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ABSTRACT

Machine learning is increasingly used for high-throughput peptide screening, providing

a rapid and efficient method to identify peptides with desired functions in contrast to

traditional trial-and-error approaches that are time-consuming and resource-intensive. It

streamlines the exploration of the vast peptide space in a data-driven way and accelerates

the discovery of novel peptides.

This thesis investigates three dominantly used peptide representation schemes and

analyzes them based on the type of information they capture. Considering that machine

learning models require input to be in a numerical form, the choice of peptide repre-

sentation scheme is crucial as it can directly influence model performance. Therefore, a

novel sequential properties representation scheme is proposed to address gaps identified

in existing schemes. Additionally, a manually curated dataset comprising 126 peptides

evaluated for the catalysis of ester and phosphoester hydrolysis is presented.

The experimental evaluation of four peptide representation schemes in combination

with deep neural networks was conducted using antimicrobial, antiviral and catalytic

datasets. Results on the antimicrobial and antiviral datasets were used for statistical tests

and to draw reliable conclusions due to their diversity and size. Statistical tests applied

across seven evaluation metrics demonstrated that the introduced sequential properties

scheme significantly outperformed other representations in 90% of cases. The antimicro-

bial and antiviral datasets were downsampled to create smaller target datasets to assess

the effectiveness of transfer learning. Results showed that knowledge transfer was ben-

eficial only when transferring from the more diverse antimicrobial dataset encompassing

multiple subfunctions to less diverse antiviral dataset, improving the ROC-AUC score by

6.9% with statistical significance. Moreover, the results show that the transfer learning

model outperforms the baseline model by more than 1% when the target dataset contains



fewer than 275 peptides.

Keywords: peptide function prediction, peptide representation schemes,

sequential properties, catalytic peptides, transfer learning
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PROŠIRENI SAŽETAK

Strojno učenje se sve vǐse koristi za visoko-propusno pregled peptida, pružajući brzu

i učinkovitu metodu za identifikaciju peptida sa željenim funkcijama za razliku od tradi-

cionalnih pristupa baziranih na postupku pokušaja i pogreške koji zahtijevaju puno vre-

mena i resursa. Takoder pojednostavljuje istraživanje velikog prostora peptida metodama

strojnog učenja koje su vodene dostupnim podacima te ubrzava otkrivanje novih peptida.

Ova doktorska disertacija razmatra tri dominantno korǐstene sheme predstavljanja

peptida i analizira ih na temelju vrsta informacija koje obuhvaćaju. Uzimajući u obzir da

modeli strojnog učenja zahtijevaju ulazne podatke u numeričkom obliku, odabir sheme

predstavljanja peptida je ključan odabir jer može imati izravni utjecaj na učinak modela.

Stoga, nova shema predstavljanja nazvana slijedne značajke je predložena u ovoj disertaciji

s ciljem premošćivanja identificiranih nedostatak u postojećim shemama. Dodatno, u

disertaciji je predstavljen skup podataka koji se sastoji od 126 ručno prikupljenih peptida

ispitanih za katalizu hidrolize estera i fosfoestera.

Provedeno je eksperimentalno ispitivanje četiri sheme predstavljanja peptida u kom-

binaciji s dubokim neuronskim mrežama korǐstenjem antimikrobnih, antivirusnih i katal-

itičkih skupova podataka. Rezultati na antimikrobnom i antivirusnom skupu podataka

korǐsteni su za statističke testove i donošenje pouzdanih zaključaka zbog raznolikosti i

veličine tih skupova podataka. Statistički testovi primijenjeni na sedam metrika vred-

novanja pokazali su da je predstavljena shema slijednih značajki statistički značajno

nadmašila ostale sheme u 90% slučajeva. Smanjene inačice antimikrobnog i antivirusnog

skupa podataka korǐstene su kao odredǐsni skupovi podataka za ispitivanje učinka učenjem

prijenosom znanja. Rezultati pokazuju da je pobolǰsanje ostvareno samo pri prijenosu

znanja iz raznovrsnijeg antimikrobnog skupa podataka, koji obuhvaća nekoliko podfunkcija

na antivirusni skup podataka, na manje raznoliki antivirusni skup rezultirajući u statistički
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signifikantnom povećanju ROC-AUC metrike za 6.9%. Povrh toga, rezultati su pokazali

da model baziran na prijenosu znanja ostvaruje učinak veći od 1% u usporedbi sa modelom

koji nije koristio prijenos znanja kada ciljni skup podataka sadrži manje od 275 peptida.

Ključne riječi: predvidanje funkcije peptida, shema predstavljanja peptida,

katalitički peptidi, učenje prijenosom znanja
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1. Chapter

INTRODUCTION

Rapid hardware development and exponential growth in computational power facili-

tated the adoption of advanced optimization algorithms to tackle complex problems that

were once beyond reach. Such approaches led to the automatic exploration of solutions to

problems in various fields, including bioinformatics. Computer-based tools have been used

to analyze large amounts of experimental data, recognizing patterns, predicting proper-

ties, conducting simulations, and much more. For example, AlphaFold 3 is a recently

developed deep learning system capable of predicting the structures of proteins, DNA,

RNA and ligands [1]. By formulating the exploration of the chemical space as an opti-

mization task with quantifiable objectives, the computational methods enabled scientists

to explore it more expeditiously and systematically. This intractable space is challenging

to comprehend and might remain out of reach without the aid of advanced computational

techniques. Moreover, the integration of machine learning (ML) systems, robotics and

digital technologies is powering self-driving laboratories that operate autonomously [2, 3].

They enabled streamlined and automated exploration of the chemical space by performing

synthesis, characterization and testing tasks while saving resources and time. As they are

powered by ML, they may discover unconventional solutions that experts might not have

considered. Hence, the improvements made in ML amplify the capabilities of self-driving

laboratories and expedite research in general.

Peptides are short chains of amino acids that play various roles in biological processes,

and the exploration of peptide chemical space presents a challenging combinatorial prob-

lem due to the vast number of possible sequences. As an illustration, a sequence with
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10 residues limited only to the 20 natural amino acids covers 1020 unique peptides. The

extensive peptide search space highlights the need for sophisticated methods to navi-

gate it efficiently [4]. Understanding the correlation between a peptide’s sequence and

its function is crucial for identifying novel functional peptides and effectively navigating

the peptide space. Peptide function refers to the ability of a peptide to perform specific

biological or chemical functions which is influenced by its amino acid sequence and envi-

ronmental factors. Consequently, data-driven methods have been employed to model and

predict this relationship, guiding the discovery of peptides with desirable properties. For

instance, antimicrobial peptides have been thoroughly investigated using these methods,

demonstrating their potential in drug discovery and therapeutic applications [5, 6, 7, 8, 9].

1.1. Functional Peptides

Therapeutic peptides encompass a wide range of bioactive peptides and they have been

extensively investigated because of their potential in various medical applications [10, 11].

Most notably, it includes a category of antimicrobial peptides that play a crucial role in the

host’s innate immunity against a broad range of microorganisms. Antimicrobial peptides

are further categorized into subcategories according to the type of pathogen they combat,

such as antiviral and antifungal peptides [12].

Peptides naturally occur within the human body and play an important role in var-

ious biological processes. They act as hormones, growth factors, neurotransmitters, ion

channel ligands, and anti-infective agents. The research of peptide therapeutics began

by exploiting the potential of natural peptides, such as insulin [10]. However, the scope

of peptide therapeutics research has since expanded beyond peptides found in nature,

especially when it became possible to synthesize them in the laboratory. Furthermore,

understanding the function of the peptide and its interaction with their targets can provide

valuable insight, thereby aiding in the design of more efficient drugs.

Even though antibiotic resistance is naturally occurring, it has recently been rising

more rapidly due to the overuse of traditional antibiotics. This has led to an interest

in therapeutic peptides, which are seen as next-generation drugs that could replace tra-

ditional antibiotics. Therapeutic peptides offer several advantages over small molecules.

They have a high binding affinity and high target specificity, which enables them to bind
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strongly to the designated target while reducing off-target binding and interaction with

non-target organisms [13]. As a result, they have fewer side effects. They also have a

low risk of toxicity and low drug-drug interaction, which means that their effectiveness

is unlikely to be influenced by other drugs the patient may be taking [13]. Compared

to small molecules, peptides can be easily modified to improve their function or enhance

their properties.

Peptides are usually broken down into shorter sequences or individual amino acids by

enzymes in human serum, or filtered out by the kidneys and excreted from the body. This

effect is usually expressed through a peptide half-life which is defined as the amount of

time it takes for a peptide concentration in the body to be reduced by half. For instance,

the half-life of insulin, which is used to control blood glucose levels, is between 4 and

6 minutes [14]. For most peptides, the half-life is usually between a few minutes and a

few hours [15]. This short half-life limits the discovery of novel peptide therapeutics and

reduces their applicability and effectiveness, since peptides have a short time to reach

the designated target. Furthermore, this can also require frequent dosing to maintain

therapeutic levels in the body. However, such problems are commonly circumvented

by introducing non-natural amino acids, chemical modifications, and cyclization which

can significantly extend the half-life of therapeutic peptides, enhancing their potential as

effective treatments [16].

Empirically, novel candidate sequences can be obtained by modifying the existing ones

according to the researcher’s experience and intuition. Such discovery and optimization

of peptide sequences is resource and time-intensive as it is based on a trial-and-error

approach requiring multiple rounds of experimental validation. Furthermore, such an

approach also introduces a human bias towards specific patterns and methods as the

approach also depends on the researcher’s past experiences. Although modification of

known peptides may lead to peptides similar to the original ones with more preferable

properties, completely new peptides with unique sets of properties might be missed.

While empirical methods rely heavily on researchers’ intuition and a time-consuming

trial-and-error process, homology search represents a more systematic, albeit rudimentary,

extension of these empirical approaches. It leverages sequence alignment and similarity

metrics to identify active peptides [17, 18, 19]. This technique is based on the premise that

peptides with similar sequences may exhibit similar functions. However, it is limited to
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identifying peptides that resemble those already present in the database and may not effec-

tively uncover novel peptides with distinct sequence features or functions. Consequently,

it does not fully address the challenge of identifying entirely new peptide sequences with

unique sequence features.

Molecular dynamics (MD) simulates the physical movements and interactions of molecules

within a fixed time frame, providing insight into the dynamics of the system. It has been

used to explore the behavior of peptides in the presence of bacterial membranes, which

can be used as an indicator of antimicrobial function [20]. MD has also been employed to

derive 3D features from the results of structural simulations which can then be used as

input for data-driven methods [21]. MD simulations usually require powerful hardware

and typically take hours or days to complete. Furthermore, a new simulation has to be

set up and run for each compound separately, making these simulations unsuitable for

the virtual screening of a large number of compounds.

Although homology search and MD simulations complement the trial-and-error ap-

proach in peptide discovery, they do not aim to exploit and generalize the sequence-

function relationship to a broad range of novel peptide candidates. As a result, these

methods are not capable to efficiently explore the vast peptide space. In contrast, ML

methods, being data-driven, offer greater consistency and objectivity, reducing human

bias and enabling the discovery of novel peptides from previously unexplored regions. By

generalizing observations from databases of characterized peptides, data-driven methods

can significantly enhance the search for novel peptides.

1.2. Data-Driven Approaches for Peptide Discovery

The query shown in Code listing 1.1 was used to find publications indexed in Web of

Science that employ ML methods for peptide function prediction. It can be seen from

Figure 1.1 that the number of such publications has increased over nine times in the 10

years from 2013 to 2023, indicating that ML techniques have attracted interest recently.

These methods have the capacity to learn patterns from existing data and apply them to

unseen data. They are capable of handling non-linear relationships in the data and deep

neural networks (DNNs) can even automatically extract features relevant to the task.

This also represents a shift in the discovery paradigm from rational design to data-driven
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List of Code Listings 1.1: Query used to find publications that simultaneously mention
machine learning, deep learning or neural network and peptide in their abstracts or titles.

AB = ((” machine l e a rn i ng ” OR ”deep l e a rn i ng ” OR ” neura l network ”)
AND ”pept ide ”) OR

TI = ((” machine l e a rn i ng ” OR ”deep l e a rn i ng ” OR ” neura l network ”)
AND ”pept ide ”)

design, thus reducing human bias towards specific patterns or approaches.

Traditional ML methods, such as the support vector machine (SVM) and the random

forest (RF), have been widely used for peptide function prediction [22, 23, 24]. SVMs are

frequently employed due to their simplicity and widespread availability in many machine-

learning libraries. As they maximize the margin between classes, the generalization be-

tween classes is encouraged and can be used to highlight peptide features relevant for

prediction. In comparison, a RF is an ensemble of decision tree models that together pro-

duce the final prediction which reduces variation and improves accuracy. Decision trees

are generally considered to be explainable and transparent models as they are composed

of simple conditions that are used to make a prediction. This makes it possible to trace

the sequence of decisions that lead to a final prediction. Nevertheless, expert knowledge

in the domain of application is necessary to engineer the informative features that these

models require. More complex models based on DNNs have started to emerge recently

due to their ability to capture complex interactions between high-level input features and

automatically learn the necessary intermediate representations, which removes the need

for manual feature engineering [25]. However, such an increase in complexity is followed

by an increase in computational resources and they are less interpretable. These mod-

els typically require large quantities of labeled data containing both active and inactive

peptides for training. Collecting large amounts of experimentally verified peptides can

be challenging due to the lengthy process and financial costs associated with their exper-

imental validation. Furthermore, researchers often publish only active peptides, leading

to a scarcity of inactive peptides reported in the literature. Having positive and negative

instances in a dataset is crucial for training an accurate ML model, and class balance

helps prevent bias towards one class during model training.

As ML models require their input data to be numerical, it is necessary to use a

representation scheme to transform peptides into a numerical representation. Various
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Figure 1.1: Number of publications per year indexed in Web of Science that satisfy
query shown in Code listing 1.1. The 2024 (gray) data is incomplete as it was retrieved
on July 11th, 2024.

representation schemes have been proposed, and the model’s performance depends on the

chosen scheme’s informativeness [4, 26, 27, 28]. The broad categorization of representa-

tion schemes according to how they structure and encode data is shown in Figure 1.2.

Representations based on peptide properties (Figure 1.2a) encode a peptide by a set of

properties that usually encompass physico-chemical and compositional properties. Such

representations are well-suited for traditional models like RF, SVM, but also for multi-

layer perceptron (MLP) neural networks. Sequence-based representations (Figure 1.2b)

encode a sequence of amino acids that allow a model to learn patterns directly from

the sequence. This makes them particularly suitable for sequence-modeling tasks using

recurrent neural networks (RNNs). Graph-based representations (Figure 1.2c) encode

peptides as graphs based on their molecular structure, where atoms are represented as

nodes and bonds are represented with edges. Such representations can capture spatial

and topological information and graph neural networks are a logical choice for this type

of representation. Image- and model-based representations (Figure 1.2d) capture the

structural and spatial properties of peptides. Whereas 2D images provide a view of the

peptide from a single perspective, 3D models offer a more informative representation that
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(a) Peptide properties-based rep-
resentations.

(b) Sequence-based representa-
tions.

(c) Graph-based representations.
(d) Image- or model-based repre-
sentations.

Figure 1.2: Broad categorization of peptide representation schemes according to how
they encode data, illustrated using the peptide sequence ACDAAC.
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includes occluded parts of the molecule and is independent of viewpoint. For example,

such representations can be obtained by exporting 2D images or 3D models with or with-

out a time component from MD simulations and are typically used in combination with

convolutional neural networks (CNNs).

There are two common ML strategies for exploring peptide space. The first involves

building a screening system that requires a human-provided list of peptides in order to

identify promising peptides, while the second approach is oriented towards building a

system that generates promising peptide candidates with a desired function. Once an ML

model is trained, it is capable of making predictions relatively quickly, enabling it to scan

large numbers of peptides for specific functions. This makes ML a viable option for high-

throughput virtual screening systems, which can accelerate the identification of promising

peptides for experimental verification, reducing time and financial costs associated with

the discovery of novel peptides.

Generative models such as generative adversarial networks and variational autoen-

coders have been applied recently to generate candidate peptide that have a high chance

of being active. The former approach involves two competing neural networks, where

one generates novel peptides while the other tries to discriminate real from the generated

ones. As they compete, the generating network becomes better at generating peptides

that have properties similar to the ones in the dataset. In the latter approach, an encoder

network compresses the peptide representation into a lower-dimensional representation

(latent space) capturing features essential for peptide activity. Simultansously, a decoder

network is trained to reconstruct the original peptides from the latent space. Active

peptides tend to cluster together in latent space which can be exploited to generate new

peptide sequences that are likely active by sampling points from those regions. The de-

coder is then used to translate these sampled points into peptide sequences. Furthermore,

some studies have employed global search algorithms, such as the genetic algorithm, in

combination with a trained ML model [29]. The search algorithm improves its set of solu-

tions through generations by using the ML model to measure the fitness of each solution.

In this hybrid approach, a ML model, which is not capable of generating novel peptide

candidates by itself, is used to guide the search algorithm towards active candidates.

Although predictive and generative ML models perform different tasks, they have

many components and challenges in common. Both types of models share the most of
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architecture design principles and neural network modules. Both approaches also face

the same challenges in terms of data preprocessing and require the choice of an adequate

representation scheme. Therefore, by improving one of the approaches, other approaches

benefit as well. Furthermore, existing models can be used to mitigate these challenges,

and their configurations may provide starting points for building more advanced models.

1.3. Scientific Hypotheses and Contributions

Multiple peptide representation schemes have been explored and utilized for ML-based

peptide function prediction [4, 24]. The most dominant schemes used in deep learning are

analyzed in terms of the information they capture and their predictive performance. This

thesis introduces a novel representation scheme named sequential properties, designed to

bridge an information gap identified in existing representation schemes. The introduced

scheme enhances peptide representation and consequently improves the accuracy of an-

timicrobial, antiviral and catalytic peptides prediction. The effectiveness of the introduced

scheme is confirmed on antiviral and antimicrobial datasets that contain 599 and 4877

instances, respectively. Furthermore, the new representation scheme is applied in the

transfer learning (TL) setting to mitigate the identified challenge of ML application to

peptide function prediction with a scarce amount of data available. The approach is eval-

uated on small datasets of various sizes that are sampled from two previously mentioned

datasets.

A manually curated dataset containing experimentally verified catalytic peptides is

presented in this thesis. Being the first dataset of its kind, it will allow for the application

of ML methods to the research of catalytic peptides and facilitate their discovery. The

previously devised representation scheme and TL methodology are applied to the small

catalytic dataset comprised of 86 sequences to create a neural network-based model for

the prediction of the catalytic function.

Based on this, the following two hypotheses have been defined:

1. The integration of a deep learning model with a proposed peptide rep-

resentation scheme improves the classification performance of active and

inactive peptides on antimicrobial and antiviral datasets.
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2. TL enables the transfer of knowledge gained on a large dataset to a small

one in order to achieve higher predictive performance.

This thesis makes three contributions to the field of ML-based peptide function pre-

diction, namely:

1. A novel hybrid representation scheme that combines physico-chemical properties of

individual amino acids with the information on the ordering of amino acids in a

sequence and overcomes the identified gap in the literature.

2. A manually curated dataset of catalytic peptides that have been experimentally

verified for ester hydrolysis.

3. A RNN-based model for the classification of catalytic peptides for ester hydrolysis.

1.4. Research Methodology

The research methodology of this thesis is designed to test the given hypotheses and

achieve defined contributions to the field. It consists of four main phases, as described

below.

In the first phase, relevant sources of peptides for antiviral and antimicrobial functions

were identified. The peptide sequences from these data sources were extracted to compile

an antiviral and an antimicrobial dataset. Furthermore, a dataset of catalytic peptides

was created by manually collecting sequences from the literature. For all three cases,

each peptide had to satisfy three conditions to be included in the final dataset for ML:

(i) it had to be experimentally verified to have or not have a certain function, (ii) peptide

had to have a maximum length of 50, and (iii) it had to contain only natural amino

acids. The sequence similarity of the peptides within each dataset was analyzed, as high

similarities could bias the model. The subsequent handling of each dataset depended on

the computed similarity. A detailed analysis of a newly created catalytic dataset was

performed in terms of its statistical, compositional and physico-chemical properties and

SMILES notation was provided for peptides containing only natural amino acids.

In the second phase, commonly used representation schemes and their corresponding

models were identified. Each scheme was analyzed in the context of the information it
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captures, as well as its advantages and disadvantages compared to the other schemes. For

peptide properties-based representation schemes, MLP neural networks are commonly

employed, while RNNs and CNNs are often used for sequence-based representations. The

schemes are discussed in the context of an information gap identified among them, and

a novel representation scheme named sequential properties that combines the physico-

chemical properties with the order of amino acids in which they appear in the sequence

was introduced to bridge this gap.

In the third phase, the binary classification task for peptide function prediction was in-

troduced and a methodology for comparing the introduced representation schemes was de-

vised. Depending on the dataset size, 10 times repeated stratified 10-fold cross-validation

or 20 times repeated leave-one-cluster-out cross-validation was used for evaluation. DNNs

for the prediction of peptide function were developed and this included the identification

of the optimal feature set for each dataset and representation scheme separately, and the

optimization of the model architecture. The introduced representation schemes were com-

pared in the context of model performance using multiple evaluation metrics for binary

classification and their sensitivity to the classification threshold. Furthermore, tests of

statistical significance were used to identify the best-performing model.

In the fourth phase, a TL methodology was devised and the benefits and problems

associated with TL were explored. This methodology focused on comparing the effec-

tiveness of TL to the non-TL approach when a target dataset is relatively scarce. To

test the hypothesis, small antiviral and antimicrobial datasets were artificially created

by sampling the previously collected datasets, while the catalytic dataset was used in its

entirety. TL was analyzed in the context of the improvement in model performance and

compatibility among the selected three peptide functions. The relationship between the

relative improvement and the size of the target dataset was also investigated to determine

the maximum target dataset size up to which TL enhances performance. Statistical tests

were used to confirm the difference in performance metrics between non-TL and TL model

and to draw conclusions about TL effectiveness.
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1.5. Thesis Structure Overview

Chapter 1. provides an introduction to the field of discovery of novel active peptides

and defines the basic concepts. The problem of peptide function prediction is defined and

ML approaches for peptide function prediction are briefly discussed.

In Chapter 2., the problem of predicting peptide function is put in the context of

supervised ML task. Relevant theoretical ML and deep learning concepts, evaluation pro-

cedures, metrics, and statistical tests that will be employed in this thesis are introduced.

Chapter 4. introduces the problem of peptide sequence similarity. The datasets used

in the thesis are introduced, and their statistical properties and similarities are discussed.

A manually curated dataset of catalytic peptides is presented, and its properties are

comprehensively analyzed.

Chapter 3. introduces three widely used peptide representation schemes and analyzes

the information they capture. An information gap present in these representation schemes

is identified and a novel representation scheme called sequential properties is introduced

to bridge this gap.

In Chapter 5., the procedure used to evaluate representation schemes and employed

models is detailed. An extensive analysis is conducted on the results of sequential prop-

erties, focusing on predictive performance and optimal hyperparameters.

The TL evaluation methodology and the corresponding results are presented in Chap-

ter 6. Furthermore, the optimal TL strategy found by a grid search is analyzed and the

dependency of TL effectiveness on the target dataset size is explored.

Finally, Chapter 7. provides a summary of the research conducted in this thesis and

highlights the potential future directions for improving peptide function prediction.
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2. Chapter

MACHINE LEARNING

Artificial intelligence is a broad field that focuses on the development of computer sys-

tems capable of mimicking human intelligence and performing tasks that would typically

require human intelligence. For example, this includes tasks related to natural language

processing, decision making, image and speech recognition, autonomous driving, game

playing and medical diagnosis. Machine learning (ML) is a subset of artificial intelligence

which encompasses algorithms that use statistical learning to learn from and model data.

Unlike traditional problem-solving methods, these systems are not explicitly programmed

on how to perform a task. Instead, they learn from a dataset, and once built, they are

used to make predictions or decisions on unseen data.

A dataset is a collection of instances or data points representing some observation.

An instance is characterized by a set of independent variables, also known as features

or attributes. The selection of informative and discriminative features is crucial for a

model to learn the mapping from these features to target values. Furthermore, it is

important to use high-quality features as they directly condition model performance.

The process of designing, selecting and transforming features with the aim of enhancing

model performance is referred to as feature engineering and is often a part of the ML

process.

Features can be broadly categorized into numerical and categorical types based on

their nature. Numerical features are those that use numerical values, which can be either

continuous or discrete. On the other hand, categorical features represent categories. These

can be further subdivided into ordinal and nominal features. Ordinal features are those
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where an order exists between the categories, while nominal features do not imply any

order.

In ML, especially when dealing with complex models such as DNNs that have a large

capacity, there is a risk that the model might memorize instances seen during training.

This means that the model fits the training data too closely, and this phenomenon is

known as overfitting. It can lead to overly optimistic results when the model is evaluated

on the same data on which it was trained, as it might make correct predictions for the

training data, but fail on unseen data. To ensure a fair and unbiased evaluation of the

model, it is necessary to split the dataset into at least two sets known as a training set

and a test set.

The training set is used to train the model, while the test set is kept aside for the

final evaluation of the model at the end of the experiment. This ensures that the model

never comes into contact with the test set during training, simulating real-world data

that the model may encounter once deployed. However, it is often necessary to estimate

model performance during the experiment for various reasons, such as hyperparameter

optimization. In such cases, an additional set of data is introduced, known as a validation

set. For example, it can be used to evaluate multiple model configurations and to select

the one that produces the highest score on the validation set. The test set cannot be used

for this purpose because any choices made based on the test set results would be biased

towards optimizing the score on the test set. In that case, the final evaluation on the test

set would not reflect the performance that can be expected in production.

When splitting the data, a random split may result in training, validation, and test

sets that do not have an equal ratio of classes. This can be especially problematic for

datasets with high class imbalances as any of the sets may end up not being representative

of the whole population. This can be especially important in terms of the minority class.

To address this issue, a stratified split can be used, which guarantees that the ratio of

classes in the dataset will be preserved across all splits. The split is usually 70:15:15 for

the training, validation and test sets, respectively. The largest portion of the dataset is

assigned to the training set because model training requires significant quantities of data.

It is important that all sets are representative of the population to ensure that the model

learns effectively and generalizes well to new data.

Various ML algorithms exist, including neural networks, decision trees, SVMs and
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many more. Deep neural networks (DNNs) are a specific type of neural network that

consists of at least two layers. A subfield encompassing DNNs is known as deep learn-

ing. DNNs offer multiple advantages over other ML algorithms, usually at the cost of

computational complexity and a higher demand for training data. Due to their deep and

complex architecture, they are able to learn and better model non-linear relationships in

the data. Furthermore, they can automatically learn complex features from the data in

tasks where it is difficult to define features. Over the past decade, DNNs have achieved

state-of-the-art performance on such tasks, which include image classification, natural

language processing and speech recognition.

ML algorithms are usually divided into four categories:

1. Supervised learning - involves using labeled data, where both inputs and expected

output values are provided. The task of the model is to learn to map the input to

the output values.

2. Unsupervised learning - only input data is provided without the output. The goal

of the model is to learn the structure of the data and is often used for clustering

and dimensionality reduction.

3. Semi-supervised learning - a combination of supervised and unsupervised learning

in which most data is not labeled. It is often used when it is costly to collect labeled

data, but unlabeled data are available and can be used to improve the model.

4. Reinforcement learning - a model interacts with the environment by making deci-

sions and receives rewards or penalties. The goal of the model is to learn a policy

that maximizes rewards.

2.1. Supervised Machine Learning

Since the goal of this thesis is to develop a model that can distinguish between peptides

that exhibit a certain activity and those that do not, the peptide activity prediction

problem is treated as a supervised binary classification task. In the supervised learning

setting, each instance in the dataset is assigned one or more dependent variables, also

known as output or target variables. The objective of supervised learning is to learn to
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predict the target variables based on the input features. Depending on the nature of the

problem and the dependent variables, supervised learning can be divided into classification

and regression tasks.

In a classification task, the goal is to assign instances into specific categories. Binary

classification is a subtype of classification in which an instance can belong to one of two

classes. In contrast, multi-class classification allows an instance to belong to one of multi-

ple classes. Furthermore, if an instance can belong to multiple categories simultaneously,

the problem is known as multi-label classification as multiple labels are assigned to each

instance. In peptide activity prediction, binary classification is performed more often, as

most of the available datasets provide only a label indicating whether a peptide has a

certain activity(Table 2.1). Such datasets are mostly used for binary, but they can also

be compiled together for multi-label classification [27, 30, 31]. For example, a two-step

method was developed for the identification of antimicrobial peptides and their functional

subtypes [32]. In the first step, a binary classification model is used to distinguish antimi-

crobial from non-antimicrobial peptides. In the second step, 14 binary classification SVM

and XGBoost models are used to perform multi-label classification based on a one-vs-rest

approach. In such a setting, each classifier in the second step is trained to distinguish only

one functional subtype from the other subtypes. Such implementation enables a single

sequence to belong to multiple classes at the same time.

In contrast to classification tasks, models in regression tasks learn to map the input fea-

tures to a continuous numerical value representing peptide activity, which introduces the

requirement for the dataset to provide such values for training. For instance, a regression-

based model for the prediction of IC50 values for antiviral peptides was developed [33].

The authors experimented with SVM, RF, k-Star, and k-NN. They evaluated various com-

binations of compositional and physico-chemical properties as well as one-hot encoding.

The results showed that combining compositional, physico-chemical and binary features

correlated with better prediction.

2.2. Artificial Neural Networks

Artificial neural networks (ANNs) were selected for this study due to their ability

to model complex and non-linear relationships in data, automatically learn peptide rep-
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resentations, extract useful patterns and generalize them to the entire peptide, achieve

state-of-the-art performance, and can be used to leverage the knowledge gained on one

task to improve the performance on the other task. ANNs are inspired by the human

brain, although they differ significantly in the way they learn. ANNs consist of artificial

neurons that can be categorized into input neurons that receive the data, hidden neu-

rons which transform the data, and output neurons which produce the final result. Each

neuron consists of multiple input connections x, weights w assigned to the input connec-

tions, an activation function f , and a single output y. Input connections are connected

to the outputs of other neurons, while one of the inputs may also be used as a bias term.

Weights are usually initialized to random values to break the symmetry. The neuron first

computes the weighted sum of the inputs z as shown in Equation 2.1, and then applies

the activation sum to obtain the output value as shown in Equation 2.2.

z =
∑
i

xiwi (2.1)

y = f(z) (2.2)

The activation function is usually a non-linear function which transforms the computed

linear combination of inputs z to obtain the final output y. Without using non-linear ac-

tivation functions, a neuron would perform a linear transformation. It can be mathemati-

cally shown that a neural network which does not employ non-linear activation functions,

regardless of the number of neurons, can be summed up into a single neuron exhibiting

the same behavior. A non-linear behavior is introduced into the neural network by using

non-linear activation functions which allows for modeling of non-linear functions. Gener-

ally speaking, neural networks with more neurons are capable of modeling more complex

functions.

Various activation functions exist and the ones used in this thesis are shown in Ta-

ble 2.2. Each one has its own characteristics and the choice of activation function depends

on its purpose and mathematical properties. For example, the sigmoid function is often

used for the output of binary classification neural network where the expected output

value is between 0 and 1, representing the probability that an instance belongs to a pos-

itive class. The probability of instance belonging to the negative class can be simply
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Table 2.2: Definition, domain, co-domain and visualization for sigmoid, tanh and ReLU
activation functions.

Activation function Domain Co-domain Visualization

sigmoid(z) = 1
1+e−z [−∞,∞] [0, 1]

tanh(z) = ez−e−z

ez+e−z [−∞,∞] [−1, 1]

ReLU(z) = max(0, z) [−∞,∞] [0,∞]

computed by subtracting the obtained probability from 1. If the predicted probability

is above the customary classification threshold, the instance is classified in the positive

class. The classification threshold is usually set to 0.5, but it can be optimized for better

performance. Tanh is usually used when the expected output value should be centered

around zero. ReLU is computationally more efficient, outputs only unbounded positive

values and unlike tanh and sigmoid, does not suffer from the vanishing gradient problem.

It is a common choice for the activation function of hidden neurons.

Even though the connections between neurons can be arbitrary and unstructured,

they are usually arranged into layers and this type of neural network is known as multi-

layer perception (MLP). Such a layered structure enables a simpler and computationally

efficient learning process, while at the same time multiple layers facilitate the learning of
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more complex functions.

The learning process consists of the forward and the backward pass. In the forward

pass, instances from the training set are propagated through the neural network to com-

pute the outputs. After each instance xi, a loss function L is computed to measure the

prediction error as a discrepancy between the predicted and the ground truth values yi.

During the backward pass, the backpropagation algorithm is used to propagate the pre-

diction error back through the network to adjust the weights and reduce the error. The

chain rule (Equation 2.3) is used to automatically compute the gradient of the error with

respect to each weight. The partial derivative of the loss function with respect to each of

the weights is computed for the current set of weights W , input features xi and expected

output values yi. The partial derivatives form a vector known as the gradient of the loss

function as shown in Equation 2.4 and point in the direction of the steepest increase in

the loss. Therefore, the loss can be minimized by updating the weights in the opposite

direction of the gradient. The update rule for a single weight wj is given in Equation 2.5.

The magnitude of the update to the weights W is influenced by the magnitude of the gra-

dient G and a customary hyperparameter α, as it can be seen from Equation 2.5. With

an appropriately set α, the process eventually converges to a local optimum after multi-

ple iterations of the algorithm. This algorithm is known as Stochastic Gradient Descent

(SGD) and serves as a basis for more advanced training algorithms.

[f(g(x))]′ = f ′(g(x)) · g′(x) (2.3)

G = (
∂L(W ;xi, yi)

dw0

,
∂L(W ;xi, yi)

∂w2

, ...,
∂L(W ;xi, yi)

∂w|W |
) (2.4)

wj ← wj − α · ∂L(W ;xi, yi)

∂wj

(2.5)

One such advanced algorithm is the widely used adaptive moment estimation (Adam)

algorithm. Adam introduces momentum, allowing the direction of the gradient update

from the previous iteration to influence the current update. This accelerates convergence

in the relevant direction by dampening oscillations. Adam also uses a moving average of

squared gradients to normalize the gradient and adjust the learning rate adaptively for
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each weight in the network. Instead of updating the weights after each instance, it employs

mini-batches where a batch of instances is used to compute the gradients. These gradients

are then averaged to obtain the gradient for the weight update. This approach leads to

a better estimation of the direction of the gradient, less noisy updates, and consequently,

faster convergence.

Categorical cross-entropy and binary cross-entropy loss functions are usually used in

classification tasks. These loss functions are based on the concept of entropy, which is a

measure of uncertainty in the context of information theory. A lower entropy signifies a

lower degree of uncertainty. Therefore, the objective of the training process is to minimize

this uncertainty by minimizing the loss function.

Categorical cross-entropy loss is given in Equation 2.6 and is commonly used for multi-

class classification tasks. Each instance in the dataset is associated with a target y

that contains C elements, each corresponding to a specific class. Only one position in

y is assigned a value of one, given that classes in multi-class classification are mutually

exclusive, while all other positions contain zero. The position with a value one assigned,

signals the class to which this instance belongs. The activation function for the output

layer of the model is typically a softmax function, which ensures that the sum of all

predicted values equals one. Consequently, the predicted values in ŷ can be interpreted as

a probability distribution indicating the likelihood that a given instance belongs to each

class.

L(y, ŷ) = −
∑

iCyilog(ŷ) (2.6)

Binary cross-entropy loss, on the other hand, is a special case of categorical cross-

entropy loss and is utilized for binary classification tasks. There are only two classes

in binary classification, and since the sum of their predicted probabilities equals one,

knowing the probability of one class allows for the computation of the probability of the

other class. Therefore, the variable y is a single number, which equals one if the instance

belongs to the positive class and zero if it belongs to the negative class. The variable ŷ is

a single real-valued number denoting the predicted probability for the positive class. By

considering these facts and applying Equation X, Equation 2.7 for binary cross-entropy

loss is derived.
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L(y, ŷ) = −(1− y)log(1− ŷ)− ylog(ŷ) (2.7)

2.3. Overfitting Control

Overfitting is a common problem in ML where a model learns the training data and

its noise so closely that it negatively impacts the model’s performance on unseen data.

It can be identified by evaluating the model on a validation set that was not used during

training. If the model performs well on the training set but poorly on the validation set,

it is likely overfitting.

Various strategies exist to combat overfitting. One approach is to reduce the com-

plexity of the model by decreasing the number of parameters. This prevents the model

from learning overly complex patterns and memorizing the training data. Regularization

techniques, such as L1 and L2 penalties, can also be introduced into the loss function

to discourage the model from becoming too complex. Another regularization technique

is dropout, where randomly selected neurons are temporarily dropped out during back-

propagation and their connections are not updated. This makes the neural network less

sensitive to the activations of specific neurons and promotes better generalization. The

dropout rate is a user-defined probability that controls the number of randomly selected

neurons to be deactivated. Another strategy is to implement early stopping which moni-

tors the model’s performance on a validation set during training. Once the performance

on the validation set did not improve for a defined number of epochs, the training is halted

to prevent the model from overfitting. Additionally, the model can be saved during each

epoch so that the one with the best performance on the validation set can be used. How-

ever, it is important to note that applying overfitting control methods too aggressively

can lead to underfitting, where the model performs poorly on both the training and val-

idation sets due to its inability to learn the underlying patterns in the data. Therefore,

it is important to strike a balance between underfitting and overfitting and often requires

experimentation.
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2.4. Convolutional Neural Networks

Some types of data, such as images or audio recordings, have a spatial dependency

where the context of each input value is influenced by its surrounding values. For ex-

ample, the ordering of pixels in images or samples in audio recordings carries meaningful

information on the surrounding values that influence how the current value is interpreted.

Exploiting these dependencies is often necessary to achieve good performance in tasks

involving such data.

Convolutional layers are usually used in neural networks to specifically exploit these

dependencies. Each convolutional layer consists of a set of learnable filters that are ran-

domly initialized at the beginning and then learned during the training process. Each

filter slides over the input data and a dot product is computed at each step. This op-

eration produces an activation map that gives the response of that filter at each spatial

position. The activation maps of all filters are then stacked along the depth dimension to

produce the output of the convolutional layer.

For example, suppose 1D data with nfeatures features (i.e. channels) and a length of

linput and a convolutional layer with nfilters filters, where each filter is of length lfilter.

The output of a convolutional layer will contain nfilters features and will have a length

of linput. The length of the output may vary because it depends on the step size chosen

for the sliding operation, as well as the handling of edge cases. Output features represent

sequences containing activations of the associated filter.

One of the benefits of convolutional layers is their ability to automatically learn and

extract features from raw data. This is particularly useful in situations where it is chal-

lenging to manually engineer relevant features, such as in image processing. Furthermore,

this increases the adaptability of the model as convolutional layers can automatically learn

the patterns most relevant for the prediction, leading to higher prediction performance.

The fact that each filter is used across the entire length of the input provides better

generalizability since each filter is learned from the entire input data.

The receptive field of a convolutional layer is the part of the input data that is covered

by the layer in a single step and it plays a crucial role in the ability of the model to

detect certain patterns in the input data. If the receptive field is too small, it may not be

enough to capture relevant patterns. On the other hand, if the receptive field is too large,
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it may miss important information in the input as it aggregates the information. The

receptive field of a neural network can be increased by either increasing the size of the

convolutional filters or by stacking multiple convolutional layers. It is usually preferred to

stack multiple convolutional layers as this facilitates hierarchical feature learning where

layers closer to the input data learn simple features, while deeper convolutional layers

combine those simple features into more complex ones.

2.5. Word Embeddings

Word embeddings concept refers to the technique of representing categorical values as

multi-dimensional real-value vectors. In such a method, each categorical value is mapped

to a unique vector that is learned automatically during the training process. During

prediction, word embeddings act as lookup tables that convert a categorical value into a

real-value vector that represents the given categorical value. Although word embeddings

are most commonly used in natural language processing, they can also be applied in many

other fields where categorical values are used. For example, in cases where categorical

features have a large number of possible values, embedding layers may be used to more

efficiently represent categorical values in comparison to the one-hot vector encoding.

There are various implementations of word embeddings, such as Word2Vec and Fast-

Text, that differ in the way they are trained and in the type of context they capture. These

approaches tend to group semantically similar words closer in the embedding space, allow-

ing for subsequent analyses. However, these approaches require separate training before

they can be used in a downstream task.

In many research papers in the field of peptide function prediction, an already-implemented

embedding layer from a ML library is often used [31, 36, 37]. In this thesis, an implemen-

tation of word embedding from the Keras library is used. It represents each categorical

value as an n-dimensional vector, which means that n · m weights must be learned to

represent m different categorical values.

Unlike the aforementioned approaches that require separate training, a Keras em-

bedding layer is trained simultaneously with the rest of the neural network in which it

is used. This is achieved by optimizing the embedding layer weights during the train-

ing process towards the values that minimize the loss. Although this implementation
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Figure 2.1: The schematic of standard RNN.

allows for the simultaneous training of the embedding layer and the neural network, it

does not group semantically similar categorical values together. Therefore, a meaningful

subsequent analysis of the embedding space is not possible with this approach.

2.6. Recurrent Neural Networks

Recurrent Neural Networks (RNNs) are a specialized type of neural network designed

for modeling single- or multi-channel sequential or temporal data. For example, they

are usually used for tasks such as machine translation, natural language processing, and

speech recognition, but they are also applicable to peptide function prediction [31, 36, 38,

39]. RNNs process sequences one step at a time, maintaining a memory in the form of

a numerical vector that contains the results of computation up to the current step. The

next state of the memory is computed from its current state and the current input. This

sequential processing makes RNNs difficult to parallelize and potentially computationally

intensive, especially when dealing with long sequences. RNNs use the same weights at

each time step to update the memory and compute the output. This weight-sharing

approach significantly reduces the complexity of the model and the number of parameters

that need to be learned. Furthermore, it allows the network to make predictions on inputs

of variable sizes.

The most basic form of an RNN is a standard RNN, which is depicted in Figure 2.1.

In this model, memory is implemented as a hidden state. It is computed at each time

step and then fed as input at the next step, along with the current input data. The size



Classification of Peptides using Deep Neural Networks and Transfer Learning 26

of the hidden state vector, denoted as hidden size, is a hyperparameter that needs to be

configured and depends on the complexity of the task. The next hidden state is obtained

by summing the previous hidden state, input for the current sequence step, and bias vector

and applying tanh activation function element-wise. Matrix multiplication of the hidden

state and the current input with their weight matrices Wh and Wx is performed before the

bias vector is added. The matrix Wh has a dimension of (hidden size, hidden size), while

matrix Wx has dimensions of (hidden size, input size) where input size denotes the size

of the input vector x. Therefore, the result of matrix multiplication with vectors ht−1 and

xt are the vectors of size hidden size. Now they can be summed together element-wise

since they have the same size as the bias vector b. The memory implemented in the form

of hidden state ht is passed to the next sequence step along with the input data xt+1 to

compute the next hidden state ht+1. The hidden state in standard RNN also serves as

the output from RNN. Therefore, after each sequence step is processed, a corresponding

output yt is also computed. The matrices Wh and Wx, and a bias vector b are randomly

initialized and converge to optimal values during model training.

This type of RNN implementation suffers from vanishing and exploding gradient prob-

lems [40]. In the case of vanishing gradients, the gradient becomes smaller as the sequence

becomes longer, leading to very small updates to the weights. This reduces the RNN’s

ability to learn long-term dependencies, resulting in poor performance. On the other hand,

exploding gradients occur when the gradients become larger with the length of the input

sequence, leading to divergence during training. These problems are influenced by the size

of weight values, learning rate, sequence length and activation functions. The problem of

exploding gradients can be mitigated by a technique known as gradient clipping.

A more advanced variation of RNN is the Long Short-Term Memory (LSTM), shown

in Figure 2.2. Unlike a standard RNN, an LSTM additionally implements a cell state Ct,

which enables long-term memory capabilities. It has three mechanisms that control its

content: the input gate controls the amount of input data that should be stored in the

cell state, the forget gate controls the amount of cell state that should be kept, and the

output gate controls the amount of cell state that should be passed to the output at the

current sequence step. These mechanisms allow the LSTM to mitigate the problem of

vanishing gradients.

A limitation of traditional RNN and LSTM networks is that they process the input
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Figure 2.2: The schematic of LSTM.

sequence in one single direction. This can be restrictive for applications where under-

standing the data requires context from both the past and the future. This issue can be

addressed by implementing a bidirectional RNN, which in the case of LSTM is known as

Bidirectional LSTM (BiLSTM). BiLSTM mitigates this limitation by incorporating two

LSTM layers: one processes the sequence from start to end (forward direction), and the

other processes it from end to start (backward direction). The outputs of these two layers

are then concatenated to form the final output, which effectively captures information

from both past and future contexts.

When training neural networks, it is necessary for all sequences in a single batch to be

of the same size. This requirement presents a challenge that can be addressed in several

ways. One approach is to use SGD which updates the weights after each data instance,

thereby avoiding the problem by eliminating the need for batches. However, this method

usually has a slower convergence and is more sensitive to noise. Another approach is

the bucketing method, where a batch is formed of sequences of the same length. This

method reduces randomness as sequences of different lengths cannot appear together in a

batch, potentially leading to batches that are not representative of the overall population.

Furthermore, scarce sequence lengths will produce small batches. A third approach is

to pad sequences with a special token to make them of the same length. While padding

introduces additional computational complexities, it enables parallel processing by using

batches and allows for greater flexibility as sequences of different lengths can be used

together.
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The output of an RNN at each step represents a rich, context-aware representation of

the sequence data processed so far. Since the cell and hidden states do not depend on

the length of the input sequence, the output from the RNN is also of a fixed size. This

means that RNNs generate a new sequence at the output that is the same length as the

input sequence, which can be used for sequence-to-sequence tasks. However, for applica-

tions relevant to this thesis, only the final output is used as it contains the accumulated

information from the entire sequence. Therefore, standard RNNs or LSTMs are usually

followed by fully connected layers. In this setting, the RNN part processes the sequential

data and outputs a fixed-size vector containing information about the sequence. This

vector can then be used by the fully connected layers to make a prediction. The purpose

of RNN in this approach is to process the sequential data, while the fully connected part

makes a prediction.

2.7. Evaluation Metrics

An evaluation metric is a quantitative measure used to assess the predictive perfor-

mance of a model. Classes in binary classification are usually referred to as positive and

negative classes, where the positive class is usually the class of interest. In the context of

this thesis, active peptides are treated as a positive class because they exhibit the desired

activity.

Binary classification tasks yield four possible outcomes for each prediction:

1. True Positive (TP) - the model correctly predicted the instance to be positive.

2. False Positive (FP) - the model incorrectly predicted a negative instance to be

positive and it is also known as type 1 error.

3. True Negative (TN) - the model correctly predicted the instance to be negative.

4. False Negative (FN) - the model incorrectly predicted a positive instance to be

negative and it is also known as type 2 error.

These four outcomes can be arranged into a 2D confusion matrix, as shown in Table 2.3,

and serve as the basis for deriving more complex classification metrics.
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Table 2.3: Confusion matrix for binary classification.

For an ideal classifier, the confusion matrix would contain only true positives and true

negatives, while the counts of false positives and false negatives would be zero, indicating

that all instances have been correctly classified.

It is necessary to use multiple evaluation metrics to evaluate the model from various

perspectives since each metric has its own advantages and disadvantages. This thesis will

employ eight metrics, namely recall, precision, specificity, accuracy, F-1 score, Matthew’s

correlation coefficient, geometric mean and area under the receiver operating characteristic

curve.

Accuracy (Acc), is a commonly used metric to assess the predictive performance of

classification models. It is defined as shown in Equation 2.8 and represents the fraction

of predictions that the model predicted correctly. However, it is usually used to compare

the models on balanced or nearly-balanced datasets as it can produce over-optimistic or

misleading results in the case of imbalanced datasets. For example, consider a model

predicting only a negative class and an imbalanced dataset having 90% of instances in

the negative class and 10% of instances in the positive class. Such a model would have an

accuracy of 90% on a given dataset, even though it incorrectly classified all of the positive

instances. It can be seen that the class imbalance influences the accuracy and makes it

unsuitable for comparison of models across datasets with different distributions of classes.

Acc =
TP + TN

TP + TN + FP + FN
(2.8)

In imbalanced datasets, the class of interest is usually greatly outnumbered by the

negative class and assessing the predictive performance solely with accuracy can be mis-

leading. This issue is tackled by defining three scores each being focused only on one



Classification of Peptides using Deep Neural Networks and Transfer Learning 30

aspect of prediction which are later used to define more complex scores for imbalanced

datasets. Precision measures the proportion of correctly predicted positive instances out

of all instances that the model predicted as positive. A high precision score indicates

fewer false positives and is especially useful when the cost of a false positive is high.

Recall reflects the proportion of correctly predicted positive instances out of all actual

positive instances. This metric is crucial when the cost of false negatives is high as it

measures the model’s ability to capture positive instances in the data. Similarly to recall,

but for the negative class, specificity assesses the model’s ability to correctly identify the

members of the negative class. It is crucial when the cost of false positives is high. All

three metrics output the value in the range from 0 to 1 and they are defined in Equations

2.9, 2.10 and 2.11, respectively.

Precision =
TP

TP + FP
(2.9)

Recall =
TP

TP + FN
(2.10)

Specificity =
TN

TN + FP
(2.11)

F-1 score (F1) is a harmonic mean of precision and recall and is shown in Equa-

tion 2.12. It is more robust than accuracy for an imbalanced dataset because it considers

how accurately the model predicts positive class (precision) and how good it is at identi-

fying positive instances (recall). Therefore, predicting the positive class for all instances

would result in lower precision and consequently in a lower F-1 score. F-1 score assumes

that precision and recall are equally important which may not be true for all problems.

Furthermore, it also assumes that it is more important to correctly identify the positive

class over the negative class since it does not include true negatives in the calculation.

F1 =
2 · precision · recall
precision+ recall

(2.12)

Geometric mean (GM), shown in Equation 2.13 is another robust metric that computes

the geometric mean between recall and specificity showing how good the model is at

identifying the members of positive and negative classes. Unlike the F-1 score, it assumes
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that the ability to correctly identify positive and negative classes is equally important, as

it includes both recall and specificity.

GM =
√
recall · specificity (2.13)

Matthews correlation coefficient (MCC) is a measure that takes into account all four

fields of the confusion matrix and does not prefer one class or one error type over the other.

Its value ranges from -1 to 1, where -1 indicates that a model misclassified all instances,

while 1 indicates a perfect classification. However, a negative value in the case of binary

classification denotes that all classes are opposites of the true values, which means that

the score can be turned into a positive value by negating the output. Subsequently, the

value of 0 in the case of binary classification suggests that the predictions are no better

than a random choice.

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.14)

The seven previously described metrics are dependent on the chosen classification

threshold as they consider predicted classes that are obtained by applying the thresh-

old to the predicted probability. On the other hand, area under the rectifier operating

characteristic curve (ROC-AUC) is a measure that allows for the comparison of models

without depending on any particular threshold. ROC curve shows the trade-off between

1 − specificity and recall and is constructed by plotting those values on x and y axis

for every possible classification threshold. ROC curve always starts at (0, 0) since the

maximal threshold results in only the negative class being predicted which would result

in 1− specificity = 0 and recall = 0. The curve always ends at (1, 1) because classifier

with the threshold set to minimal value leads to only the positive class being predicted

which results in 1 − specificity = 1 and recall = 1. The ideal classifier would make

correct predictions at any threshold in between which would produce 1− specificity = 0

and recall = 1 making the curve look like a square. ROC-AUC score is computed by

computing the area under the constructed ROC curve, and higher values indicate better

overall performance across all thresholds.
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2.8. Cross-Validation

Cross-validation is a method used in ML to accurately assess the performance of

a model by splitting the dataset into k partitions. In each of the k iterations of the

algorithm, one partition is used for testing, while the remaining ones are used for training.

This is done in a way that ensures that each partition is used exactly once for testing

and k−1 times for training. This process yields k measurements, from which the average

score and deviation are computed. Using a higher number of k iterations can help reduce

variance of the score estimate, providing a more reliable measure of model performance.

In the case of imbalanced datasets, where classes are not equally represented, a stratified

split may be used. This type of split guarantees that the ratio of classes will be preserved

in all folds, ensuring that each fold is a good representative of the whole dataset.

To further enhance the reliability of the performance estimate, a procedure known as

repeated cross-validation can be employed. In this procedure, the cross-validation process

is repeated n times, with each repetition involving a new instance of cross-validation. This

results in n · k measurements, further reducing the variance of the estimate.

Cross-validation is often used to repeat the experiment multiple times as this allows for

the conduction of statistical tests and the statistical comparison of multiple approaches.

It also enables the estimation of the model’s generalization ability to unseen data, the

performance of the model in hyperparameter optimization and feature selection and helps

to avoid overfitting.

However, the downside of cross-validation is that it can be computationally expensive,

especially in the case of repeated cross-validation. This problem can be mitigated to some

extent by parallelization. Since each iteration of cross-validation is independent of other

iterations, multiple iterations can be run simultaneously. This requires hardware powerful

enough to run multiple instances of the experiment, which may not always be feasible due

to lack of access to such hardware or the costs associated with obtaining access to such

hardware.
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2.9. Leave-One-Cluster-Out

In peptide prediction, datasets often contain highly similar peptide sequences [41].

This similarity typically arises from manual design processes in which known active se-

quences are modified to create novel active sequences with potentially higher activity. For

instance, a conservative substitution might replace an amino acid with another that has

similar physico-chemical properties. Consequently, the original and modified sequences

appear highly similar, both in sequence and in their physico-chemical properties.

This high similarity between training and test sets can affect the model’s predictive

capabilities and its generalization power. Clusters of similar sequences of the same class

might lead the model to base predictions on patterns common to that cluster, while

overlooking the differences between individual sequences within the cluster. Such a model

would base its decisions entirely on the similarity of a given peptide to the peptide clusters

seen during training. However, this approach has limited value in real-world applications,

as there are infinitely many possible sequences that were not covered in the training set.

Therefore, the main goal is to overcome the prediction based on similarity and develop

a model that can learn how the interplay of amino acids influences peptide activity and

generalize this knowledge to unseen data.

Simply discarding highly similar sequences from the dataset to control similarity can

be problematic in the case of small datasets where a significant portion of data may be

excluded further reducing already too small dataset. To avoid this issue, a method such

as leave-one-cluster-out cross-validation (LOCOCV) is required for model evaluation [32].

This method groups peptides in the dataset by their similarity into clusters, which act

as folds. Like regular cross-validation, each cluster is used exactly once for testing and

forms a part of the training set in all other iterations.

LOCOCV employed in this thesis clusters peptides based on similarity that is later

defined in Chapter 4. The algorithm starts with no clusters and iterates over the peptides

in the dataset. Each peptide is checked against the representatives of existing clusters.

If the similarity between a given peptide and a representative exceeds a user-defined

threshold, the peptide is added to that cluster. If no suitable cluster is found, a new cluster

is created, and the given peptide becomes the representative of this cluster. The number

of clusters is variable and depends on the data, the user-defined similarity threshold, and
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the order in which peptides are processed during clustering.

While LOCOCV does not directly solve the problem of a model basing its decisions

purely on similarity, it enables a realistic estimate of the model’s performance on unseen

data. It can be used in hyperparameter optimization to tune the hyperparameters in

a way that maximizes the model’s generalization power. In this way, it can indirectly

mitigate the problem and encourage the model to base its decision on other factors as well.

However, it is important to note that this approach can be computationally expensive for

large and diverse datasets.

2.10. Feature Selection

Feature selection methods are a crucial aspect of ML as they can improve predictive

performance and generalization while reducing model complexity and computational cost

of training and testing. They can be categorized into filter and wrapper methods. Filter

methods rank features based on statistical analysis and are not dependent on a ML model.

They are computationally efficient, but they may require the data to comply with some

requirements for them to be applicable. In contrast, wrapper methods use a ML model to

rank features, resulting in a feature set that is optimized for that particular model. These

methods are typically more flexible as they make fewer assumptions about the data, but

they are more computationally expensive compared to filter methods.

In this study, a wrapper method known as sequential feature selection is employed.

This method is chosen because it produces an optimal feature set for a given model and,

unlike many filter methods, it is applicable to sequential data.

Sequential feature selection can operate in two directions, forward and backward. The

forward search begins with an empty set of features and in each iteration, it identifies

the unselected feature that contributes most to the model’s performance. This process

involves training and evaluating the model separately using a set of already selected

features, complemented with each of the unselected features. The feature that leads to the

highest increase in performance is then added to the set of selected features. Conversely,

the backward search starts with a set of all features and, in each iteration, removes the

feature that contributes the least to the performance. Both of these approaches are greedy

and have a complexity of O(n∗m), where n is the total number of available features and m
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is the number of desired features. The algorithm is based on a greedy approach and does

not consider the correlation and dependencies among the features. Therefore, there is no

guarantee that it will find a global optimum in the form of a feature subset that achieves

the best predictive performance. Forward search is more efficient when a small number

of features is desired as it has to do a small number of iterations to append the desired

number of features to the set. On the other hand, backward search is more suitable when

a smaller number of features has to be discarded from the feature set.

Its complexity makes sequential feature selection unfeasible when a large number of

evaluations is required or when the time for a single evaluation is unacceptably long. Such

problems arise when the pool of features is too large or when dealing with large models

and datasets that take a long time to evaluate. Although the search can be accelerated

by employing parallelization, it is usually insufficient for large problems.

The random initialization of model weights may cause oscillations in model perfor-

mance, even when the model is retrained using the same data and features. To get a

better estimate of model performance on each evaluated feature subset, a nested strat-

ified cross-validation can be used. The downside of this procedure is that it increases

the number of necessary evaluations by the number of folds and repetitions of cross-

validation. Since each iteration of cross-validation is completely independent of the other

iterations, it can be efficiently parallelized to run multiple iterations simultaneously. This

approach helps to mitigate the computational cost while ensuring a robust estimate of

model performance.

2.11. Transfer Learning

Transfer learning (TL) is a ML method in which a pre-trained model is used instead

of a randomly initialized model as a starting point for a learning process. Therefore, TL

is a process that involves two sequential stages: a model is pre-trained on a source task

(S) in the first stage, and then it is fine tuned on a target task (T ) in the second stage.

Using a pre-trained model as a starting point usually leads to an increase in performance

on the target task as well as faster convergence to the solution which in turn leads to a

shorter training time. TL is often used to mitigate the challenges of small datasets as

they do not contain enough data instances for a proper training of a randomly initialized
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neural network [42].

To devise an optimal TL strategy, one needs to address the following three questions:

When to transfer, What to transfer, and How to transfer [43]. When to transfer focuses

on identifying the domains and tasks that are mutually compatible for the transfer of

knowledge. Tasks and domains that are subjectively deemed similar are usually seen as

suitable for TL. However, not all domains and tasks are mutually compatible, or in the

case of some domains, they may be compatible only in one way. Applying TL to such

incompatible domains and tasks may not yield any improvement, or may even result in

negative transfer which is the degradation of performance. Therefore, it is crucial to

assess the compatibility of the domains and tasks before performing TL. However, most

of the existing studies focus on the other two aforementioned questions, and there is no

general method to assess the compatibility of the domains and tasks, except by conducting

empirical experiments. TL between incompatible domains may result in a decline in target

performance, a phenomenon known as negative transfer.

What to transfer question is concerned with identifying the parts of a neural network

that can be reused on a target task. The knowledge in neural networks is encoded in the

form of topology and weights, which define its function and behavior. In many application

domains, commonly used model topologies are already established and fine-tuned for their

specific needs. Therefore, these topologies are usually reused for different tasks within the

same or similar domains, and only their weights must be optimized to adapt the neural

network behavior. Consequently, TL is concerned with identifying parts of a neural

network that can be reused from a source task to help solve the target task. A naive

approach would be to search for the optimal subset of nodes and connections to transfer,

but this would be computationally expensive and impractical. A more efficient approach

is to leverage the insights from the topology and functioning of the network. It is known

that neural networks learn hierarchical representations of the data, where shallow layers

capture basic features and deeper layers capture more abstract and complex features.

This means that shallow layers contain more general knowledge common to a wider range

of tasks, while deeper layers contain task-specific knowledge. Hence, a commonly used

strategy is to transfer the shallow layers and randomly initialize the deeper layers. This

assumes that the source and target tasks share some commonality in the type of task that

needs to be solved or the domain of the application.
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In the context of peptide function prediction, TL has been applied to transfer knowl-

edge across both closely related and more distinct peptide functions, as well as from

proteins to peptides(Table 2.4). For example, knowledge from protein toxicity predic-

tion has been transferred to peptide toxicity prediction, leveraging the similarity between

proteins and peptides [39]. In another case, the knowledge gained on antifungal pep-

tides datasets was leveraged to fine-tune the model for anticancer peptides prediction,

exploiting common patterns within different subfunctions of antimicrobial peptides [38].

Additionally, TL has also been explored for more unrelated peptide activities, such as

transferring knowledge from antimicrobial to ion channel-modulating peptides [36]. This

thesis will examine two TL scenarios involving highly related tasks, specifically the trans-

fer from AMP-ExAVP to AVPPred and vice versa, as well as the transfer of knowledge

from AMP and AVPPred to unrelated CAT. Given that antiviral peptides are a subtype

of antimicrobial peptides, transferring knowledge from AMP-ExAVP to AVPPred is ex-

pected to be beneficial. However, the transfer from a single-function-focused AVPPred

dataset to a more diverse AMP-ExAVP dataset may not yield as good results due to the

limited diversity of patterns learned on the AVPPred dataset. Although the catalytic

function is unrelated to antimicrobial and antiviral functions, it is anticipated that the

transfer from AMP to the CAT dataset will perform better due to the broader range of

patterns learned during pretraining, compared to the transfer from AVP.

How to transfer refers to the way in which TL is performed once the relevant parts

of a neural network have been identified. Various methodologies are available, depending

on the level of adaptation and fine-tuning required. The simplest way is to transfer the

identified layers from a source neural network and then train the whole network on a target

task. However, this may cause the transferred layers to diverge from their near-optimal

states and effectively lead to the loss of knowledge from the source task. This is a result

of training transferred layers simultaneously with the rest of the network which is still not

tuned to the target task. To minimize this, a common practice is to freeze the transferred

layers so that they do not change during training, or to use a lower learning rate for them

so that the changes in weights are smaller. This allows the randomly initialized part of

the network to converge fast to the optimal solution, while the transferred layers preserve

the learned knowledge and fine-tune gradually to the target task. The adjusted learning

rate αTL used in transferred layers is usually expressed as a learning rate α multiplied by
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a learning rate multiplier ω, as shown in Equation 2.15. An established learning rate for

this model and the task at hand can be used for alpha, while the optimal learning rate

multiplier needs to be determined empirically and is typically within the range of [0.01,

1].

αTL = α · ω (2.15)

Alternatively, pretraining in a self-supervised learning fashion can be used to uti-

lize large volumes of unlabeled proteins for model pretraining [23, 37]. It is a form of

unsupervised learning in which randomly selected amino acids in protein sequences are

masked and the model is trained to predict them. Such training provided the model with

useful knowledge of common patterns in sequences which was later exploited for pep-

tide classification. The advantage of this approach is that it requires only the sequences

which enables it to utilize large databases of known protein and peptide sequences that

have not been characterized yet. Most of the parameters of the employed Bidirectional

Encoder Representations from Transformers (BERT) large language model (LLM) have

been frozen during fine-tuning as the size of the target dataset was not enough for a

whole-model fine-tuning. Furthermore, a two-layer neural network was appended at the

end of the BERT backbone to perform classification based on representation outputted

by BERT [37]. However, a downside of this approach is that LLM models require large

amounts of data to train and are computationally expensive.

Multi-task learning has also been shown to be a viable option to facilitate knowledge-

sharing across multiple targets for the same peptide function (Table 2.4) [36, 44]. Unlike

TL which aims to leverage the knowledge from the source task to enhance the performance

on a target task, multi-task learning exploits shared representation and common patterns

by simultaneously training on multiple tasks allowing each task to benefit from the other

tasks. It enables the data from different targets to be combined resulting in a larger

and more diverse dataset. This approach allows the model to share knowledge across

the tasks, leveraging the similarities between the targets. As all of the targets pertained

to the same peptide activity, they are considered similar tasks with shared underlying

patterns, enabling the model to effectively learn and generalize common features across

tasks. However, class imbalances in the dataset may cause the multi-task learning model
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to be biased towards more numerous classes, affecting the performance on less frequent

classes [45].

2.12. Statistical Tests

A statistical test is a formal procedure that compares observed data with a hypothesis

about the data. These tests usually define two competing hypotheses: the null hypothesis

and the alternative hypothesis. Depending on whether they assume the data follow a spe-

cific distribution, statistical tests can be categorized into parametric and non-parametric

tests. Furthermore, these tests can operate on paired or unpaired samples. Paired sam-

ples are those where there is a one-to-one correspondence between sets of samples, and

the measurements are made on the same subject with different treatments being applied.

In the context of ML, statistical tests are often used to check if there is a significant

difference in performance between two or more models or the same model with different

configurations. To conduct a statistical test, multiple measurements of model performance

are required and these can be collected by repeating the experiment multiple times using

cross-validation.

The result of a statistical test is a p-value that represents the probability of obtaining

the observed data if the null hypothesis is true. If the p-value is less than a custom-

ary threshold known as the significance level α, the null hypothesis is rejected and the

alternative hypothesis is accepted. Otherwise, the null hypothesis is accepted and the

alternative hypothesis is rejected. Therefore, there is a probability of at most α that the

null hypothesis will be rejected when it should have been accepted, which constitutes a

type I error. In contrast, not rejecting a null hypothesis when it should have been rejected

constitutes a type II error.

The choice of a statistical test depends on the research question, the type of data, and

the assumptions that the data must adhere to. The Friedman test is a non-parametric

test used to compare the means of three or more paired groups. The null hypothesis is

that the means of all groups are equal, while the alternative hypothesis is that the mean

of at least one group is different. If the Friedman test determines that one group differs,

then a post-hoc analysis is needed to determine which groups are different from each

other. One such test suitable for post-hoc analysis is the Wilcoxon signed-rank test. It is
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a non-parametric test used to compare two paired samples. The null hypothesis is that

the median difference between pairs is zero, while the alternative hypothesis is that the

difference is not zero.

When conducting a single test, the probability of falsely rejecting the null hypothesis

(Type I error) is equal to the significance level α. However, the probability of falsely

rejecting at least one null hypothesis, known as the Family-Wise Error Rate (FWER),

increases. Consequently, this increases the likelihood of falsely identifying a significant

difference, leading to a false discovery.

This can be mitigated by controlling the FWER. One of the simplest and most com-

monly used methods for this is the Bonferroni correction. This method adjusts the signifi-

cance level α by the number of tests performed. The adjustment is shown in Equation 2.16,

where αadj denotes the adjusted significance level and n denotes the number of performed

statistical tests.

αadj =
α

n
(2.16)

While the Bonferroni correction successfully reduces the FWER to the significance

level, it is known to be quite conservative, especially when a large number of tests are

performed. This leads to lower statistical power, increasing the probability of accepting

the null hypothesis when it should have been rejected (Type II error).

The Holm-Bonferroni method is a modification of the Bonferroni correction that re-

duces the probability of Type II errors while maintaining the same FWER, making it

generally more powerful than the Bonferroni correction.

The key difference between these two methods lies in how they adjust the significance

level. In the Holm-Bonferroni method, a list of n p-values is first sorted from the lowest

to the highest. The lowest p-value has an index of 0 and the highest p-value has an

index of n − 1. The algorithm then iteratively checks if each p-value is lower than 1
m−i

,

where i is the index of the p-value in the sorted list. If it is lower, the corresponding

hypothesis is rejected and the algorithm proceeds. Otherwise, the corresponding and

all remaining hypotheses are accepted and the algorithm finishes. In contrast to the

Bonferroni correction which uses the same significance threshold for all tests, this one

gradually adjusts its threshold reducing the number of Type II errors.
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When multiple Friedman tests are performed, the correction is applied first to these

tests. Post-hoc pairwise tests are then conducted in cases where the Friedman test found a

difference, and the correction is applied to all these pairwise comparisons together. When

multiple models are compared in terms of multiple metrics, this approach ensures that

the probability of falsely rejecting the null hypothesis is α for the entire set of results.
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3. Chapter

REPRESENTATION SCHEMES

In the context of ML, a peptide sequence can be perceived as a series of nominal values.

However, these nominal values cannot be directly processed by ML models. Therefore,

it is necessary to transform them into a numerical representation that can be utilized by

ML models.

Peptide properties-based feature sets based on compositional, theoretical physico-

chemical properties and categorical features have been widely used in a wide range of mod-

els, including support-vector machine (SVM), random forest (RF), k-nearest neighbors

(k-NN), k-Star, XGBoost, linear regression (LR) and deep neural networks(Table 2.1) [27,

30, 32, 33, 35]. To date, various compositional properties have been employed, such as

amino acid and dipeptide composition which reflect the frequency of each amino acid or

dipeptide in the sequence, respectively. Furthermore, more sophisticated compositional

features have been used as well, including g-gap dipeptide composition and composition-

transition-distribution properties [27, 30]. The first considers dipeptides that are com-

posed of amino acids separated by g residues allowing it to capture long-range depen-

dencies. The latter approach uses physico-chemical properties of amino acids to group

them and then uses this grouping to calculate the share and distribution of each group

in the sequence. It also computes the percentage of transitions between groups when the

sequential nature of the peptide is taken into account. Even though this encoding is still

considered compositional, its heavy reliance on physico-chemical properties to compute

the composition enables it to indirectly supply the model with information on the physico-

chemical properties of the sequence. Furthermore, theoretical physico-chemical important



Classification of Peptides using Deep Neural Networks and Transfer Learning 44

for the prediction have also been used to complement compositional properties [30, 33].

One-hot encoding has been widely used to derive binary profile features indicating which

amino acid occupies each position in a sequence [27, 30, 33]. While the number of compo-

sitional and physico-chemical features is not influenced by the length of the sequence, the

number of such binary features is proportional to the number of residues. As ML models

expect the same number of features, the commonly used approach is to pad all sequences

to predefined maximum length resulting in a fixed number of binary features for each

sequence. Furthermore, as the calculation of some compositional and physico-chemical

properties is dependent on user-specified parameters, multiple feature sets with different

parameters can be generated. For example, multiple groups of compositional properties

with different user-supplied parameters have been combined and feature selection was

employed to reduce the feature set and identify the most relevant features [27].

Sequence-based representations encode amino acids in the sequence to retain informa-

tion about the peptide’s primary structure. Although one-hot encoding has been used to

derive a fixed set of binary features in peptide properties-based schemes for non-sequential

models, one-hot encoding can be applied in models that are capable of directly handling

sequence data. One-hot encoding and embeddings have been used to generate sequences

of encoded amino acids to represent peptide sequences (Tables 2.1 and 2.4). Scoring ma-

trices, like BLOSUM60, have been used as embeddings for amino acids. However, they

can also be automatically learned by deep learning models in such a way that the em-

beddings are optimal for a given task. The sequential nature of these representations can

be effectively exploited by deep learning models such as CNNs and LSTMs to extract

patterns that can be generalized to different positions in the sequence as well as to se-

quences of different lengths [4]. Simpler models, such as SVM and RF, have also been

used even though they do not have such generalization capabilities since they are not

designed to model sequential data and do not account for the sequential nature of these

representations [22].

Feature representation learning is an alternative to embedding approaches, aiming to

automatically learn more informative features from a set of manually crafted features.

This method has also been applied to peptide function prediction (Table 2.1) [27, 46,

47, 48]. For example, feature representation learning that combines physico-chemical,

compositional properties and one-hot encoding was employed for the identification of
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anticancer peptides [27]. The method employed 40 SVM predictors trained on different

feature subsets and their predictions formed a 40-dimensional vector, which served as a

high-level representation of a given peptide. Feature selection was performed to discard

uninformative and irrelevant features to make the representation more compact, which

was then used for a final SVM model to make a final prediction.

This thesis explores the application of three prevalent representation schemes, which

includes one peptide properties-based and two sequence-based representation schemes.

Furthermore, a novel representation scheme is introduced, and compared to other three

representation schemes in terms of model performance.

3.1. Peptide Properties

Peptide properties-based representation schemes represent a peptide through a set of

its properties which typically encapsulate the physico-chemical and compositional char-

acteristics of the peptide. The effectiveness of this approach depends on the inclusion

of relevant and discriminative properties, which involves feature engineering and requires

domain knowledge. Therefore, physico-chemical properties which significantly influence

the structure, function and environmental interactions of the peptide should be included.

In the context of this thesis, 10 physico-chemical and 18 compositional properties are

used, resulting in a representation of each peptide by 28 numerical features.

The utilized physico-chemical properties include:

1. Three Cruciani properties - they are computed as the average value of correspond-

ing properties of all the amino acids in the sequence. They reflect the polarity,

hydrophobicity and hydrogen bonding capacity of the peptide.

2. Instability index - provides an estimate of the stability of a peptide in a test tube

and is derived from the dipeptide composition.

3. Hydrophobicity - a property of molecules to repel water. In this case, it is computed

on the Eisenberg scale.

4. Hydrophobic moment - a quantitative measure of the distribution of hydrophobic

residues. A high hydrophobic moment indicates a peptide or protein with a high



Classification of Peptides using Deep Neural Networks and Transfer Learning 46

hydrophobicity on one side and a high hydrophilicity on the other. It is required

to specify a rotational angle and a window length depending on the secondary

structure [49]. For alpha-helix structures, a typical rotational angle is 100°, while

for beta-sheets it is expected to be between 160° and 180° [49, 50]. Short peptides

can be analyzed at once, while longer peptides or proteins are analyzed using a

sliding window. In this case, a default value of 100° is used for the rotational angle

and 11 for the window size.

5. Aliphatic index - characterizes the relative volume occupied by aliphatic side chains.

A higher aliphatic index has been found to correlate positively with the thermosta-

bility of proteins [51].

6. Net charge - the total charge of the peptide. In this thesis, it is computed for a

neutral pH of 7.4 using the Henderson–Hasselbalch equation on Lehninger scale.

7. Isoelectric point - represents the pH level at which a peptide has a net charge of

zero.

The classification of amino acids into 9 groups was taken from the Peptides package

written in R, and is shown in Table 3.1 [52]. This is used to compute the absolute and

relative occurrence of each group in the peptide, resulting in 18 compositional properties.

The absolute value is computed by counting the number of amino acids present in the

sequence that are from a specific group. The relative value ranges from 0 to 1 and is a

ratio between the absolute count and the length of the peptides. The inclusion criteria

for a group are based on the size and properties of the peptide side chains. Each amino

acid is assigned to at least one group.

An example is given in Figure 3.1. The peptide ADDC is encoded into a real-value

vector of a fixed size representing its physico-chemical and compositional properties.

All of the aforementioned theoretical physico-chemical and compositional properties,

except the hydrophobic moment, are agnostic to the ordering of amino acids in the se-

quence. This is due to the facts that these properties are mostly computed as the average

or the sum of individual properties, not taking the ordering into account. This means

that two peptides composed of the same amino acids, but in different order, cannot be

distinguished based on order-agnostic peptide properties. Such a representation makes all
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Table 3.1: Classification of amino acids into groups.

Group Amino acids

Tiny A, C, G, S, T
Small A, C, D, G, N, P, S, T, V

Aliphatic A, I, L, V
Aromatic F, H, W, Y
Non-polar A, C, F, G, I, L, M, P, V, W, Y

Polar D, E, H, K, N, Q, R, S, T
Charged D, E, H, K, R
Basic H, K, R
Acidic D, E

Figure 3.1: Peptide sequence ADDC encoded using its physico-chemical and composi-
tional properties which are shown in blue and red, respectively.
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Table 3.2: Physico-chemical properties of two peptides with the same amino acid compo-
sition, but with the different ordering of amino acids. All the examined physico-chemical
properties have equal values except the hydrophobic moment marked in bold.

Property Peptide ACCD Peptide ACDC

Cruciani property 1 -0.2650 -0.2650
Cruciani property 2 -0.6475 -0.6475
Cruciani property 3 -0.0775 -0.0775
Instability index 165.5 165.5
Boman property 1.0875 1.0875

Hydrophobicity (Eisenberg scale) 0.075 0.075
Aliphatic index 25 25

Isoelectric point (Lehninger scale) 2.994992 2.994992
Charge (Lehninger; pH=7.4) -1.289589 -1.289589
Hydrophobic moment 0.2444636 0.3993655

peptide permutations appear to be the same to the model. Such loss of information on

the ordering of amino acids limits the model in its performance as it is known that the

ordering influences the activity of the peptide as well. An example of two peptides with

the same composition is given in Table 3.2.

3.2. One-Hot Encoding

One-hot vector encoding is a widely used technique to transform categorical data into

a numerical form that ML algorithms can process. It involves creating a binary vector

for each possible value that a categorical variable can take. Each vector consists of n

binary variables, where n represents the number of possible categorical values. A specific

categorical value is encoded by setting its corresponding binary variable to one, while

all other variables are set to zero. Consequently, each categorical value is mapped to a

unique binary vector.

Peptides can be viewed as sequences of nominal variables, which may be encoded into

a sequence of binary vectors using one-hot vector encoding, with each vector representing

a single amino acid. For instance, if we consider only 20 natural amino acids and a

peptide sequence of length l, the peptide can be encoded into a matrix of dimensions

(20, l). An example of encoding for peptide ADDC padded to the length of 6 is shown in

Figure 3.2. It is encoded as a sequence of 6 sequence steps that are processed sequentially

by a sequence modeling neural network.



49 E. Otović - Doctoral Dissertation

Figure 3.2: Peptide sequence ADDC encoded using one-hot vector encoding and padded
to the length of 6. Vectors encoding amino acids are depicted in blue color, while vectors
used for padding are depicted in red color. First 20 bits are used to encode the amino
acids, while the 21st bit encodes a stop signal.

One of the advantages of one-hot encoding is its simplicity and that it does not require

any additional information about the categorical variable beyond the possible values it can

take. Furthermore, this representation indirectly carries the compositional information.

However, this encoding method also has some drawbacks. The size of the matrix used to

represent a peptide is proportional to the number of amino acids used. While the number

of rows is limited to 20 if only natural amino acids are used, this number can quickly

grow to hundreds if non-natural amino acids are included. This can lead to high memory

consumption, slower execution times, and may require a more complex prediction model.

Furthermore, the resulting matrix is sparse, with most elements being zeros, which is

an inefficient use of computational resources and memory. This type of representation

preserves only the information on the ordering and composition of the amino acids in the

sequence, while the information on physico-chemical properties is not available.

To handle sequences of varying lengths, an additional categorical value to represent a

stop signal is added to the encoding and used for padding the sequence to the required

length. Therefore, after the last amino acid is encoded, the sequence is appended with

binary vectors where the stop signal is set to one. This enables to represent all sequences

with the matrices of the same dimensionality.
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3.3. Word Embedding

Even though feature representation learning enabled the automatic learning of high-

level peptide representation to some degree, the application of deep learning and natural

language processing methods enabled the learning of more complex representations. The

word embedding approach preserves information on the ordering of amino acids and,

indirectly, the composition of the peptide sequence. Since this approach adapts the repre-

sentation scheme to the data and is influenced by the relationships between amino acids,

it may be assumed that it is more informative than one-hot encoding. Nonetheless, this

approach does not provide any information on any peptide property to the model. In

contrast to one-hot vector encoding, where all amino acids are equidistant in the feature

space and are treated equally, the word embedding approach exploits the relationships

between amino acids and captures their similarities to position them in the feature space.

However, the captured similarities may not necessarily correlate to the physico-chemical

properties.

This approach requires additional processing steps, which are handled by a tokenizer

and a word embedding layer. The role of the tokenizer is to convert one-letter amino acid

codes into tokens that are then converted by the word embedding layer into continuous

real-value vectors. As a result, a peptide is represented as a sequence of vectors, each

representing a single amino acid. While predefined binary vectors are used in one-hot

encoding, the word embedding approach automatically learns the representations. To

handle peptide sequences of different lengths, a new token is introduced which is used for

padding and also serves as a stop signal. Its representation is also automatically learned

during training. This ensures that all sequences, regardless of their original length, can

be represented with the same dimensionality. An example for peptide ADDC is given

in Figure 3.3. The sequence is first padded to the length of 6 by appending it with the

padding token. Embedding matrix is then used to encode each token in the sequence into

a real-value vector.

One of the advantages of this approach is that the representations are learned auto-

matically, removing the need for manual feature engineering. The only requirement for

their application is knowledge about the possible categorical values in the input. The

effectiveness of word embedding was investigated in conjunction with a BiLSTM model, a
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Figure 3.3: Peptide sequence ADDC encoded using word embeddings and padded to the
length of 6. Amino acids and stop signals are encoded with values from the embeddings
matrix. Vectors encoding amino acids are depicted in blue color, while vectors used for
padding are depicted in red color. The size of the embeddings is controlled by the variable
N .
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CNN model and their combination which consisted of CNN followed by LSTM [31]. The

results indicated that the combination of word embedding with the LSTM model yielded

the best results. However, this approach can be biased by the distributions in the learning

data, and training becomes more computationally expensive as the representations also

have to be learned. Furthermore, as deep learning methods require large amounts of data

in general, their performance can heavily be influenced by the quality and size of the

training datasets.

Multiple algorithms are available for training the word embedding layer and this the-

sis will employ the one implemented in Keras ML library. It is trained at the same time

as the rest of the neural network as a part of end-to-end training. The learned repre-

sentations capture the semantic meaning of the amino acids that are optimized for the

task. Furthermore, amino acids similar in the context of a given task are usually grouped

closer together in the embedding space. Other unsupervised learning-based embedding

algorithms, such as Word2Vec and FastText can be employed as well. However, unlike

the embeddings employed in this thesis, they require separate training of the embeddings.

Once trained, they can be applied across a wide range of prediction tasks [53, 54].

3.4. Sequential Properties

It has been shown that theoretical physico-chemical and compositional properties are

in most cases agnostic to the ordering of amino acids [26]. This does not enable the model

to distinguish between different peptides of the same composition. On the other hand,

amino acid ordering-based representation schemes, while preserving the information on

the ordering of amino acids in the sequence, they lack the physico-chemical descriptors.

The information loss present in both methods might decrease the predictive performance

of the model. To bridge this information gap, a hybrid sequential properties peptide

representation scheme is developed and presented in this thesis. The name of the scheme

stems from the fact that it encodes each amino acid in the sequence by its individual

physico-chemical, topological, geometrical and constitutional properties. In this way,

both the information on the theoretical properties and the order of amino acids in the

sequence is preserved. In this thesis, 94 per-amino acid properties were extracted from

Peptides package, including:
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1. Hydrophobicity on 38 scales that capture different aspects on hydrophobicity of

amino acid. The included scales are Aboderin, Abraham-Leo, Argos, Black-Mould,

Bull-Breese, Casari, Chothia, Cid, Cowan at a pH of 3.4 and 7.5, Eisenberg, Engel-

man, Fasman, Fauchere, Goldsack, Guy, Hopp-Woods, Janin, Jones, Juretic, Kid-

dera, Kuhn, Kyte-Doolittle, Levitt, Manavalan, Miyazawa, Parker, Ponnuswamy,

Prabhakaran, Rao, Rose, Roseman, Sweet, Tanford, Welling, Wilson, Wolfenden

and Zimmerman [52].

2. 3 Cruciani properties that are scaled principal component scores reflecting po-

larity, hydrophobicity and H-bonding [55].

3. 5 Z-scale values that include lipophilicity, steric properties, electronic properties

and two properties related to electronegativity, heat of formation, electrophilicity

and hardness [56].

4. 6 FASGAI properties that describe hydrophobicity, alpha and turn propensities,

bulky properties, compositional characteristics, local flexibility and electronic prop-

erties [57].

5. 8 VHSE values reflecting hydrophobicity, steric and electronic properties [58].

6. 8 ProtFP descriptors derived from amino acid properties in AAindex database [59].

7. 10 BLOSUM62 indices derived from a VARIMAX analysis of physico-chemical

properties and BLOSUM62 substitution matrix [60].

8. 3 MS-WHIM properties derived from 36 electrostatic potential properties of the

3D structure [61].

9. 5 t-scale values derived from 67 common topological descriptors [62].

10. 8 st-scale values derived from a set of 827 physico-chemical, topological, geometrical

and constitutional properties [63].

An example of peptide ADDC being encoded with sequential properties using 94 amino

acid physico-chemical features and padded to the length of 6 is shown in Figure 3.4. It is

encoded as a sequence of 6 sequence steps that are processed sequentially by a sequence

modeling neural network.
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Figure 3.4: Peptide sequence ADDC encoded using sequential properties and padded
to the length of 6. Each amino acid is encoded with 94 physico-chemical properties. The
95th is used to signal the end of the sequence. Vectors encoding amino acids are depicted
in blue color, while vectors used for padding are depicted in red color.

Unlike one-hot encoding and word embedding approaches, which limit pattern match-

ing to subsequences of amino acids, this representation enables the model to exploit pat-

terns within relevant theoretical properties that correlate to activity. This gives a model

more detailed insight, as similarity between amino acids in the context of their proper-

ties can also be taken into account. Furthermore, the proposed scheme does not require

learning during training as word embedding does, which can shorten execution time and

be beneficial when there is insufficient data to train embeddings. However, this approach

requires the properties to be collected for amino acids present in the input data, which

can be challenging in the case of modified or non-natural amino acids. In comparison to

the peptide properties, where a single value of a physico-chemical property was used to

describe the entire peptide, this approach allows for a more detailed representation. It

allows the model to focus on the subsequences and their properties, which are relevant for

the activity that is being predicted. Although compositional properties are not directly

present in this representation scheme, they can be indirectly deduced by the model from

the input data.

Additionally, an extra stop signal feature is introduced to signal the end of the se-

quence. This feature is set to 0 until the end of the sequence is reached, at which point it

becomes 1. The sequence is padded to the desired length by appending vectors with all

features set to 0, except the stop signal which is set to 1.
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4. Chapter

DATASETS AND PREPROCESSING

4.1. Feature Scaling

Features of different scales can lead to a slower convergence, an unstable learning

process and features with larger scales dominating features with low scales. This can be

mitigated by applying scaling techniques to bring all features into the same range, typically

[0, 1] or [-1, 1]. In this thesis, feature scaling is used only in the case of peptide properties

and sequential property representations because they contain features of different scales.

The one-hot encoding representation by definition contains values that are either 0 or 1,

while feature scaling is not applicable in the case of word embedding as the numerical

representations are learned by the model itself.

In the case of peptide properties, feature values are computed based on the properties

of individual amino acids and the length of the peptide, while some of them are also

influenced by the ordering of amino acids in the peptide. An analysis of the underlying

equations used to compute features would be needed to determine the theoretical range

of values for each feature separately. To avoid this tedious and computationally expensive

process, standardization is used instead because it centers each feature around 0 by re-

moving the mean and scales it to the unit standard deviation. Feature i of data instance

x is scaled as shown in Equation 4.1, where µi denotes the mean value of feature i and σi

denotes the standard deviation of feature i.

x′
i =

xi − µi

σi

(4.1)
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In the case of sequential properties, the physico-chemical properties of each amino

acid are known a priori and they are combined to form the input sequence to the model

representing a given peptide. Furthermore, the length of the peptide only influences

the length of the input sequence and does not influence the physico-chemical properties

of individual amino acids. Based on this, it is possible to determine the minimal and

maximal value of each feature, and Min-Max scaling can be applied to proportionally

transform the features to the range [0, 1]. It scales feature i of data instance x according

to the Equation 4.2, where mi denotes the minimal and Mi denotes the maximal value of

feature i.

x′
i =

xi −mi

Mi −mi

(4.2)

The parameters used for standardization (µ and σ) are usually inferred from a training

set and then used to scale the entire dataset. In this way, the potential outliers or data

instances with feature values outside ranges found in the training set will not affect the

scaling and will end up outside the desired range. This preserves the integrity of the

validation and test sets and allows for an unbiased estimate of the performance of the

model on unseen data. As all amino acid properties that may appear in the input sequence

are known in advance for sequential properties, the m and M values do not need to be

estimated and can be easily determined for each property separately.

4.2. Similarity

Once a ML model has been trained, it is evaluated on the test set with the goal

of estimating how well it would perform in a real-world scenario. Therefore, the test

set should not contain data that was already fed to the model during training. The

similarity between training and test sets may also influence the evaluation of the model

as the model may be more prone to categorize similar peptides into the same class. The

similarity between two peptide sequences can be easily exploited by the model, especially

when sequence-based representations are used, as they transparently provide information

on the ordering of amino acids in the sequence. Although classification based on sequence

similarity is sometimes used, it is applicable only to sequences that are similar to those in
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the data set and fails for sequences with a low level of similarity. Therefore, it is necessary

to take this into account during model evaluation, in order to create a model that fully

exploits all the features of the input data and generalizes well even to the sequences not

similar to the dataset.

The similarity of peptide sequences in the dataset is computed by performing pair-

wise sequence alignments, and then a percent identity is calculated to quantify the degree

of similarity between the aligned sequences. Various definitions of percent identity have

been suggested and adopted to various degrees in different software packages. For ex-

ample, CD-HIT (Cluster Database at High Identity with Tolerance) and BLAST (Basic

Local Alignment Search Tool) are two widely used software packages for sequence anal-

ysis that employ different definitions of percent identity. CD-HIT is a program designed

to efficiently cluster sequences on the basis of their similarity [64]. It uses a global pair-

wise alignment algorithm, such as Needleman-Wunsch, to align two sequences end-to-end.

The percentage of identity is then calculated as the number of matching residues Nmatches

divided by the length of the shorter sequence (len1 or len2) as shown in Equation 4.3.

On the other hand, BLAST is a program for finding regions of local similarity between

sequences [65]. It employs its own heuristic-based local pairwise alignment algorithm

optimized execution time-wise. The percentage of identity is computed as the number

of matches Nmatches divided by the total length of the alignment Ncolumns as shown in

Equation 4.4 [66]. In comparison to other local alignment algorithms, such as Smith-

Waterman, BLAST alignment algorithm produces less accurate results, but has a shorter

execution time making it suitable for analyzing large databases of sequences [67, 68].

However, there is no guarantee that it will find the best possible alignment due to its

heuristic nature. While there are multiple flavors of BLAST available for different types

of sequence similarity searches, the rest of the comparison will focus on BLASTp (Protein

BLAST) because the peptides are in the focus of this thesis.

PID =
Nmatches

min(len1, len2)
(4.3)

PID =
Nmatches

Ncolumns

(4.4)

The example shown in Figure 4.1 demonstrates the difference between global alignment
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Figure 4.1: An example of a) a global alignment using Needleman-Wunsch algorithm,
and b) a local alignment using BLASTp algorithm. For the sake of example, Needlamn-
Wunsch algorithm uses a basic scoring scheme with a match score set to 1, a mismatch
penalty set to -1 and a linear gap penalty set to -1. The resulting alignment score is 1
and percent identity of 88.8%. BLASTp algorithm used the default settings which include
BLOSUM62 substitution matrix for scoring and affine gap penalty with opening penalty
set to -11 and extension penalty set to -1. The resulting bit score for BLASTp is 21.8 and
percent identity is 58.3%. Input sequences GCPHZYPHCCDC and GCPSPCCDC are
intentionally segmented to contrast their identical and different parts. Matching residues
are shown in green, mismatches are shown in red and gaps are shown with dashes (-).
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using Needleman-Wunsch algorithm and local alignment using the BLASTp algorithm.

While global alignment aligns the sequences globally from end-to-end, a local alignment

identifies and aligns the local similarities between sequences. In the given example, a

global alignment algorithm identified the matching parts shown in green (GCP, P and

CCDC ), while the rest of the aligned residues are either mismatching residues shown in red

(H-S pair) or gaps indicated as black dashes which indicate residues in one sequence that

do not have counterpart in the other sequence. BLASTp resulted in two local matching

regions (GCP and CCDC ), two mismatching residues (P-S and H-P pair) and three

gaps that separate regions of local similarity. In the context of evolutionary relationship,

gaps in aligned sequences can be interpreted as amino acids that were removed from one

sequence or inserted into the other sequence. Even though both alignments resulted in

only the second sequence having gaps, alignment of more divergent sequences can result

in gaps being present in both sequences.

Internally, the alignment process in both algorithms is guided by a scoring scheme that

has to be maximized in order to achieve the optimal alignment. The most fundamental

scoring scheme for Needleman-Wunsch algorithm requires manually set scores that will

be assigned to columns depending on whether there is a match, a mismatch, or a gap.

However, more complicated scoring schemes based on substitution matrices are used to

achieve more nuanced scoring by taking into account chemical, structural and evolutionary

properties. The substitution matrix defines a score for each pair of amino acids separately

allowing for each combination of amino acids to contribute differently to the final score

thus taking into the account biological relationship between sequences. In both cases,

the type and value of the gap penalty have to be manually configured. If a linear gap

penalty is used, each gap in the alignment is penalized equally and their distribution in

the alignment does not influence the final score. On the other hand, an affine gap penalty

defines an opening penalty used to penalize the opening of each new gap and an extension

penalty which penalizes the extension of an already opened gap. The opening penalty

is usually higher than the extension penalty which directs the algorithm to prefer an

alignment with fewer longer gaps over many shorter ones. The total score of an alignment

is the sum of previously assigned scores to individual columns in the alignment. Similarly,

the raw BLASTp alignment score is also defined as the sum of substitution scores and

gap penalties. BLASTp also computes a normalized bit score from the raw score which
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allows for the consistent comparison of scores across different searches and databases.

Local sequence alignments are better suited to study homology and evolutionary rela-

tionship of sequences since local alignment successfully identifies local regions of similarity

separated by unrelated or divergent subsequences. Insertions or removals of amino acids

that cause divergence are usually caused by mutations or rearrangements that naturally

occur in the evolutionary process. However, local alignment may not capture the overall

similarity or diversity of the sequences, as it focuses only on the best-matching regions.

In contrast, global alignment algorithms are better suited to assess the similarity of two

sequences as they align them globally. For this reason, in this thesis the Needleman-

Wunsch algorithm implemented in scikit-bio Python library will be used to compute the

percentage of identity defined in Equation 4.3. The default settings will be used which

use BLOSUM50 as a substitution matrix, a gap opening penalty of 11 and a gap ex-

tension penalty of 1. Additionally, terminal gaps at the beginning and ending of the

alignment are not penalized to allow for the alignment of sequences of different lengths

and to accommodate possible sequence extensions or truncations.

Peptide similarity is often controlled during data preprocessing to mitigate potential

biases that could result in overfitting and an overestimation of model performance [22, 23,

27, 30, 31, 32, 36, 37, 39, 44]. It involves clustering peptides and eliminating sequences

with high similarity to minimize homology bias. As there is no established standard

similarity threshold in the field, each study selects its own threshold, which is sometimes

influenced by the dataset size and the number of sequences that would be excluded. The

used thresholds vary from a conservative 40% to a liberal 90% (Tables 2.1 and 2.4). In

this thesis, a similarity threshold of 70% will be employed as it provides a balance between

overly liberal and overly conservative thresholds.

4.3. Catalytic Dataset

Proteins with catalytic properties that speed up chemical reactions are known as

enzymes. They achieve this by providing an alternative reaction pathway with a lower

activation energy, thereby facilitating the reaction to occur more easily and quickly. They

occur naturally in human bodies and are involved in a wide range of processes such as

digestion. Beyond their biological roles, they are also widely utilized in industry and
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manufacturing. For instance, the enzyme rennin is used in the food industry for the

coagulation of milk in cheese production, whereas cellulase is used in the textile industry

to remove waxes, oils, and starch coatings from fabrics to enhance the final product’s

appearance. Despite their broad applications, enzymes have certain limitations. They

often become unstable at varying pH levels and temperatures, and their production can

be costly due to their complexity.

In contrast to proteins, peptides are much smaller chains of amino acids making them

cheaper and easier to produce. They also exhibit better stability under varying pH levels

and temperature conditions. These advantages of peptides over proteins suggest that

the discovery of low-cost peptide catalysts could potentially replace enzymes in various

industries and lead to new applications where enzymes were previously not applicable

due to their limitations. One such application is ester hydrolysis, a chemical reaction

in which an ester is broken down into a carboxylic acid and an alcohol component by

reacting with water. This reaction has a wide range of applications in various industries.

For example, it can be used to synthesize soaps, manufacture fire extinguishers, serve as

softening agents in resins and plastics, or synthesize other chemical compounds.

A manually curated dataset is presented containing experimentally verified peptides

that catalyze ester and phosphoester hydrolysis, two widely studied and important reac-

tions in biological systems 1 [41]. The sequences were manually collected from published

research papers up to the year 2023 found by searching the Google Scholar database with

the keywords catalytic peptides, p-NPA, p-NPP and self-assembly. The search was specif-

ically limited to peptides confirmed to have catalytic activity by standard colorimetric

assays. These assays change color in the presence of esters and phosphoesters, thereby

confirming that ester hydrolysis has occurred. They can also be used to quantify the

catalytic activity of the peptides.

Since this dataset was manually collected through a literature search, it can be con-

sidered highly reliable and can serve as a benchmark for models that were trained on

automatically collected data. Being the first dataset of its kind, it also has the poten-

tial to initiate the application of ML methods in the research and development of next-

generation peptide-based catalysts. By focusing solely on ester hydrolysis, it provides an

opportunity for analysis of the sequence-to-activity relationship for this particular cat-

1The dataset is available as CSV files at https://data.mendeley.com/datasets/6s9kxj2ndr/2

https://data.mendeley.com/datasets/6s9kxj2ndr/2
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alytic activity. Furthermore, it also offers insight into existing design strategies important

for the development of new catalytic sequences.

The catalytic dataset (CAT) contains purely peptidic sequences for the catalysis of

ester and phosphoester hydrolysis. The dataset consists of 126 peptide sequences, of

which 110 comprised of only proteinogenic amino acids and 16 contain non-proteinogenic

amino acids. All the sequences follow Michaelis-Menten kinetics and 114 of them have

their catalytic efficiency (kcat/KM) determined. For one sequence only an upper bound

for catalytic efficiency is provided, and for 11 sequences only a label indicating that they

exhibit catalytic function is provided as the exact efficiency is not known. Therefore,

sequences showing any level of catalytic activity are treated as active for the purpose of

this thesis, while the rest are treated as inactive. This criterion yields 97 active and 29

inactive sequences. Even though it is expected for the inactive peptides to be prevalent

in nature, this skewness can be attributed to the bias in scientific literature towards

publishing only positive results. For each peptide sequence, the following 9 are provided:

a one-letter amino acid code, N- and C- termini modifications, tested substrate, catalytic

parameter (kcat/KM), mechanism of catalysis, ability to form secondary structures and/or

self-assemble and DOI of paper it was collected from. SMILES notation is also provided

for the peptides containing only proteinogenic amino acids.

The mechanisms of catalytic reaction were analyzed and are presented in Table 4.1.

The majority of the peptides in the dataset exhibit catalytic activity that is dependent

on the presence of zinc ions (Zn2+) which facilitates catalysis. The second most prevalent

mechanism of reaction involves the catalytic triad residues, which involves three specif-

ically arranged amino acids located in the active site. The least number of peptides in

the dataset is dependent on the presence of histidine in their sequence. Given that the

pH of histidine is close to 7, it can act as either a base or an acid in catalysis [69]. The

mechanism of reaction is unknown for the remaining 30 peptides. The analysis of peptide

lengths and amino acid composition are shown in Figures 4.2 and 4.3. It can be seen that

most of the sequences have length from 7 to 9. The amino acid composition of sequences

is diverse in the case of active sequences, while it is limited to 7 amino acids in the case

of inactive sequences. Furthermore, the function of the peptide is also influenced by the

substrate it is evaluated on, and C- and N-termini modifications. The dataset covers 13

substrates and their distribution is shown in Table 4.2, while the distribution of C- and
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Table 4.1: Distribution of peptides by catalysis mechanism separately for the peptides
containing only natural amino acids and those that contain non-natural amino acids.

Mechanism of catalysis
Peptides containing only
natural amino acids

Peptides containing
non-natural amino acids

Zn2+ dependent 47 0
Catalytic triad residues 23 8
Histidine 10 8
Not known 30 0
Total 110 16

Table 4.2: The number of peptides evaluated with a specific substrate.

Substrate
Sequences containing
only natural amino acids

Sequences containing
non-natural amino acids

Total

p-NPA 86 10 96
p-NPP 5 4 9
p-NPB 4 0 4
p-NPH 3 0 3
p-NPO 3 0 3
p-NPS 3 0 3
BNPP 1 0 1
HPNPP 1 0 1

Indoxyl acetate 1 0 1
p-NPF 1 0 1
p-NPMA 0 2 2

p-NPPalmitate 1 0 1
p-NPPropionate 1 0 1

N-termini modifications is shown in Table 4.3.

The most numerous substrate is p-NPA, while all other substrates have 5 or fewer

instances in total. Moreover, negative instances are only available for sequences com-

posed of proteinogenic amino acids and they relate only to p-NPA and p-NPP substrates.

Substrate is a nominal feature, and a low number of instances with the same category

value can introduce bias and noise during training, as well as overfitting. This does not

allow neural network to learn the decision boundary to distinguish positive from negative

instances for substrates other than p-NPA. Furthermore, most of the available software

libraries support only proteinogenic amino acids. Due to these reasons, only peptides

tested on p-NPA containing only proteinogenic amino acids will be utilized in this thesis.

Theoretical physico-chemical properties that are important for peptide activity were

computed by using peptide.py Python library and the distributions are shown in Fig-
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Table 4.3: Number of peptides with a specific combination of N- and C- termini.

(a) Sequences containing only pro-
teinogenic amino acids.

(b) Sequences containing at least one
non-proteinogenic amino acid.

(a) Sequences containing only natural
amino acids.

(b) Sequences that contain at least one
non-natural amino acid.

Figure 4.2: Distribution of peptide lengths in the dataset.

(a) Sequences containing only natural
amino acids.

(b) Sequences that contain at least one
non-natural amino acid.

Figure 4.3: The distribution of amino acids in the dataset.
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ure 4.4. The charge of the peptide can influence the interaction between a peptide and a

substrate or other components of the reaction and is dependent on the pH level of the sur-

rounding environment. To capture this, isoelectric point which represents the pH at which

the peptide carries no net charge, and the total net charge were computed. The calcualtion

of net charge was performed for the neutral pH of 7.4 using the Henderson–Hasselbalch

equation. Hydrophobicity is another important property for catalysis as it is known that

higher hydrophobicity can improve catalysis [70]. It quantifies the tendency of a chem-

ical compound to repel water molecules. The GRAVY hydrophobicity index reflecting

the hydrophobicity of a peptide is computed by summing the hydrophobicity values of

individual amino acids in the sequence and dividing the sum by the number of residues.

Figures 4.4a and 4.4b reveal that catalytic peptides tend to have a zero net charge

in acidic conditions and a negative net charge at neutral pH. Furthermore, Figure 4.4c

indicates that the average hydrophobicity of active peptides is higher compared to inactive

peptides, and its range is also narrower. However, it can be seen that none of these

properties is discriminative enough to be solely used for prediction.

The analysis of similarity for p-NPA sequences (Figure 4.5) containing only natural

amino acids shows that the average inter-sequence similarity is 0.22 and 13.54% of the

sequences have more than 70% similarity indicating the presence of highly similar se-

quences. Figure 4.6 demonstrates the number of clusters in CAT for various similarity

thresholds used in the clustering algorithm employed in LOCOCV. To account for the

fact that the result from the clustering algorithm depends on the ordering in which it pro-

cesses sequences, 100 permutations of CAT sequences were randomly created and they

were used to run the algorithm multiple times for various similarity thresholds. It can

be seen that the number of clusters grows almost linearly up to the threshold of 0.7 and

then it rapidly increases to a point where each peptide is its own cluster. In the case of a

very high threshold, LOCOCV starts to lose its purpose as similar peptides are put into

different clusters and therefore marginally helps to reduce the similarity between training

and test sets. On the other hand, picking a threshold that is too low results in peptides

with very low similarity being grouped together in the same cluster. Such a setting results

in a small number of bigger clusters which means that leaving out one cluster as a test set

will reduce more the size of the training set and may lead to poorer performance of the

model. This further reinforces the choice to use the similarity threshold of 70% as it is a
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(a) Isoelectric point on Lehninger scale. (b) Charge at pH=7.4 on Lehninger pKa
scale.

(c) Hydrophobicity on Eisenberg scale.

Figure 4.4: The distribution of theoretical physico-chemical properties relevant for the
catalytic activity. Sequences containing only natural amino acids and tested with p-NPA
substrate were included in this analysis.
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(a) Similarity for all peptides. Peptides
to the left of the red dashed line are less
than 30% similar and represent 73% of the
dataset.

(b) Similarity for only active peptides. (c) Similarity for only inactive peptides.

Figure 4.5: The analysis of peptide similarities in CAT dataset. The analysis is limited
to the sequences tested with p-NPA and containing only natural amino acids.

point of balance between the number of clusters and the number of peptides per cluster.

The average number of clusters at this threshold is 21.5, while the average size of cluster

is 3.81.

The final dataset after the aforementioned filtrations consists of 59 active and 27

inactive sequences.

4.4. Antiviral Dataset

The AVPpred database is used as the antiviral dataset in this thesis [71]. It is a

comprehensive collection of experimentally verified antiviral peptides. These peptides
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Figure 4.6: The dependency of the number of clusters for LOCOCV in CAT dataset
on a chosen similarity threshold. The clustering algorithm was run 100 times each time
with a random ordering of sequences. The blue line shows the average number of clusters,
while the greyed area represents one standard deviation.

were collected from research articles on PubMed and patents in Patent Lens. About 91%

of them are derived from natural sources, with the remaining originating from synthetic

sources. After the removal of duplicates, the dataset comprises 604 active and 452 inactive

peptides. Notably, the active peptides target human viruses such as HIV, HCV, and

SARS-CoV. The dataset also provides a reference to a corresponding research article

or patent for each peptide. The list of known targets is also given for antiviral peptides.

While the dataset is pre-divided into training and test sets, it was necessary to concatenate

these two sets for this study as cross-validation will be employed.

The diversity of the dataset in terms of peptide length can be seen in Figure 4.7. The

similarity analysis (Figure 4.8) has shown that inter-sequence similarity is 0.08 and that

only 0.58% of all peptides share more than 70% similarity indicating high diversity in the

dataset. The similarity threshold of 70% was used to discard highly similar sequences and

to limit inter-sequence similarity to 70%. The final dataset consists of 240 active and 358

inactive sequences.

4.5. Antimicrobial Dataset

Antimicrobial dataset (AMP) was manually created by combining active sequences

from Data Repository of Antimicrobial Peptides (DRAMP) 3.0 with the inactive sequences

collected from Uniprot repository.
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Figure 4.7: The distribution of peptide lengths in AVPPred dataset after similar peptides
were removed.

(a) Similarity for all peptides. Peptides
to the left of the red dashed line are less
than 30% similar and represent 98% of the
dataset.

(b) Similarity only active peptides. (c) Similarity only inactive peptides.

Figure 4.8: The analysis of peptide similarities in AVPPred dataset.
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DRAMP is a publicly accessible, manually curated database focused on antimicrobial

peptides with a length of up to 100 residues [72]. Its latest version released on November

4th 2023 was utilized for this study. Peptides in the database come from publicly available

dataset (Swiss-Prot, PDB, PubMed), clinical antimicrobial peptides in preclinical and

clinical stages, and registered patents.

DRAMP database intends to provide the following information about each entry, but

some entries may be missing some of the values including sequence:

1. General information: DRAMP ID, single-letter amino acid code, sequence length,

peptide name, gene, source (whether synthetic or natural and its natural source),

family, and Swiss-Prot ID.

2. Activity information: type of activity (e.g., antifungal), target organism, hemolytic

activity, cytotoxicity, and binding targets.

3. Structure information: linear or cyclic peptide, modifications of C and N termini,

non-terminal modifications, stereochemistry, structure information, and PDB ID.

4. Physico-chemical information: length, molecular weight, theoretical pI, amino

acid composition, net charge, formula, extinction coefficient, estimated half-life,

instability index, aliphatic index, and GRAVY value.

5. Additional comments: comments on the function, mode of action, etc.

6. Reference and source information: the reference and information on the source

of the entry.

The entries in the repository are further categorized into subactivities, as shown in

Table 4.4. These categories are not mutually exclusive, and a single peptide can be

present in more than one category simultaneously. Peptides from all available categories

were merged into a single set of antimicrobial peptides for the purpose of this thesis.

Duplicate entries, peptides with non-natural or unknown amino acids, and those with

more than 50 residues were removed. After this filtration process, a total of 4471 peptides

remained in the set.

UniProt is a comprehensive, high-quality and publicly available resource of protein

sequences, functional information and annotations [73]. It is a joint effort between the
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Table 4.4: Number of instances in each of the subactivity categories in DRAMP 3.0
database.

Subactivity Number of instances

Antimicrobial 5626
Antibacterial 4159
Anti-gram-positive 2733
Anti-gram-negative 2562
Antifungal 1836
Antiviral 312
Anticancer 163
Anti-SARS-CoV-2 90
Antiparasitic 52
Insecticidal 98

List of Code Listings 4.1: Query used to collect inactive sequences from UniProt
repository.

NOT keyword : an t im i c r ob i a l AND length : [ 0 TO 50 ] AND fragment : no
AND reviewed : yes

European Bioinformatics Institute (EMBL-EBI), the SIB Swiss Institute of Bioinformat-

ics and the Protein Information Resource (PIR). For the purpose of this study, the inactive

sequences were collected from Uniprot using the query shown in Code listing 4.1. An-

timicrobial is a keyword in a Uniprot-controlled vocabulary encompassing sequences with

deleterious effects on any type of microbe excluding viruses. length:[0 TO 50] limits the

number of residues in the sequence, while fragment:no limits the result only to peptidic

sequences by preventing the query from finding fragments of longer proteins. Database

records missing antimicrobial keyword may either indicate sequences not having antimi-

crobial activity or it may indicate sequences that were not tested for antimicrobial activity.

Therefore, “reviewed:yes” is used to limit the search results only to the sequences that

were confirmed by UniProt to not have antimicrobial activity.

The query returned 9037 sequences that were then filtered to remove duplicates, se-

quences longer than 50 residues and sequences containing unknown or non-natural amino

acids. This reduced the number of inactive sequences to 6036 and they in a combination

with 4471 previously collected active sequences from DRAMP form AMP dataset with

10507 sequences in total.

The histograms of peptide lengths and a similarity analysis presented in Figures 4.9
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Figure 4.9: The distribution of peptide lengths in AMP dataset after similar peptides
were removed.

and 4.10 indicate a high level of diversity in AMP dataset. Among all peptide pairs, 98%

of them are less than 30% similar, while the average similarity is 0.08.

The histogram of peptide lengths shown in Figure 4.9 shows that active and inactive

are diverse in terms of peptide lengths as they both cover all lengths. The similarity

analysis (Figure 4.10) has shown that the average inter-sequence similarity is 0.08 and

that only 0.13% of peptides share more than 70% similarity. The dataset was filtered

to limit the inter-sequence similarity to 70%. The final dataset contains 2085 active and

2792 inactive sequences.

As AMP is going to be used in combination with AVPPred for TL in Chapter 6., it

was necessary to create AMP-ExAVP dataset to ensure that there is no overlap between

the source and target datasets, which could bias the model by allowing it to learn patterns

specific to antiviral peptides during pretraining. Additionally, pretraining and fine-tuning

on the same peptide subfunction would not reflect a real-world scenario, where TL is

typically applied because there is not enough data for the target task. AMP-ExAVP

excludes 312 antiviral peptides and any peptide overlapping with AVPPred. The same

dataset filtering and processing steps that were used for other datasets were also used to

process AMP-ExAVP.

The overview of the three used datasets after the filtration is given in Table 4.5.
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(a) Similarity for all peptides. Peptides
to the left of the red dashed line are less
than 30% similar and represent 98% of the
dataset.

(b) Similarity for only active peptides. (c) Similarity for only inactive peptides.

Figure 4.10: The analysis of peptide similarities in AMP dataset.
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Table 4.5: Overview of the used datasets, their source, and number of instances after
data filtration.

Dataset Source
Positive
instances

Negative
instances

AVPPred AVPPred [71] 240 358

AMP
DRAMP 3.0 (positive instances) [72]
Uniprot (negative instances) [73]

2085 2792

AMP-ExAVP DRAMP 3.0
(positive instances excluding
antiviral peptides) [72]

Uniprot (negative instances) [73]
1991 2785

CAT
Manually curated dataset of
catalytic peptides [41]

59 27
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5. Chapter

REPRESENTATION SCHEMES

EVALUATION

5.1. Models

The choice of model architecture is primarily influenced by the representation scheme

employed. An MLP is used to learn and predict peptide activity from peptide properties

representation scheme. When peptides are represented by their properties, the sequential

nature of the data is lost and a peptide is represented through a set of numerical values

in a tabular format. This makes MLPs to be used for activity prediction as they do

not inhrently support sequential data. The architecture of the MLP model is shown

in Figure 5.1a [35]. The original model consisted of three layers, each containing 100

neurons. The activation function for these layers was ReLU, while the output neuron

employed a sigmoid activation function. As the information propagates through each layer

of the MLP, the model learns to recognize more complex features and patterns. Hence,

a different number of layers and neurons may be needed depending on the data and the

task. A grid search process with the hyperparameters shown in Table 5.2a is employed

to optimize the model. The number of layers in the model can vary between 1 and 3,

while the number of neurons in each layer is optimized for each layer separately, resulting

in 84 possible configurations. The rest of the model hyperparameters are preserved as

they are in the original model. An additional 2-neurons binary input is employed in

the case of CAT dataset to provide the information on C- and N- termini modifications.
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Amidated C-terminus and acetylated N-terminus are represented by 1, while the free state

is represented by 0.

A neural network utilized for word embedding approach is shown in Figure 5.1b [31]. It

starts with a tokenizer that converts amino acids into tokens. The tokens are then passed

to an embedding layer, which automatically learns the real-value vector representation

for each token. As a result, a peptide is encoded as a sequence of real-value vectors, each

representing an amino acid. In this approach, the number of possible tokens is known

in advance and corresponds to the number of amino acids with the addition of one more

token for a padding sign. These vectors are then processed by a BiLSTM layer. This layer

learns the sequential dependency between amino acids and summarizes the sequence into

a single real-value vector of fixed size capturing the sequential characteristics of the input

sequence. The final prediction is made by the output neuron, which employs a sigmoid

activation function. A dropout of is applied to the outputs of the BiLSTM layer to

combat overfitting. This approach can be considered a complete end-to-end solution as

it eliminates the need for manual feature engineering. It handles the conversion from the

amino acid sequence to a numerical representation internally by automatically learning

the representation of each amino acid. The architecture of the model is fixed during the

optimization process, while the size of the embedding layer, the number of units in the

LSTM layer and the dropout factor are optimized using a grid search. The examined

hyperparamter values shown in Table 5.2b allow for 54 different configurations. The

additional input for termini modifications skips the sequence processing part of the model

as it is not part of input sequential data and is connected directly to the fully connected

layer at the end of the model. In this way, information on termini modifications is taken

into consideration together with the sequence summary provided by the LSTM layer for

the final prediction.

A neural network for one-hot encoding is shown in Figure 5.1c. This model is also

suitable for sequential properties, as both one-hot encoding and sequential properties

are in their essence multivariate sequential data. Its architecture comprises a variable

number of convolutional layers, a BiLSTM layer and a single output neuron with a sigmoid

activation function. The dropout is applied to the outputs of the BiLSTM layer to control

overfitting. The model’s architecture is optimized for the prediction tasks using a grid

search, as depicted in Table 5.2c. It involves tuning the number of convolutional layers,
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the number of filters in each convolutional layer, the kernel size, the number of units in

the LSTM layer and the dropout factor. The grid search is allowed to employ up to two

convolutional layers which includes the possibility that no convolutional layer will be used.

By adjusting the number of convolutional layers and the kernel size, the receptive field of

the model is changed and tuned to enhance the detection of relevant patterns in the data.

To reduce the computational complexity of this search, the kernel size is shared between

the two convolutional layers and it is not considered in optimization if no convolutional

layers are used. The total number of configurations that have to be evaluated is 333.

The role of the convolutional layers is to extract local patterns in the sequence. In

the context of one-hot encoding, the convolutional layers are limited by the binary infor-

mation provided from one-hot encoding. In that case, they learn to recognize patterns of

consecutive amino acids, forming subsequences relevant to the prediction. In the context

of sequential properties, more details about amino acids are available to the convolutional

layers that enables them to learn patterns in physico-chemical properties relevant to the

prediction. The output of the convolutional layers is a sequence representing the presence

of patterns at each sequence step. This sequence is processed by a BiLSTM, which sum-

marizes the sequence into a fixed-size real-value vector. Unlike the convolutional layer,

the LSTM is not limited to only consecutive sequence steps as it operates at the level of

the entire sequence. This enables it to capture long-term relationships between steps that

are not necessarily consecutive. For the same reasons as in the embedding approach, the

additional input for termini modifications is connected to the fully connected layer.

5.2. Evaluation Procedure

The evaluation procedure used in the case of AVPPred and AMP dataset to evaluate

representation schemes is depicted in Figure 5.2a. A 10 times repeated 10-fold cross-

validation is employed in the case of AVPPred and AMP datasets to split the data into

training and test sets. In each iteration, the training set is used to perform feature selection

and hyperparameter optimization, while the test set is used to assess the performance of

the final model. Such a setting will produce 100 repeated measurements on various test

sets that will be used for statistical analysis. Due to the small size of CAT dataset, a

modified evaluation procedure employing LOCOCV is employed as shown in Figure 5.2b.
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(a) MLP for peptide proper-
ties.

(b) Sequence modeling neu-
ral network with an embed-
ding encoding.

(c) Sequence modeling
neural network for one-hot
encoding and sequential
properties representation
schemes.

Figure 5.1: Model architectures used for each of the representation schemes. The addi-
tional input for C- and N-termini modifications is used only in the case of CAT dataset.

It utilizes 10 times repeated LOCOCV with sequences being reshuffled at the start of

each repetition to account for the fact that clusters produced by LOCOCV are influenced

by the order in which sequences are processed. It is limited to 10 repetitions due to the

longer execution time which is needed to iterate through all clusters. In each iteration

of LOCOCV, one of the clusters is used as a test set, while the rest are used for feature

selection and hyperparameter optimization. As clusters are expected to contain 3.81

peptides on average, their size is insufficient to assess the model performance individually

on each of those clusters. For this reason, the predictions made on all test clusters during

one repetition of the outer loop are concatenated and used to assess the model during

that run of the outer loop. In the end, this produces 10 measurements that will be used

for statistical analysis.

The complexity of the model is controlled through its hyperparameters and the com-

plexity may be influenced by the number of features. A smaller number of features will

generally require a less complex model. Conversely, the choice of hyperparameters con-

figuration can influence the optimal feature set. As these two parameters are mutually
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(a) AVPPred and AMP datasets. (b) CAT dataset.

Figure 5.2: Procedure used to evaluate each of the representation schemes.
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dependent, it would be optimal to perform feature selection and hyperparameter optimiza-

tion simultaneously for the best results. However, due to the computational time required

for this approach, it is not feasible and has to be implemented in two sequential steps.

In the case of feature selection followed by a hyperparameter optimization, feature selec-

tion is performed using non-optimized hyperparameters to select features, and then they

are optimized for the chosen feature set. In the case of a hyperparameter optimization

followed by feature selection, a hyperparameter optimization would be performed with

all features, and then feature selection would be performed based on the chosen hyper-

parameters. The total number of features in sequential properties is 94 and is expected

to be reduced to a much smaller number as not all features are important for a given

activity and there is overlap between the features. Therefore, a second approach would

potentially first create an optimal model for a large feature set and then later perform

feature selection to reduce the feature set. The resulting model could be more complex

than necessary and more prone to overfitting. With that in mind, the first approach is

implemented where the feature selection is followed by the hyperparameter optimization.

In this way, the architecture of the model is adjusted to the size of the feature set.

In the case of peptide properties and sequential properties, a feature selection can be

used to reduce the number of features. Therefore, a scenario including forward feature

selection and a scenario without feature selection are used to assess the model and es-

timate the benefits of feature selection for the proposed representation scheme. In the

first scenario when forward feature selection is employed, a nested stratified 5-fold cross-

validation is used to estimate the performance of feature sets. The non-optimized model

hyperparameters used for feature selection are shown in Table 5.1. In the latter scenario

when feature selection is omitted, more emphasis is put on the model’s ability to auto-

matically extract and learn feature patterns needed for the prediction. A search grid for

hyperparameter optimization is formed from the values shown in Table 5.2 and nested

5-fold cross-validation is used to evaluate each configuration. The configuration with the

highest ROC-AUC score is chosen as the optimal, which makes the choice independent

of the used classification thresholds. The optimal classification threshold is determined

on the validation set once the final model is trained. However, a classification threshold

of 0.5 was used for CAT dataset as the optimization cannot be performed reliably due to

the small validation set.



81 E. Otović - Doctoral Dissertation

Table 5.1: Hyperparameter values used in feature selection before hyperparameter op-
timization is performed.

(a) Peptide properties.

Hyperparameter Value
Number of neurons
(1st FC layer)

100

Number of neurons
(2nd FC layer)

100

Number of neurons
(3rd FC layer)

100

(b) Sequential properties.

Hyperparameter Value
Number of filters
(1st convolutional layer)

64

Number of filters
(2nd convolutional layer)

64

Kernal size
(both convolutional layers)

6

Number of units
(the LSTM layer)

64

Dropout factor 0.2

Larger datasets in ML tend to provide more reliable results since they encompass a

wider range of data points, thereby enabling the model to learn and generalize better.

Furthermore, the AVPPred and AMP datasets were shown to be more diverse than the

CAT dataset and are expected to be more generalizable. For these reasons, the statistical

tests are performed only on AVPPred and AMP datasets to draw reliable conclusions.

10% of the training set is set aside as the validation set for early stopping. An early

stopping mechanism is used to control overfitting during feature selection, hyperparameter

optimization and final training of the model by stopping the training process when the

validation loss does not decrease for 5 consecutive epochs. The model’s weights are

restored to the state when the validation loss achieved the lowest value. Moreover, a

dropout is implemented to prevent the models from learning the noise in the training

data. The model’s tendency towards overfitting is also indirectly reduced through a grid

search as it selects a model configuration with the highest cross-validation score.

The experiment was executed in parallel over 18 Bull DLC B720 servers that are part

of the supercomputer Bura located at the University of Rijeka using the Dask Python

library. Parallel computation was achieved by using Message Passing Interface (MPI).
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Table 5.2: Values of hyperparameters used in grid search for hyperparameter optimiza-
tion.

(a) MLP model used for peptide properties.

Hyperparameter Values
Number of fully
connected layers

1, 2, 3

Number of neurons
(in each layer separately)

40, 80, 120, 160

(b) Sequential model used for word em-
bedding scheme.

Hyperparameter Values

Embedding size
30, 50, 70,
90, 110, 130

Number of units
(the LSTM layer)

64, 128, 256

Dropout factor 0.1, 0.2, 0.3

(c) Sequential model used for one-hot vector encoding
and sequential properties schemes.

Hyperparameter Values
Number of convolutional layers 0, 1, 2

Number of filters
(in each convolutional layer separately)

16, 32, 64

Kernal size
(shared between convolutional layers)

4, 6, 8

Number of units
(the LSTM layer)

64, 128, 256

Dropout factor 0.1, 0.2, 0.3
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5.3. Analysis of Feature Selection

Peptide properties and sequential properties representation schemes have been eval-

uated with and without feature selection, and the results are compared in Tables 5.3a-f.

The results show that for both representation schemes, a variant not using feature selec-

tion outperformed the one employing feature selection in terms of ROC-AUC, but also

in the majority of the other metrics. Even though the variants without feature selection

performed better on average, Wilcoxon signed-rank test with Holm-Bonferroni correction

with an FWER of 0.01 did not find a statistically significant difference in any of the met-

rics for AVPPred and AMP datasets. Therefore, it can be concluded that feature selection

has no notable impact in the case of peptide properties and sequential properties for the

datasets used in this thesis.

Furthermore, the frequency at which each feature is selected was analyzed separately

for peptide properties (Appendix A1a-c) and sequential properties (Appendix A2a-c).

The frequency is computed by counting the number of cases in which a particular feature

was selected and dividing it by the total number of repetitions, which is 100 in the case

of AVPPred and AMP dataset, while it is a variable depending on the number of clusters

in the case of CAT dataset.

When peptide properties encoding was used, the average number of selected features

for AVPPred was 11.1±2.4. Cruciani properties, hydrophobic moment and hydrophobicity

were the most often chosen physico-chemical properties, while the rest of them were never

selected with the exception of Boman property which was selected only in 2% of the cases.

8 of 9 compositional properties on the relative scale were chosen in more than 50% of the

cases, while only 1 of 9 was chosen from the absolute scale in more than 50% of the cases.

These results may suggest that the relative scale is more suitable for the prediction when

a dataset with peptides of various lengths is used as it directly provides the model with

the information on the share of amino acid group in the peptide sequence. Even though

the same information can be derived from the data provided on the absolute scale, it

requires the model to learn the necessary transformations to do so, making the training

process more complex.

An average of 23.4± 3.4 out of 28 features were selected in the case of AMP dataset,

which is 2.1 times higher in comparison to AVPPred. Furthermore, the least used feature
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Table 5.3: Average performance for peptide and sequential properties representations
when feature selection is and is not employed. The classification threshold was optimized
for AVPPred and AMP datasets as the validation sets were of sufficient size in their
case. Bold values indicate the maximum value. No statistically significant difference was
found by Wilcoxon signed-rank test between the two methods in any of the metrics for
AVPPred and AMP datasets. Holm-Bonferroni correction is used to control for FWER
with a significance level set to 0.01. Statistical tests were not performed for CAT dataset.

(a) Peptide properties on AVPPred.

Recall Prec. Spec. Acc. F1 MCC GM ROCAUC
No feature
selection

0.615 0.693 0.797 0.725 0.633 0.433 0.687 0.782

Feature
selection

0.637 0.680 0.779 0.722 0.640 0.432 0.691 0.781

(b) Peptide properties on AMP.

Recall Prec. Spec. Acc. F1 MCC GM ROCAUC
No feature
selection

0.754 0.766 0.822 0.793 0.756 0.581 0.785 0.883

Feature
selection

0.759 0.763 0.818 0.793 0.757 0.582 0.785 0.881

(c) Peptide properties on CAT.

Recall Prec. Spec. Acc. F1 MCC GM ROCAUC
No feature
selection

0.938 0.845 0.663 0.842 0.887 0.641 0.771 0.885

Feature
selection

0.875 0.784 0.523 0.752 0.824 0.414 0.643 0.846

(d) Sequential properties on AVPPred.

Recall Prec. Spec. Acc. F1 MCC GM ROCAUC
No feature
selection

0.662 0.697 0.792 0.740 0.665 0.468 0.714 0.801

Feature
selection

0.652 0.687 0.783 0.730 0.655 0.449 0.703 0.793
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(e) Sequential properties on AMP.

Recall Prec. Spec. Acc. F1 MCC GM ROCAUC
No feature
selection

0.845 0.828 0.865 0.857 0.834 0.711 0.854 0.936

Feature
selection

0.826 0.836 0.875 0.854 0.828 0.705 0.849 0.934

(f) Sequential properties on CAT.

Recall Prec. Spec. Acc. F1 MCC GM ROCAUC
No feature
selection

0.927 0.912 0.830 0.893 0.919 0.764 0.876 0.933

Feature
selection

0.871 0.870 0.743 0.827 0.869 0.615 0.796 0.886

is instability index which was chosen 16% of the time, while there were 13 features that

were selected less than 16% of the time in the case of AVPPred. All of this shows that

the distribution of important features is spread more evenly for AMP in comparison to

AVPPred which makes it harder to pinpoint important features.

On average, 8.7 ± 3 features were selected in the case of CAT dataset. Only 8 fea-

tures were selected more than 50% of the time which includes hydrophobicity, all three

cruciani properties and hydrophobic moment from physico-chemical properties and 3 com-

positional features on the relative scale. Due to the low diversity in peptide lengths in

the CAT dataset, there is a high correlation between the absolute and relative scales for

compositional features. As a result, the choice of scale may not be as critical here as it is

for the AVPPred dataset.

Interestingly, aliphatic index was never selected into feature set for AVPPred and

CAT, while it was selected in only 24% of evaluations for AMP dataset, making it the

second least selected feature for AMP and the least selected feature for CAT. On the other

hand, the number of aliphatic amino acids was selected 61% of the time for AVPPred on

the relative scale, 100% for AMP on the absolute scale and 84.2% for CAT dataset on the

relative scale. This may suggest that compositional aspects responsible for the aliphatic

index may be more important for the prediction than exact aliphatic index value reflecting

the relative volume occupied by aliphatic side chains.

The frequencies for features in sequential properties were computed in the same fashion

as for peptide properties (Appendix A2a-c). The results were aggregated and summarized



Classification of Peptides using Deep Neural Networks and Transfer Learning 86

by the features groups (Appendix A3a-c) for easier analysis. On average, 10.2 ± 3.4

features were selected in the case of AVPPred, while the average for AMP was 16.9± 5.3

and 6.7 ± 1.3 for CAT. In all three cases, the average number of features was lower

in comparison to the peptide properties model which suggests that sequential properties

features are more informative and consequently less of them are necessary for classification.

The summarized table (Appendix A3a-c) shows that hydrophobicity was found to be

the most significant feature in all three cases. On average, more than four hydrophobicity

scales were found to be among the most selected features in each of the datasets. On the

other hand, none of the other groups had two or more of its features selected multiple times

on average. While this behavior can be explained by the fact that hydrophobicity group

contains more features in comparison to the other groups and hence provides more possible

choices that could be relevant for the classification. Physico-chemical descriptors from

ProtFP and VHSE were found to be selected more than 50% of the time for AVPPred and

AMP, while they ranked as the 2nd and 3rd in the case of CAT, respectively. Additionally,

t-scale topological and Z-scale physico-chemical descriptors were found to be informative

for AMP dataset. BLOSUM62 indices were found to be important for AVPPred and

AMP with being included in the feature set 65% and 96% of the time, respectively.

Cruciani and MS-WHIM descriptors were found to be the least selected for all three

datasets. Interestingly, Cruciani descriptors were selected at least 60% of the time in the

case of peptide properties, with some descriptors being chosen 100% of the time for the

AVPPred and AMP datasets. However, the selection frequency of Cruciani descriptors

was lower for sequential properties, with rates of 40% and 41%, respectively. It can be

speculated that the difference in the frequency between sequence-level and amino acid-

level descriptors is due to the overlapping between multiple physico-chemical descriptors

utilized in the latter case which were more informative than Cruciani properties.

5.4. Statistical Analysis

The evaluation results of four representation schemes are shown in Table 5.4 and the

values written in bold indicate the best score in each of the metrics. Scores obtained

without feature selection are reported for peptide properties and sequential properties

as it was shown that feature selection does not improve the results and it was slightly
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Table 5.5: Ranking of evaluated representation schemes by their ROC-AUC score.

Ranks
Sequential
properties

One-hot
encoding

Peptide
properties

Embedding

AVPPred 1 2 3 4
AMP 1 2 4 3
CAT 1 3 2 4

Average
rank

1 2.3 3 3.7

outperformed by the variants not employing feature selection. Friedman test was used to

determine if there were any differences between the four examined representation schemes

in any metric on the AMP and AVPPred dataset and Holm-Bonferroni correction was used

to adjust the significance level for an FWER of 0.01. Friedman test found the significant

difference in all of the metrics.

Hence, a post-hoc pair-wise Wilcoxon signed-rank test was performed to check for

the differences between models based on peptide properties, one-hot encoding and word

embedding against the sequential properties model individually. The Holm-Bonferroni

method was used again to adjust the significance level to produce an FWER of 0.01. A

statistically significant difference was found in 43 out of 48 pair-wise tests and sequential

properties achieved higher scores in all those pair-wise comparisons. Notably, it achieved

the highest ROC-AUC score for both datasets which was to be statistically significant by

statistical tests. In the case of CAT dataset, sequential properties outperformed the other

three models in all metrics except recall. The average improvement in ROC-AUC score

was 3%, 2.9% and 10.5% for AVPPred, AMP and CAT datasets, respectively.

The ranking of the representation schemes by ROC-AUC score is shown in Table 5.5

and the average rank for each scheme is computed across the datasets. Sequential prop-

erties consistently achieved the highest ROC-AUC score, resulting in an average rank of

1. One-hot encoding ranked second with an average rank of 2.3, while peptide proper-

ties ranked third with an average rank of 3. Word embeddings ranked the lowest, with

an average rank of 3.7. Interestingly, both one-hot encoding and word embeddings are

sequence-based representations, yet peptide properties ranked better than word embed-

ding and worse than one-hot encoding. Although word embedding was expected to be
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more informative than one-hot encoding due to its ability to learn the representation spe-

cialized for the task, it performed the worst on the smaller AVPPred and CAT datasets.

However, on the largest dataset, AMP, word embedding ranked third. This suggests

that word embedding might have better predictive peformance and outperform one-hot

encoding if larger datasets were available for training.

The robustness of the developed representation scheme to a wider range of classification

thresholds is not only evident from the ROC-AUC score, but also from metrics that are

dependent on the classification threshold when it changes. A further visual analysis

shown in Figures 5.3a-c provides an insight into the stability of the model at various

classification thresholds. It can be seen that sequential properties scheme is less sensitive

to the threshold because it consistently outperforms other schemes at various threshold

values. Furthermore, this shows that the model is better at separating the classes, which

can be beneficial in the case of noisy data to obtain more certain predictions in comparison

to the other schemes.
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(a) AVPPred dataset. (b) AMP dataset.

(c) CAT dataset.

Figure 5.3: Dependency of the average MCC score on the classification threshold for
the test set.
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6. Chapter

TRANSFER LEARNING

6.1. Evaluation Procedure

The employed TL methodology involves two stages. In the first stage, a sequential

properties model is pretrained on a source task, and then the pretrained model is adapted

to the target task. In the pretraining phase, shown in Figure 6.1a, the entire dataset is

used for model pretraining as the test set is not needed for the subsequent evaluation.

A grid search is performed using nested 5-fold cross-validation to identify the optimal

configuration. Once determined, a model is trained using found hyperparameters and its

architecture and weights are saved.

In the second stage, the procedure outlined in Figure 6.1b is used for TL evaluation

when the target dataset is either AVPPred or AMP-ExAVP. After loading the dataset and

encoding sequences, a training set is created using stratified random sampling without

replacement, while the remaining sequences that were not selected form the test set. The

training set is fixed to contain 86 sequences, which corresponds to the size of the CAT

dataset allowing for a simulation of a real-world scenario when a small quantity of data

is available. Consequently, the test set is approximately 6 times larger than the training

set for AVPPred and 56 times larger for AMP-ExAVP. These substantial test sets allow

for a thorough evaluation of the TL models and reliable conclusions can be drawn from

the results. The similarity between training and test sets is guaranteed to be below 70%

as the sequences with a higher similarity were discarded during data preprocessing. Grid

search is used to find the optimal TL configuration and then a final model is trained and
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(a) Pretraining. (b) 10-fold cross-validation. (c) LOCOCV.

Figure 6.1: Procedures used in TL evaluation.
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evaluated. This procedure is repeated 100 times to obtain multiple measurements that

are used for statistical analysis.

The procedure shown in Figure 6.1c is used to evaluate TL when CAT is a target

dataset. In comparison to the previously described procedure, it employs 10 times re-

peated LOCOCV with a similarity threshold of 70% to control for similarity between a

training and test set. In each iteration, LOCOCV will use one cluster as a test set, while

the rest of the clusters are put into a training set and it runs until each cluster has not

been used for testing exactly once. Afterward, all test sets predictions from a single LO-

COCV run are concatenated and used to evaluate the model. This procedure is repeated

10 times to obtain repeated measurements for statistical analysis. Since the training set

and consequently a validation set are of small size, feature selection is not performed and

the classfication threshold is not optimized in any of the two evaluation procedures.

In both cases, a grid search is performed to find the optimal TL strategy which involves

identifying which layers should be transferred, the optimal learning rate multiplier and

hyperparameters necessary to instantiate parts of the model that are not transferred.

Each next layer in the model learns more complex features and it is assumed that the

more complex feature representation becomes, the more it becomes task-specific. The

exact layers that should be transferred ultimately depend on the compatibility between

the source and target tasks as more compatible tasks can benefit from transfering more

complex features. Therefore, it is necessary to transfer the consecutive layers as a whole

because the correct functioning of each layer in a model is dependent on the outputs from

the previous layers. The transfer of layers is limited to the convolutional and recurrent

layers as these layers learn patterns from the sequence. The fully connected part, which

classifies the instance based on the detected patterns, is always randomly initialized.

Furthermore, it is allowed to transfer only a subset of transferable layers, while the rest

are randomly initialized and their hyperparameters optimized (Table 5.2c), allowing for

the adaptation of the model to the complexity of the target task. As the number of

convolutional layers is allowed to vary in the pretrained model, this leads to the five

possible cases for layer transfer shown in Figure 6.2.

In the first case (Figure 6.2a), both convolutional layers and a recurrent layer are

transferred and only the dropout rate has to be optimized (3 configurations). In the

second case (Figure 6.2b), the recurrent layer is randomly initialized and the number of
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(a) (b) (c) (d) (e)

Figure 6.2: Options for selecting which layers to transfer and which layers to newly
create. Blue color indicates layers that are transferred, red color indicates randomly
initialized layers, and grey color depicts non-trainable parts of a model. The weights of
connections going to the output neuron responsible for predicting probability are also
reinitialized.

LSTM cells and dropout factor have to be optimized (3 · 3 = 9 configurations). Both

of these cases are possible only when the pretrained model contains two convolutional

layers. In the third case (Figure 6.2c), the optimal number of filters and kernel size has

to be determined for the second convolutional layer as well as the number of LSTM cells

and the dropout factor (3 · 3 · 3 · 3 = 108 configurations). The grid of hyperparameters

in Table 5.2c allows for the case when the second convolutional layer is omitted and this

case is separately considered in the fourth case (Figure 6.2d) where the number of LSTM

cells and a dropout have to be optimized (3 · 3 = 9 configurations). These two cases are

possible if the pretrained model contains at least one convolutional layer. The fifth case

(Figure 6.2e) is possible only when pretrained model does not contain a convolutional

layer. In this case, a recurrent layer is transferred and only a dropout factor has to be

optimized (3 configurations).

Six learning rate multipliers (0., 0.01, 0.05, 0.1, 0.5, 1.) are also included in the grid

search which results in 6·(3+9+108+9) = 774 possible configurations that cover different

possibilities for transferring pretrained layers and optimizing the rest of the model.

6.2. Statistical Analysis

The distribution of optimal hyperparameters found during pretraining is available in

Appendix B4 a-c. It shows that in pretraining on the AMP dataset, 1 convolutional layer
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Table 6.1: Average performance for baseline and TL models. Metrics in which a statisti-
cally significant difference was found by Wilcoxon signed-rank test for cases with AVPPred
and AMP as target datasets are marked by an asterisk. Holm-Bonferroni correction is
used to control for FWER with a significance level set to 0.01. Statistical tests were not
performed for cases with CAT as the target dataset. Values written in bold indicate the
best performing of two models for a given metric.

(a) Transfer of knowledge from AMP to AVPPred.

Recall* Prec. Spec. Acc.* F1* MCC* GM* ROCAUC*
Baseline 0.319 0.622 0.875 0.653 0.372 0.228 0.460 0.666
TL 0.429 0.652 0.837 0.674 0.483 0.294 0.562 0.712

(b) Transfer of knowledge from AVPPred to AMP.

Recall Prec.* Spec. Acc.* F1 MCC* GM ROCAUC*
Baseline 0.481 0.674 0.826 0.682 0.522 0.332 0.591 0.742
TL 0.450 0.636 0.820 0.665 0.491 0.290 0.567 0.713

(c) Transfer of knowledge from AMP to CAT.

Recall Prec. Spec. Acc. F1 MCC GM ROCAUC
Baseline 0.927 0.912 0.830 0.893 0.919 0.764 0.876 0.933
TL 0.927 0.891 0.773 0.873 0.907 0.715 0.838 0.928

(d) Transfer of knowledge from AVPPred to CAT.

Recall Prec. Spec. Acc. F1 MCC GM ROCAUC
Baseline 0.927 0.912 0.830 0.893 0.919 0.764 0.876 0.933
TL 0.920 0.881 0.747 0.859 0.897 0.688 0.814 0.908

was selected in 21% of cases, while two convolutional layers were used in 79% of cases.

Similarly for the AMP-ExAVP dataset, 1 convolutional layer was chosen in 12% of cases,

and two in 88% of cases. Notably, the option without convolutional layers was never

selected for either AMP or AMP-ExAVP. In the case of AVPPred, no convolutional layers

were selected in just 3% of cases, with 1 layer chosen in 35% and two layers in 62% of the

cases. This indicates a strong preference for including convolutional layers. This means

that in only these 3 cases, TL will be performed by transferring only the LSTM layer, as

shown in Figure 6.2e, since it is the only option for models not containing convolutional

layers. For the remaining models, the optimal set of layers to transfer will be determined

individually, as previously explained.
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TL results are presented in Tables 6.1a-d. Statistical tests were performed only in

cases of AVPPred and AMP-ExAVP as those datasets had sufficiently large and diverse

test sets to ensure the reliability of the conclusions. Holm-Bonferroni correction was used

to adjust the FWER to 0.01 for each TL case separately, which implies that there is a 99%

chance that none of the null hypotheses were falsely rejected. The statistical test found

that the TL model on AVPPred target dataset significantly outperformed the baseline

model in 6 of 9 metrics and ROC-AUC score increased by 6.9%. On the other hand, in

the case of AMP-ExAVP target dataset, the baseline model significantly outperformed

the TL model in 4 metrics whose ROC-AUC score was lower by 3.9%.

The model fine-tuning in the first case possibly benefited from the wider set of pat-

terns learned during pretraining on AMP-ExAVP that has higher diversity as it covers 9

antimicrobial subfunctions. This resulted in a more general pretrained model whose more

general set of patterns could then be leveraged during fine-tuning on the target AVPPred

dataset to achieve better predictive performance. On the other hand, the negative trans-

fer in the second case can be attributed to the narrowness of AVPPred dataset and a

resulting pretrained model which learned a less diverse set of patterns causing it to strug-

gle to adapt to the target dataset. Hence, training directly on the target dataset better

captures the characteristics of the dataset and avoids the risk of transferring irrelevant

patterns.

Baseline models outperformed TL models in both CAT cases for all metrics. The

model pretrained on AMP achieved a 0.5% lower ROC-AUC score, while the one pre-

trained on AVPPred achieved a 2.7% lower ROC-AUC relative to the baseline model.

Although TL did not improve performance in either case, the more substantial drop in

ROC-AUC score is seen in the case of the model pretrained on AVPPred. This can be

attributed to AVPPred being narrowly focused on antiviral function, resulting in more

specialized pretrained model and making it less adaptable to the CAT. Conversely, the

model pretrained on AMP was more generalizable as it had exposure to a broader set of

patterns, leading to a smaller performance decline.
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(a) Average ROC-AUC score. Lines have
been smoothed to reduce noise and highlight
underlying.

(b) Improvement in ROC-AUC score relative
to the baseline model.

Figure 6.3: Dependency of ROC-AUC score for baseline and TL models on AVPPred
target dataset at various sizes. For each dataset size, 100 runs have been performed and
the average is reported in figures.

(a) Average ROC-AUC score. Lines have
been smoothed to reduce noise and highlight
underlying.

(b) Improvement in ROC-AUC score relative
to the baseline model.

Figure 6.4: Dependency of ROC-AUC score for baseline and TL models on AMP-ExAVP
target dataset at various sizes. For each dataset size, 100 runs have been performed and
the average is reported in figures.

The effects of target dataset size were studied by varying the size of AMP-ExAVP

and AVPPred datasets from 50 to 550. The experiment was repeated 100 times, each

time evaluating the corresponding previously optimized TL and baseline models on the

randomly sampled target dataset. Figure 6.3 shows that the highest improvement in per-

formance due to TL is 6% when the target AVPPred dataset contains 50 peptides. As

the target dataset increases in size, the difference becomes smaller and reaches 1% once
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the dataset contains 275 instances. From 275 to 350 instances, the average improvement

oscillates between 1% and 3.4% with a downward trend towards 0%. Interestingly, Fig-

ure 6.3 shows that TL approach initially underperforms by -3.9% when dataset contains

50 instances, but this gap narrows to approximately -2.4% as the dataset size increases to

110 instances. Beyond this point, the performance of TL oscillates around -2.4% without

converging towards the baseline model, regardless of further increases in dataset size.

6.3. Optimal Transfer Learning Strategy

The optimal configuration for the transfer of knowledge from AMP-ExAVP to AVP-

Pred is further explored as this case significantly outperformed the baseline model. The

distribution of optimal hyperparameter values found by grid search is shown in Ta-

bles 6.2a-e for each combination of transferred layers separately. The transfer of both

convolutional layers and the LSTM layer was the most chosen one and was employed in

45% of the cases. The optimal learning rate multiplier was found to be either 0 or a

value close to 1.0 in most cases. As pretrained layers are not changed during fine-tuning

when learning rate multiplier is set to 0, it suggests that the pretrained model contained

patterns that were already well-suited for the target task and do not require further ad-

justments. In the case where the learning rate multiplier is set to 0.5 or 1.0, the transferred

patterns provided a good initalization and starting point for continued training on the

target dataset. The mix of these two extreme cases is caused by the variability in the

random data splits.

The combination with only the first layer being transferred was used in 44% of the

cases, making it the second most used. In this setting, the second randomly initialized

convolutional layer was introduced in 88.6% of cases and lower learning rate multipliers,

such as 0 and 0.05, were used more often. This indicates that the low-level patterns

captured by the first convolutional layer on AMP-ExAVP dataset can be reused and fine-

tuned for use on AVPPred dataset. The transfer of both convolutional layers was found

to be optimal by grid search in only 7% making it the least selected combination. This

suggests that this combination usually scored lower on the validation set compared to the

other two combinations. Even though the architecture of this combination employs two

convolutional layers, which were shown to be beneficial in the other two combinations, the
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Table 6.2: The distribution of optimal hyperparameters found by grid search for knowl-
edge transfer from AMP-ExAVP to AVPPred. Each of the subtables corresponds to one
combination of layers that were transferred. The second convolutional layer was randomly
initialized and its number of filters and kernel size was optimized only when the layer was
not transferred. The LSTM layer was reinstantiated and the number number of units was
optimized only when the LSTM layer was not transferred.

(a) Frequency at which each combination of layers was transferred.

Transferred layers Frequency
Both convolutional layers and the LSTM layer 45%

1st convolutional layer 44%

Both convolutional layers 7%

1st convolutional and the LSTM layer
(only when pretrained model did
not contain the 2nd convolutional layer)

4%

(b) Transfer of both convolutional layers and the LSTM layer.

Hyperparameter
Values
(Selection frequency)

Dropout factor
0.1
(33.3%)

0.2
(31.1%)

0.3
(35.6%)

LR multiplier
0
(24.4%)

0.01
(6.7%)

0.05
(11.1%)

0.1
(15.6%)

0.5
(20%)

1
(22.2%)

(c) Transfer of the first convolutional layer.

Hyperparameter
Values
(Selection frequency)

Number of filters
(2nd convolutional layer)

16
(45.5%)

32
(15.9%)

64
(27.3%)

Layer not employed
(11.4%)

Kernel size
(2nd convolutional layer)

4
(38.5%)

6
(33.3%)

8
(28.2%)

Number of units
(LSTM layer)

64
(25%)

128
(20.5%)

256
(54.5%)

Dropout factor
0.1
(36.4%)

0.2
(31.8%)

0.3
(31.8%)

LR multiplier
0
(27.3%)

0.01
(15.9%)

0.05
(20.5%)

0.1
(18.2%)

0.5
(11.4%)

1
(6.8%)
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(d) Transfer of both convolutional layers.

Hyperparameter
Values
(Selection frequency)

Number of units
(LSTM layer)

64
(28.6%)

128
(28.6%)

256
(42.9%)

Dropout factor
0.1
(42.9%)

0.2
(57.1%)

0.3
(0%)

LR multiplier
0
(28.6%)

0.01
(14.3%)

0.05
(28.6%)

0.1
(14.3%)

0.5
(14.3%)

1
(0%)

(e) Transfer of the first convolutional layer and the LSTM layer when the pretrained model did
not contain two convolutional layers.

Hyperparameter
Values
(Selection frequency)

Dropout factor
0.1
(50%)

0.2
(25%)

0.3
(25%)

LR multiplier
0
(25%)

0.01
(25%)

0.05
(0%)

0.1
(25%)

0.5
(25%)

1
(0%)

model cannot achieve the same performance level. Possibly, the patterns learned in the

second convolutional layer during pretraining may be too specialized for AMP-ExAVP

making it hard for the convolutional layer to adapt and for the LSTM layer to learn

the relation of these patterns to the new task. Furthermore, in the case of 12 pretrained

models that contained only one convolutional layer, both the convolutional and the LSTM

layer were transferred in 8 cases, while in the remaining 4 cases, only the LSTM layer

was transferred. These results suggest that the optimal strategy for TL may be either

transferring only layers with low-level patterns common to both tasks and training the rest

of the model to learn task-specific patterns, or transferring convolutional and recurrent

layers in their entirety as this preserves the entire feature extraction part of the model

possibly making it easier for the model to adapt to the target task.
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7. Chapter

CONCLUSION

In this thesis, three key contributions were made toward advancing peptide function

prediction. A novel dataset of catalytic peptides for ester and phosphoester hydrolysis,

the first of its kind, was introduced to support the study of catalytic activities. More-

over, three dominantly used peptide representation schemes for ML were investigated and

a novel representation scheme that bridges gaps in the current schemes was proposed.

The effectiveness of the proposed scheme was experimentally verified and confirmed by

statistical tests. TL with the proposed scheme was implemented and four scenarios were

explored, with one case demonstrating positive benefits of TL that were confirmed by

statistical tests. To draw reliable conclusions during the experimental evaluation of the

representation schemes and TL, large and diverse AVPPred and AMP datasets were

employed for statistical testing, while the newly introduced CAT dataset served as an

additional case study.

The introduced dataset contains 126 peptide sequences that were manually collected

from 22 published research articles. Of these sequences, 110 are composed solely of nat-

ural amino acids. Each entry includes a single-letter amino acid code, N- and C-termini

modifications, substrate, catalytic parameter (kcat/KM), mechanism of catalysis, ability

to form secondary structures and/or self-assemble, and the reference to the correspond-

ing research paper. Additionally, a SMILES notation of peptide is also provided for

sequences containing only natural amino acids. Statistical, physico-chemical and compo-

sitional properties of the dataset were analyzed in the thesis. Notably, p-NPA is the most

represented substrate and it comprises 96 entries, while reactions dependent on Zn2+ are
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the most common, with 47 entries. As peptides with enzymatic properties demonstrate

better stability under varying pH levels and temperature conditions, as well as being

easier and more cost-effective to produce compared to enzymes, they could become an

attractive alternative in various industrial applications. Being the first manually curated

dataset covering catalytic peptides, it has significant potential to help the application of

ML in the development of next-generation peptide-based catalysts.

The analysis of dominantly used peptide properties, one-hot encoding and word em-

bedding representation schemes revealed that none simultaneously captures the informa-

tion on the order of amino acids and their physico-chemical properties, despite the known

importance of both factors in peptide function prediction. In this thesis, a novel sequential

properties representation scheme was proposed to address the identified limitations. The

proposed scheme encodes sequences by representing amino acids by their physico-chemical

properties, preserving information on both amino acid ordering and their properties in a

complementary manner. Statistical tests demonstrated that the proposed scheme signif-

icantly outperformed other representations in 90% of cases on the AVPPred and AMP

datasets, with average ROC-AUC score improvements of 3% and 2.9%, respectively. An

improvement of 10.5% on average was achieved on the smaller CAT dataset, demonstrat-

ing the scheme’s effectiveness even with limited amounts of data. Additionally, the scheme

showed a higher level of insensitivity to classification thresholds, resulting in better pre-

dictive performance across a broader range of thresholds in comparison to the other three

schemes. Furthermore, there was no significant difference in predictive performance when

the feature selection was applied to the proposed scheme to reduce the number of fea-

tures. This showcased the ability of DNNs to automatically identify input features from

the scheme relevant for the task and to learn necessary internal representations.

The proposed representation scheme was also evaluated within a TL setting in which

undersampled versions of the AMP and AVPPred datasets, matching the size of the

smaller CAT dataset, were used as target datasets to simulate real-world data scarcity.

Additionally, an AMP-ExAVP dataset was derived from AMP by removing antiviral pep-

tides. Transfer of knowledge from AMP-ExAVP to AVPPred and vice versa was evaluated,

as well as from AMP and AVPPred to CAT. The results indicated that only the transfer

from AMP-ExAVP to AVPPred resulted in improved model performance, with a statis-

tically significant 6.9% increase in ROC-AUC score. In contrast, negative transfer in the
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reverse scenario resulted in a 3.1% decrease in ROC-AUC. This was attributed to AMP-

ExAVP diversity in terms of peptide functions, which enabled the model to learn wide

diversity of patterns enabling it to leverage them during fine-tuning on single-function

AVPPred dataset. A similar behaviour was observed when knowledge was transferred to

the CAT. Transfers from AMP and AVPPred resulted in ROC-AUC reductions of 0.5%

and 2.7%, respectively, likely due to the substantial difference between antimicrobial and

antiviral functions and catalytic function, which made the learned patterns less usable.

However, the smaller drop in performance with AMP, compared to AVPPred, was also at-

tributed to its diversity. Interestingly, the optimal TL strategy determined by grid search

involved one of two extremes, either transferring only the convolutional filters that capture

low-level features or transferring all convolutional and recurrent layers, with intermediate

approaches proving less effective.

Furthermore, the size of AMP-ExAVP and AVPPred target datasets was varied from

50 to 350 peptides to investigate the dependency of predictive performance improvement

on the target dataset size. In the case of positive transfer, performance improvement was

found to be inversely correlated with target dataset size. TL proved to be most effective

when the dataset was the smallest, showing a 6 % improvement. It consistently achieved

improvements greater than 1 % for datasets smaller than 275 instances, demonstrating

its potential to enhance peptide function prediction in the early stages of research when

only a limited amount of data is available. In the case of negative transfer, the TL model

initially exhibited the highest underperformance, with a reduction in ROC-AUC score of

-3.9% when the dataset was smallest. As the dataset size increased, this gap narrowed

and stabilized around -2.4% at 110 instances. Despite further increases in dataset size, the

TL model did not show additional improvement and fluctuated around the stabilization

value. However, the future success of TL approaches depends on identifying source and

target peptide functions compatible for knowledge transfer.
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123 E. Otović - Doctoral Dissertation

LIST OF CODE LISTINGS

1.1 Query used to find publications that simultaneously mentionmachine learn-

ing, deep learning or neural network and peptide in their abstracts or titles. 5

4.1 Query used to collect inactive sequences from UniProt repository. . . . . . 71
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LIST OF ABBREVIATIONS
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DNN Deep neural network
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LLM Large language model
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LSTM Long short-term memory
MCC Matthews correlation coefficient
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ML Machine learning
MLP Multi-layer perceptron
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RNN Recurrent neural network
ROC-AUC Area under the rectifier operating characteristic curve
SGD Stochastic gradient descent
SMILES Simplified molecular input line entry system
SVM Support vector machine
TL Transfer learning
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APPENDIX
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A. Feature Selection Results

Table A1: Frequencies of properties being selected by the feature selection in peptide
properties representation scheme. The corresponding number of cases in which a feature
was selected is provided in parentheses.

(a) AVPPred dataset.

Property Frequency
Cruciani 2 100.0% (100)
Hydrophobic moment 97.0% (97)
Aromatic rel. 89.0% (89)
Small rel. 87.0% (87)
Nonpolar abs. 83.0% (83)
Acidic rel. 79.0% (79)
Nonpolar rel. 72.0% (72)
Cruciani 3 72.0% (72)
Hydrophobicity 70.0% (70)
Basic rel. 70.0% (70)
Aliphatic rel. 61.0% (61)
Polar rel. 60.0% (60)
Cruciani 1 60.0% (60)
Charged rel. 53.0% (53)
Tiny rel. 32.0% (32)
Tiny abs. 10.0% (10)
Aliphatic abs. 6.0% (6)
Basic abs. 4.0% (4)
Aromatic abs. 3.0% (3)
Boman 2.0% (2)
Polar abs. 1.0% (1)
Charged abs. 1.0% (1)
Acidic abs. 1.0% (1)
Small abs. 0.0% (0)
Isoelectric point 0.0% (0)
Instability index 0.0% (0)
Charge 0.0% (0)
Aliphatic index 0.0% (0)

(b) AMP dataset.

Property Frequency
Cruciani 3 100.0% (100)
Aliphatic abs. 100.0% (100)
Hydrophobic moment 99.0% (99)
Cruciani 2 98.0% (98)
Charge 98.0% (98)
Boman 98.0% (98)
Polar abs. 97.0% (97)
Nonpolar abs. 96.0% (96)
Small rel. 95.0% (95)
Small abs. 95.0% (95)
Basic abs. 94.0% (94)
Isoelectric point 92.0% (92)
Acidic abs. 90.0% (90)
Nonpolar rel. 88.0% (88)
Aromatic abs. 88.0% (88)
Tiny rel. 86.0% (86)
Aliphatic rel. 83.0% (83)
Cruciani 1 82.0% (82)
Charged rel. 82.0% (82)
Aromatic rel. 82.0% (82)
Tiny abs. 80.0% (80)
Basic rel. 79.0% (79)
Hydrophobicity 77.0% (77)
Polar rel. 76.0% (76)
Charged abs. 73.0% (73)
Acidic rel. 71.0% (71)
Aliphatic index 24.0% (24)
Instability index 16.0% (16)
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(c) CAT dataset.

Property Frequency
Hydrophobicity 77.7% (167)
Cruciani 2 77.2% (166)
Hydrophobic moment 66.0% (142)
Tiny rel. 60.9% (131)
Cruciani 1 55.8% (120)
Aliphatic rel. 55.3% (119)
Small rel. 54.9% (118)
Cruciani 3 54.4% (117)
Acidic rel. 48.4% (104)
Small abs. 46.5% (100)
Polar rel. 43.7% (94)
Basic rel. 34.9% (75)
Nonpolar rel. 29.8% (64)
Aromatic rel. 29.3% (63)
Charged rel. 27.4% (59)
Tiny abs. 21.9% (47)
Aliphatic abs. 16.3% (35)
Boman 15.3% (33)
Charge 14.0% (30)
Acidic abs. 9.8% (21)
Polar abs. 7.9% (17)
Isoelectric point 6.0% (13)
Nonpolar abs. 5.6% (12)
Basic abs. 5.1% (11)
Aromatic abs. 4.7% (10)
Charged abs. 4.2% (9)
Instability index 0.0% (0)
Aliphatic index 0.0% (0)
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Table A2: Frequencies of individual properties being selected by the feature selection in
sequential properties representation scheme. The corresponding number of cases in which
a feature was selected is provided in parentheses.

(a) AVPPred dataset.

Property Frequency
Hydrophobicity Cowan, pH=3.4 37.0% (37)
ProtFP 1 35.0% (35)
Hydrophobicity Fauchere 35.0% (35)
Z-scale 4 32.0% (32)
Cruciani 1 32.0% (32)
Hydrophobicity Cid 31.0% (31)
st-scale 1 27.0% (27)
Hydrophobicity Rose 26.0% (26)
t-scale 3 21.0% (21)
Hydrophobicity Janin 21.0% (21)
Hydrophobicity Casari 19.0% (19)
VHSE 5 17.0% (17)
VHSE 2 17.0% (17)
ProtFP 4 17.0% (17)
Hydrophobicity Welling 17.0% (17)
BLOSUM 5 17.0% (17)
Z-scale 3 16.0% (16)
ProtFP 7 16.0% (16)
Hydrophobicity Argos 16.0% (16)
Hydrophobicity Abraham-Leo 16.0% (16)
BLOSUM 2 16.0% (16)
t-scale 1 15.0% (15)
MSWHIM 3 15.0% (15)
Hydrophobicity Bull-Breese 15.0% (15)
FASGAI 5 15.0% (15)
FASGAI 3 15.0% (15)
Hydrophobicity Fasman 14.0% (14)
Cruciani 3 14.0% (14)
BLOSUM 9 14.0% (14)
VHSE 7 13.0% (13)
FASGAI 1 13.0% (13)
BLOSUM 6 13.0% (13)
st-scale 4 12.0% (12)
Hydrophobicity Wilson 12.0% (12)
Hydrophobicity Eisenberg 12.0% (12)
Hydrophobicity Miyazawa 11.0% (11)
Hydrophobicity Chothia 11.0% (11)
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Property Frequency
t-scale 2 10.0% (10)
ProtFP 3 10.0% (10)
BLOSUM 1 10.0% (10)
Hydrophobicity Tanford 9.0% (9)
Hydrophobicity Kidera 9.0% (9)
Hydrophobicity Engelman 9.0% (9)
BLOSUM 10 9.0% (9)
t-scale 4 8.0% (8)
st-scale 3 8.0% (8)
VHSE 8 8.0% (8)
VHSE 3 8.0% (8)
ProtFP 2 8.0% (8)
MSWHIM 1 8.0% (8)
Hydrophobicity Parker 8.0% (8)
FASGAI 4 8.0% (8)
Hydrophobicity Wolfenden 7.0% (7)
Hydrophobicity Roseman 7.0% (7)
Hydrophobicity Cowan, pH=7.5 7.0% (7)
FASGAI 6 7.0% (7)
BLOSUM 4 7.0% (7)
t-scale 5 6.0% (6)
st-scale 7 6.0% (6)
st-scale 8 6.0% (6)
Z-scale 2 6.0% (6)
MSWHIM 2 6.0% (6)
Hydrophobicity Sweet 6.0% (6)
Hydrophobicity Levitt 6.0% (6)
Hydrophobicity Juretic 6.0% (6)
Hydrophobicity Jones 6.0% (6)
BLOSUM 7 6.0% (6)
st-scale 5 5.0% (5)
Z-scale 1 5.0% (5)
ProtFP 6 5.0% (5)
ProtFP 5 5.0% (5)
Hydrophobicity Rao 5.0% (5)
Hydrophobicity Prabhakaran 5.0% (5)
Hydrophobicity Ponnuswamy 5.0% (5)
Hydrophobicity Kyte-Doolittle 5.0% (5)
Hydrophobicity Hopp-Woods 5.0% (5)
Hydrophobicity Aboderin 5.0% (5)
BLOSUM 3 5.0% (5)
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Property Frequency
VHSE 4 4.0% (4)
VHSE 1 4.0% (4)
ProtFP 8 4.0% (4)
Hydrophobicity Kuhn 4.0% (4)
Hydrophobicity Goldsack 4.0% (4)
FASGAI 2 4.0% (4)
Z-scale 5 3.0% (3)
Hydrophobicity Manavalan 3.0% (3)
st-scale 6 2.0% (2)
st-scale 2 2.0% (2)
VHSE 6 2.0% (2)
Hydrophobicity Guy 2.0% (2)
Hydrophobicity Black-Mould 2.0% (2)
Hydrophobicity Zimmerman 1.0% (1)
BLOSUM 8 1.0% (1)
Cruciani 1 0.0% (0)
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(b) AMP dataset.

Property Frequency
t-scale 3 91.0% (91)
Z-scale 5 77.0% (77)
BLOSUM 5 56.0% (56)
Hydrophobicity Aboderin 46.0% (46)
VHSE 5 42.0% (42)
t-scale 4 38.0% (38)
st-scale 4 33.0% (33)
Z-scale 3 33.0% (33)
Hydrophobicity Levitt 31.0% (31)
Cruciani 1 30.0% (30)
Z-scale 4 29.0% (29)
Hydrophobicity Hopp-Woods 29.0% (29)
FASGAI 4 29.0% (29)
MSWHIM 2 28.0% (28)
Hydrophobicity Miyazawa 28.0% (28)
BLOSUM 7 28.0% (28)
ProtFP 6 27.0% (27)
Z-scale 2 24.0% (24)
Hydrophobicity Casari 24.0% (24)
t-scale 2 23.0% (23)
t-scale 1 23.0% (23)
FASGAI 6 23.0% (23)
FASGAI 5 23.0% (23)
BLOSUM 2 23.0% (23)
st-scale 7 22.0% (22)
st-scale 2 22.0% (22)
VHSE 8 21.0% (21)
Hydrophobicity Fauchere 21.0% (21)
BLOSUM 6 21.0% (21)
VHSE 7 19.0% (19)
FASGAI 3 19.0% (19)
ProtFP 2 18.0% (18)
Hydrophobicity Wilson 18.0% (18)
ProtFP 7 17.0% (17)
Hydrophobicity Welling 17.0% (17)
Hydrophobicity Jones 17.0% (17)
st-scale 8 16.0% (16)
VHSE 3 16.0% (16)
Hydrophobicity Rose 16.0% (16)
st-scale 5 15.0% (15)
st-scale 1 15.0% (15)
VHSE 2 15.0% (15)
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Property Frequency
VHSE 1 15.0% (15)
Hydrophobicity Parker 15.0% (15)
Cruciani 3 15.0% (15)
BLOSUM 4 15.0% (15)
t-scale 5 14.0% (14)
Z-scale 1 14.0% (14)
Hydrophobicity Ponnuswamy 14.0% (14)
Hydrophobicity Kyte-Doolittle 14.0% (14)
Hydrophobicity Cowan, pH=3.4 14.0% (14)
Hydrophobicity Chothia 14.0% (14)
BLOSUM 3 14.0% (14)
st-scale 3 13.0% (13)
Hydrophobicity Tanford 13.0% (13)
Hydrophobicity Kidera 13.0% (13)
Hydrophobicity Janin 13.0% (13)
Hydrophobicity Fasman 13.0% (13)
Hydrophobicity Argos 13.0% (13)
Hydrophobicity Abraham-Leo 13.0% (13)
MSWHIM 3 12.0% (12)
Hydrophobicity Manavalan 12.0% (12)
Hydrophobicity Bull-Breese 12.0% (12)
MSWHIM 1 11.0% (11)
FASGAI 2 11.0% (11)
BLOSUM 1 11.0% (11)
ProtFP 4 10.0% (10)
Hydrophobicity Wolfenden 10.0% (10)
Hydrophobicity Rao 10.0% (10)
Hydrophobicity Prabhakaran 10.0% (10)
BLOSUM 8 10.0% (10)
VHSE 4 9.0% (9)
ProtFP 5 9.0% (9)
ProtFP 1 9.0% (9)
Hydrophobicity Zimmerman 9.0% (9)
Hydrophobicity Sweet 9.0% (9)
Hydrophobicity Guy 9.0% (9)
VHSE 6 8.0% (8)
Hydrophobicity Engelman 8.0% (8)
Hydrophobicity Cowan, pH=7.5 8.0% (8)
Hydrophobicity Kuhn 7.0% (7)
Hydrophobicity Juretic 7.0% (7)
Hydrophobicity Black-Mould 7.0% (7)
BLOSUM 10 7.0% (7)
st-scale 6 6.0% (6)
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Property Frequency
Hydrophobicity Kuhn 7.0% (7)
Hydrophobicity Juretic 7.0% (7)
Hydrophobicity Black-Mould 7.0% (7)
BLOSUM 10 7.0% (7)
st-scale 6 6.0% (6)
Hydrophobicity Goldsack 6.0% (6)
FASGAI 1 6.0% (6)
ProtFP 8 5.0% (5)
ProtFP 3 5.0% (5)
Hydrophobicity Roseman 5.0% (5)
BLOSUM 9 5.0% (5)
Hydrophobicity Eisenberg 4.0% (4)
Hydrophobicity Cid 4.0% (4)
Cruciani 1 0.0% (0)
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(c) CAT dataset.

Property Frequency
Hydrophobicity Bull-Breese 58.1% (125)
ProtFP 7 30.2% (65)
Hydrophobicity Aboderin 24.2% (52)
VHSE 4 20.5% (44)
Z-scale 3 20.0% (43)
Hydrophobicity Argos 19.5% (42)
Hydrophobicity Abraham-Leo 16.7% (36)
Hydrophobicity Tanford 16.3% (35)
Hydrophobicity Black-Mould 14.9% (32)
t-scale 3 14.0% (30)
st-scale 7 13.5% (29)
Hydrophobicity Eisenberg 13.5% (29)
Hydrophobicity Fauchere 12.6% (27)
Hydrophobicity Engelman 12.6% (27)
Hydrophobicity Sweet 12.1% (26)
FASGAI 5 12.1% (26)
Hydrophobicity Jones 11.2% (24)
Hydrophobicity Ponnuswamy 10.2% (22)
BLOSUM 5 10.2% (22)
Hydrophobicity Janin 9.8% (21)
Hydrophobicity Goldsack 9.8% (21)
Hydrophobicity Prabhakaran 9.3% (20)
Hydrophobicity Chothia 9.3% (20)
Hydrophobicity Manavalan 8.8% (19)
Hydrophobicity Casari 8.8% (19)
Cruciani 1 8.8% (19)
Hydrophobicity Wilson 8.4% (18)
Hydrophobicity Miyazawa 8.4% (18)
Hydrophobicity Hopp-Woods 8.4% (18)
Hydrophobicity Cid 8.4% (18)
Z-scale 5 7.4% (16)
Hydrophobicity Parker 7.4% (16)
Hydrophobicity Kidera 7.4% (16)
Hydrophobicity Guy 7.4% (16)
Hydrophobicity Juretic 7.0% (15)
VHSE 7 6.5% (14)
Hydrophobicity Cowan, pH=3.4 6.5% (14)
Hydrophobicity Wolfenden 6.0% (13)
Hydrophobicity Levitt 6.0% (13)
FASGAI 3 6.0% (13)
ProtFP 4 5.6% (12)
t-scale 1 5.1% (11)
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Property Frequency
VHSE 2 5.1% (11)
VHSE 1 5.1% (11)
MSWHIM 3 5.1% (11)
Hydrophobicity Rao 5.1% (11)
BLOSUM 9 5.1% (11)
BLOSUM 7 5.1% (11)
t-scale 2 4.7% (10)
Z-scale 1 4.7% (10)
Hydrophobicity Cowan, pH=7.5 4.7% (10)
FASGAI 6 4.7% (10)
st-scale 3 4.2% (9)
VHSE 8 4.2% (9)
Hydrophobicity Welling 4.2% (9)
Hydrophobicity Rose 4.2% (9)
BLOSUM 10 4.2% (9)
st-scale 2 3.7% (8)
Hydrophobicity Kyte-Doolittle 3.7% (8)
Hydrophobicity Kuhn 3.7% (8)
Hydrophobicity Fasman 3.7% (8)
FASGAI 2 3.7% (8)
BLOSUM 2 3.7% (8)
BLOSUM 1 3.7% (8)
Z-scale 2 3.3% (7)
VHSE 5 3.3% (7)
ProtFP 6 3.3% (7)
Hydrophobicity Roseman 3.3% (7)
Cruciani 3 3.3% (7)
ProtFP 3 2.8% (6)
ProtFP 1 2.8% (6)
BLOSUM 3 2.8% (6)
st-scale 5 2.3% (5)
ProtFP 2 2.3% (5)
FASGAI 4 2.3% (5)
BLOSUM 8 2.3% (5)
BLOSUM 6 2.3% (5)
st-scale 8 1.9% (4)
VHSE 6 1.9% (4)
ProtFP 5 1.9% (4)
Hydrophobicity Zimmerman 1.9% (4)
BLOSUM 4 1.9% (4)
st-scale 6 1.4% (3)
VHSE 3 1.4% (3)
t-scale 4 0.9% (2)
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Property Frequency
st-scale 1 0.9% (2)
Z-scale 4 0.9% (2)
MSWHIM 2 0.9% (2)
t-scale 5 0.5% (1)
ProtFP 8 0.5% (1)
FASGAI 1 0.5% (1)
st-scale 4 0.0% (0)
MSWHIM 1 0.0% (0)
Cruciani 1 0.0% (0)

Table A3: Frequencies of property categories being selected by the feature selection
in sequential properties representation scheme. Each category is counted as selected if
at least one if its features was selected and the corresponding number of such cases is
provided in parentheses. The average number of selected features from each category is
also provided.

(a) AVPPred dataset.

Property Frequency (count) Average number of selected features
Hydrophobicity 99.0% (99) 4.23
ProtFP 67.0% (67) 1.49
BLOSUM62 65.0% (65) 1.51
VHSE 56.0% (56) 1.30
st-scale 54.0% (54) 1.26
Z-scale 50.0% (50) 1.24
FASGAI 50.0% (50) 1.24
t-scale 49.0% (49) 1.22
Cruciani 40.0% (40) 1.15
MS-WHIM 26.0% (26) 1.12

(b) AMP dataset.

Property Frequency (count) Average number of selected features
Hydrophobicity 100.0% (100) 5.33
t-scale 100.0% (100) 1.89
BLOSUM62 96.0% (96) 1.98
Z-scale 94.0% (94) 1.88
VHSE 80.0% (80) 1.81
st-scale 75.0% (75) 1.89
FASGAI 71.0% (71) 1.56
ProtFP 63.0% (63) 1.59
MS-WHIM 41.0% (41) 1.24
Cruciani 41.0% (41) 1.17
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(c) CAT dataset.

Property Frequency (count) Average number of selected features
Hydrophobicity 100.0% (215) 3.93
ProtFP 42.8% (92) 1.15
VHSE 36.7% (79) 1.30
BLOSUM62 34.4% (74) 1.20
Z-scale 33.0% (71) 1.10
FASGAI 26.0% (56) 1.12
st-scale 25.1% (54) 1.11
t-scale 22.8% (49) 1.10
Cruciani 12.1% (26) 1.00
MS-WHIM 6.0% (13) 1.00
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B. Optimal Hyperparameters Found During

Pretraining

Table B4: The distribution of optimal hyperparameters values found by grid search in
a pretraining stage for transfer learning.

(a) Pretraining on AVPPred.

Hyperparameter
Values
(Selection frequency)

Number of convolutional layers
0
(3%)

1
(35%)

2
(62%)

Number of filters
(1st convolutional layer)

16
(45%)

32
(28%)

64
(24%)

Layer not employed
(3%)

Number of filters
(2nd convolutional layer)

16
(18%)

32
(26%)

64
(18%)

Layer not employed
(38%)

Kernel size
(shared between convolutional layers)

4
(29%)

6
(30%)

8
(38%)

Number of units
(the LSTM layer)

64
(33%)

128
(26%)

256
(41%)

Dropout factor
0.1
(40%)

0.2
(40%)

0.3
(20%)
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(b) Pretraining on AMP.

Hyperparameter
Values
(Selection frequency)

Number of convolutional layers
0
(0%)

1
(21%)

2
(79%)

Number of filters
(1st convolutional layer)

16
(0%)

32
(20%)

64
(80%)

Layer not employed
(0%)

Number of filters
(2nd convolutional layer)

16
(0%)

32
(11%)

64
(68%)

Layer not employed
(21%)

Kernel size
(shared between convolutional layers)

4
(44%)

6
(38%)

8
(18%)

Number of units
(the LSTM layer)

64
(1%)

128
(62%)

256
(37%)

Dropout factor
0.1
(28%)

0.2
(38%)

0.3
(34%)

(c) Pretraining on AMP-ExAVP.

Hyperparameter
Values
(Selection frequency)

Number of convolutional layers
0
(0%)

1
(12%)

2
(88%)

Number of filters
(1st convolutional layer)

16
(3%)

32
(17%)

64
(80%)

Layer not employed
(0%)

Number of filters
(2nd convolutional layer)

16
(0%)

32
(11%)

64
(77%)

Layer not employed
(12%)

Kernel size
(shared between convolutional layers)

4
(50%)

6
(29%)

8
(21%)

Number of units
(the LSTM layer)

64
(3%)

128
(63%)

256
(34%)

Dropout factor
0.1
(31%)

0.2
(42%)

0.3
(27%)
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“The choice of time—frequency representations of non-stationary signals affects ma-

chine learning model accuracy: A case study on earthquake detection from LEN-DB

data” Mathematics, vol. 10, no. 6, p. 965, 2022.
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