reliable in capturing the underlying data relationships and generating accurate

predictions. In contrast, XGB, while still delivering high 𝑅2 values close to 1.0, consis-

tently underperforms relative to the other methods, particularly in terms of MAE, with

errors that are significantly higher—especially in the simulated dataset. This consistent

underperformance in terms of MAE indicates that while XGB is effective at modeling

general trends in the data, its predictions deviate more from the actual values com-

pared to those of PAR, SVR, and MLP. The observed performance patterns emphasize

the reliability and stability of PAR, SVR, and MLP across different datasets, suggesting

their suitability for scenarios where high precision and low error margins are critical for

success.
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(a) Test scores on real-world dataset, using 𝐸1 as output (b) Test scores on simulated dataset, using 𝐸1 as output

(c) Test scores on synthetic dataset, using 𝐸1 as output

Figure 4.11: Scores on the test set for 𝐸1

Figure 4.12 presents performance metrics for 𝐸2 models, evaluated on test sets from

three distinct datasets: real-world (4.12a), simulated (4.12b), and synthetic (4.12c).

The 𝑅2 scores indicate that PAR, SVR, and MLP maintain a perfect value of 1.0 across

all datasets, reflecting their ability to fully capture the variability in the data and model

the underlying relationships with complete accuracy and reliability. This consistent

performance highlights their strong generalization capabilities across varying data dis-

tributions. In contrast, the XGB method achieves an 𝑅2 of 0.89, which, while still high,

is noticeably lower than the perfect scores of the other models and indicates some

loss in predictive fidelity, suggesting that XGB may be less effective in capturing cer-
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tain data characteristics. In terms of MAE, XGB records a value of 0.73, significantly

higher than the corresponding errors of PAR, SVR, and MLP, which are 0.05, 0.04,

and 0.01, respectively, clearly highlighting XGB’s comparatively reduced precision and

the greater deviation of its predictions from actual values. In the real dataset, this

pattern remains consistent: PAR, SVR, and MLP again achieve perfect 𝑅2 scores of

1.0, reaffirming their stability and precision in handling real-world data, while XGB at-

tains a slightly reduced 𝑅2 of 0.99. Though close to 1.0, XGB’s score still reflects a

marginal decline in performance, reinforcing the notion that it may not match the ac-

curacy of the other methods. Regarding MAE, XGB shows an error of 0.38, which is

substantially higher than the values for PAR, SVR, and MLP—0.04, 0.04, and 0.01,

respectively—confirming the superior precision of the latter methods in real-world con-

ditions. This dataset reaffirms the robustness of PAR, SVR, and MLP, which continue

to demonstrate high accuracy and consistency with minimal prediction error. For the

simulation dataset, a similar pattern is observed: 𝑅2 remains at 1.0 for PAR, SVR,

and MLP, while XGB reaches a lower value of 0.88, again indicating reduced effec-

tiveness in capturing data variability, possibly due to the simulated data’s structural

differences. The MAE for XGB increases notably to 1.16, whereas PAR, SVR, and

MLP record much smaller errors of 0.03, 0.03, and 0.0, respectively, further illustrat-

ing the pronounced performance gap in precision and reinforcing the consistency of

the other methods. These findings suggest that although XGB is capable of modeling

general data patterns, it consistently falls short in prediction accuracy compared to the

other methods, particularly for this dataset, where both the error magnitude and vari-

ability are elevated. Across all three datasets, a clear and consistent trend emerges

in which PAR, SVR, and MLP exhibit exceptional stability and precision, achieving per-

fect 𝑅2 scores and minimal MAE values, which confirms their robustness and strong

generalization across varied data conditions and testing environments. In contrast,

XGB, despite achieving relatively high 𝑅2 scores close to 1.0, consistently underper-

forms in comparison, with higher MAE values reflecting less precise predictions and

indicating potential limitations in handling certain data complexities. These observa-
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tions underscore the comparative reliability and effectiveness of PAR, SVR, and MLP

for applications where both high accuracy and low prediction error are essential, partic-

ularly in scenarios where even small deviations in prediction can impact performance

or decision-making outcomes.

(a) Test scores on real-world dataset, using 𝐸2 as output (b) Test scores on simulated dataset, using 𝐸2 as output

(c) Test scores on synthetic dataset, using 𝐸2 as output

Figure 4.12: Scores on the test set for 𝐸2

The results presented in Figure 4.13 display the performance of 𝐸3 models evaluated

on the test sets across three datasets. In the real dataset, the 𝑅2 values indicate strong

performance for all methods, with SVR, PAR, and MLP each achieving perfect scores

of 1.0, demonstrating their capacity to fully capture the variability in the data. XGB at-

tains a slightly lower 𝑅2 of 0.99, which still reflects high accuracy but suggests a minor
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reduction in its ability to model the data as precisely as the other methods. In terms of

MAE, XGB demonstrates a relatively high value of 0.51, in contrast to the significantly

lower errors of 0.05, 0.04, and 0.01 recorded by SVR, PAR, and MLP, respectively.

These results highlight XGB’s near-optimal modeling capability in terms of variance ex-

plained, while clearly indicating higher prediction error compared to the other methods,

suggesting less precise individual predictions. The simulation dataset follows a similar

pattern, with SVR, PAR, and MLP maintaining perfect 𝑅2 values of 1.0, confirming their

consistent ability to model simulated data accurately. XGB again shows a slight re-

duction in performance, achieving an 𝑅2 of 0.91, indicating that it struggles more under

simulated conditions. The MAE values reflect this trend, with XGB recording an error of

0.61, while SVR, PAR, and MLP exhibit minimal errors of 0.03, 0.03, and 0.0, respec-

tively, further emphasizing the greater precision of the latter methods. This dataset

confirms the robustness and reliability of SVR, PAR, and MLP across data types while

illustrating a modest decline in XGB’s accuracy and precision. In the synthetic dataset,

SVR, PAR, and MLP maintain their strong and consistent performance, each achiev-

ing an 𝑅2 of 1.0, demonstrating their ability to adapt and generalize effectively even

in artificially generated data. XGB, however, exhibits a notable drop in 𝑅2, achieving

a significantly lower value of 0.25, suggesting that it faces considerable challenges in

capturing the variability in this dataset. The corresponding MAE values show a similar

pattern: XGB records a high error of 0.25, while SVR, PAR, and MLP maintain minimal

errors of 0.04, 0.03, and 0.01, respectively, further confirming XGB’s reduced precision

in this context. This performance gap indicates that XGB is particularly sensitive to the

characteristics of synthetic data, potentially due to differences in data distribution or

complexity. The overall trend observed across the figures underscores the robustness

and adaptability of SVR, PAR, and MLP, as evidenced by their consistent 𝑅2 scores of

1.0 and minimal MAE values across all datasets, reflecting their stability and precision

in various data conditions. In contrast, XGB, while demonstrating strong 𝑅2 values in

the real and simulation datasets, shows comparatively higher prediction errors and a

significant decline in performance on the synthetic dataset, highlighting its limitations in
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generalizing to different data types. These observations confirm the superior stability,

precision, and reliability of SVR, PAR, and MLP across diverse data characteristics and

testing environments.

(a) Test scores on real-world dataset, using 𝐸3 as output (b) Test scores on simulated dataset, using 𝐸3 as output

(c) Test scores on synthetic dataset, using 𝐸3 as output

Figure 4.13: Scores on the test set for 𝐸3

The same is shown in Figure 4.14 for the performance of 𝐸4 models. In the real dataset,

all methods demonstrate a perfect 𝑅2 score of 1.0, indicating their ability to fully cap-

ture the variability in the dataset. However, the MAE values reveal distinct differences

in precision. XGB records an MAE of 0.1, which, while modest, is higher than those

of the other methods. PAR and SVR achieve slightly lower errors of 0.05 and 0.03,

respectively, whereas MLP exhibits the lowest MAE at 0.0. This suggests that all meth-
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ods are highly effective at modeling the data, but MLP provides exceptional predictive

precision. In the simulation dataset, the 𝑅2 values again reflect near-perfect modeling

capabilities, with SVR, PAR, and MLP maintaining scores of 1.0. XGB achieves an

𝑅2 of 0.98, slightly trailing the other methods. The MAE results further distinguish the

methods, as XGB records a value of 0.25, which is notably higher than those of SVR,

PAR, and MLP, which achieve 0.03, 0.03, and 0.0, respectively. These findings demon-

strate the consistent reliability of SVR, PAR, and MLP in minimizing error, whereas XGB

exhibits slightly reduced precision in comparison. In the synthetic dataset, the 𝑅2 val-

ues for all methods reach the optimal score of 1.0, illustrating their ability to fully explain

the data’s variability. The MAE values, however, reveal subtle variations in accuracy.

XGB exhibits a slightly higher error of 0.08, compared to 0.05 for PAR, 0.04 for SVR,

and 0.0 for MLP. This reinforces the observation that while all methods are capable

of modeling the synthetic dataset with high accuracy, MLP consistently achieves the

lowest prediction error across datasets. Overall, these figures highlight the remarkable

robustness and precision of PAR, SVR, and MLP, which maintain perfect 𝑅2 scores

and minimal MAE values across all datasets. In contrast, XGB, while demonstrating

strong modeling capabilities, exhibits slightly higher prediction errors, particularly in the

simulation dataset. The consistency of these trends across datasets underscores the

stability and accuracy of PAR, SVR, and MLP, with MLP emerging as the most precise

method across all datasets.
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(a) Test scores on real-world dataset, using 𝐸4 as output (b) Test scores on simulated dataset, using 𝐸4 as output

(c) Test scores on synthetic dataset, using 𝐸4 as output

Figure 4.14: Scores on the test set for 𝐸4

The performance of models targeting the energy of the fifth joint is presented in Figure

4.15, which illustrates their predictive capabilities across three distinct datasets: real-

world, simulated, and synthetic. In the real dataset, all methods achieve the maximum

possible 𝑅2 score of 1.0, signifying their complete ability to explain the variance in the

dataset and accurately model the underlying relationships. However, despite identical

𝑅2 values, differences in prediction precision become evident when considering the

MAE results. XGB reports an error of 0.1, which, although relatively small and indica-

tive of good performance, is still higher than those recorded by the other models. PAR

and SVR each achieve lower MAE values of 0.04, reflecting improved predictive accu-

128



ENERGY EFFICIENCY IMPROVEMENT OF INDUSTRIAL
ROBOTIC MANIPULATORS THROUGH THE APPLICATION
OF MACHINE LEARNING AND MEMETIC ALGORITHMS

CHAPTER 4. RESULTS AND DISCUSSION

4.3. PERFORMANCE OF ML MODELS ON VALIDATION AND TEST DATA

racy and better alignment with the true values. MLP outperforms all others by achieving

an MAE of 0.0, indicating perfect precision with no measurable deviation from the ac-

tual data. These results suggest that while all methods are capable of modeling the

data effectively, MLP demonstrates a clear advantage in minimizing prediction errors,

providing the most precise results in real-world conditions. In the simulation dataset,

the trend continues with PAR, SVR, and MLP again maintaining perfect 𝑅2 scores of

1.0, confirming their robustness in handling simulated data. XGB, however, records a

slightly reduced 𝑅2 of 0.94, indicating a minor decrease in its ability to fully capture data

variability under simulated conditions. The MAE results further reinforce this observa-

tion: XGB reports an error of 0.2, noticeably higher than PAR and SVR, which both

maintain minimal errors of 0.03, and MLP, which again achieves a perfect MAE of 0.0.

This consistent pattern emphasizes that although XGB performs reasonably well over-

all, its predictive accuracy is less reliable compared to the other methods, particularly

when applied to simulation data, where slight deficiencies in precision become more

apparent. In the synthetic dataset, all methods once again achieve the maximum 𝑅2

score of 1.0, indicating that they are fully capable of modeling the variance in artificially

generated data. However, the MAE values continue to distinguish the models’ levels

of precision. XGB records an error of 0.07, which, although lower than in previous

datasets, remains higher than the MAE values of 0.04 for both PAR and SVR, and sig-

nificantly higher than MLP’s error-free result of 0.0. These findings reaffirm the ability

of PAR, SVR, and MLP to consistently deliver high-precision predictions across diverse

data sources, with MLP standing out as the most accurate and stable method. Over-

all, the figures underscore the robustness and reliability of PAR, SVR, and MLP, which

consistently achieve perfect 𝑅2 scores and minimal MAE values, demonstrating their

effectiveness in both variance explanation and precise prediction. In contrast, while

XGB consistently delivers strong 𝑅2 scores across datasets, its comparatively higher

MAE values suggest reduced predictive precision, particularly in the simulation and

synthetic datasets where subtle performance gaps become more pronounced. These

findings illustrate the comparative stability, accuracy, and superior precision of PAR,
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SVR, and MLP, with MLP emerging as the most reliable method for tasks requiring

consistently high accuracy and minimal prediction error.

(a) Test scores on real-world dataset, using 𝐸5 as output (b) Test scores on simulated dataset, using 𝐸5 as output

(c) Test scores on synthetic dataset, using 𝐸5 as output

Figure 4.15: Scores on the test set for 𝐸5

The performance of models for 𝐸6 is illustrated in Figure 4.16, which presents their

evaluation across real, simulated, and synthetic datasets. In the real dataset, all meth-

ods exhibit a perfect 𝑅2 value of 1.0, indicating their complete capability to explain the

variability in the data and accurately model its underlying structure. However, the MAE

values reveal differences in predictive precision. XGB demonstrates an error of 0.05,

which, while relatively low, is slightly higher than the errors reported by PAR and SVR,

both of which achieve values of 0.04. MLP, consistent with trends observed in previ-
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ous figures, achieves the lowest MAE at 0.01, showcasing its exceptional prediction

accuracy and minimal deviation from true values. These results indicate that while all

methods are effective in modeling real-world data, MLP maintains a clear advantage

in minimizing prediction errors, offering the highest level of precision. The simulation

dataset further reflects the strong modeling capabilities of all methods, with 𝑅2 values

uniformly perfect at 1.0 for every model, confirming their ability to capture variance in

simulated data accurately. The MAE results, however, highlight subtle differences in

precision among the methods. XGB records an error of 0.04, marginally higher than

the values for PAR and SVR, both at 0.03, indicating a slight edge for these models in

predictive accuracy. MLP once again demonstrates its robustness with an MAE of 0.0,

reflecting perfect prediction accuracy in the simulation environment and further confirm-

ing its consistent reliability. This uniformity in performance across PAR, SVR, and MLP

emphasizes their robustness and ability to generalize well to simulated data conditions.

In the synthetic dataset, the 𝑅2 scores remain perfect at 1.0 for all models, reinforcing

their capacity to fully explain the variance in artificially generated data. However, as in

the other datasets, the MAE values differentiate the models’ levels of precision. XGB

shows an MAE of 0.06, which is slightly higher than PAR’s 0.04 and SVR’s 0.03, again

suggesting a modest reduction in predictive precision. MLP, maintaining its consistent

trend from previous datasets, achieves an MAE of 0.01, underscoring its superior ac-

curacy and its ability to minimize prediction error across all data types. Overall, the

figures illustrate a robust and reliable performance by all methods, evidenced by their

consistently perfect 𝑅2 scores across real, simulated, and synthetic datasets. However,

the MAE results reveal that while XGB performs well in terms of variance explanation,

its prediction error is slightly higher than that of PAR, SVR, and particularly MLP, which

consistently achieves the lowest MAE across all scenarios. These observations reaf-

firm the stability, accuracy, and precision of PAR, SVR, and MLP, with MLP standing

out as the most reliable method for minimizing predictive errors, making it especially

suitable for applications where high accuracy and low deviation are critical.
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(a) Test scores on real-world dataset, using 𝐸6 as output (b) Test scores on simulated dataset, using 𝐸6 as output

(c) Test scores on synthetic dataset, using 𝐸6 as output

Figure 4.16: Scores on the test set for 𝐸6

Finally, the 𝑅2 and MAE scores for the total energy models are shown in Figure 4.17.

The figure presents the performance of 𝐸 models evaluated across real, simulation,

and synthetic datasets using four methods: XGB, PAR, SVR, and MLP. The metrics

𝑅2 and MAE offer insights into each model’s ability to explain data variability and the

precision of their predictions. In the real dataset, XGB achieves an 𝑅2 of 0.93, which,

although high, is slightly lower than the perfect scores of 1.0 recorded by PAR, SVR,

and MLP, indicating a slight reduction in its explanatory power. The MAE values pro-

vide a clearer contrast in predictive precision. XGB records a relatively high error of

7.71, markedly exceeding the errors of PAR, SVR, and MLP, which achieve much lower
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values of 0.05, 0.04, and 0.03, respectively. These results suggest that while XGB can

model the general trends in the data, its individual predictions are substantially less

accurate compared to the other methods. The simulation dataset reveals more pro-

nounced performance differences. MLP and SVR maintain perfect 𝑅2 scores of 1.0,

indicating their continued ability to capture data variability with complete accuracy, while

PAR achieves a slightly lower score of 0.99. XGB, however, sees a further drop in per-

formance, recording an 𝑅2 of 0.85, which reflects a significant decline in its explanatory

power under simulated conditions. The MAE values align with this trend: XGB reports

the highest error at 9.59, while PAR follows with a lower but still considerable error of

3.26. In contrast, MLP and SVR demonstrate superior accuracy, with much lower MAE

values of 1.59 and 1.56, respectively. These figures highlight that MLP and SVR not

only explain the data well but also maintain high precision, whereas XGB continues to

struggle in producing accurate predictions. In the synthetic dataset, XGB’s 𝑅2 score

improves slightly to 0.93, once again trailing behind the perfect scores achieved by

PAR, SVR, and MLP, which maintain their ability to fully explain the variance in syn-

thetic data. However, the MAE values sharply distinguish the models’ predictive per-

formance. XGB records a substantial error of 9.08, significantly higher than the errors

of PAR, SVR, and MLP, which achieve 0.05, 0.04, and 0.03, respectively. This pat-

tern reinforces the earlier observations that, despite retaining reasonable explanatory

power, XGB’s predictions are consistently less precise across all datasets. Overall, the

figures underscore a clear and consistent trend: while XGB demonstrates commend-

able 𝑅2 values, suggesting it can generally model the data’s structure, its significantly

higher MAE values across all datasets reveal a marked weakness in achieving precise

predictions. Conversely, PAR, SVR, and MLP consistently excel in both explanatory

power and prediction accuracy, with MLP and SVR performing particularly well and

showing minimal variation in error across datasets. These results emphasize the reli-

ability and robustness of MLP and SVR for applications where both high accuracy and

low prediction error are critical, while also highlighting areas where XGB may require

further hyperparameter tuning or methodological adjustments to improve its precision
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and reliability.

(a) Test scores on real-world dataset, using 𝐸 as output (b) Test scores on simulated dataset, using 𝐸 as output

(c) Test scores on synthetic dataset, using 𝐸 as output

Figure 4.17: Scores on the test set for 𝐸

Across all the figures provided, consistent trends emerge regarding the comparative

performance of the models evaluated on real, simulation, and synthetic datasets. The

models XGB, PAR, SVR, and MLP were assessed using 𝑅2, measuring the propor-

tion of explained variance, and MAE, which quantifies prediction error. These metrics

collectively highlight the strengths and limitations of each method. In terms of 𝑅2, all

models generally perform well, with PAR, SVR, and MLP frequently achieving perfect

scores of 1.0 across datasets. XGB, while showing strong 𝑅2 values in most cases,

tends to lag slightly behind, particularly in synthetic and simulation datasets, where its
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scores are occasionally below 0.9. This suggests that XGB, although capable of ex-

plaining a substantial portion of the variance, does not consistently match the robust-

ness of the other methods in this regard. The MAE values reveal more pronounced

differences between the models. PAR, SVR, and MLP consistently achieve low MAE

values, indicating high predictive precision. MLP, in particular, emerges as the most

accurate model overall, as it not only maintains perfect 𝑅2 scores across nearly all

cases but also achieves the lowest MAE values, often approaching zero. SVR and

PAR also demonstrate strong predictive capabilities, with consistently low errors across

datasets, making them reliable choices as well. XGB, however, exhibits notably higher

MAE values in many cases, particularly in the simulation and synthetic datasets, where

its prediction errors are considerably larger. This highlights a key limitation in XGB’s

predictive precision, despite its strong explanatory power. The overall trends suggest

that while XGB is a robust model in certain contexts, its performance is less reliable

when precision is critical. Conversely, PAR, SVR, and especially MLP, display ex-

ceptional consistency and reliability across all datasets. Among these, MLP stands

out as the best model overall, combining perfect 𝑅2 scores with minimal MAE values,

demonstrating both excellent explanatory power and superior predictive accuracy. This

makes MLP the most versatile and reliable choice for modeling tasks across diverse

data characteristics, which is why it was selected for further analysis and comparison.

4.4 Comparison of selected models for fitness function

To compare the performance of the selected MLP algorithm trained on the synthetic

data, we will compare it to the results of equations obtained with the LE. The compari-

son is given in Figure 4.18.
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Figure 4.18: An example of the score comparison between the ML-based and LE model, section of the

test data

As the figure shows, the LE is significantly less precise compared to the ML-based

MLP model. The MLP model follows the real data nearly perfectly, while LE shows

significant errors. There are many reasons why LE model may have a more prominent

error – such as the precision of the measurements, and other internal coefficients of

the robot.

Another issue is the computational complexity of the equations obtained with LE. The

prediction using these equations (sans loading time of functions into memory) is ap-

proximately 1.06 seconds. For comparison, the MLP runs a prediction in milliseconds.

While the difference may not seem significant, the fact that these equations are going

to be used as a fitness function needs to be taken into the account. As the calculation

is repeated tens of thousands of time, this difference becomes very significant. An-

other issue is the size of the models. While the stored MLP model takes approximately

300 KB, the LE models take up 39.6 MB of memory. So while the LE model may be

further tuned to achieve higher precision, even then it would not be appropriate for use

as a fitness function. Due to the size of LE equations, they are provided as link in
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Appendix E.

4.5 Optimization results

4.5.1 Performance of different configurations of GA algorithms

The optimization performance is measured by generating random parameter values

for each path to simulate diverse and realistic scenarios. Both the starting and ending

points of the path, defined within the joint space of the robot, are randomly selected

within feasible and physically realistic bounds. Additionally, the duration of each path

is randomized within a range of 1 to 3 seconds, ensuring variability in path length and

execution time. Following this initialization, the optimization process is carried out on

a total of 500 of these randomly generated paths to evaluate the effectiveness and

robustness of the optimization algorithms under varied conditions. All algorithms are

executed using a uniform population size of 100 individuals, evolved over 250 genera-

tions, providing a consistent basis for performance comparison across different config-

urations.

Table 4.5 presents the performance scores of various GA (Genetic Algorithm) varia-

tions using a single-objective optimization function. Three distinct recombination meth-

ods—Random, Average, and Differential—are assessed, each under different config-

urations of crossover probability (𝑃(𝐶)), mutation probability (𝑃(𝑀)), and, specifically

for the Differential method, scaling factor (𝐹). The evaluation metrics include the per-

centage improvement over the initial, randomly generated path and the corresponding

standard deviation (𝜎) to reflect consistency across trials. Improvement is computed

as the relative gain compared to the performance of the path before optimization be-

gins. The tested values for crossover probability 𝑃(𝐶) are 90% and 95%, while mu-

tation probability 𝑃(𝑀) is evaluated at 1% and 5%. For the Differential recombination

method, which replaces mutation with the scaling factor 𝐹, two values are tested: 0.5

and 1.5. The Random recombination method achieves its highest improvement of

51.96% when configured with 𝑃(𝐶) = 0.95 and 𝑃(𝑀) = 0.05, indicating that a higher

137



ENERGY EFFICIENCY IMPROVEMENT OF INDUSTRIAL
ROBOTIC MANIPULATORS THROUGH THE APPLICATION
OF MACHINE LEARNING AND MEMETIC ALGORITHMS

CHAPTER 4. RESULTS AND DISCUSSION

4.5. OPTIMIZATION RESULTS

crossover rate combined with a moderate mutation rate facilitates more effective explo-

ration and exploitation of the solution space. However, as the mutation rate is reduced

to 0.01, the performance drops significantly, with a minimum improvement of 34.31%

observed at 𝑃(𝐶) = 0.9, underscoring the importance of maintaining a sufficient mu-

tation level for this method. The standard deviation for the Random method remains

low, between 0.21 and 0.24, suggesting stable and repeatable performance across dif-

ferent optimization runs. For the Average recombination method, the highest recorded

improvement is 50.35%, achieved with 𝑃(𝐶) = 0.9 and 𝑃(𝑀) = 0.05. This result in-

dicates that a slightly lower crossover rate, in combination with a moderate mutation

probability, can also produce strong optimization outcomes. Notably, the performance

of this method drops sharply when 𝑃(𝑀) is decreased to 0.01, similar to the Random

method, highlighting a dependence on mutation for effective search. The standard

deviation for Average recombination is slightly lower, ranging from 0.19 to 0.22, indi-

cating marginally better consistency and stability than the Random method. The Dif-

ferential recombination method, which replaces the mutation operation with a scaling

factor 𝐹, generally shows lower performance compared to the other two methods. Its

highest improvement is 39.33%, achieved under the configuration 𝑃(𝐶) = 0.95 and

𝐹 = 0.05. When the scaling factor is increased to 0.15, performance declines modestly,

suggesting that smaller scaling factors are more advantageous for this recombination

approach. The standard deviation values for the Differential method are slightly higher,

between 0.22 and 0.25, indicating greater variability in outcomes and potentially less

reliability across trials. Overall, the Random recombination method demonstrates the

highest peak performance in terms of percentage improvement, though the Average

method produces comparable results with slightly greater consistency and lower vari-

ability. The Differential method, despite its lower overall performance, provides valu-

able insights into the role of scaling in genetic algorithm recombination and offers a

different balance between exploration and exploitation. Among the methods, Random

recombination appears most suitable for maximizing performance under specific pa-

rameter configurations, but the selection of an appropriate method ultimately depends

138



ENERGY EFFICIENCY IMPROVEMENT OF INDUSTRIAL
ROBOTIC MANIPULATORS THROUGH THE APPLICATION
OF MACHINE LEARNING AND MEMETIC ALGORITHMS

CHAPTER 4. RESULTS AND DISCUSSION

4.5. OPTIMIZATION RESULTS

on the characteristics of the specific optimization problem, desired performance levels,

and acceptable trade-offs between efficiency and result stability.

Table 4.5: The scores of the GA algorithms for given parameters, using a single-objective function.

Recombination 𝑃(𝐶) 𝑃(𝑀) F Improvement [%] 𝜎

Random 0.95 0.05 - 51.96 0.21

Random 0.95 0.01 - 34.64 0.23

Random 0.9 0.05 - 39.11 0.24

Random 0.9 0.01 - 34.31 0.21

Average 0.95 0.05 - 45.91 0.21

Average 0.95 0.01 - 35.06 0.22

Average 0.9 0.05 - 50.35 0.2

Average 0.9 0.01 - 35.69 0.19

Differential 0.95 - 0.05 39.33 0.25

Differential 0.95 - 0.15 38.53 0.24

Differential 0.9 - 0.05 37.28 0.22

Differential 0.9 - 0.15 37.4 0.23

Table 4.6 summarizes the performance of GA variations using a multi-objective opti-

mization function. Performance is measured by improvement percentage and stan-

dard deviation (𝜎). For the Random recombination method, the highest improvement,

50.15%, occurs with 𝑃(𝐶) = 0.95 and 𝑃(𝑀) = 0.05. As 𝑃(𝑀) decreases to 0.01, the

improvement declines significantly to 33.01–33.61%. The results suggest that main-

taining moderate mutation levels is critical for this method. Standard deviations remain

relatively stable, ranging from 0.22 to 0.27. The Average recombination method per-

forms best with 𝑃(𝐶) = 0.90 and 𝑃(𝑀) = 0.05, achieving an improvement of 48.85%.

Lower mutation probabilities reduce performance to approximately 33%, highlighting

the importance of mutation in this approach. The method exhibits slightly lower vari-

ability (𝜎 = 0.20 to 0.23) compared to Random recombination. The Differential recom-

bination method delivers its best improvement, 37.84%, with 𝑃(𝐶) = 0.95 and 𝐹 = 0.05.
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As 𝐹 increases to 0.15, performance slightly decreases to 36.18–36.78%, and stan-

dard deviations rise marginally to 0.26–0.27. This suggests that smaller scaling fac-

tors may be more effective for this method. Overall, Random recombination achieves

the highest peak performance, though Average recombination provides strong results

with slightly lower variability. Differential recombination demonstrates reliable, though

comparatively modest, improvements. The choice of method depends on the desired

balance between performance and consistency.

Table 4.6: The scores of the GA algorithms for given parameters, using a multi-objective function.

Recombination P(C) P(M) F Improvement [%] 𝜎

Random 0.95 0.05 - 50.15 0.23

Random 0.95 0.01 - 33.61 0.24

Random 0.90 0.05 - 38.03 0.27

Random 0.90 0.01 - 33.01 0.22

Average 0.95 0.05 - 44.42 0.22

Average 0.95 0.01 - 33.19 0.23

Average 0.90 0.05 - 48.85 0.22

Average 0.90 0.01 - 33.78 0.20

Differential 0.95 - 0.05 37.84 0.27

Differential 0.95 - 0.15 36.78 0.26

Differential 0.90 - 0.05 35.91 0.25

Differential 0.90 - 0.15 36.18 0.26

While the results of the multi-objective algorithm seem to be slightly lower on average,

this is well within the expected statistical fluctuation of scores in a stochastic method

such as GA, especially since it is applied on the random paths. The bigger issue with

the multi-objective path optimization is the necessity for a much more time-demanding

fitness function, with the fitness function being by far the most computationally complex

part of the GA algorithm. Considering the models obtained for individual joints are

not significantly smaller, this means that the training process for such multi-objective
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algorithm is significantly more complex. This is then reflected in the execution times.

Comparing the single-objective with a multi-objective GA with random recombination,

the single-objective executes the search in 9.35 seconds (𝑁 = 100, 𝜎 = 0.14), while

the multi-objective takes 26.82 s (𝑁 = 100, 𝜎 = 0.22). Both algorithms were run for 10

generations with 100 candidate solutions in population for the timing test in question.

4.5.2 Performance of MA

MA is constructed using the most successful algorithm from the previous section—GA

with the random recombination method configured with 𝑃(𝐶) = 95% and 𝑃(𝑀) = 5%.

As mentioned before, two variants of MA are tested to evaluate their effectiveness. The

first variant is the random search of the surrounding area around the best candidate

solution identified in each generation. In this approach, 1,000 solutions are evaluated

within a defined neighborhood, specifically within 5 differentiation steps in both the

positive and negative directions from the current best solution, ensuring comprehensive

local exploration. The second variant is the so-called informed search, which focuses

on optimizing only the parameters related to the first two joints of the robot. This is

implemented by systematically reducing the values of these parameters by a factor

of 0.9 and retesting the resulting configuration—a process that is iterated 20 times to

refine the solution.

The MA employing randomized search achieves an improvement of 52.59%, with a

standard deviation of 0.21, indicating both a significant enhancement over the initial

solution and stable performance across trials. The informed search MA achieves a

higher improvement of 59.79%, along with a slightly lower standard deviation of 0.18,

suggesting greater precision and consistency in results. Figure 4.19 illustrates the im-

provements for both of these algorithms, showing not only their respective performance

levels but also that the randomized local search variant tends to converge faster during

the optimization process, highlighting its efficiency in finding improved solutions within

fewer generations.
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(a) Path improvement for MA with randomized local

search

(b) Path improvement for MA with informed local

search

Figure 4.19: Comparison of path improvements for two applied local search strategies

Based on both the presented improvement data and the overall scores, it is clear that

the informed search is clearly superior. The randomized search performance is similar

to the GA. While it might be improved by increasing the number of searched points,

this would significantly adversly affect the time, which is already significantly higher

than the MA with informed search. Randomized search MA, with the same settings

used for timing GA, takes 20.12 seconds (𝑁 = 100, 𝜎 = 0.12), while informed MA takes

9.56 seconds (𝑁 = 100, 𝜎 = 0.34)

4.5.3 Energy-use comparison of robot paths generated with MA

The final presented result, given in Table 4.7, compares the energy of the optimized

path with the linear path between the two points. The linear path was selected due to it

being the default movement used to move the robot between two points in ABB Robot-

Studio. The measurements are performed with the code given in Appendix G, and the

previously described measurement code, on the real ABB IRB 120 in a laboratory en-

vironment. The measurements were performed on five randomly selected paths. The

results show that the optimization performance introduces a significant energy savings
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compared to the default linear path.

Table 4.7: Comparison of few randomly selected paths, between the energy use of a linear point-to-point

movement and the optimized path. Gene – the path parameters obtained via optimization, 𝑞𝑆 – starting

positions in joint space, 𝑞𝐸 – ending positions in joint space, 𝐸L – energy of the linear path, 𝐸O – energy

use of the optimized path, Δ – improvement with optimization.

Gene 𝑞𝑆 𝑞𝐸 𝐸L 𝐸optimized Δ [%]

0.00 0.62 −0.12 −0.12 −1.18 0.00

−0.00 −0.10 −0.08 0.08 0.00 −0.14

9.45 1.60 5.85 1.25 7.85 −4.00

3.30 7.00 −4.70 −9.20 −3.85 −5.05

8.15 1.30 7.60 3.65 −7.50 −7.65

1.00 6.75 4.30 7.45 −5.55 6.40



-14.32 120.32

75.21 24.52 67.39

-22.92 131.78

5.73 123.19

40.11 140.37

48.70 114.59

-54.43 166.16

1.12 1.05 0.42 0.04 −0.74 −0.08

−0.16 0.65 −0.12 −0.06 −0.02 0.13

−1.25 8.75 5.20 1.40 2.35 5.25

−9.40 0.25 −8.30 0.05 −2.95 3.20

3.05 −5.80 1.35 −4.35 −6.25 3.60

8.25 −7.40 0.00 −8.95 4.90 −1.85



28.65 166.16

37.57 19.44 48.25

-28.65 117.46

37.24 117.46

20.05 163.29

51.57 166.16

37.24 114.59

−0.24 −0.00 0.98 0.00 −1.20 0.43

0.03 −0.00 −0.85 1.15 −1.02 0.38

2.20 3.20 6.60 2.00 −6.45 5.95

8.45 −2.35 −7.30 3.90 −1.05 −1.35

4.30 8.05 2.95 1.05 −3.55 −5.20

−9.70 −2.15 −1.25 8.25 −1.70 7.45



22.91 114.59

92.20 25.16 72.71

-40.11 120.32

22.92 137.51

-20.05 126.05

-25.78 128.92

-20.05 114.59

−0.01 0.94 0.00 0.00 −0.08 0.15

0.01 0.00 0.00 0.13 0.18 0.00

6.70 −8.45 −1.30 0.20 −4.10 −8.00

4.50 0.35 −8.25 7.00 −8.50 8.65

1.85 4.60 −1.90 4.45 −3.55 7.45

6.15 5.95 −6.50 −7.20 −9.70 3.90



-42.97 143.24

38.76 18.00 53.56

28.65 146.10

31.51 154.69

51.57 117.46

-40.11 123.19

22.92 143.24

−0.00 −0.02 0.00 −0.97 0.10 −0.19

0.00 1.00 −0.01 0.08 0.00 0.00

−7.95 5.90 4.70 −9.25 −7.45 −7.05

8.80 −8.00 −1.35 7.15 0.25 1.45

3.10 −4.40 −0.15 5.60 4.65 −3.55

−3.15 −8.65 −9.05 6.00 −1.55 −1.70



-40.11 143.24

38.39 29.26 23.78

-22.92 154.69

51.57 140.37

8.59 137.51

25.78 134.65

20.06 131.78
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4.6 Summary

This chapter provided and compared the results of different parts of the methodology.

First, it realized the scientific contribution of the energy consumption model by defining

it as a data-driven model developed using the MLP method on synthetic data, as that

model showed the best performance on all of the tested outputs. While synthetic data

did not perform better than real-world data, it was selected due to simpler use and

application in real-world applications. The model, as defined, has been used as a

fitness function in an MA algorithm, which used the feature importances determined

at the start of the chapter to perform a localized search and improve the results. This

algorithm was compared to different algorithms present in past research. The results

show that the proposed algorithm has significant improvement compared to classic GA,

as well as comparing it to the classic movement the IRMs utilize between two points.
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CHAPTER 5
Conclusion

The presented doctoral thesis described the methodology necessary to obtain the

dataset of IRM energy use, from a real-world environment and simulation, and gen-

erate synthetic data from the real dataset. The datasets were extensively compared

and used in the ML-modelling process using four algorithms, out of which the best per-

forming one was picked to serve as a fitness function of an MA optimization process.

The feature importance analysis performed using correlation metrics and ML-driven

metrics suggests that the positions and speeds of the first two joints have the highest

influence on the energy use for the IRM. The synthetic and real-world dataset show

extremely high similarity on descriptive statistics, which is to be expected, due to the

nature of how synthetic data is generated. On the other hand, simulation data shows

a difference, specifically in those metrics that indicate its central tendency, while the

metrics indicating ranges show higher similarities. This indicates the possibility of real-

world data having similarly shaped distribution to the original data, but shifted, possibly

due to outside influences that are not included within the simulation. This is most

likely the reason why the ML models trained on simulation data perform poorly on the

prediction of values in the real dataset. On the other hand, the synthetic data performs

just as well as the real data, indicating that there is no particular need for full data

collection, and the models can be based on real-world data augmented with synthetic

models. Comparing the data-driven model to a pure numerical model obtained with LE

algorithm, the data driven model follows the real data much more closely, indicating its

superiority. This, best performing model – namely the MLP model trained on synthetic

data, is used as a fitness function, allowing for optimization of paths interpolated with a

fifth-order polynomial. MA based on the GA with random recombination was used for
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optimization, and it has shown the ability to improve randomly placed and linear paths.

The results suggest that data-driven models do have a higher performance on real-

world data compared to classical models. In addition to that, the synthetic data-based

models show the highest performing scores, on par with the models trained on real-

world data, indicating that the generation of data in this case is possible. This indicates

the possibility of simpler data collection on robots which are targets for the optimization.

Finally, the MA has shown that the targeted search around the best found solution in a

generation can significantly improve the performance of the optimization algorithms.

There are certain limitations to the presented work that need to be noted. The pre-

sented methodology is limited to six-axis IRMs, and it would require significant adjust-

ments to tune different robot configurations – especially parallel configurations. Addi-

tionally, the entirety of the research is based on the ABB IRB 120 IRM. While research

exists indicating the possibility of a limited transfer to different robots is possible, this

point needs to be researched additionally. Future work will serve to use the framework

presented in this doctoral thesis with the goal of expanding the capabilities to more

general IRM data, developing datasets applicable to a wider set of IRMs.

To finalize, a summary of scientific contributions is provided. This thesis defined the

process by which the data can be collected to develop data-driven methods for en-

ergy modeling of six DOF IRMs. The proposed process, based on data synthetization,

serves to develop a usable dataset on a fraction of data normally used, while keeping

the same characteristics as the full dataset collected on the real-world IRM. This en-

ables faster collection of data which can be used to develop data-driven models that

are more precise in energy consumption prediction than conventional analytical mod-

els or models developed on simulation data. These models can then be applied as the

target function of an optimization process, to lower the energy consumption. This is

the final scientific contribution of this doctoral thesis, with the MA combining GA with

local search based adjustment of features with high influence. The proposed algorithm

shows the possibility of improving the performance up to 72% compared to the linear

point-to-point path.
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Symbol Description

𝑚 𝑗 Mass of link 𝑗.

𝑐𝑘
𝑗
(𝑞) Position of the center of mass of link 𝑗 along axis 𝑘, as a function of 𝑞.

𝐶𝑖
𝑘 𝑗
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0 Initial base transformation matrix, equal to the identity matrix.

𝐷 (𝑞) Manipulator inertia tensor up to the current joint.

Δ𝑐𝑖 Center of mass of link 𝑖 relative to its own coordinate system.

𝐷′
𝑖

Inertia tensor of link 𝑖 in its local coordinate system.

𝑧𝑖−1 (𝑞) Joint transformation vector for joint 𝑖 − 1.

𝑅𝑖−1
0 (𝑞) Rotation matrix from base to joint 𝑖 − 1.

𝑖3 Unit vector along the 𝑧-axis in the base frame.

𝑇𝑖0 (𝑞) Composite homogeneous transformation matrix from base to joint 𝑖.
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𝐷𝑖 (𝑞) Inertia tensor of link 𝑖 relative to the base coordinate system.
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𝐵𝑘 (𝑞) Angular velocity component of Jacobian for link 𝑘.

𝜉 Joint type indicator (𝜉 = 1 for rotary, 𝜉 = 0 for linear).

𝐴
𝑗

𝑘𝑖
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𝐹𝐸𝑃 Friction force as per Elasto-Plastic friction model.
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𝑚 Number of coefficients in the polynomial (polynomial order).

𝑛 Degree of the highest-order term in the polynomial.

𝑡 Time at which the movement is evaluated (independent variable).

𝑦 True output value associated with a data point.

𝑋𝑖,: Input data vector (row 𝑖 of dataset 𝑋).

𝑋 Full dataset of input vectors.

𝑦̂ Predicted output value generated by the model.

𝑀 Machine learning model.

𝑤 Trainable parameters of the model.

𝜖 Prediction error (difference between 𝑦̂ and 𝑦).

L Model loss (another term for error 𝜖 ).

𝐻 Set of hyperparameters defining the model’s structure and training behavior.

ℎ𝑖 List of possible values for hyperparameter 𝑖.

𝑁 Total number of hyperparameter combinations (number of models trained).

𝑋𝑉 Validation input dataset (subset of 𝑋).

Continued on next page
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Table 5.1 – continued from previous page

Symbol Description

𝑌𝑉 Validation output dataset (true outputs corresponding to 𝑋𝑉 ).

𝑋𝑇𝑅 Training input dataset.

𝑌𝑇𝑅 Training output dataset.
ˆ𝑌𝑉 Predicted outputs for the validation set.

𝑅2 Coefficient of determination (statistical measure of model fit).

𝑆𝑆𝑟𝑒𝑠 Residual sum of squares (unexplained variance).

𝑆𝑆𝑡𝑜𝑡 Total sum of squares (total variance in data).

𝑌 Mean of the target output values.

𝑀𝐴𝐸 Mean absolute error.

𝑛 Number of data points in the dataset.

𝑘 Number of cross-validation splits (folds).

𝑋:, 𝑗 Feature column 𝑗 of the dataset 𝑋.

𝑋′:, 𝑗 Standardized version of feature column 𝑗.

𝜇 𝑗 Mean of feature column 𝑗.

𝜎 𝑗 Standard deviation of feature column 𝑗.

𝑎
(𝑙)
𝑗

Output of neuron 𝑗 in layer 𝑙 of an MLP.

𝑤
(𝑙)
𝑖 𝑗

Weight connecting neuron 𝑖 in layer 𝑙 − 1 to neuron 𝑗 in layer 𝑙.

𝑏
(𝑙)
𝑗

Bias term for neuron 𝑗 in layer 𝑙.

𝜙 Activation function used in neural networks.

L Loss function used for training a model.

𝑧
(𝑙)
𝑗

Weighted input to neuron 𝑗 in layer 𝑙.

𝛿
(𝑙)
𝑗

Error term for neuron 𝑗 in layer 𝑙 (used in backpropagation).

𝜂 Learning rate, controlling the step size in weight updates.

𝜂𝑡 Learning rate at iteration 𝑡.

𝛾 Learning rate reduction factor (for adaptive/invscaling schedules), or exponent in invscaling.

Lreg Regularized loss function (includes L2 penalty).

𝑓 (𝑋𝑖,: ) Output of the SVR model for input 𝑋𝑖,:.

𝜖 Tolerance margin in SVR within which no penalty is applied.

𝜉𝑖 , 𝜉 ∗𝑖 Slack variables measuring deviation from the 𝜖 margin.

𝐶 Regularization parameter in SVR, balancing margin violations and model complexity.

𝜙 (𝑋𝑖,: ) Non-linear transformation of 𝑋𝑖,: to higher-dimensional space.

𝐾 (𝑋𝑖, 𝑗 ) Kernel function applied to inputs 𝑋𝑖,: and 𝑋:, 𝑗 .

𝛼𝑖 , 𝛼∗𝑖 Lagrange multipliers associated with slack variables in SVR.

𝜀 Width of epsilon-insensitive tube in SVR (alternative notation for 𝜖 ).

𝑤 Current weight vector of the model.

𝑤prev Weight vector from the previous iteration.

𝜏 Step size for weight update in Passive Aggressive Regressor.

∥𝑤 − 𝑤prev ∥2 Squared Euclidean distance between current and previous weight vectors.

∥𝑋𝑖,: ∥2 Squared norm of the input feature vector 𝑋𝑖,:.

𝑓𝑡 (𝑋𝑖,: ) Prediction of the 𝑡-th decision tree in Gradient Boosted Trees.

𝑦̂ (𝑡 ) Model prediction at iteration 𝑡.

𝑦̂ (𝑡−1) Model prediction at iteration 𝑡 − 1.
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Table 5.1 – continued from previous page

Symbol Description

𝜂 𝑓𝑡 Learning rate for the 𝑡-th tree.

L(𝑦, 𝑦̂) Loss function comparing true value 𝑦 and prediction 𝑦̂.

L (𝑡 ) Objective function at iteration 𝑡 in Gradient Boosted Trees.

Ω( 𝑓𝑡 ) Regularization term for the tree 𝑓𝑡 .

𝑇 Number of leaves in a decision tree.

𝑤 𝑗 Weight assigned to the 𝑗-th leaf in a decision tree.

𝛾 Regularization parameter penalizing the number of leaves in a tree.

𝜆 Regularization parameter penalizing the magnitude of leaf weights.

𝑔𝑖 First derivative (gradient) of the loss with respect to 𝑦̂𝑖 .

ℎ𝑖 Second derivative (Hessian) of the loss with respect to 𝑦̂𝑖 .

𝐼 𝑗 Set of data points assigned to leaf 𝑗.

R Loss reduction achieved by splitting a node in the tree.

𝐼𝐿 , 𝐼𝑅 Sets of data points in the left and right child nodes of a split.

𝐼 Set of data points in the parent node before splitting.

𝑎
𝑗

𝑖
Coefficient of order 𝑖 for the path of joint 𝑗.

𝑡 Generation index in evolutionary algorithms.

𝑓𝑖 Fitness value of the 𝑖-th individual (to be minimized).

𝑓 ′
𝑖

Adjusted fitness value of the 𝑖-th individual (inverse of 𝑓𝑖).

𝐹𝑇𝑂𝑇𝐴𝐿 Total sum of adjusted fitness values.

𝑃𝑖 Probability of selection for the 𝑖-th individual in roulette wheel selection.

𝐶𝑖 Cumulative probability for the 𝑖-th individual.

𝑟 Uniformly generated random value in [0, 1] used for selection.

F(§) Fitness function for single-objective optimization.

F(§∞, §∈ , · · · , §\ ) Fitness function for multi-objective optimization.

P Population of candidate solutions.

𝑁 Population size (number of individuals).

𝑡 Generation index.

p1, p2 Parent candidate solutions (chromosomes).

o1 Offspring solution resulting from crossover.

𝑔 Gene in a chromosome.

𝑔′ Mutated gene value.

𝛿 Small random perturbation applied during mutation.

P (𝑡+1) Population at generation 𝑡 + 1.

P0 Initial population.

p0
𝑖

𝑖-th individual in the initial population.

F(p0
𝑖
) Fitness function evaluated on individual p0

𝑖
.

𝑅 Reproduction operator.

𝐶 Crossover operator.

𝑃 (𝐶 ) Probability of performing crossover.

𝑃 (𝑀 ) Probability of performing mutation.

p𝐴, p𝐵 Two selected parent solutions.

𝐴 Matrix representation of parent p𝐴.

Continued on next page
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Symbol Description

𝐵 Matrix representation of parent p𝐵.

𝑎
𝑗

𝑖
Coefficient from matrix 𝐴, for joint 𝑗, coefficient 𝑖.

𝑏
𝑗

𝑖
Coefficient from matrix 𝐵, for joint 𝑗, coefficient 𝑖.

𝑌 Resulting offspring matrix from recombination.

𝑦
𝑗

𝑖
Element of offspring matrix 𝑌 , for joint 𝑗, coefficient 𝑖.

𝑝𝑐 Probability of crossover in the genetic algorithm.

𝑝𝑚 Probability of mutation in the genetic algorithm.

𝐺 Maximum number of generations.

𝑃offspring Offspring population generated in each generation.

P Population of candidate solutions.

𝑁 Population size.

𝑡 Generation index (iteration count in evolutionary algorithm).

p𝑖 𝑖-th individual (candidate solution) in the population.

p′
𝑖

Locally refined version of p𝑖 after local search.

LocalSearch( ·) Local search operator applied to a candidate solution.

𝑓 (p) Fitness function evaluating the quality of a solution p.

N(p𝑖 ) Neighborhood of solution p𝑖 (set of nearby solutions considered in local search).

𝑌 ′ Randomly perturbed solution derived from a base solution 𝑌 during local search.

𝑈 (𝐼 ) Uniform random selection of a value from set 𝐼.

𝐼 Set of possible discretization steps: 𝐼 = [±0.25, ±0.20, ±0.15, ±0.10, ±0.05, 0].

𝑛 Number of data points in dataset.

𝑖 𝑗 Dimensionality of solution (total number of coefficients in a solution).

𝑌𝑑 = [𝑦1, 𝑦2, · · · , 𝑦𝑛 ] Output variable vector for dataset 𝑑.

𝑋𝑑:, 𝑗 𝑗-th feature column of dataset 𝑑.

𝜇
𝑋𝑑:, 𝑗

Mean of feature 𝑋𝑑:, 𝑗 .

𝜇𝑌𝑑 Mean of output variable vector 𝑌𝑑 .

𝜌𝑃
𝑋𝑑:, 𝑗 ,𝑌

𝑑
Pearson’s correlation coefficient between 𝑋𝑑:, 𝑗 and 𝑌𝑑 .

𝜌𝑆
𝑋𝑑:, 𝑗 ,𝑌

𝑑
Spearman’s correlation coefficient between 𝑋𝑑:, 𝑗 and 𝑌𝑑 .

𝜌𝐾
𝑋𝑑:, 𝑗 ,𝑌

𝑑
Kendall’s correlation coefficient between 𝑋𝑑:, 𝑗 and 𝑌𝑑 .

𝜚 (𝑥𝑖 ) Rank of element 𝑥𝑖 in 𝑋𝑑:, 𝑗 .

𝜚 (𝑦𝑖 ) Rank of element 𝑦𝑖 in 𝑌𝑑 .

sgn( ·) Sign function returning 1, −1, or 0.

𝑓𝑡 (𝑋𝑖,: ) Prediction of the 𝑡-th tree in a random forest for input 𝑋𝑖,:.

𝑦̂ Aggregated prediction of the random forest for input 𝑋𝑖,:.

𝑇 Total number of trees in the random forest.

𝐷𝑖 Bootstrap sample of data used to train tree 𝑖.

𝐹 Set of all features.

𝐹𝑠𝑝𝑙𝑖𝑡 Subset of features considered for a split.

Δ𝐼𝑣 Reduction in impurity at node 𝑣.

𝐼𝑣 , 𝐼𝐿 , 𝐼𝑅 Variances of the target variable in node 𝑣, and its children 𝐿 and 𝑅.

|𝑣 |, |𝐿 |, |𝑅 | Number of data points in node 𝑣, and its children 𝐿 and 𝑅.

Continued on next page
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Symbol Description

𝐼𝑀𝐷𝐼 (𝑋:, 𝑗 ) Mean decrease in impurity importance for feature 𝑋:, 𝑗 .

N𝑡 Set of nodes in tree 𝑡.

⊮( ·) Indicator function, equal to 1 if condition is true, otherwise 0.

𝐼𝑝𝑒𝑟𝑚 (𝑋:, 𝑗 ) Permutation importance of feature 𝑋:, 𝑗 .

𝐴
(𝑡 )
𝑜𝑟𝑖𝑔

Accuracy of tree 𝑡 on original data.

𝐴
(𝑡 )
𝑝𝑒𝑟𝑚 Accuracy of tree 𝑡 after permuting feature 𝑋:, 𝑗 .

𝑋 = (𝑋:,1, 𝑋:,2, . . . , 𝑋:,𝑑 ) Random vector.

𝐹𝑋 (𝑋𝑖,1, 𝑋𝑖,2, . . . , 𝑋𝑖,𝑑 ) Joint cumulative distribution function (CDF).

𝐹𝑋𝑖, 𝑗 (𝑋𝑖, 𝑗 ) Marginal CDF of variable 𝑋𝑖, 𝑗 .

𝐶 (𝑢1, 𝑢2, . . . , 𝑢𝑑 ) Copula function.

𝑢𝑖 = 𝐹𝑋𝑖, 𝑗 (𝑋𝑖, 𝑗 ) Uniform variable on [0, 1].

Φ−1 Inverse CDF of standard normal distribution.

ΦΣ Multivariate normal CDF with covariance matrix Σ.

Σ Covariance matrix encoding dependency structure.

R Correlation matrix.

𝜌𝑖 𝑗 Pearson correlation coefficient.

Z = (𝑍1, 𝑍2, . . . , 𝑍𝑑 ) Sampled vector from multivariate normal distribution.

𝑈𝑖 = Φ(𝑍𝑖 ) Transformed uniform variable.

𝑋𝑖, 𝑗 = 𝐹
−1
𝑋𝑖, 𝑗
(𝑈𝑖 ) Synthetic data point.

𝐺 Generator function in GAN.

𝐷 Discriminator function in GAN.

𝑍 ∼ 𝑝𝑍 Noise vector sampled from prior distribution.

𝐺 (𝑍 ) Synthetic data generated by 𝐺.

𝑋 ∼ 𝑝data Real data sample.

L WGAN-GP loss function.

𝑋̂ Interpolated data point between real and synthetic.

𝜆 Regularization parameter for gradient penalty.

𝑋
(𝑚)
𝑖, 𝑗

=
𝑋𝑖, 𝑗−𝜇𝑚
𝜎𝑚

Mode-specific normalized value.

𝜇𝑚 Mean of mode 𝑚.

𝜎𝑚 Standard deviation of mode 𝑚.

𝑍 ∼ N(𝝁, diag(𝝈2 ) ) Sampled latent variable.

𝝁 Mean vector of latent distribution.

𝝈 Standard deviation vector of latent distribution.

LELBO Evidence lower bound loss function.

𝑞 (𝑍 |𝑋) Approximate posterior distribution.

𝑝 (𝑍 ) Prior distribution over latent space.

𝑝 (𝑋 |𝑍 ) Likelihood of data given latent variable.

𝐷KL (𝑞 (𝑍 |𝑋) ∥ 𝑝 (𝑍 ) ) Kullback-Leibler divergence.

𝑃 (𝑦𝑖 = 𝑗 |𝑍 ) =
exp(𝑙𝑖 𝑗 )∑𝐾
𝑘=1 exp(𝑙𝑖𝑘 )

Softmax probability for categorical variable.

l𝑖 Predicted logits vector.

𝑙𝑖 𝑗 𝑗-th logit for 𝑖-th variable.

Cpair Column Pair Score.
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𝑃real (𝑋𝑖, 𝑗 , 𝑋:, 𝑗 ) Joint distribution in real data.

𝑃synthetic (𝑋𝑖, 𝑗 , 𝑋:, 𝑗 ) Joint distribution in synthetic data.

𝐷JS Jensen-Shannon divergence.

𝑁pairs Number of column pairs.

Cshape Column Shape Score.

𝑃real (𝑋:, 𝑗 ) Marginal distribution in real data.

𝑃synthetic (𝑋:, 𝑗 ) Marginal distribution in synthetic data.

𝑁columns Number of columns.

Δ𝑡 Time between two data points.

𝜔𝑖∀𝑖 ∈ [1, · · · , 6] Acceleration of each axis.

Δ𝑥, Δ𝑦, Δ𝑧 Change in linear position of TCP.

Δ𝜙, Δ𝜃, Δ𝜓 Change in angle of TCP.

Δ ¤𝑥, Δ ¤𝑦, Δ ¤𝑧 Linear components of TCP speed and acceleration.

Δ ¤𝜙, Δ ¤𝜃, Δ ¤𝜓 Angular speeds and accelerations.

𝑡1 Time of the first data point.

𝑡2 Time of the second data point.

Δ𝑡 = 𝑡2 − 𝑡1 Measurement time difference.

𝜏𝑖∀𝑖 ∈ [1, · · · , 6] Individual joint torque.

𝑋 Dataset.

𝑋:, 𝑗 Variable (column) vector from dataset.

𝑋:, 𝑗 = [𝑥1, 𝑗 , 𝑋2, 𝑗 , · · · 𝑋𝑁, 𝑗 ]𝑇 Vector of 𝑁 elements in variable 𝑋:, 𝑗 .

𝑁 Number of elements in each feature.

𝑋 = [𝑋𝑖,1, 𝑋𝑖,2, · · · 𝑋𝑖,𝑚 ] Dataset with 𝑚 variables.

𝑚 Number of variables in dataset.

𝜇
𝑋𝑑:, 𝑗

Mean value of variable 𝑋𝑑:, 𝑗 .

𝑀𝑋𝑑 Median of dataset 𝑋𝑑 .

𝑚 Mode of variable (value with highest frequency).

𝑓
𝑋𝑑
𝑖,:

Frequency of value 𝑋𝑑
𝑖,:.

𝑉
𝑋𝑑:, 𝑗

Variance of variable 𝑋𝑑:, 𝑗 .

𝜎
𝑋𝑑:, 𝑗

Standard deviation of variable 𝑋𝑑:, 𝑗 .

≬
𝑋𝑑:, 𝑗

Range of variable 𝑋𝑑:, 𝑗 .

max(𝑋𝑑:, 𝑗 ) ,min(𝑋𝑑:, 𝑗 ) Maximum and minimum values of 𝑋𝑑:, 𝑗 .

𝑆𝑘
𝑋𝑑:, 𝑗

Skewness of variable 𝑋𝑑:, 𝑗 .

𝐾
𝑋𝑑:, 𝑗

Kurtosis of variable 𝑋𝑑:, 𝑗 .
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APPENDIX B
Python implementation of the LE algo-

rithm

1 import numpy as np

2 from sympy import *

3 from xml.dom import minidom

4 import numpy as np

5 from numba import jit

6

7 q1 = Symbol(’q1’)

8 q2 = Symbol(’q2’)

9 q3 = Symbol(’q3’)

10 q4 = Symbol(’q4’)

11 q5 = Symbol(’q5’)

12 q6 = Symbol(’q6’)

13

14 dq1 = Symbol(’dq1’)

15 dq2 = Symbol(’dq2’)

16 dq3 = Symbol(’dq3’)

17 dq4 = Symbol(’dq4’)

18 dq5 = Symbol(’dq5’)

19 dq6 = Symbol(’dq6’)

20

21 ddq1 = Symbol(’ddq1’)

22 ddq2 = Symbol(’ddq2’)

23 ddq3 = Symbol(’ddq3’)

24 ddq4 = Symbol(’ddq4’)

25 ddq5 = Symbol(’ddq5’)
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26 ddq6 = Symbol(’ddq6’)

27

28 a1 = Symbol(’a1’)

29 a2 = Symbol(’a2’)

30 a3 = Symbol(’a3’)

31 a4 = Symbol(’a4’)

32 a5 = Symbol(’a5’)

33 a6 = Symbol(’a6’)

34

35 m1 = Symbol(’m1’)

36 m2 = Symbol(’m2’)

37 m3 = Symbol(’m3’)

38 m4 = Symbol(’m4’)

39 m5 = Symbol(’m5’)

40 m6 = Symbol(’m6’)

41

42 d1 = Symbol(’d1’)

43 d2 = Symbol(’d2’)

44 d3 = Symbol(’d3’)

45 d4 = Symbol(’d4’)

46 d5 = Symbol(’d5’)

47 d6 = Symbol(’d6’)

48

49 f1 = Symbol(’f1’)

50 f2 = Symbol(’f2’)

51 f3 = Symbol(’f3’)

52 f4 = Symbol(’f4’)

53 f5 = Symbol(’f5’)

54 f6 = Symbol(’f6’)

55

56

57 q__ = [q1, q2, q3, q4, q5, q6]

58 dq__ = [dq1, dq2, dq3, dq4, dq5, dq6]

59 ddq__ = [ddq1, ddq2, ddq3, ddq4, ddq5, ddq6]

60 a__ = [a1, a2, a3, a4, a5, a6]
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61 m__ = [m1, m2, m3, m4, m5, m6]

62 d__ = [d1, d2, d3, d4, d5, d6]

63 f__ = [f1, f2, f3, f4, f5, f6]

64

65 robot = minidom.parse("robot.irml")

66

67 DEBUG = False

68 import sys

69

70 # get general values

71 name = robot.getElementsByTagName("name")[0].childNodes[0].data

72 manufacturer = robot.getElementsByTagName("manufacturer")[0].childNodes

[0].data

73 joints = len(robot.getElementsByTagName("joint"))

74 capacity = robot.getElementsByTagName("carrying-capacity")[0].

childNodes[0].data

75 reach = robot.getElementsByTagName("reach")[0].childNodes[0].data

76 configuration = robot.getElementsByTagName("configuration")[0].

childNodes[0].data

77 if DEBUG:

78 print("MANUFACTURER=",manufacturer)

79 print("NAME=", name)

80 print("JOINTS=",joints)

81 print("CAPACITY=",capacity,"kg")

82 print("REACH=", reach, "m")

83 print("TYPE=", configuration)

84

85 #variables for storage

86 T = []

87 R = []

88 c = []

89 D = []

90 m = []

91 a_s = []

92 xi = []
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93 # get individual joint values

94 count = 0

95 for joint in robot.getElementsByTagName("joint"):

96 xi.append(int(joint.getElementsByTagName("xi")[0].childNodes[0].

data))

97 for kinematics_parameter in joint.getElementsByTagName("kinematics"

):

98 # get denavit-hartenberg parameters , convert them to symbols

99 q = Symbol(kinematics_parameter.getElementsByTagName("q")[0].

childNodes[0].data)

100 d = Symbol(kinematics_parameter.getElementsByTagName("d")[0].

childNodes[0].data)

101 r = Symbol(kinematics_parameter.getElementsByTagName("r")[0].

childNodes[0].data)

102 a = Symbol(kinematics_parameter.getElementsByTagName("a")[0].

childNodes[0].data)

103 print(r)

104

105 # calculate joints transformation matrix

106 T_ = np.array([(cos(q__[count]), -sin(q__[count])*cos(a), sin(

q__[count])*sin(a), r*cos(q__[count])),

107 (sin(q__[count]), cos(q__[count])*cos(a), -cos(q__[

count])*sin(a), r*sin(q__[count])),

108 (0, sin(a), cos(a), d),

109 (0,0,0,1)])

110 # store value to matrix

111 T.append(T_)

112

113 if DEBUG:

114 print("T=",T_)

115 print("R=",T_[0:3,0:3])

116

117 # Get dynamics-related parameters

118 # get mass of the joint

119 for dynamics_parameter in joint.getElementsByTagName("dynamics"):
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120 mass = dynamics_parameter.getElementsByTagName("link-mass")[0].

childNodes[0].data

121 if DEBUG:

122 print("m=", mass)

123 m.append(float(mass))

124 # get joint mass center coordinates

125 center_coordinates = dynamics_parameter.getElementsByTagName("

center")

126 for coordinate in center_coordinates:

127 x = coordinate.getElementsByTagName("x")[0].childNodes[0].

data

128 y = coordinate.getElementsByTagName("y")[0].childNodes[0].

data

129 z = coordinate.getElementsByTagName("z")[0].childNodes[0].

data

130 c_ = np.array([[x], [y], [z], [1]]).astype(float)

131 c.append(c_)

132 if DEBUG:

133 print("c=", c_)

134

135 # get tensor of inertia from the XML

136 tensor_elements = dynamics_parameter.getElementsByTagName("

inertia")

137 for element in tensor_elements:

138 xx = element.getElementsByTagName("xx")[0].childNodes[0].

data

139 xy = element.getElementsByTagName("xy")[0].childNodes[0].

data

140 xz = element.getElementsByTagName("xz")[0].childNodes[0].

data

141 yx = element.getElementsByTagName("yx")[0].childNodes[0].

data

142 yy = element.getElementsByTagName("yy")[0].childNodes[0].

data
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143 yz = element.getElementsByTagName("yz")[0].childNodes[0].

data

144 zx = element.getElementsByTagName("zx")[0].childNodes[0].

data

145 zy = element.getElementsByTagName("zy")[0].childNodes[0].

data

146 zz = element.getElementsByTagName("zz")[0].childNodes[0].

data

147

148 D_ = np.array([[xx, xy, xz], [yx, yy, yz], [zx, zy, zz]]).

astype(float)

149

150 D.append(D_)

151 if DEBUG:

152 print("D=", D_)

153 print(10*’----------’)

154

155 # Get R values of tranformation matrices

156 # first joint is I

157 R.append(np.eye(3,3))

158 # second is from base to joint 1

159 R.append(T[0][:3, :3])

160 # third is from base to joint two, hence the multiplication

161 R.append(T[0].dot(T[1])[:3, :3])

162 #and so on for the rest of the joints

163 R.append(T[0].dot(T[1]).dot(T[2])[:3, :3])

164 R.append(T[0].dot(T[1]).dot(T[2]).dot(T[3])[:3, :3])

165 R.append(T[0].dot(T[1]).dot(T[2]).dot(T[3]).dot(T[4])[:3, :3])

166 R.append(T[0].dot(T[1]).dot(T[2]).dot(T[3]).dot(T[4]).dot(T[5])[:3,

:3])

167

168 ### first iteration

169 N=joints

170 z_arr = []

171 c_arr = []
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172 D_arr = []

173 A_q_arr = []

174 B_q_arr = []

175 D_q_arr = []

176 # flipped because of shaping and order of dims in numpy

177 H1 = np.array([[1, 0, 0], [0, 1, 0], [0, 0, 1], [0, 0, 0]])

178 for i in range(N):

179 print("First iterative part, joint ", i)

180 # 5

181 z_ = R[i]@np.array([0, 0, 1]).T

182 T_0_i = T[0]

183 for j in range(0, i):

184 T_0_i=T_0_i@T[j]

185

186 c_ = c[i].T@(T_0_i@H1)

187 D_ = R[i]@D[i]@(R[i].T)

188

189 z_arr.append(z_)

190 c_arr.append(c_)

191 D_arr.append(D_)

192 # 6

193 #set the initial A_q_

194 #all A_q_’s have the first

195 A_q_ = np.array(diff(c_arr[0], q__[0])).T.reshape(3,1)

196 B_q_ = np.array(xi[0]*z_arr[0]).T.reshape(3,1)

197 # fill it with the rest of the differentials

198 for j in range(1, i+1):

199 A_q_=np.hstack((A_q_, np.array(diff(c_arr[j], q__[j])).T.

reshape(3,1)))

200 B_q_=np.hstack((B_q_, np.array(xi[j]*z_arr[j]).T.reshape(3,1)))

201

202 # pad the remainder

203 A_q_ = np.hstack((A_q_, np.zeros((3, N-A_q_.shape[1]))))

204 B_q_ = np.hstack((B_q_, np.zeros((3, N-B_q_.shape[1]))))

205
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206 A_q_arr.append(A_q_)

207 B_q_arr.append(B_q_)

208 # 7

209 D_q_ = A_q_arr[0].T@(m[0]*A_q_arr[0]) + B_q_arr[0].T@D_arr[0]

@B_q_arr[0]

210 for j in range(1, i+1):

211 D_q_+= A_q_arr[j].T@(m[j]*A_q_arr[j]) + B_q_arr[j].T@D_arr[j]

@B_q_arr[j]

212 D_q_arr.append(D_q_)

213

214 #9

215 # create an empty placeholder for filling up the speed connectivity

216 C = [[[0 for i in range(N)] for i in range(N)] for i in range(N)]

217 g = np.array([[0], [-9.81], [0]])

218 taus = []

219 for i in range(N):

220 print("Second iterative part, joint ", i+1, "step 1 - speed

connectivity tensor")

221 for j in range(N):

222 for k in range(N):

223 C[i][k][j] = diff(D_q_arr[-1][i][j], q__[k]) -(1/2)*diff(

D_q_arr[-1][k][j], q__[i])

224 print("Second iterative part, joint ", i+1, "step 2 - gravity

influence")

225 h=0

226 for k in range(3):

227 for j in range(i, N):

228 h += g[k]*m[i]+A_q_arr[i][k][j]

229 print("Second iterative part, joint ", i+1, "step 3 - friction")

230

231

232 mu_k = 0.504 # 0.5--1.0

233 mu_s = 0.302 # 0.3 -- 0.8

234 b = mu_k * sign(dq__[i]) * (1 - exp(-(abs(dq__[i]) - mu_s) / mu_k))

235
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236

237 # placeholder variables for calculating tau subsums

238 D_SUM = 0

239 C_SUM = 0

240 print("Second iterative part, joint ", i+1, "step 4a - inertia sum"

)

241 for j in range(N):

242 D_SUM += D_q_arr[-1][i][j]*ddq__[j]

243 print("Second iterative part, joint ", i+1, "step 4b - speed sum")

244 for k in range(3):

245 for j in range(i, N):

246 C_SUM+=C[i][k][j]*dq__[k]*dq__[j]

247

248 print("Second iterative part, joint ", i+1, "step 4c - summing tau"

)

249

250 print(50*’-’+"\n"+str(abs(b))+"\n"+50*’-’+"\n")

251

252 taus.append(abs(D_SUM+C_SUM+h+abs(b)))

253

254 print("Writing taus to file:")

255 from threading import Thread

256 def write_tau(id):

257 file=open("b"+str(b_type)+"tau_"+str(id+1)+"_le_"".py", "w")

258 expr = str(taus[id])

259 file.write("from numpy import sin, cos, tan, pi, sign, exp\n")

260 file.write("from numpy import absolute as Abs\n")

261 file.write("def tau_"+str(id+1)+"(q1, q2, q3, q4, q5, q6, dq1, dq2,

dq3, dq4, dq5, dq6, ddq1, ddq2, ddq3, ddq4, ddq5, ddq6):\n")

262 file.write("\t return "+expr)

263 file.close()

264 threads=[]

265 threads=[]

266 for i in range(len(taus)):

267 t = Thread(target=write_tau , args=(i,))
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268 threads.append(t)

269 t.start()

270

271 for t in threads:

272 t.join()

Listing B.1: Implementation of the LE algorithm into the Python code
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APPENDIX C
IRML example for ABB IRB 120 IRM

1 <?irml version = "0.1" encoding = "UTF-8" ?>

2 <robot>

3 <!--General information-->

4 <name>IRB 120</name>

5 <manufacturer>ABB</manufacturer>

6 <carrying -capacity>3.0</carrying -capacity>

7 <reach>0.6</reach>

8 <configuration>Articulated</configuration>

9 <ir-type>Serial</ir-type>

10 <manipulator -mass>25</manipulator -mass>

11 <spec-sheet>https://search.abb.com/library/Download.aspx?DocumentID

=3HAC035960 -001</spec-sheet>

12 <iec590>IP30</iec590>

13 <color>ABB Orange</color>

14 <power-consumption>

15 <iso-cube-max-speed>0.240</iso-cube-max-speed>

16 <zero-position -brakes-off>0.095</zero-position -brakes-off>

17 <zero-position -brakes-on>0.175</zero-position -brakes-on>

18 </power-consumption>

19 <ambient>

20 <minimal-operating -temperature>5</minimal-operating -temperature

>

21 <maximal-operating -temperature>45</maximal-operating -

temperature>

22 <minimal-storage-temperature>-25</minimal-storage-temperature>

23 <maximal-storage-temperature>55</maximal-storage-temperature>

24 <maximal-short-period-temperature>70</maximal-short-period-

temperature>
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25 <maximal-humidity>95</maximal-humidity>

26 </ambient>

27 <loads>

28 <endurance -loads>

29 <Fx>265</Fx>

30 <Fy>264</Fy>

31 <Fz>200</Fz>

32 <Tx>195</Tx>

33 <Ty>195</Ty>

34 <Tz>85</Tz>

35 </endurance -loads>

36 <maximal-loads>

37 <Fx>515</Fx>

38 <Fy>515</Fy>

39 <Fz>365</Fz>

40 <Tx>400</Tx>

41 <Ty>400</Ty>

42 <Tz>155</Tz>

43 </maximal-loads>

44 </loads>

45 <joint ID="1">

46 <type>T</type>

47 <xi>1</xi>

48 <kinematics>

49 <q>q1</q>

50 <d>0.29</d>

51 <r>0</r>

52 <a>-pi/2</a>

53 </kinematics>

54 <dynamics>

55 <link-mass>3.06700626</link-mass>

56 <center>

57 <x>0.00009765</x>

58 <y>0.23841163</y>

59 <z>0.00011925</z>
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60 </center>

61 <inertia>

62 <xx>-0.00615871</xx>

63 <xy>0.99996896</xy>

64 <xz>-0.00491487</xz>

65 <yx>-0.99767761</yx>

66 <yy>-0.00647786</yy>

67 <yz>-0.06780436</yz>

68 <zx>-0.06783409</zx>

69 <zy>0.00448587</zy>

70 <zz>0.99768653</zz>

71 </inertia>

72 </dynamics>

73 </joint>

74 <joint ID="2">

75 <type>R</type>

76 <xi>1</xi>

77 <kinematics>

78 <q>q2</q>

79 <d>0</d>

80 <r>0.27</r>

81 <a>0</a>

82 </kinematics>

83 <dynamics>

84 <link-mass>3.90863939</link-mass>

85 <center>

86 <x>0.00077828</x>

87 <y>0.39124254</y>

88 <z>0.00211700</z>

89 </center>

90 <inertia>

91 <xx>0.00165516</xx>

92 <xy>0.99947723</xy>

93 <xz>0.03228827</xz>

94 <yx>-0.00062529</yx>
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95 <yy>-0.03228727</yy>

96 <yz>0.99947843</yz>

97 <zx>0.99999843</zx>

98 <zy>-0.00167449</zy>

99 <zz>0.00057152</zz>

100 </inertia>

101 </dynamics>

102 </joint>

103 <joint ID="3">

104 <type>R</type>

105 <xi>1</xi>

106 <kinematics>

107 <q>q3</q>

108 <d>0</d>

109 <r>0.07</r>

110 <a>-pi/2</a>

111 </kinematics>

112 <dynamics>

113 <link-mass>2.94370258</link-mass>

114 <center>

115 <x>-0.02280820</x>

116 <y>0.61791059</y>

117 <z>-0.00843547</z>

118 </center>

119 <inertia>

120 <xx>0.95772239</xx>

121 <xy>-0.28731840</xy>

122 <xz>0.01469572</xz>

123 <yx>0.28768727</yx>

124 <yy>0.95679871</yy>

125 <yz>-0.04209820</yz>

126 <zx>-0.00196526</zx>

127 <zy>0.04454616</zy>

128 <zz>0.99900539</zz>

129 </inertia>
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130 </dynamics>

131 </joint>

132 <joint ID="4">

133 <type>T</type>

134 <xi>1</xi>

135 <kinematics>

136 <q>q4</q>

137 <d>0.302</d>

138 <r>0</r>

139 <a>pi/2</a>

140 </kinematics>

141 <dynamics>

142 <link-mass>1.44756525</link-mass>

143 <center>

144 <x>-0.22617555</x>

145 <y>0.63037204</y>

146 <z>-0.00456824</z>

147 </center>

148 <inertia>

149 <xx>0.99316721</xx>

150 <xy>0.00703297</xy>

151 <xz>0.11648791</xz>

152 <yx>0.11654819</yx>

153 <yy>-0.00887405</yy>

154 <yz>-0.99314539</yz>

155 <zx>-0.00595104</zx>

156 <zy>0.99993589</zy>

157 <zz>-0.00963309</zz>

158 </inertia>

159 </dynamics>

160 </joint>

161 <joint ID="5">

162 <type>R</type>

163 <xi>1</xi>

164 <kinematics>
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165 <q>q5</q>

166 <d>0</d>

167 <r>0</r>

168 <a>-pi/2</a>

169 </kinematics>

170 <dynamics>

171 <link-mass>0.01367842</link-mass>

172 <center>

173 <x>-0.36693791</x>

174 <y>0.62999868</y>

175 <z>-0.00016958</z>

176 </center>

177 <inertia>

178 <xx>0.00006718</xx>

179 <xy>1.00000000</xy>

180 <xz>-0.00006971</xz>

181 <yx>0.00597413</yx>

182 <yy>0.00006930</yy>

183 <yz>0.99998215</yz>

184 <zx>0.99998215</zx>

185 <zy>-0.00006759</zy>

186 <zz>-0.00597412</zz>

187 </inertia>

188 </dynamics>

189 </joint>

190 <joint ID="6">

191 <type>T</type>

192 <xi>1</xi>

193 <kinematics>

194 <q>q6</q>

195 <d>0.072</d>

196 <r>0</r>

197 <a>0</a>

198 </kinematics>

199 <dynamics>
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200 <link-mass>0.01367842</link-mass>

201 <center>

202 <x>-0.36693791</x>

203 <y>0.62999868</y>

204 <z>-0.00016958</z>

205 </center>

206 <inertia>

207 <xx>0.00006718</xx>

208 <xy>1.00000000</xy>

209 <xz>-0.00006971</xz>

210 <yx>0.00597413</yx>

211 <yy>0.00006930</yy>

212 <yz>0.99998215</yz>

213 <zx>0.99998215</zx>

214 <zy>-0.00006759</zy>

215 <zz>-0.00597412</zz>

216 </inertia>

217 </dynamics>

218 </joint>

219 </robot>

Listing C.1: An IRML example for ABB IRB 120 IRM.
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APPENDIX D
RAPID modules used for performing mea-

surements

D.1 RAPID code for randomized path generation

1 MODULE Module1

2

3 !Define the upper and lower bounds of joints, grabbed by observing

kinematics

4 CONST num J1_LO := -120;

5 CONST num J1_HI := 120;

6 CONST num J2_LO := -55;

7 CONST num J2_HI := 70;

8 CONST num J3_LO := -100;

9 CONST num J3_HI := 40;

10 CONST num J4_LO := -160;

11 CONST num J4_HI := 160;

12 CONST num J5_LO := -120;

13 CONST num J5_HI := 120;

14 CONST num J6_LO := -400;

15 CONST num J6_HI := 400;

16

17 !Possible number of zones and speeds

18 CONST num SPEED_NUMBER:=17;

19 CONST num ZONE_NUMBER:=14;

20

21 !Possible speed and zone values
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22 CONST speeddata SPEED_ARR{SPEED_NUMBER}:=[v100, v150, v200,

23 v300, v400, v500,

24 v600, v800, v1000,

25 v1500, v2000, v2500,

26 v3000, v4000, v5000,

27 v6000, v7000];

28

29

30 CONST zonedata ZONE_ARR{ZONE_NUMBER}:=[fine, z0, z1, z5,

31 z10, z20, z30, z40,

32 z50, z60, z80, z100,

33 z150, z200];

34

35 !For normalizing RAND() to range <0,1>

36 CONST num RAND_MAX:=32767;

37

38 !Define variables for storing generated random values

39 VAR num J1;

40 VAR num J2;

41 VAR num J3;

42 VAR num J4;

43 VAR num J5;

44 VAR num J6;

45 VAR speeddata V;

46 VAR zonedata Z;

47

48 VAR string starttime;

49 VAR string endtime;

50

51 VAR num position;

52 VAR num speed;

53 VAR num torque;

54 VAR num exttorque;

55

56
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57

58 !Define number of joint positions to be tested

59 CONST NUM SIMULATION_COUNT:=1000;

60

61 PROC main()

62 starttime := CTime();

63

64 FOR i FROM 0 TO SIMULATION_COUNT DO

65

66 !Write the simulation step, for info

67 TPWrite("INFO Simulation count=" + NumToStr(i,0) + "/" +

NumToStr(SIMULATION_COUNT ,0));

68

69 !Randomly select joint 1--6, speed and zone

70 J1 := ((RAND()/RAND_MAX)*(J1_HI-J1_LO))+J1_LO;

71 J2 := ((RAND()/RAND_MAX)*(J2_HI-J2_LO))+J2_LO;

72 J3 := ((RAND()/RAND_MAX)*(J3_HI-J3_LO))+J3_LO;

73 J4 := ((RAND()/RAND_MAX)*(J4_HI-J4_LO))+J4_LO;

74 J5 := ((RAND()/RAND_MAX)*(J5_HI-J5_LO))+J5_LO;

75 J6 := ((RAND()/RAND_MAX)*(J6_HI-J6_LO))+J6_LO;

76

77 V := SPEED_ARR{1+ROUND((RAND()/RAND_MAX)*(SPEED_NUMBER -1))};

78 Z := ZONE_ARR{1+ROUND((RAND()/RAND_MAX)*(ZONE_NUMBER -1))};

79

80 !Print the selected values for monitoring

81 !TPWrite(NumtoStr(J1,2)+","+NumtoStr(J2,2)+","+NumtoStr(J3,2)

+","+NumtoStr(J4,2)+","+NumtoStr(J5,2)+","+NumtoStr(J6,2));

82

83

84 MoveAbsJ [[J1,J2,J3,J4,J5,J6],[9E9,9E9,9E9,9E9,9E9,9E9]],V,Z,

tool0;

85

86 ! TPWrite(NumtoStr(speed ,2)+","+NumToStr(torque ,2)+","+NumToStr

(torque*speed ,2));

87
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88 ENDFOR

89 TPWrite("Start time: " + starttime);

90 TPWrite("End time: " + CTime());

91 EXIT;

92 ENDPROC

93 ENDMODULE

Listing D.1: RAPID code for random path generation

D.2 RAPID measurement of relevant physical values of IRM

during operation

1 MODULE measure

2 ! Define variables for storing position, speed, and torques

3

4 VAR NUM POS1;

5 VAR NUM POS2;

6 VAR NUM POS3;

7 VAR NUM POS4;

8 VAR NUM POS5;

9 VAR NUM POS6;

10

11 VAR NUM SPD1;

12 VAR NUM SPD2;

13 VAR NUM SPD3;

14 VAR NUM SPD4;

15 VAR NUM SPD5;

16 VAR NUM SPD6;

17

18 VAR NUM TOR1;

19 VAR NUM TOR2;

20 VAR NUM TOR3;

21 VAR NUM TOR4;

22 VAR NUM TOR5;
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23 VAR NUM TOR6;

24

25 VAR NUM ETOR1;

26 VAR NUM ETOR2;

27 VAR NUM ETOR3;

28 VAR NUM ETOR4;

29 VAR NUM ETOR5;

30 VAR NUM ETOR6;

31

32

33 VAR IODEV LOGFILE;

34

35 VAR robtarget TCP;

36 VAR clock sim_clock;

37 VAR num time;

38

39

40

41 PROC main()

42 Open "HOME:" \File:=CDate()+"-"+NumToStr(GetTime(\Hour),0)+"-"+

NumToStr(GetTime(\Min),0)+"-"+NumToStr(GetTime(\Sec),0)+"_MEASUREMENT.

CSV", logfile \Write;

43 Write logfile, "t,q1,dq1,tau1,q2,dq2,tau2,"\NoNewLine;

44 Write logfile, "q3,dq3,tau3,q4,dq4,tau4,q5,dq5,tau5,"\NoNewLine;

45 Write logfile, "q6,dq6,tau6,x,y,z,e1,e2,e3,e4,psi,theta,phi";

46 ClkReset sim_clock;

47 ClkStart sim_clock;

48 WHILE TRUE DO

49 GetJointData \MechUnit:=ROB_1, 1 \Position:=POS1 \Speed:=SPD1 \

Torque:=TOR1 \ExtTorque:=ETOR1;

50 GetJointData \MechUnit:=ROB_1, 2 \Position:=POS2 \Speed:=SPD2 \

Torque:=TOR2 \ExtTorque:=ETOR2;

51 GetJointData \MechUnit:=ROB_1, 3 \Position:=POS3 \Speed:=SPD3 \

Torque:=TOR3 \ExtTorque:=ETOR3;
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52 GetJointData \MechUnit:=ROB_1, 4 \Position:=POS4 \Speed:=SPD4 \

Torque:=TOR4 \ExtTorque:=ETOR4;

53 GetJointData \MechUnit:=ROB_1, 5 \Position:=POS5 \Speed:=SPD5 \

Torque:=TOR5 \ExtTorque:=ETOR5;

54 GetJointData \MechUnit:=ROB_1, 6 \Position:=POS6 \Speed:=SPD6 \

Torque:=TOR6 \ExtTorque:=ETOR6;

55

56 ! Read TCP position, x, y, z CPos, CTool

57 TCP := CRobT(\Tool:=tool0 \WObj:=wobj0);

58

59 time := ClkRead(sim_clock);

60

61 Write logfile, NumToStr(time,5)+","+NumtoStr(POS1,5)+","+

NumtoStr(SPD1,5)+","+NumToStr(TOR1,5)+","\NoNewLine;

62 Write logfile, NumtoStr(POS2,5)+","+NumtoStr(SPD2,5)+","+

NumToStr(TOR2,5)+","\NoNewLine;

63 Write logfile, NumtoStr(POS3,5)+","+NumtoStr(SPD3,5)+","+

NumToStr(TOR3,5)+","\NoNewLine;

64 Write logfile, NumtoStr(POS4,5)+","+NumtoStr(SPD4,5)+","+

NumToStr(TOR4,5)+","\NoNewLine;

65 Write logfile, NumtoStr(POS5,5)+","+NumtoStr(SPD5,5)+","+

NumToStr(TOR5,5)+","\NoNewLine;

66 Write logfile, NumtoStr(POS6,5)+","+NumtoStr(SPD6,5)+","+

NumToStr(TOR6,5)+","\NoNewLine;

67 Write logfile, NumToStr(TCP.trans.x,5)+","+NumToStr(TCP.trans.y

,5)+","+NumToStr(TCP.trans.z,5)+","\NoNewLine;

68 Write logfile, NumToStr(TCP.rot.q1, 5)+","+NumToStr(TCP.rot.q2,

5)+","+NumToStr(TCP.rot.q3, 5)+","+NumToStr(TCP.rot.q4, 5)+","\

NoNewLine;

69 Write logfile, NumToStr(EulerZYX(\X, TCP.rot),5)+","+NumToStr(

EulerZYX(\Y, TCP.rot),5)+","+NumToStr(EulerZYX(\Z, TCP.rot),5);

70 ! Pause for 1/40 s

71 WaitTime 0.025;

72 ENDWHILE

73 Close logfile;
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D.2. RAPID MEASUREMENT OF RELEVANT PHYSICAL VALUES OF IRM DURING OPERATION

74 ENDPROC

75 ENDMODULE

Listing D.2: RAPID code for measurement

195



APPENDIX E
Developed models

E.1 Equations obtained with LE

LE equations link 1 – https://bit.ly/4byV4vs

LE equations link 2 – https://bit.ly/4byklWA

LE equations link 3 – https://bit.ly/4hAh0HN

LE equations link 4 – https://bit.ly/4bugFoT

LE equations link 5 – https://bit.ly/4ixLGuu

LE equations link 6 – https://bit.ly/3Ftnqvh

E.2 Selected best performing ML-based models

MLP model E – https://bit.ly/4hAuPGf

MLP model E1 – https://bit.ly/4hwy7KB

MLP model E2 – https://bit.ly/4koUN2h

MLP model E3 – https://bit.ly/4bSEQxk

MLP model E4 – https://bit.ly/43VoNwC

MLP model E5 – https://bit.ly/43VoP7I

MLP model E6 – https://bit.ly/41QY1mP

Data scaler – https://bit.ly/3DLbtk4
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APPENDIX F
MA algorithm code

1 import numpy as np

2 import time

3 import pickle

4 import warnings

5 import pandas as pd

6 import uuid

7 import sys

8 import itertools

9 POPULATION_SIZE = int(sys.argv[1])

10 GENERATIONS = int(sys.argv[2])

11 CROSSOVER_RATE = float(sys.argv[3])

12 MUTATION_RATE = float(sys.argv[4])

13

14 STARTING_ANGLES = np.random.choice(np.arange(-1, 1, 0.05), 6)

15 ENDING_ANGLES = np.random.choice(np.arange(2, 3, 0.05), 6)

16 # set random value between 1 and 3

17 TIME = 1

18

19 MODEL = pickle.load(open(r"./fitness_models/E.pickle", ’rb’))

20 SCALER = pickle.load(open(r"./fitness_models/scaler_E.pickle", ’rb’))

21 class Gene():

22 def __init__(self):

23 self.gene = np.random.choice(np.arange(-10, 10.05, 0.05), (6,

6))

24 self.fitness = 0

25 self.probability = 0

26 self.cumulative_probability = 0

27
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28 def set_gene(self, gene):

29 self.gene = gene

30

31 def get_gene(self):

32 return self.gene

33

34 def set_fitness(self, fitness):

35 self.fitness = fitness

36

37 def get_fitness(self):

38 return self.fitness

39

40 def set_probability(self, probability):

41 self.probability = probability

42

43 def get_probability(self):

44 return self.probability

45

46 def set_cumulative_probability(self, cumulative_probability):

47 self.cumulative_probability = cumulative_probability

48

49 def get_cumulative_probability(self):

50 return self.cumulative_probability

51

52

53

54 def fitness(gene, time=TIME, y_starts=STARTING_ANGLES , y_ends=

ENDING_ANGLES):

55

56 #iterate over the genes and make sure they are within the limits

-10, 10

57 for i in range(6):

58 for j in range(6):

59 if gene.get_gene()[i, j] < -10:

60 gene.get_gene()[i, j] = -10
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61 elif gene.get_gene()[i, j] > 10:

62 gene.get_gene()[i, j] = 10

63

64 a1_1 = gene.get_gene()[0, 0]

65 a1_2 = gene.get_gene()[0, 1]

66 a1_3 = gene.get_gene()[0, 2]

67 a1_4 = gene.get_gene()[0, 3]

68 a1_5 = gene.get_gene()[0, 4]

69 a1_6 = gene.get_gene()[0, 5]

70 a2_1 = gene.get_gene()[1, 0]

71 a2_2 = gene.get_gene()[1, 1]

72 a2_3 = gene.get_gene()[1, 2]

73 a2_4 = gene.get_gene()[1, 3]

74 a2_5 = gene.get_gene()[1, 4]

75 a2_6 = gene.get_gene()[1, 5]

76 a3_1 = gene.get_gene()[2, 0]

77 a3_2 = gene.get_gene()[2, 1]

78 a3_3 = gene.get_gene()[2, 2]

79 a3_4 = gene.get_gene()[2, 3]

80 a3_5 = gene.get_gene()[2, 4]

81 a3_6 = gene.get_gene()[2, 5]

82 a4_1 = gene.get_gene()[3, 0]

83 a4_2 = gene.get_gene()[3, 1]

84 a4_3 = gene.get_gene()[3, 2]

85 a4_4 = gene.get_gene()[3, 3]

86 a4_5 = gene.get_gene()[3, 4]

87 a4_6 = gene.get_gene()[3, 5]

88 a5_1 = gene.get_gene()[4, 0]

89 a5_2 = gene.get_gene()[4, 1]

90 a5_3 = gene.get_gene()[4, 2]

91 a5_4 = gene.get_gene()[4, 3]

92 a5_5 = gene.get_gene()[4, 4]

93 a5_6 = gene.get_gene()[4, 5]

94 a6_1 = gene.get_gene()[5, 0]

95 a6_2 = gene.get_gene()[5, 1]
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96 a6_3 = gene.get_gene()[5, 2]

97 a6_4 = gene.get_gene()[5, 3]

98 a6_5 = gene.get_gene()[5, 4]

99 a6_6 = gene.get_gene()[5, 5]

100

101 x_values=np.linspace(0, time, 10)

102

103 # calcule the individual paths

104

105 q1 = a1_6*x_values**5 + a1_5*x_values**4 + a1_4*x_values**3 + a1_3*

x_values**2 + a1_2*x_values + a1_1

106 q2 = a2_6*x_values**5 + a2_5*x_values**4 + a2_4*x_values**3 + a2_3*

x_values**2 + a2_2*x_values + a2_1

107 q3 = a3_6*x_values**5 + a3_5*x_values**4 + a3_4*x_values**3 + a3_3*

x_values**2 + a3_2*x_values + a3_1

108 q4 = a4_6*x_values**5 + a4_5*x_values**4 + a4_4*x_values**3 + a4_3*

x_values**2 + a4_2*x_values + a4_1

109 q5 = a5_6*x_values**5 + a5_5*x_values**4 + a5_4*x_values**3 + a5_3*

x_values**2 + a5_2*x_values + a5_1

110 q6 = a6_6*x_values**5 + a6_5*x_values**4 + a6_4*x_values**3 + a6_3*

x_values**2 + a6_2*x_values + a6_1

111

112 q1_min, q1_max = q1[0], q1[-1]

113 q1 = (q1 - q1_min) / (q1_max - q1_min) * (y_ends[0] - y_starts[0])

+ y_starts[0]

114 q2_min, q2_max = q2[0], q2[-1]

115 q2 = (q2 - q2_min) / (q2_max - q2_min) * (y_ends[1] - y_starts[1])

+ y_starts[1]

116 q3_min, q3_max = q3[0], q3[-1]

117 q3 = (q3 - q3_min) / (q3_max - q3_min) * (y_ends[2] - y_starts[2])

+ y_starts[2]

118 q4_min, q4_max = q4[0], q4[-1]

119 q4 = (q4 - q4_min) / (q4_max - q4_min) * (y_ends[3] - y_starts[3])

+ y_starts[3]

120 q5_min, q5_max = q5[0], q5[-1]
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121 q5 = (q5 - q5_min) / (q5_max - q5_min) * (y_ends[4] - y_starts[4])

+ y_starts[4]

122 q6_min, q6_max = q6[0], q6[-1]

123 q6 = (q6 - q6_min) / (q6_max - q6_min) * (y_ends[5] - y_starts[5])

+ y_starts [5]

124

125 dq1 = 5*a1_6*x_values**4 + 4*a1_5*x_values**3 + 3*a1_4*x_values**2

+ 2*a1_3*x_values + a1_2

126 dq2 = 5*a2_6*x_values**4 + 4*a2_5*x_values**3 + 3*a2_4*x_values**2

+ 2*a2_3*x_values + a2_2

127 dq3 = 5*a3_6*x_values**4 + 4*a3_5*x_values**3 + 3*a3_4*x_values**2

+ 2*a3_3*x_values + a3_2

128 dq4 = 5*a4_6*x_values**4 + 4*a4_5*x_values**3 + 3*a4_4*x_values**2

+ 2*a4_3*x_values + a4_2

129 dq5 = 5*a5_6*x_values**4 + 4*a5_5*x_values**3 + 3*a5_4*x_values**2

+ 2*a5_3*x_values + a5_2

130 dq6 = 5*a6_6*x_values**4 + 4*a6_5*x_values**3 + 3*a6_4*x_values**2

+ 2*a6_3*x_values + a6_2

131

132 ddq1 = 20*a1_6*x_values**3 + 12*a1_5*x_values**2 + 6*a1_4*x_values

+ 2*a1_3

133 ddq2 = 20*a2_6*x_values**3 + 12*a2_5*x_values**2 + 6*a2_4*x_values

+ 2*a2_3

134 ddq3 = 20*a3_6*x_values**3 + 12*a3_5*x_values**2 + 6*a3_4*x_values

+ 2*a3_3

135 ddq4 = 20*a4_6*x_values**3 + 12*a4_5*x_values**2 + 6*a4_4*x_values

+ 2*a4_3

136 ddq5 = 20*a5_6*x_values**3 + 12*a5_5*x_values**2 + 6*a5_4*x_values

+ 2*a5_3

137 ddq6 = 20*a6_6*x_values**3 + 12*a6_5*x_values**2 + 6*a6_4*x_values

+ 2*a6_3

138

139 x__ = []

140 y__ = []

141 z__ = []
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142 pitch__ = []

143 roll__ = []

144 yaw__ = []

145 qx__ = []

146 qy__ = []

147 qz__ = []

148 qw__ = []

149

150 for x_point in range(len(x_values)):

151 q_1 = q1[x_point]

152 q_2 = q2[x_point]

153 q_3 = q3[x_point]

154 q_4 = q4[x_point]

155 q_5 = q5[x_point]

156 q_6 = q6[x_point]

157 #print(q1, q2, q3, q4, q5, q6)

158 T = np.array([[((np.sin(q_1)*np.sin(q_4) + np.cos(q_1)*np.cos(

q_4)*np.cos(q_2 + q_3))*np.cos(q_5) - np.sin(q_5)*np.sin(q_2 + q_3)*np.

cos(q_1))*np.cos(q_6) + (np.sin(q_1)*np.cos(q_4) - np.sin(q_4)*np.cos(

q_1)*np.cos(q_2 + q_3))*np.sin(q_6), -((np.sin(q_1)*np.sin(q_4) + np.cos

(q_1)*np.cos(q_4)*np.cos(q_2 + q_3))*np.cos(q_5) - np.sin(q_5)*np.sin(

q_2 + q_3)*np.cos(q_1))*np.sin(q_6) + (np.sin(q_1)*np.cos(q_4) - np.sin(

q_4)*np.cos(q_1)*np.cos(q_2 + q_3))*np.cos(q_6), -(np.sin(q_1)*np.sin(

q_4) + np.cos(q_1)*np.cos(q_4)*np.cos(q_2 + q_3))*np.sin(q_5) - np.sin(

q_2 + q_3)*np.cos(q_1)*np.cos(q_5), -0.147*np.sin(q_1)*np.sin(q_4)*np.

sin(q_5) - 0.147*np.sin(q_5)*np.cos(q_1)*np.cos(q_4)*np.cos(q_2 + q_3) -

0.147*np.sin(q_2 + q_3)*np.cos(q_1)*np.cos(q_5) - 0.302*np.sin(q_2 +

q_3)*np.cos(q_1) + 0.27*np.cos(q_1)*np.cos(q_2) + 0.07*np.cos(q_1)*np.

cos(q_2 + q_3)], [((np.sin(q_1)*np.cos(q_4)*np.cos(q_2 + q_3) - np.sin(

q_4)*np.cos(q_1))*np.cos(q_5) - np.sin(q_1)*np.sin(q_5)*np.sin(q_2 + q_3

))*np.cos(q_6) - (np.sin(q_1)*np.sin(q_4)*np.cos(q_2 + q_3) + np.cos(q_1

)*np.cos(q_4))*np.sin(q_6), -((np.sin(q_1)*np.cos(q_4)*np.cos(q_2 + q_3)

- np.sin(q_4)*np.cos(q_1))*np.cos(q_5) - np.sin(q_1)*np.sin(q_5)*np.sin

(q_2 + q_3))*np.sin(q_6) - (np.sin(q_1)*np.sin(q_4)*np.cos(q_2 + q_3) +

np.cos(q_1)*np.cos(q_4))*np.cos(q_6), -(np.sin(q_1)*np.cos(q_4)*np.cos(
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q_2 + q_3) - np.sin(q_4)*np.cos(q_1))*np.sin(q_5) - np.sin(q_1)*np.sin(

q_2 + q_3)*np.cos(q_5), -0.147*np.sin(q_1)*np.sin(q_5)*np.cos(q_4)*np.

cos(q_2 + q_3) - 0.147*np.sin(q_1)*np.sin(q_2 + q_3)*np.cos(q_5) -

0.302*np.sin(q_1)*np.sin(q_2 + q_3) + 0.27*np.sin(q_1)*np.cos(q_2) +

0.07*np.sin(q_1)*np.cos(q_2 + q_3) + 0.147*np.sin(q_4)*np.sin(q_5)*np.

cos(q_1)], [-(np.sin(q_5)*np.cos(q_2 + q_3) + np.sin(q_2 + q_3)*np.cos(

q_4)*np.cos(q_5))*np.cos(q_6) + np.sin(q_4)*np.sin(q_6)*np.sin(q_2 + q_3

), (np.sin(q_5)*np.cos(q_2 + q_3) + np.sin(q_2 + q_3)*np.cos(q_4)*np.cos

(q_5))*np.sin(q_6) + np.sin(q_4)*np.sin(q_2 + q_3)*np.cos(q_6), np.sin(

q_5)*np.sin(q_2 + q_3)*np.cos(q_4) - np.cos(q_5)*np.cos(q_2 + q_3),

-0.27*np.sin(q_2) + 0.147*np.sin(q_5)*np.sin(q_2 + q_3)*np.cos(q_4) -

0.07*np.sin(q_2 + q_3) - 0.147*np.cos(q_5)*np.cos(q_2 + q_3) - 0.302*np.

cos(q_2 + q_3) + 0.29], [0, 0, 0, 1]])

159

160

161

162 x, y, z = T[:3, 3]

163

164 R = T[:3, :3]

165

166 if np.abs(R[2, 0]) != 1:

167 pitch = -np.arcsin(R[2, 0])

168 roll = np.arctan2(R[2, 1] / np.cos(pitch), R[2, 2] / np.cos

(pitch))

169 yaw = np.arctan2(R[1, 0] / np.cos(pitch), R[0, 0] / np.cos(

pitch))

170 else:

171 # Gimbal lock case

172 yaw = 0 # Default yaw

173 if R[2, 0] == -1:

174 pitch = np.pi / 2

175 roll = np.arctan2(R[0, 1], R[0, 2])

176 else:

177 pitch = -np.pi / 2

178 roll = np.arctan2(-R[0, 1], -R[0, 2])
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179

180 euler_angles = (roll, pitch, yaw) # Output in radians

181

182 # Convert Rotation Matrix to Quaternion

183 trace = np.trace(R)

184 if trace > 0:

185 S = 2.0 * np.sqrt(trace + 1.0)

186 qw = 0.25 * S

187 qx = (R[2, 1] - R[1, 2]) / S

188 qy = (R[0, 2] - R[2, 0]) / S

189 qz = (R[1, 0] - R[0, 1]) / S

190 elif (R[0, 0] > R[1, 1]) and (R[0, 0] > R[2, 2]):

191 S = 2.0 * np.sqrt(1.0 + R[0, 0] - R[1, 1] - R[2, 2])

192 qw = (R[2, 1] - R[1, 2]) / S

193 qx = 0.25 * S

194 qy = (R[0, 1] + R[1, 0]) / S

195 qz = (R[0, 2] + R[2, 0]) / S

196 elif R[1, 1] > R[2, 2]:

197 S = 2.0 * np.sqrt(1.0 + R[1, 1] - R[0, 0] - R[2, 2])

198 qw = (R[0, 2] - R[2, 0]) / S

199 qx = (R[0, 1] + R[1, 0]) / S

200 qy = 0.25 * S

201 qz = (R[1, 2] + R[2, 1]) / S

202 else:

203 S = 2.0 * np.sqrt(1.0 + R[2, 2] - R[0, 0] - R[1, 1])

204 qw = (R[1, 0] - R[0, 1]) / S

205 qx = (R[0, 2] + R[2, 0]) / S

206 qy = (R[1, 2] + R[2, 1]) / S

207 qz = 0.25 * S

208

209 x__.append(x)

210 y__.append(y)

211 z__.append(z)

212 pitch__.append(pitch)

213 roll__.append(roll)
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214 yaw__.append(yaw)

215 qx__.append(qx)

216 qy__.append(qy)

217 qz__.append(qz)

218 qw__.append(qw)

219

220

221

222 dx = np.gradient(x__)

223 dy = np.gradient(y__)

224 dz = np.gradient(z__)

225 dphi = np.gradient(pitch__)

226 dtheta = np.gradient(roll__)

227 dpsi = np.gradient(yaw__)

228 ddx = np.gradient(dx)

229 ddy = np.gradient(dy)

230 ddz = np.gradient(dz)

231 ddphi = np.gradient(dphi)

232 ddtheta = np.gradient(dtheta)

233 ddpsi = np.gradient(dpsi)

234

235 E_path = 0

236 for i in range(10):

237 input_vector = SCALER.transform(np.array([q1[i], dq1[i], q2[i],

dq2[i],

238 q3[i], dq3[i], q4[i], dq4[i], q5[i],

239 dq5[i], q6[i], dq6[i], x__[i], y__[i],

240 z__[i], qx__[i], qy__[i], qz__[i],

241 qw__[i], yaw__[i], pitch__[i], roll__[i],

242 ddq1[i], ddq2[i], ddq3[i], ddq4[i],

243 ddq5[i], ddq6[i], dx[i], dy[i], dz[i],

244 dphi[i], dtheta[i], dpsi[i], ddx[i], ddy[i],

245 ddz[i], ddphi[i], ddtheta[i], ddpsi[i]]).reshape(1, -1))

246 E = MODEL.predict(input_vector)

247 E_path += abs(E)
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248

249 return E_path

250

251 def selection(pop, total_fitness):

252 # generate a random number between 0 and 1

253 r = np.random.rand()

254 for gene in pop:

255 if r <= gene.get_cumulative_probability():

256 return gene

257

258 def crossover_random(gene1, gene2):

259 # itearete over the genes

260 for i in range(6):

261 for j in range(6):

262 # generate a random number between 0 and 1

263 r = np.random.rand()

264 if r < 0.5:

265 gene1.get_gene()[i, j] = gene2.get_gene()[i, j]

266 return gene1

267

268 def crossover_average(gene1, gene2):

269 for i in range(6):

270 for j in range(6):

271 gene1.get_gene()[i, j] = (gene1.get_gene()[i, j] + gene2.

get_gene()[i, j])/2

272 return gene1

273

274 def crossover_differential(gene1, gene2, gene3, f):

275

276 for i in range(6):

277 for j in range(6):

278 gene1.get_gene()[i, j] = gene1.get_gene()[i, j] + f*(gene2.

get_gene()[i, j] - gene3.get_gene()[i, j])

279 return gene1

280
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281 def mutation(gene1):

282 # select a random value between 1 and 10

283 n = np.random.randint(1, 10)

284 # select n random i,j locations

285 for i in range(n):

286 i = np.random.randint(6)

287 j = np.random.randint(6)

288 gene1.get_gene()[i, j] = np.random.choice(np.arange(-10, 10.05,

0.05))

289 return gene1

290

291 def randomized_local_search(gene, samples=100):

292 modifications = [-0.25, -0.2, -0.15, -0.1, -0.05, 0, 0.05, 0.1,

0.15, 0.2, 0.25]

293 original_matrix = gene.get_gene()

294 orig_fitness = gene.get_fitness()

295 # Generate all possible modifications for the 36 elements

296 for _ in range(samples):

297 random_modifications = np.random.choice(modifications , size

=(6,6))

298 modified_matrix = original_matrix + random_modifications

299

300 temp_gene = Gene()

301 temp_gene.set_gene(modified_matrix)

302 fitness_ = fitness(temp_gene)

303

304 if fitness(temp_gene) < gene.get_fitness():

305 gene.set_gene(modified_matrix)

306 gene.set_fitness(fitness_)

307 return gene

308

309 def informed_local_search(gene, steps=20):

310 original_matrix = gene.get_gene()

311 original_fitness = gene.get_fitness()

312 # get first and second row
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313

314 first_row = gene.get_gene()[0, :]

315 second_row = gene.get_gene()[1, :]

316 third_row = gene.get_gene()[2, :]

317 fourth_row = gene.get_gene()[3, :]

318 fifth_row = gene.get_gene()[4, :]

319 sixth_row = gene.get_gene()[5, :]

320 # modify those values so they tend closer to zero

321 set_flag=False

322 for i in range(steps):

323 for i in range(6):

324 first_row[i] = first_row[i] * 0.9

325 second_row[i] = second_row[i] * 0.9

326 modified_matrix = np.vstack((first_row , second_row , third_row ,

fourth_row , fifth_row , sixth_row))

327 temp_gene = Gene()

328 temp_gene.set_gene(modified_matrix)

329

330 fitness_ = fitness(gene)

331 if fitness(temp_gene) < gene.get_fitness():

332 gene.set_gene(modified_matrix)

333 gene.set_fitness(fitness_)

334 set_flag=True

335

336 if not(set_flag):

337 gene.set_gene(original_matrix)

338

339 return gene

340

341 alg_time_start = time.time()

342 # crete a list of genes

343 pop = [Gene() for i in range(POPULATION_SIZE)]

344

345 for gene in pop:

346 gene.set_fitness(fitness(gene))
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347

348 improvement = []

349 for t in range(GENERATIONS):

350 generation_time_start = time.time()

351 # calculate the total fitness of the population

352 total_fitness = sum([1.0/gene.get_fitness() for gene in pop])

353 for gene in pop:

354 gene.set_probability(1.0/gene.get_fitness()/total_fitness)

355 cumulative_probability = 0

356 for gene in pop:

357 cumulative_probability += gene.get_probability()

358 gene.set_cumulative_probability(cumulative_probability)

359 # select one gene

360

361 for gene in pop:

362

363 gene1 = selection(pop, total_fitness)

364 r = np.random.rand()

365

366 if r < CROSSOVER_RATE:

367 gene2 = selection(pop, total_fitness)

368 gene_out = crossover_random(gene1, gene2)

369 elif r < CROSSOVER_RATE+MUTATION_RATE:

370 gene_out = mutation(gene1)

371 else:

372 gene_out = gene1

373

374 new_fitness = fitness(gene_out)

375

376 if new_fitness < gene.get_fitness():

377 gene.set_gene(gene_out.get_gene())

378 gene.set_fitness(new_fitness)

379

380 # sort the population by fitness, from lowest to highest

381
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382 pop.sort(key=lambda x: x.get_fitness())

383 pop[0] = informed_local_search(pop[0])

384 improvement.append(pop[0].get_fitness())

385 print(pop[0].get_fitness(), " in ", time.time() -

generation_time_start)

386

387 print(’Algorithm time:’, time.time() - alg_time_start)

388

389 # save the improvement list to a csv file

390 uuid__ = uuid.uuid4()

391 np.savetxt(str(uuid__)+’_improvement.csv’, improvement , delimiter=’,’)

392

393 np.savetxt(str(uuid__)+’_best_gene.csv’, pop[0].get_gene(), delimiter=’

,’)

394 np.savetxt(str(uuid__)+’_angles_in_’+str(TIME)+’.csv’, np.vstack((

STARTING_ANGLES , ENDING_ANGLES)), delimiter=’,’)

395

396 print(np.round(pop[0].get_gene(),2))

397 print(pop[0].get_fitness())

Listing F.1: MA algorithm implemented in Python
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RAPID code for final path comparison

1

2 MODULE MainModule

3 VAR robtarget p1;

4 VAR robtarget p2;

5 CONST num X := 10; ! Number of repetitions

6

7 VAR jointtarget e1:=[[5.73,11.46,22.92,68.75,68.75,45.83],[9E9,9E9,9E9

,9E9,9E9,9E9]];

8 VAR jointtarget e2:=[[8.12,12.06,20.82,69.08,69.10,50.17],[9E9,9E9,9E9

,9E9,9E9,9E9]];

9 VAR jointtarget e3:=[[10.59,12.68,19.54,69.47,69.78,53.93],[9E9,9E9,9E9

,9E9,9E9,9E9]];

10 VAR jointtarget e4:=[[12.99,13.32,19.25,70.00,70.81,56.98],[9E9,9E9,9E9

,9E9,9E9,9E9]];

11 VAR jointtarget e5:=[[15.45,13.99,20.12,70.85,72.15,59.27],[9E9,9E9,9E9

,9E9,9E9,9E9]];

12 VAR jointtarget e6:=[[17.98,14.68,22.34,72.28,73.74,60.96],[9E9,9E9,9E9

,9E9,9E9,9E9]];

13 VAR jointtarget e7:=[[20.59,15.39,26.17,74.59,75.48,62.59],[9E9,9E9,9E9

,9E9,9E9,9E9]];

14 VAR jointtarget e8:=[[23.27,16.08,31.97,78.23,77.25,65.14],[9E9,9E9,9E9

,9E9,9E9,9E9]];

15 VAR jointtarget e9:=[[25.98,16.71,40.22,83.72,78.88,70.23],[9E9,9E9,9E9

,9E9,9E9,9E9]];

16 VAR jointtarget e10:=[[28.65,17.19,51.56,91.67,80.21,80.21],[9E9,9E9,9

E9,9E9,9E9,9E9]];

17 PROC main()

18 ! Convert joint positions to Cartesian positions
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19 p1 := CalcRobT(e1, tool0);

20 p2 := CalcRobT(e1, tool0);

21

22 ! Move to the initial position

23 MoveAbsJ e1, v100, z10, tool0;

24 WaitTime 2.000;

25 ! Repeat movement X times

26 FOR i FROM 1 TO X DO

27 MoveL p2, v100, z10, tool0; ! Move in a straight line to

position 2

28 MoveL p1, v100, z10, tool0; ! Move back to position 1

29 ENDFOR

30

31

32 MoveAbsJ e1, v100, z10, tool0;

33 WaitTime 2.000;

34

35 FOR i FROM 1 TO X DO

36 MoveAbsJ e1, v100, z10, tool0;

37 MoveAbsJ e2, v100, z10, tool0;

38 MoveAbsJ e3, v100, z10, tool0;

39 MoveAbsJ e4, v100, z10, tool0;

40 MoveAbsJ e5, v100, z10, tool0;

41 MoveAbsJ e6, v100, z10, tool0;

42 MoveAbsJ e7, v100, z10, tool0;

43 MoveAbsJ e8, v100, z10, tool0;

44 MoveAbsJ e9, v100, z10, tool0;

45 MoveAbsJ e10, v100, z10, tool0;

46 ENDFOR

47 ENDPROC

48 ENDMODULE

Listing G.1: RAPID code for comparing paths
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