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A DEEP LEARNING MODEL FOR
TOUCHSCREEN HANDWRITING

RECOGNITION BASED ON A
SENSOR FUSION APPROACH

DOCTORAL DISSERTATION

Rijeka, 2025.









UNIVERSITY OF RIJEKA

FACULTY OF ENGINEERING

Alen Salkanović
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ABSTRACT

The use of biometric data to recognize individuals is a frequently studied topic in

the field of computer security. Biometric identification relies on analyzing and measuring

human traits to determine a person’s identity. Handwriting analysis represents a conven-

tional biometric modality that captures the distinct writing patterns and characteristics

unique to each individual. Traditional approaches primarily concentrate on offline hand-

writing verification, where static images of handwritten text are analyzed to distinguish

between genuine and forged signatures. The emergence of touchscreen devices with a

variety of built-in sensors has enabled a more comprehensive approach to online hand-

writing recognition, leveraging dynamic writing characteristics such as pressure, speed,

the number and order of the strokes, pen tilt, and other relevant attributes.

Related studies in this field highlight the predominance of certain research methodolo-

gies. Specifically, in most instances, the analysis focuses solely on the signature, verifica-

tion methods are more widely used compared to recognition methods, and the proposed

approaches primarily depend on a specific device or sensor to gather handwriting biomet-

ric data. This doctoral dissertation introduces a novel approach to user authentication

that extends beyond conventional online signature verification systems. The study aims

to address the research gap by broadening the focus from verification to a wider range

of handwriting identification tasks. This refers to a general process of determining the

handwriting owner that involves multi-class classification. The proposed system utilizes

sensor fusion, a technique that integrates and processes measurements collected by mul-

tiple sensors. Differing from the use of specialized hardware, such as custom-designed

pens or complex sensor solutions, which are often limited and costly, this system employs

readily available off-the-shelf components and common touchscreen smart devices. In

contrast to prevalent research mainly centered on handwritten signatures, the investiga-
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tion examines the gathering and analysis of handwriting in various forms, including short

sentences, words, and individual letters. The analysis incorporates two distinct methods

of handwriting input, utilizing both a stylus and a finger.

A total of 60 participants took part in a controlled experiment to form a newly cu-

rated handwriting biometrics dataset, consisting of measurements from different types

of sensors. Custom CNN models were employed for feature extraction and classification

tasks to identify participants’ handwriting. The accuracy of the model was analyzed in

relation to the impact of three factors: train set size, input modality, and handwriting

form. The obtained results show a statistically significant effect of set size on the model’s

accuracy, with the highest accuracies observed with the largest train set size. The statis-

tical analysis also revealed that higher accuracy was consistently achieved for recognizing

stylus-based handwriting compared to finger-based writing.

An ablation study was conducted to analyze the impact of each sensor in the fusion-

based setup. The acquired findings indicated that the proposed person recognition system

yields the highest accuracy for signatures, while also showing notably high accuracy for

sentences and words. Overall, these findings suggest that the most suitable sensor fu-

sion subset is highly dependent on both the handwriting form and the input modality.

When all sensors are included, the model’s accuracy improves for recognizing sentences,

words, and letters that are entered using a stylus. This highlights the benefit of utilizing

a comprehensive multi-sensor setup. Hence, it can be concluded that including addi-

tional sensors can certainly enhance the accuracy of the model, thereby justifying their

integration into the experiment apparatus.

Keywords: authentication, biometrics, digital signatures, handwriting recognition,

machine learning, sensor fusion, touchscreen handwriting
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PROŠIRENI SAŽETAK

Korǐstenje biometrijskih podataka za prepoznavanje osoba često je istraživana tema u

području računalne sigurnosti. Biometrijska identifikacija oslanja se na analizu i mjerenje

ljudskih karakteristika kako bi se utvrdio identitet osobe. Analiza rukopisa predstavlja

standardni biometrijski modalitet koji bilježi jedinstvene obrasce i značajke rukopisa

specifične za svakog pojedinca. Tradicionalni pristupi uglavnom su usmjereni na veri-

fikaciju rukopisa, pri čemu se analiziraju slike rukopisa kako bi se razlikovali originalni i

krivotvoreni potpisi. Pojava uredaja sa zaslonom osjetljivim na dodir i brojnim ugradenim

senzorima omogućila je sveobuhvatniji pristup prepoznavanju osoba pomoću rukopisa, ko-

risteći dinamičke značajke pisanja poput razine pritiska, brzine pisanja, broja i redoslijeda

poteza, nagiba olovke i drugih atributa od značaja.

Srodne studije u ovom području ističu odredene metodologije koje prevladavaju u

istraživanjima. Konkretno, u većini slučajeva analiza se usmjerava isključivo na pot-

pis, metode verifikacije su zastupljenije od metoda identifikacije, a predložena rješenja

uglavnom se oslanjaju na odredeni uredaj ili specifični senzor za prikupljanje biometri-

jskih podataka. Ova doktorska disertacija uvodi novi pristup autentifikaciji korisnika koji

nadilazi tradicionalne sustave verifikacije potpisa. Cilj istraživanja je prebaciti fokus s

verifikacije na širi raspon zadataka povezanih s identifikacijom rukopisa. Ovo se odnosi

na općeniti postupak odredivanja vlasnika rukopisa koji uključuje vǐseklasnu klasifikaciju.

Predloženi pristup implementira koncept fuzije senzora, tehniku koja objedinjuje i obraduje

podatke prikupljene s vǐse senzora. Za razliku od korǐstenja specijaliziranog sklopovlja,

poput posebno dizajniranih olovaka ili složenih senzorskih sustava, koji su često ograničeni

i skupi, ovaj sustav koristi lako dostupne komponente i uobičajene pametne uredaje s

dodirnim zaslonima. Za razliku od većine istraživanja koja su uglavnom usmjerena na

potpise, ovo istraživanje ispituje prikupljanje i analizu rukopisa u različitim oblicima,
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uključujući kratke rečenice, riječi i pojedinačna slova. Osim toga, analiza obuhvaća dva

različita načina pisanja – korǐstenjem olovke (stylusa) i prsta.

Ukupno 60 sudionika sudjelovalo je u kontroliranom eksperimentu za formiranje novog

skupa biometrijskih podataka, koji se sastoji od mjerenja s različitih tipova senzora. Kako

bi se klasificirao rukopis sudionika, CNN modeli dubokoga učenja korǐsteni su za zadatke

izdvajanja značajki i klasifikacije. Točnost modela analizirana je u odnosu na utjecaj tri

različita čimbenika: veličine skupa za treniranje, modaliteta unosa i oblika rukopisa. Do-

biveni rezultati pokazuju statistički značajan učinak veličine skupa na točnost modela, pri

čemu je najveća točnost uočena kod najveće veličine skupa za treniranje. Statistička anal-

iza takoder je pokazala da je postignuta vǐsa točnost za prepoznavanje rukopisa olovkom

u usporedbi s pisanjem pomoću prsta.

Provedena je ablacijska studija kako bi se analizirao utjecaj pojedinačnih senzora un-

utar sustava temeljenog na fuziji. Dobiveni rezultati pokazali su da predloženi sustav za

prepoznavanje rukopisa postiže najvǐsu točnost za potpise, dok takoder pokazuje izrazito

visoku točnost za rečenice i riječi. Općenito, rezultati ukazuju na to da najpogodniji pod-

skup fuzije senzora uvelike ovisi o obliku rukopisa i modalitetu unosa. Kada su uključeni

svi senzori, točnost modela se pobolǰsava za prepoznavanje rečenica, riječi i slova unesenih

pomoću olovke, što dodatno naglašava prednost korǐstenja sustava s vǐse senzora. Stoga se

može zaključiti da uključivanje dodatnih senzora svakako može povećati točnost modela,

opravdavajući njihovu implementaciju u eksperimentalni aparatus.

Ključne riječi: autentifikacija, biometrija, digitalni potpisi, prepoznavanje

rukopisa, strojno učenje, fuzija senzora, rukopis na zaslonu osjetljivom na

dodir
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A. Salkanović - doctoral dissertation

CONTENTS

Acknowledgements I

Abstract III
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Chapter 1

INTRODUCTION

Determining and verifying people’s identities is a critical necessity throughout many

domains of contemporary society. It prevents unauthorized access to sensitive resources

and systems, thereby reducing the risks of fraud and forgery. Confirming identities holds

significant importance across diverse sectors, spanning from banking and education to

the legal system and healthcare. Financial organizations are obligated to ascertain only

authorized persons can access accounts and conduct transactions, especially in the cur-

rent context where all transactions can be done over the network [1]. Identification is

essential in education for maintaining academic integrity and accurate records, while in

the legal system it facilitates justice administration, security and proper documentation.

Healthcare facilities increasingly adopting smart Internet of Things (IoT) systems need

to protect patients against privacy breaches, tampering, and data falsification.

Conventional mechanisms including passwords or personal identification numbers (PINs)

are prone to disadvantages like limited complexity, vulnerability to attacks, theft, and

management difficulties [2]. Advances in information technology extensively transform

traditional access controls by introducing novel and sophisticated methods, including

multi-factor authentication (MFA) [3]. To mitigate vulnerabilities and improve the se-

curity of conventional password-based systems, MFA incorporates an additional layer of

protection. Among the various types available, the most commonly used forms include

one-time passwords (OTPs), smart cards, tokens, certificates, and biometric methods.

While passwords, cards, and physical tokens are considered non-biometric methods to

identify individuals, biometric identification relies on unique personal traits such as finger-
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prints, gait or hand geometry. The utilization of a specific modality depends on security

requirements and usage scenarios. Non-biometric methods are often used for everyday

tasks such as accessing buildings or logging into computers and online accounts. In con-

trast, biometric identification is used in contexts where security demands are elevated,

and require a high level of reliability [4]. This method utilizes unique and inherent human

characteristics to verify identities, offering a reliable and alternative solution to conven-

tional approaches.

1.1. Biometric systems

A biometric systems measure one or more unique physical, behavioral patterns, or

psychophysiological characteristics of a human body. The first pertains to the physical

attributes of an individual’s body, typically remaining consistent over time. These traits

stem from unique biological attributes that vary significantly between individuals, making

them challenging to replicate [5]. Examples include iris, hand geometry, fingerprints,

facial features, ear shape, and vein patterns. In contrast, behavioral or affective traits

pertain to learned behaviors and measurable patterns in human activities. Behavioral

characteristics are inherently dynamic and subject to change over time, influenced by

factors such as mood, age, health, and other variables. The modalities encompass gait,

body posture, voice, keyboard typing patterns, and handwriting style [6].

Biometric systems are categorized in two distinct types: the unimodal biometric sys-

tem (UBS) and the multimodal biometric system (MBS). Each type has its own benefits

and drawbacks, and the choice typically relies on specific needs and constraints of the

application context. In UBS, only one type of biometric trait is employed for user ver-

ification or identification. Data is collected and processed from a unique physiological

or behavioral trait of an individual. These systems are easier to implement, but vul-

nerable to spoof attack, external factors and reduced accuracy if the biometric feature is

degraded [7]. MBS integrates several biometric features into a multimodal approach, such

as combining fingerprint, facial, and iris recognition. Expanding the range of identifying

modalities increases security, enhances recognition accuracy and improves the reliability

of person identification [8]. Multimodal biometric systems can be categorized into several

different types, such as those involving multiple sensors, modalities, algorithms, samples,
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and instances [9]. Compared to the unimodal approach, MBS offers the benefit of re-

ducing the probability of several traits getting simultaneously compromised. However,

these systems also exhibit certain limitations, especially when implementing on a large

scale. There may be incompatibilities among different devices, acquiring and storing data

from various sources can be challenging, and the system may encounter difficulties in

maintaining high performance.

A biometric system can operate in two modalities for identity management purposes,

specifically verification and identification [10]. Verification, alternatively referred to as

authentication, denotes the procedure validating the identity claimed by a subject. In

this instance, the provided biometric data is compared with a pre-existing template cor-

responding to a particular individual, serving as reference data for the claimed identity (a

one-to-one match) [11]. When a match is detected based on a specific level of similarity,

the system confirms the individual’s identity. Otherwise, if the outcome does not satisfy

the required threshold, the individual is rejected. Verification is frequently employed in

scenarios where individuals need to confirm their identity to access a system, location, or

service, such as using a fingerprint to gain access to a smartphone.

In identification modality, the system determines the subject’s identity by comparing

all registered templates in the database without requiring the person to claim an identity.

The biometric framework performs a comprehensive search of the complete database to

find a correspondence for the submitted biometric data. In this context, identification

may be conceptualized as a series of verification processes [12]. It proves beneficial in

scenarios where entity must be identified without providing any credentials. Identification

is crucial in contexts where an individual’s identity must be established from a large

biometric database, without prior knowledge of the claimed identity. This is common in

law enforcement agencies and access control systems, such as border control.

The choice of biometric system is largely influenced by the nature of the application.

Before selecting a system, it’s important to consider existing security measures (passwords,

smart cards, PINs, security tokes, etc.), as biometrics may complement rather than replace

them. Depending on the application, either verification or identification functionalities

may be required. Additionally, it is essential to determine which biometric trait will be

measured and analyzed based on the system’s intended use.

The handwritten signature is a commonly utilized biometric characteristic, remain-

3
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ing prevalent for identity verification in administrative, financial, and legal fields [13].

Throughout centuries, traditional pen-and-paper signatures have attained social and reg-

ulatory acceptance globally, reflecting the distinct learned actions of individuals challeng-

ing to replicate. Despite initiatives aimed at digitizing signatures, handwritten versions

remain prevalent in practice. This is primarily due to their widespread applicability and

acceptance compared to electronic alternatives [14]. Signatures refer to a distinctive writ-

ing style of a person and are not regarded as simply a combination of letters or words. In

the realm of biometrics, handwritten signatures are categorized under behavioral charac-

teristics, reflecting the learned patterns and habits of an individual’s handwriting. This

contrasts with physiological biometrics, such as fingerprints or iris patterns, which are in-

herent physical attributes. The dynamic and personal nature of signature creation makes

it a distinctive identifier, but it is susceptible to variations due to different influences. The

features of signatures can change considerably due to factors like emotional state, physical

condition, level of focus or attention, and age. This variability is further influenced by

cultural practices, personal habits, psychological state, and physical condition [15].

1.2. Handwritten signature verification systems

(HSVS)

Handwritten signature verification systems (HSVS) involve analyzing and process-

ing handwritten signatures to confirm an individual’s claimed identity. The verification

process typically involves comparing the provided signature against stored reference sig-

natures. Two distinct approaches to signature authentication refer to writer-dependent

(WD) and writer-independent (WI) verification systems. Writer-dependent systems are

developed to authenticate signatures by examining distinct characteristics inherent to the

handwriting of an individual. These systems require the enrollment of multiple signature

samples from a particular person during a registration process. Systems are individually

trained for each unique user, and both the learning and verification processes are based

on the signer. A limitation of this method is the necessity to generate a model for ev-

ery additional writer undergoing verification [16]. Writer-independent systems employ a

generic model to verify signatures from any writer, regardless of whether their samples
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were included in the training dataset [17]. Such approaches prioritize identifying gen-

eral patterns and characteristics that are typical across signatures, rather than focusing

on individual variations. WI systems require a single global classifier that can be uti-

lized with just one signature sample from each user. These systems are trained on a

diverse dataset comprising signatures from numerous individuals, thereby eliminating the

requirement for prior training on specific persons [18]. However, verifying signatures in

a writer-independent manner is more difficult because of the considerable morphological

variability among different writers. Another strategy that can be employed represents a

hybrid WD-WI system, which combines the WD and WI methods.

Advanced HSVS employ machine learning techniques, such as deep learning, to ex-

tract distinctive features and improve accuracy in distinguishing genuine signatures from

forgeries. Forgeries are generally classified into three main forms based on different levels

of attempts to falsify or imitate signatures: random forgery, unskilled forgery (simple or

basic forgery), and skilled forgery. Random forgery is characterized by an attempt to

imitate the owner’s signature in a random style. The attacker attempts to mimic the

signature without having prior knowledge of its genuine form. This results in a forged

representation that significantly differs in appearance and structure from the authentic

one. Unskilled forgery happens when the forger is familiar with the victim’s name but

lacks knowledge of the exact details of how the signature is written. As a result, they

try to imitate the signature in their own manner, even though they have no previous

experience. In this case, the forgery closely resembles the genuine signature in shape and

visual characteristics. In cases of skilled forgery, the attacker has thorough knowledge of

the victim’s name as well as their signature, demonstrating considerable expertise in ac-

curately replicating the signature. Detecting this type of forgery is challenging, as visual

inspection may fail due to its close resemblance to the genuine writing style [19].

The signatures to be authenticated by the HSVS can be obtained through two differ-

ent approaches. Depending on the method of data gathering, the systems are classified as

offline (static) and online (dynamic) [20]. Offline signatures denote physical signatures on

paper that are verified after the writing process has concluded. Online signatures, in con-

trast, represent digital signatures obtained through electronic devices and are typically

verified immediately or in real-time. Prominent advantages of signatures as a biomet-

ric determinant comprise their consistency, non-intrusive data collection methods, and

5
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the potential to incorporate dynamic features [21]. With technological development, it

becomes possible to acquire dynamic signature characteristics typically obscured on pa-

per, including writing speed, size fluctuations, sequence of strokes, tilt of the pen, and

pressure intensity. Both offline and online HSVS systems employ distinct techniques and

technologies, which are further detailed in the subsections 1.2.1. and 1.2.2.

Signature verification commonly follows a process consisting of four main stages [22].

These steps are generally applicable across different implementations of signature verifi-

cation and include:

– Data acquisition: offline systems use devices like cameras or scanners to convert

physical signatures into digital images. Online systems utilize tablets, electronic

pens, and smartphones for acquiring signatures in real-time. Additionally, publicly

accessible datasets can also be utilized for evaluating system performance.

– Preprocessing: this entails refining and organizing the acquired data for subsequent

analysis. For instance, digital images may undergo preprocessing like noise reduc-

tion, binarization, and deskewing. Raw readings from digital pens or tablets is

refined by removing noise and normalizing the data.

– Feature extraction: features are derived from the photograph of the signature, en-

compassing shape descriptors, texture characteristics, and statistical metrics. On-

line signatures involve extracting dynamic components of signing, such as pen tra-

jectory, velocity, acceleration, pressure variations, pen tilt, and timestamp.

– Classification: serves as the technique for evaluating the authenticity of a given

signature. The extracted characteristics are matched against the database entries

to determine whether they are genuine or forged.

1.2.1. Offline HSVS

The offline HSVS pertains to a system in which templates, primarily signatures, are

derived from imaging devices such as optical scanners or cameras. The signature is dis-

played as a digital photo, with the inked mark created on paper utilizing a handheld tool

like a pen or pencil. The system is tasked with determining if an image of a signature is

authentic or a forged copy [23]. In the offline scenario, the signatures are obtained after
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the paper-writing process has concluded. Therefore, only static data is extracted from the

original writing procedure, including aspects such as shape, outline, length and height,

slant, bounding box, and baseline. This indicates that the dynamic features involved in

the creation of the signature, like the pen’s movement and writing speed, are not obtained

or stored. Due to this absence of information, verifying offline signatures is regarded as

more difficult process compared to online signatures [24]. Additionally, the characteristics

of a signature can be influenced by the type of writing instrument and distinct, highly styl-

ized or unconventional writing styles. However, offline systems provide a notable benefit

in that signatures can be acquired without the requiring specialized processing devices.

Verifying signatures offline typically relies on analyzing geometric characteristics of

the signature. However, certain methods also attempt to extract dynamic elements from

the signature image. Since dynamic information cannot be directly derived from static

signature images, specific characteristics are used to partially represent these dynamic

aspects, referred to as pseudo-dynamic information. The term “pseudo-dynamic“ is used

to differentiate real dynamic data, captured during the writing process, from information

that can be inferred or reconstructed from the static image [25].

1.2.2. Online HSVS

For online signature verification, measurements are recorded in the form of a time

series signal, typically collected in real-time as signatures are being executed. Since sig-

natures from a single individual are not exactly identical, it is essential to capture multiple

sample signatures from every individual to serve as training data [26]. Signatures are ac-

quired using electronic input devices, including digital pens, pressure-sensitive tablets, or

touchscreens on smartphones and handheld devices. Therefore, real-time dynamic prop-

erties regarding the signing procedure can be gathered during the act of handwriting,

including spatial and temporal characteristics of a signature. Online signatures consist

of a sequence of sampled points, each comprising various extracted features [27]. These

factors, among others, encompass acceleration, speed, pressure exertion, stroke sequence,

position, timing, and pen angle (including altitude and azimuth). They are recorded as

function of time and saved continuously throughout the signature collection procedure.

In comparison to offline systems, these available attributes enhance accuracy, as repli-
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cating dynamic characteristics is notably challenging. The variability in features at each

point of the signature enhance its uniqueness and increases the difficulty of forgery [28]. In

online scenarios, identity verification benefits from requiring forgers to replicate not only

the static signature image, but also the unique signing gesture. Accurately imitating this

gesture poses a greater challenge than recreating the image alone. Moreover, although a

signature follows a particular movement pattern, it consistently generates a signal that

varies from one occurrence to another [29].

Some drawbacks in online signature verification include dealing with the fluctuations

of handwritten signatures, as they may change in the long term. The characteristics

of the digital medium, such as the resolution and size of the signing area on tablets or

touchscreens, can influence how a person signs. The verification process may be affected

by variations in hardware or software configurations, influencing accuracy and reliability.

Certain individuals may consider signing on digital devices to be less intuitive or com-

fortable compared to the traditional method of signing on paper. Moreover, people vary

in their coordination and consistency, which leads to the development and refinement of

their signing motion and gesture over time. Consequently, these variations within the

signatures of the same individual (intra-class differences) become an important consider-

ation.

1.3. Handwritten signature identification

In biometric systems, it’s crucial to differentiate between verification and identifi-

cation. Handwritten signature identification represents a distinct biometric approach

compared to signature verification. It involves determining the identity of an individual

by analyzing a given signature against a database of known signatures. In contrast to

signature verification, which confirms whether a presented signature matches a claimed

identity, identification involves searching through multiple signature samples to find the

most probable match. This distinction is important, as verification follows in a one-to-

one comparison, where a signature is checked against a specific reference sample. On the

other hand, identification utilizes a one-to-many approach, requiring the classification of

an unknown signature against a large database of multiple potential identities without

prior claim information [30].
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Signature identification presents distinct challenges when compared to verification.

One of the main difficulties is addressing intra-person variability, which is affected by

inconsistencies in factors like pen pressure, stroke dynamics, and writing speed. Addi-

tionally, different individuals may have signature styles that closely resemble each other,

leading to potential misidentification. This issue contrasts with signature verification,

where the primary concern is preventing forgeries rather than resolving identity ambigui-

ties. Since the system must distinguish between multiple individuals, the system demands

a robust approach to feature extraction and classification to minimize the risk of false

identifications [31].

A variety of approaches have been suggested for signature identification, employing

machine learning and deep learning techniques. Contemporary methods make use of

convolutional neural networks (CNNs) and recurrent neural networks (RNNs) to extract

dynamic characteristics of signatures. The focus of this dissertation is on using deep learn-

ing techniques for recognizing and identifying individuals through handwriting. Unlike

related solutions, the proposed system is based on sensor fusion for person recognition,

not just from signatures, but also from other forms of handwriting patterns like short

sentences, words, and individual letters.

1.4. Hypotheses and Contributions

Various approaches to user verification and identification through handwriting are pre-

sented in Chapter 2. In the context of online handwriting person recognition, signatures

have been the most extensively studied as the primary biometric marker for identifying

individuals. Furthermore, research focusing on the biometric characteristics of signatures

typically relies on a limited number of sensors. There is also a noticeable gap in exist-

ing solutions that investigate the application of multi-sensor setups for user identification

through signatures. Other forms of handwriting have been used to a far lesser extent.

As mentioned, this dissertation aims to address the research gap by investigating

a multi-sensor approach to provide a more detailed biometric profile by incorporating

additional data sources. Additionally, while signatures represent a well-practiced action

that can be consistently replicated, they are not the only form of handwriting that can

serve as a biometric indicator. This research expands the scope beyond signatures by
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exploring other handwriting forms, including sentences, words, and individual letters, for

verifying individuals. Unlike signatures, which may be easily forged or imitated, natural

handwriting behaviors exhibited in longer text forms (e.g., sentences and words) offer

unique biometric traits that vary both within and between individuals. Incorporating

these diverse handwriting forms facilitates a more comprehensive analysis of handwriting

patterns, making the identification process more adaptable to inter-personal and intra-

personal variations. Based on the identified research gaps and limitations in existing

studies, the research hypotheses are defined as follows:

1. Besides signature, other forms of handwriting can be used for person identification.

2. The dynamic features extracted from touchscreen handwriting samples will show

intra-person consistency and inter-person variability.

3. Deep learning models based on CNNs can be developed for person recognition based

on touchscreen handwriting (both for stylus and finger input).

4. The implementation of a sensor fusion approach could improve the accuracy of

person recognition based on touchscreen handwriting.

From these hypotheses, the research’s scientific contributions are outlined and presented

in the following manner:

1. A novel experimental apparatus that combines sensory devices, peripherals, and

software support, to capture dynamic touch-based handwriting features.

2. An original dataset of biometric handwriting data, based on sensor fusion and com-

prising dynamic characteristics of signatures and other handwriting forms (short

sentences, words, and individual letters) from stylus and finger input.

3. A deep machine learning model based on the early sensor approach for touchscreen

handwriting recognition.

4. A method for the evaluation of the impact of individual sensor or sensor subset on

the accuracy of handwriting-based person recognition.
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1.5. Research Methodology

The research was carried out in three distinct phases, each directly contributing to

achieving the scientific objectives of the study.

• The initial phase of the study involved a comprehensive review of the relevant re-

search within the subject domain, encompassing both offline and online approaches.

The review first covered studies that used sensors for verification purposes, where

most research in the field of handwriting biometrics concentrated on differentiat-

ing authentic and forged signatures. The focus then shifted to works concerning

handwriting-based person identification, which involved multi-class classification to

determine the writer, with particular emphasis on online approaches that captured

and analyzed dynamic handwriting features. This phase has revealed a research

gap, which is further discussed in Section 2.3. of Chapter 2.

• The second phase of the study involved designing the empirical research method-

ology, configuring the experimental setup, and acquiring sensory data. An experi-

mental apparatus for collecting dynamic touch-based handwriting features was de-

veloped based on the sensor fusion approach. This phase included testing individ-

ual sensors, both embedded in smart devices and external sensors, to determine

their suitability for integration into the sensor fusion setup. The required software

support was developed, and additional 3D-printed accessories were designed and

created. Furthermore, an experiment was organized and conducted in a controlled

setting, following the experimental practices and methods commonly used in the do-

main of Human-Computer Interaction (HCI). The collected biometric handwriting

data were then categorized for further use. Permission for conducting the experi-

ment and collecting data was requested and obtained from the Ethics Committee

of the University of Rijeka, Faculty of Engineering. The first and second scientific

contributions were achieved during this phase.

• In the third phase, the data obtained were subjected to suitable pre-processing.

All sensory data were structured into separate vectors, with each vector containing

specific measurements originating from a particular sensor. Further pre-processing
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steps included the application of re-sampling and normalization techniques. The

next step involved developing a deep learning model for feature extraction and

classification tasks. To address the inherently nondeterministic nature of neural

networks and their training process, both the feature extractor and classifier were

trained and evaluated multiple times. Appropriate statistical tests were used to

investigate the main effects of within-subject factors: input modality (finger, stylus),

train set size, and handwriting form (signatures, sentences, words, and letters). An

ablation study was conducted to analyze the impact of individual sensors or sensor

subsets within the fusion-based setup. This phase culminated in the review and

discussion of the methods proposed, employed, and assessed throughout the study.

The last two scientific contributions were achieved through the activities conducted

during this stage.

The research in this dissertation consists of distinct yet interconnected segments, some

of which are based on the author’s previous work. Certain sections of the study originate

from the author’s earlier research, specifically “A Sensor-Fusion-Based Experimental Ap-

paratus for Collecting Touchscreen Handwriting Biometric Features“ [32], “Beyond Signa-

tures: Leveraging Sensor Fusion for Contextual Handwriting Recognition“ [33], and “Aug-

menting Around-Device Interaction by Geomagnetic Field Built-in Sensor Utilization“

[34]. These articles are publicly available and distributed under the Creative Commons At-

tribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/), which

permits the reproduction and modification of the content with proper attribution.

1.6. Structure of the Doctoral Dissertation

This dissertation is organized into six chapters. The initial chapter, Chapter 1, pro-

vides an introduction to the field of biometric systems, narrowing the focus to the specific

area of handwritten signature verification systems. It delves into both offline and online

signature verification methods, outlining their specific applications. In addition to veri-

fication, this chapter also addresses handwritten signature identification, highlighting its

potential for person recognition and its distinction from verification tasks. This chapter,

along with the introductory contextualization, outlines the hypotheses and contributions

of the dissertation and provides an overview of the employed methodological approach.

12

https://creativecommons.org/licenses/by/4.0/


A. Salkanović - doctoral dissertation

Chapter 2 presents a review of existing studies on handwriting-based biometric sys-

tems, focusing on their application in verification and identification methods. It reviews

prior work on the methodologies, achievements, and limitations of verification systems,

which aim to confirm the authenticity of a writer, as well as identification systems de-

signed to determine the identity of an individual. The chapter concludes by identifying

the research gap in person recognition via different handwriting forms, which forms the

basis for the contributions of this dissertation.

Chapter 3 provides a comprehensive overview of the experimental setup and the col-

lected data. It begins by outlining the sensor fusion technique applied in the study,

explaining the rationale behind combining multiple data sources for handwriting-based

person recognition. This is followed by a thorough description of the apparatus, describ-

ing the equipment and setup used to obtain dynamic handwriting data. Information

about the participants is then presented, along with a review of the experimental de-

sign, methodology, and the procedural steps taken during data collection. The chapter

concludes with an overview of the recorded sensor data, summarizing its structure and

characteristics.

Chapter 4 focuses on the development and implementation of a person recognition sys-

tem using a convolutional neural network (CNN) deep learning model. An introduction to

CNNs is provided, explaining their architecture and relevance to the task of person recog-

nition via handwriting. The acquired dataset used for training and testing is described,

followed by details on data preprocessing techniques applied to prepare the dataset for

analysis. In addition, the chapter discusses the utilized Dynamic Time Warping (DTW)

method, along with the proposed Classification Potential (CP) metric. Feature extrac-

tion methods and the classification process are detailed, presenting the approach taken

to recognize individuals based on the extracted features from their handwriting.

The overall results of the study are presented in Chapter 5, accompanied by a detailed

discussion of the findings. The outcomes of the DTW analysis are shown, along with

graphs that visually support the findings. Furthermore, the chapter presents the outcomes

of investigating the main effects with regard to the influence of three different factors

(handwriting form, input modality, and train set size) on the system’s accuracy. Finally,

findings of an ablation study are provided, analyzing the impact and contribution of

individual sensors within the fusion-based setup.

13



A Deep Learning Model for Touchscreen Handwriting Recognition

Chapter 6 provides a summary of the dissertation, highlighting the main findings

and contributions of the research. It also addresses potential limitations and suggests

directions for future work in this field, drawing on the results of the research.
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Chapter 2

REVIEW OF RELATED STUDIES

This chapter presents a thorough review of the existing studies related to handwriting

biometric identification systems. The purpose of this review is to show a detailed survey

of machine learning-based signature verification and identification systems across different

aspects: datasets, preprocessing methodologies applied, techniques for feature extraction,

models used for machine learning-driven verification and identification, along with the

measures used to assess performance of the proposed systems.

The review of existing literature is structured into sections to categorize studies re-

lated to various approaches in this field. Both sections discuss relevant studies, with

highlighted findings concentrating on single biometric modalities, specifically signatures

or handwriting. This is closely aligned with the research in this thesis, particularly in

relation to sensor fusion techniques for recognizing individuals through handwriting. It

is important to emphasize that the review of related studies pertains to both offline and

online verification or identification methods, although the research in this dissertation

relates to the online approach.

The first section provides an overview of handwriting verification systems in this do-

main, with most works focusing on the various sensors used for verification purposes,

aiming to differentiate authentic from forged handwriting samples. These systems ad-

dress a binary classification task, determining whether a sample is authentic or forged.

While this is a critical aspect of biometric security, many studies tend to overlook the

broader context of user recognition across different handwriting forms.

The second section covers related work on handwriting identification systems, high-
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lighting the various types of sensors, collected data and biometric features used for person

recognition. While most existing research has primarily focused on handwriting verifica-

tion, a notable research gap remains in the area of person recognition via handwriting.

Instead of focusing solely on verification, this section encompasses studies related to hand-

writing identification tasks. These tasks refers to the general process of identifying the

handwriting owner, which involves multi-class classification. Additionally, this section

includes studies on analyzing handwriting features for individual identification across dif-

ferent handwriting forms, extending beyond just signatures. In comparison to signatures,

this area has also been addressed in a fewer number of studies overall.

2.1. Review of handwriting verification systems

This section provides a review of works that exclusively focus on handwriting verifica-

tion. It pertains to proposed online systems for collecting dynamic biometric data during

writing, used to distinguish between genuine and forged samples. The paragraphs include

a description of the devices and sensors employed for capturing handwriting characteris-

tics. Furthermore, the discussion extends to common public datasets used in the research,

outlining their characteristics and specifics. Moreover, the machine learning methods pro-

posed for feature extraction and classification are described and detailed. The section also

highlights the results achieved by various studies, presenting the advancements and find-

ings of other researchers in this domain.

2.1.1. Radar and acoustics-based solutions

The literature presents a range of innovative solutions that utilize distinct sensor

technologies to capture and analyze signature characteristics. For instance, mmSign [35]

employs millimeter wave (mmWave) technology to detect hand movements during signing

using the commercial mmWave radar. Utilizing advanced signal processing algorithms,

mmSign derives time-velocity feature maps from recorded mmWave signals and employs

a transformer-based model for authentication. The authors utilized new meta-learning

strategy with task generation and data augmentation to improve learning from limited

samples, enabling quick adaptation to new users. It achieves high accuracy with a small
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number of labeled signatures while effectively resisting common forgeries. mmHSV [36] is

an alternative approach that leverages mmWave radar to provide in-air handwritten signa-

ture verification system. The proposed method combines hand shape characteristics and

writing process attributes to create electronic signatures. It models the biometrics of the

handwritten signature process by extracting phase-dependent biometrics and behavioral

attributes from the mmWave radar signals. A few-sample learning network is employed

to integrate these features and verify users. Evaluations with commercial mmWave de-

vices show that mmHSV achieves high accuracy and efficiency, maintaining a low false

acceptance rate (FAR) at a fixed threshold and performing well with untrained users.

In addition to mmWave-based approaches, a variety of acoustic-based solutions have

also been developed for signature verification. These systems leverage the unique char-

acteristics of sound and vibration produced throughout the signing to capture subtle

variations in signature dynamics. For instance, some methods analyze the frequency pat-

terns and amplitude of pen strokes, while others use time-domain features of recorded

audio to distinguish genuine signatures from forgeries.

The ASSV [37] is an acoustic-based solution designed to identify changes in signals

generated by the movement of a user’s hand and pen while signing. It employs a smart-

phone to capture these signal variations by emitting and receiving inaudible acoustic

signals while the user writes on a standard piece of paper. A binary classification model

employing a deep CNN is used to differentiate authentic signatures from forged ones,

ensuring that no retraining is needed when adding a new user. The results demonstrate

that ASSV achieves high performance with low latency. Although additional accessories

are not required, the authors note that variations in the placement of the built-in speaker

and microphone across smartphone brands present a limitation.

SilentSign [38] is a comparable solution that utilizes acoustic sensors (microphone

and speaker) integrated in common smart devices to track the changes in distance of

the pen tip while signing. It addresses certain constraints found in the proposed ASSV

system, particularly concerning device orientation and the required distance between the

smartphone and the writing surface. While employing a similar acoustic sensing method,

it provides a larger signing area and eliminates the requirement for the smartphone to be

aligned parallel to the signature surface. The authors of SilentSign do not employ neural

networks in their system’s architecture. Instead, they utilize traditional machine learning
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classifiers: logistic regression (LR), naive Bayes (NB), random forest (RF), and support

vector machine (SVM). After evaluating the performance of these classifiers, the authors

determine that SVM is the most effective, demonstrating a high area under the curve

(AUC) and a low equal error rate (EER).

SonarSign [39], similar to ASSV, also uses inaudible acoustic signals but introduces a

more advanced verification system by incorporating an attentional multi-modal Siamese

network. This system utilizes both the smartphone’s speakers and microphones to send

and receive a custom training sequence. It then records the resulting echoes to estimate

the channel impulse response (CIR) based on the dynamic hand movements during the

signing process. SonarSign demonstrates high effectiveness for unseen users, showing

strong performance in real-world scenarios. SonarSign also addresses device variability

limitations through an advanced spatio-temporal feature extraction technique, enhancing

robustness compared to ASSV and SilentSign.

Sadak et al. [40] proposed an approach that is different from others, as it relies on the

natural sound of the pen interacting with paper. It captures the friction sounds using only

the internal microphone of mobile devices, without emitting any inaudible signals, provid-

ing a unique biometric data source. This method distinguishes genuine signatures from

forgeries by employing dynamic time warping (DTW) to calculate similarity distances be-

tween audio signals. The authors indicate that EER values can vary considerably based

on specific parameters of the signing process, such as the type of pen, paper, and recording

device used. The proposed solution faces issues with background noise since the subtle

pen-paper friction sounds are easily influenced by environmental factors. Additionally,

using a single microphone without extra sensors makes the system sensitive to changes in

writing style and device positioning.

2.1.2. Motion-based solutions

Regarding other types of sensors, related studies in this domain typically rely on

accelerometers, either standalone or in combination with a gyroscopes. Most research

focuses on the utilization of off-the-shelf devices with built-in accelerometers and gyro-

scopes, such as smartwatches or smartphones.

In their study, Li and Sato [41] investigated the use of commercially available smart-
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watches for biometric verification through signature analysis. The authors employed the

accelerometer and gyroscope of the smartwatch to capture motion data while participants

sign on a tablet, aiming to explore conventional contact-based signature verification. The

research use custom database, consisting of both authentic and forged signatures from 20

participants, with a total of 400 signatures recorded and aligned into 2900 pairs for anal-

ysis. Siamese recurrent neural networks (RNNs) are utilized to process sequential data,

avoiding the necessity for manual feature extraction. The architecture transforms tem-

poral motion data into fixed-length vectors, enabling efficient comparison and showcasing

high performance.

Ramachandra et al. [42] developed a smartwatch-based user verification system that

captures accelerometer data from two different smartwatch models. Similar to the ap-

proach in this dissertation, other forms of handwriting were utilized in addition to the

signature. Specifically, the data was collected while 30 participants performed three tasks:

signing their name, writing a predefined common sentence (“you are smart“), and writ-

ing a self-chosen sentence. Handwriting samples were captured from both paper and a

tablet device to compare the effects of different writing mediums. The study utilized

continuous wavelet transform (CWT) to extract time-frequency features and employed

the pre-trained ResNet50 for deep feature extraction. These features were then classi-

fied using an ensemble of classifiers, with decisions fused using the SUM rule to improve

verification accuracy. The researchers found that while signature-based verification was

effective, writing a self-chosen sentence often led to improved results, particularly across

different devices. However, there was some decline in performance.

Levy et al. [43] further used the accelerometer and gyroscope sensors to obtain dy-

namic motion data as participants signed physical documents. This included signing

checks, credit card receipts, and vote-by-mail forms while wearing a smartwatch. Biomet-

ric data was collected from 66 participants, including both genuine and forged signatures,

producing a dataset of 1980 recordings. The authors applied a machine learning model

leveraging DTW and discrete cosine transform (DCT) for feature extraction and classifi-

cation tasks, demonstrating notable results.

Using the same sensors (accelerometer and gyroscope), certain studies focused on in-

air signature verification instead of standard writing methods on paper or tablet. In this

approach, users perform signatures without physical contact, capturing dynamic data
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from smartwatch or smartphone motion sensors.

In their follow-up studies, Li et al. [44, 45] explored in-air signature verification, al-

lowing users to sign without direct interaction with paper or touchscreen. They utilized

accelerometer and gyroscope sensors, alongside device attitude readings, to capture mo-

tion data as participants signed names using their fingers in the air. The research used

a custom database with 22 participants, each contributing 10 authentic and 10 forged

signatures, resulting in 440 signatures. RNNs are employed to process variable-length

sequential data collected during signing. The recorded motion data is converted into

fixed-length vectors to compare genuine and forged signatures. The system highlighted

its effectiveness in authenticating users through in-air gestures and distinguishing genuine

signatures from skilled forgeries.

Guo and Sato [46] utilized the same custom dataset for in-air signature classification

using multiple CNNs. The researchers first applied the DTW algorithm to validate the

dataset and then employed four CNN models (LeNet, AlexNet, VGG, and ResNet) to

classify the signatures. The novelty of their approach involved transforming the time-

sequential in-air signature signals into three-dimensional static representations for CNN

input. Additionally, the study evaluated the performance of the CNNs with that of a

transformer model, which was used as a baseline for time-sequential signal classifica-

tion. Within the models tested, ResNet reached the highest accuracy when fine-tuned

using the Adagrad optimizer. The research highlights that CNN models outperform tra-

ditional time-sequential models in handling this medium-sized in-air signature dataset,

which showed signs of overfitting.

Shao et al. [47] introduced AirSign, an authentication system that combines built-

in acoustic and motion sensors in smartphones for biometric verification through in-air

signature gestures. The authors used the earpiece speaker to transmit inaudible signals

and records echoes with integrated microphones to track hand geometry and signature

motion, while the accelerometer and gyroscope capture hand movement during signing.

The research involved thirty participants, each providing registered, genuine, and forged

signatures during the data collection phase. AirSign utilizes multidimensional DTW for

feature comparison, computing similarities between registered and input signatures. In

addition to signature features, the system also integrates a hand geometry classifier and

a motion classifier, combining the results to authenticate users. The results showed high
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accuracy, validating its effectiveness without requiring additional hardware.

Buriro et al. [48] introduced an in-air signature authentication system that uses natu-

ral arm movements to authenticate users. Participants wore a smartwatch with integrated

accelerometer and gyroscope sensors, which capture 3D motion data as they wrote their

names in the air. The system processes this data utilizing DTW and a one-class mul-

tilayer perceptron (OMLP) classifiers. The authors explored two fusion levels, sensor

and feature fusion. Testing with several participants revealed that the OMLP classifier

with feature fusion outperformed the DTW-based approaches with a limited number of

training samples.

Realme [49] is another solution for verifying handwritten signatures utilizing a wrist-

worn MetaWear MetaMotionR smart device. It represents a commercially available

rechargeable wearable device. The device features an integrated gyroscope and accelerom-

eter to measure three-axis motion. These sensors record wrist movement while users per-

form genuine and fake signatures on plain sheets of paper, without requiring additional

accessories such as a stylus. In the experiment, 10 participants provided 12 genuine and

forged signature samples after a one-week gap. Several machine learning classifiers were

evaluated to distinguish authentic signatures from forged ones, including SVM, decision

tree (DT), RF, and the BayesNet algorithm. Among these, BayesNet proved to be the

most effective, showcasing high classification accuracy and a low EER.

Several studies use Leap Motion sensor for contactless biometric authentication by

tracking hand and finger movements in 3D space. These studies focus on signature recog-

nition and verification, showing improved accuracy compared to traditional 2D methods

by utilizing 3D spatial data and classifiers like k-NN, hidden Markov model (HMM), and

least squares SVM (LS-SVM) [50, 51, 52]. Deep learning approaches, such as CNNs, have

been utilized with Leap Motion and demonstrated high accuracy and low error rates in

distinguishing genuine from forged signatures [53].

2.1.3. Smart pen solutions

Another approach to online signature verification involves using smart pens or styluses

equipped with various sensors. Proposed solutions typically utilize off-the-shelf devices or

custom pen-like systems featuring sensors such as pressure sensors, accelerometers, and
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gyroscopes to capture detailed movement or pressure data while writing.

Lech and Czyżewski [54] proposed handwritten signature verification system including

a wireless biometric pen and a 7 ′′ resistive touch screen integrated into an LCD display.

Alongside a surface pressure sensor and two touch pressure sensors, the biometric pen

features a three-axis accelerometer and gyroscope. The pen mimics the form of a ballpoint

pen tip but does not dispense ink onto the paper. The signature verification process relies

on six dynamic measures derived from the findings of the DTW method.

Subedi et al. [55] proposed a sensorized writing stylus with two off-the-shelf accelerom-

eters to capture hand movements during writing. The system, using a Raspberry Pi for

data collection, extracts spatial and temporal features like acceleration and stroke di-

rection. Tested with three participants, including genuine and forged signature samples,

the system achieved high classification accuracy using an MLP with one hidden layer.

In follow-up research [56], the authors integrated two triaxial accelerometers within the

stylus, eliminating external mounts. Using a larger dataset of ten participants, the sys-

tem employed a more advanced MLP with three hidden layers. Despite the increased

complexity and dataset size, the system’s accuracy was slightly lower, attributed to the

variability in the signatures resulting from the more diverse dataset.

Kurowski et al. [57] developed an automated system for biometric handwritten sig-

nature verification. The system uses a specialized electronic pen equipped with sensors

such as pressure sensor, a 6-axis gyroscope-accelerometer, a 3-axis inclinometer, 2 MEMS

(micro-electromechanical systems) microphones, speaker, and additional sensors. The pen

is compatible with both computer and mobile phone screens, capturing both dynamic and

static signature features. To extract relevant signature features, the authors used a con-

volutional neural network (CNN) trained with the triplet loss method, which generates

fixed-length embeddings that are compared using Euclidean distance. The system was

evaluated on a large dataset of signatures and demonstrated low error rates in detecting

both random and skilled forgery attempts.

Zhou et al. [58] presented a solution for verifying handwritten signatures that combines

both offline and online verification techniques. Specifically, during the signature-writing

process, both the offline image and online data of the signature are collected in real-time.

A smart pen, equipped with a camera and pressure sensor, allows for the simultaneous

collection of both the physical signature and digital data. The static and dynamic features
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of the signature are extracted and verified using SVM and DTW, respectively.

2.1.4. Existing datasets

Several publicly available datasets have been widely utilized in handwriting biometric

research, serving as benchmarks for evaluating signature verification models. Among the

most frequently used are SigComp 2009 [59], SVC-2004 [60], MCYT-100 [61], SUSIG [62],

and BiosecurID [63]. A common trend among researchers leveraging these datasets is the

utilization of CNN architectures for developing verification systems [64, 65, 66]. Data

augmentation techniques are often employed, addressing the challenge of limited sample

sizes in certain datasets [67, 68]. In addition to conventional CNN-based approaches,

some studies focus on lightweight CNN architectures specifically designed for mobile-based

signature verification, enhancing performance for resource-constrained devices [69, 70].

Furthermore, other research investigates hybrid models that combine CNNs with RNNs

or transformers to improve feature extraction and classification accuracy [71, 72].

The related studies described so far focus on verification systems. The following

chapter provides an overview of research related to handwriting identification systems.

2.2. Review of handwriting identification systems

Given the focus on person recognition via handwriting in the dissertation, a compre-

hensive review of relevant literature in this domain is provided. It is important to highlight

that, as mentioned earlier, there are notably fewer studies addressing person identifica-

tion through handwriting in comparison to works related to verification. The reviewed

works rely on the use of one or more distinct sensors for person identification purposes,

examining various technologies and approaches used to capture and analyze handwriting

dynamics. While the review covers studies using various types of neural networks, the

emphasis is placed on those employing CNN architecture. The review supports the use of

CNN in this thesis, while also considering other relevant neural networks that contribute

to this field. The aim is to contextualize the current advancements and techniques in

person identification via handwriting.
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2.2.1. Machine learning-based approaches

Machine learning-based approaches to signature identification rely on explicit feature

extraction techniques prior to classification. Once these features are selected and ex-

tracted, a standard set of classifiers is applied, utilizing well-established models.

One of the common feature extraction techniques in offline signature recognition is

the use of texture-based feature extraction methods or image texture descriptors, such as

histogram of oriented gradients (HOG), local binary patterns (LBP), and binary statistical

image features (BSIF) which capture texture and gradient variations within the signature

images [73, 74, 75]. Feature extraction techniques such as scale-invariant feature transform

(SIFT) and speeded-up robust features (SURF) have also been investigated to extract

distinctive keypoints from signatures [76].

While offline methods primarily rely on images, online signature identification benefits

from dynamic handwriting features. Research using sensor-based devices like Wacom

tablets has explored handwriting kinematics by extracting time-series representations of

pen movements. Across multiple studies, a variety of machine learning classifiers have

been used to distinguish individuals based on their handwriting characteristics. The most

frequently employed classifiers include SVM, RF, and LR [77, 78]. Additionally, other

classifiers like KNN and DT are commonly used, with some studies further incorporating

ensemble methods such as the extra tree classifier (ETC) to improve accuracy [79].

Numerous studies use publicly available datasets like CEDAR and MCYT, enabling

comparisons across various research works. Additionally, some studies introduce custom

datasets tailored to specific writing styles or languages. For example, certain research

focuses on non-Latin scripts, such as Devanagari and Kirgiz [80, 81]. Other studies com-

bine both public and private datasets, merging well-established benchmarks with newly

developed multilingual collections that include Chinese, Uyghur, and Kazakh [82, 83].

Additionally, some studies focus on Arabic handwriting, such as the AHWDB1 and AH-

WDB2 datasets used for writer identification [84].

The authors in [85] tested both ML and DL models for handwriting-based person

identification. They evaluated 14 ML algorithms, such as SVM and Random Forest,

alongside 7 DL architectures, including CNNs and BiLSTM. The results showed that

both ML and DL methods were effective for handwriting-based person identification.
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2.2.2. Deep Learning-Based Approaches

Deep learning models have become a widely utilized and advanced technique for

signature-based person recognition and handwriting identification, particularly leveraging

CNN models and hybrid architectures.

Multiple studies employ pre-trained deep learning models, benefiting from trans-

fer learning by fine-tuning well-established architectures like ResNet, EfficientNet, and

GoogleNet on custom collected datasets [86, 87]. Some research focuses on custom CNN

architectures designed for signature classification. LS2Net [88] and CNN-GC [89] represent

novel CNN architectures developed for large-scale signature identification and trained on

publicly available datasets. CNN models with modified input representations have been

employed to accommodate 3D air signatures captured via Leap Motion sensors [90]. Sim-

ilarly, multi-scale CNNs have been designed for in-air gesture signatures, using parallel

convolutional layers to enhance feature extraction and achieving higher accuracy than

standard pre-trained models [91]. Research has explored handwriting classification be-

yond signatures, for instance, employing LeNet to classify the handwriting of different

individuals based on a proprietary dataset [92].

Beyond individual CNN models, multi-branch architectures have been proposed to

improve feature extraction at different scales. One approach combines ResNet-18 with a

feature pyramid network (FPN), enhancing classification accuracy by capturing features at

various scales [93]. Similarly, another study employs CNNs as a baseline model alongside

capsule networks, achieving notable accuracy in both verification and identification tasks

by retaining spatial relationships within the image data [94].

Regarding hybrid approaches, a hybrid CNN-BiLSTM model has been introduced for

Bengali handwriting identification [95]. The CNN component extracts spatial features,

while the bidirectional long short-term memory (BiLSTM) captures sequential depen-

dencies in handwriting data collected using a stylus. The hybrid architecture notably

improved classification accuracy over standalone CNN or LSTM models.

An alternative approach integrates a CNN with a spatio-temporal siamese neural net-

work (ST-SNN), using a dual-branch architecture to extract both spatial and sequential

patterns from air-written signatures [96]. The approach proved highly effective for 3D

motion-based handwriting analysis, utilizing a Leap Motion sensor to track hand move-
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ments in three-dimensional space. The custom-designed architecture outperformed tradi-

tional machine learning techniques such as SVMs, HMMs, DTW, and RF classifiers.

The studies presented in this subsection are summarized in Table 5.13 in Section 5.6.,

highlighting the results and comparing them with the author’s findings in this dissertation.

2.3. Research gap

This dissertation addresses several notable gaps in handwriting biometric systems

research. The primary areas of inquiry that this study aims to explore and contribute to

include:

• Focus on verification over identification:

– The majority of the reviewed studies in the field of handwriting biometrics

are centered on verification systems. These approaches involve distinguishing

between genuine and forged handwriting samples, representing a two-class clas-

sification problem where a decision is made about whether a sample is authentic

or forged. In contrast, this study addresses the research gap by switching the

focus from verification to handwriting recognition, which involve the general

process of detecting the handwriting owner through multi-class classification.

• Narrow scope of handwriting forms:

– Related studies often miss the wider context of user recognition across different

handwriting forms. The emphasis tends to be primarily on gathering user

signatures, overlooking the potential for identifying users through other forms

of handwriting, such as sentences, words and individual letters. Accordingly,

the study investigates the feasibility of recognizing a person through various

forms of handwriting, without relying exclusively on signatures, expanding the

analysis to general handwriting.

• Lack of sensor fusion approaches:

– This study incorporates the sensor-fusion concept, setting it apart from similar

studies that primarily rely on a single type of sensor or device. The objec-

tive was to introduce a broader range of sensor readings into the analysis of
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handwriting dynamics. The measurements were mainly sourced from standard

smart devices and integrated sensors, rather than specialized hardware. Ad-

ditionally, data on handwriting dynamics is collected not only for stylus input

but also for finger input, which remains the primary method of interacting

with touchscreen devices. This broadens the study to include an analysis of

the proposed solution regarding the input modality.
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Chapter 3

EXPERIMENT AND DATA

DESCRIPTION

This part of the dissertation outlines a detailed overview of the experimental setup.

The proposed apparatus is described, with each of the devices, sensors, and accessories

used in the configuration thoroughly detailed. Additionally, their specific functions and

roles within the system are explained. Following that, the procedures employed in the

conducted experiment are described. Finally, the data collection process is presented,

including the obtained data types and technologies utilized for their acquisition.

3.1. Sensor fusion setup

Research within the domain of handwriting verification or identification primarily

focus on employing a single device or sensor. In contrast, this study emphasizes leverag-

ing sensor fusion capabilities to facilitate user identification based on their handwriting.

Sensor fusion involves combining readings from multiple sensors, providing advantages

compared to using a single data source [97]. This approach can address the constraints

of individual sensors, such as limited coverage or susceptibility to noise.

A diverse array of sensors was integrated into the proposed apparatus, considering all

devices at disposal. External sensor modules were added to complement the integrated

sensors on these devices. The objective was to evaluate how sensors, whether used indi-

vidually or in groups, affect person recognition accuracy through different handwritten
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Table 3.1: An overview of the sensors used in the proposed apparatus.

Sensor Device Data

Accelerometer Smartwatch
Acceleration in three orthogonal
directions (m/s2)

Camera Smartphone
Handwriting video for ArUco marker
tracking, 720p resolution and 30 FPS

Gyroscope Smartwatch
The rotation rate around the x, y,
and z axes, in degrees per second (◦/s)

Magnetometer Tablet computer
The magnetic field for all three
physical axes (µT)

Piezoelectric sensor 1,
model PZT-5

External, connected to the tablet using
a USB sound card and adapter

Electrical output in response to
mechanical strain (V)

Piezoelectric sensor 2,
model FT-50T-3A1

External, connected to the smartphone
using 3.5 mm audio connector

Electrical output in response to
mechanical strain (V)

Touchscreen Tablet computer
Touch position, size and orientation of
contact area, pressure, interaction type

forms. This facilitates determining the most effective set of sensors for user identification,

using not only signatures but also handwriting samples of sentences, words, and indi-

vidual letters. Employing sensor fusion aimed to investigate the potential for achieving

enhanced accuracy, robustness, stability, reliability, and other beneficial characteristics in

comparison to single-sensor systems [98]. A comprehensive list of the devices used, along

with both internal and external sensors, and the data gathered by the sensors, is provided

in the Table 3.1.

In the subsequent chapter, a thorough overview of individual devices and sensors is

provided, outlining their characteristics and roles within the research context.

3.2. Apparatus description

This subsection presents a description of the devices, sensors, and additional acces-

sories utilized in the apparatus. The presented details include device models, sensor spec-

ifications, technical characteristics, and the utilized software tools and platforms. The

proposed system depicted in Fig. 3.1 encompasses a tablet, a smartphone, a smartwatch,

and two external piezoelectric sensors. The absence of a single device integrating all es-

sential sensors was the inherent limitation requiring the utilization of multiple devices.
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Figure 3.1: The experimental setup depicting all devices and sensors, including a tablet,
a smartphone, a smartwatch, and two external piezoelectric sensors.

The specific devices employed in research were the only equipment available to the author

and are interchangeable with others of similar function. Additionally, certain software

restrictions imposed by the device manufacturers, as described later in this subsection,

could have simplified the apparatus implementation.

All devices are interconnected and communicate through wireless networking (Wi-Fi)

and Bluetooth communication protocols. Custom applications for the Android and Tizen

operating systems have been created for synchronizing the devices, thereby enabling reli-

able data gathering. The system offers a high level of adaptability, enabling the selection

of various settings throughout the experiment.

A perforated plate with dimensions of 120 by 60 centimeters functions as the mounting

platform for individual components of the apparatus. The panel itself is securely attached
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to the desk to prevent any potential movement while the participant is engaging in hand-

writing activities. In addition to using screws, a variety of metal brackets, holders, and

plates were utilized to securely position the devices in their assigned locations. The rea-

son for securing the equipment at a fixed position is to ensure consistency, reliability, and

control over the experimental setup. This enables subjects interacting with the apparatus

under the same conditions, thereby mitigating variation within the experimental setting.

The strategy reduces the probability of accidental interruptions during the experiment

and enables accurate data to be obtained.

3.2.1. Tablet sensors

The primary component employed in the proposed apparatus was the tablet computer.

It was manufactured by Samsung Electronics and pertains to the specific model released

in 2019 named Galaxy Tab S6. The unit utilized in the study features a Qualcomm

SM8150 Snapdragon 855 system-on-chip and 6 gigabytes of RAM. The device is initially

distributed with the Android Pie operating system, utilizing the One UI 1.5 user interface.

At the time of writing, the most recent software version available for update is Android

12L, in conjunction with One UI 4.1.1. Given the specific design of the applications for

the initial versions, the upgrade was delayed to retain the original system version.

The device is equipped with a large 10.5-inch touchscreen AMOLED display, providing

sufficient screen area for a variety of tasks. A screen exhibits a resolution of 1600 by 2560

pixels at ∼ 287 pixels per inch (PPI) density and 16 : 10 aspect ratio. These characteristics

make it particularly suitable for handwriting input, seamlessly accommodating both stylus

and finger interaction.

Aside from touchscreen sensor, the device incorporates a multitude of integrated sen-

sors. Information about these components was obtained using three specific applications:

Sensors Toolbox, Sensors Multitool, and Device Info: System & CPU Info. Information

from the applications was utilized to find detailed functionalities and capabilities of the

available sensors for collecting measurement data.

The magnetometer embedded into the tablet device itself was of particular significance

for the research. While primarily devised for orientation detection or navigation tasks,

the author’s study [34] showcased its adaptability for drawing or writing with a strong
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Table 3.2: Technical specifications of the AK09918 integrated circuit (IC), a 3-axis
electronic compass featuring advanced high-sensitivity Hall sensor technology. This IC is
integrated into the Samsung Galaxy S6 Tab tablet device utilized within the apparatus.

Model AK09918C
Sensitivity [µT/LSB] 0.15

Data output
16-bit data out for each
3-axis magnetic component

Analog power supply voltage (min.) [V ] 1.65
Analog power supply voltage (typ.) [V ] 1.8
Analog power supply voltage (max.) [V ] 1.95
Current consumption (typ.)

• power-down mode [µA] 1

• measurement mode [mA]
avg. current consumption at
100Hz repetition rate: 1.1

Serial interface I2C
Operating temperature [◦C] −30 to +85
Device package WL-CSP
Number of pins 4
Footprint [mm] 0.76 × 0.76 × 0.5

permanent magnet. Intentionally disrupting the magnetic field with powerful magnets

while writing using a stylus or finger results in a unique pattern for each user. According

to the official datasheet available on the Asahi Kasei Microdevices Corporation website,

the Galaxy Tab S6 model incorporates the AK09918 3-axis electronic compass [99]. The

integrated circuit (IC) generates a 16-bit data output for each of the 3-axis magnetic

components. It features a 0.15 µT/LSB measuring sensitivity, with maximum measure-

ment range of 4192 µT. Detailed technical specifications of the magnetometer sensor are

presented in the Table 3.2.

3.2.2. Stylus and 3D-printed ring

In addition to the smart devices, the proposed apparatus include a variety of supple-

mentary accessories. A pair of neodymium magnets were employed to induce a distur-

bance in the magnetic field. Each magnet possesses a residual magnetization (remanence)

of 1.19 Tesla and belongs specifically to the N-38SH grade. The magnet’s dimensions are

expressed as follows: length, width, and height measuring 2 × 10 × 6 mm, respectively.

For enhanced magnetometer readings in the presence of magnets, they are arranged in a

vertically stacked configuration, one atop another.
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To ensure the magnets were positioned correctly on the stylus and the user’s finger

during writing, custom-made holders were employed. The holders were designed utilizing

specialized software and then fabricated using 3D printing technology. For the stylus,

the holders were constructed as housings that precisely correspond to the thickness of

both the magnets and the pen to prevent any movement during writing. Alongside the

magnet holders, specialized mounts were also printed to securely affix ArUco markers of

the required sizes. The first two items in the upper row from the left in the Fig. 3.2 are

specifically designed 3D-printed holders for ArUco markers, intended for attachment to

tip of the stylus (S Pen). In the same figure, the holder for two stacked magnets attached

to the bottom of the stylus is shown as the first on the right.

A ring-shaped holder was employed for writing with the finger, specifically using the

index finger. Different sizes of rings were produced based on available online templates,

providing a personalized fit for each person. Each of the holders is labeled with a unique

Figure 3.2: Upper row: the first two on the left are custom designed 3D printed mounts
for ArUco markers of different sizes for the stylus (S Pen). The holder for two stacked
magnets that attaches to the bottom of the stylus is shown as the first on the right.
Bottom row: ring-shaped holders for two stacked neodymium magnets of various diame-
ters utilized for finger writing activities.
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label to ensure the proper orientation and alignment of the magnets. The described

circular holders for two stacked neodymium magnets, varying in diameter and designed

for finger writing, are displayed in the bottom row of Fig. 3.2.

The tablet device employed in the apparatus is equipped with a stylus accessory de-

signed specifically for use with Samsung Galaxy tablets and smartphones. The stylus

known as the S Pen offers advanced functions such as pressure sensitivity, air gestures,

and tilt detection. It enables users with precise input capabilities, facilitating activities

such as writing, drawing, navigating, and interacting with the device interface. Notably,

the S Pen features a sensitivity range of 4096 discrete levels, which varies based on the

applied pressure. Nevertheless, the stylus represents a specific limitation that is relevant

to this research.

The constraint particularly pertains to the S Pen Remote Software Development Kit

(SDK). This SDK enables the utilization of advanced functionalities of the S Pen, includ-

ing button interactions, movement tracking, and gesture recognition. However, based on

a reply from the official Samsung Developers forum [100], the S Pen Remote SDK does

not provide developers the capability to collect pressure levels and tilt data. Regardless

of this limitation, it remains possible to utilize the MotionEvent object [101] provided by

the Android framework to obtain data regarding stylus pressure levels. It represents an

event detailing a user interaction with the screen, utilizing both the stylus and the finger.

The object contains details concerning the event, including the type of action performed,

event coordinates, pressure, size, orientation, and additional properties determined by

the event type. Although certain data can be obtained during finger interaction, pressure

information for finger writing was unavailable with the utilized tablet.

To address the SDK constraint and enable the data collection regarding the tilt of the

stylus, an ArUco marker was utilized. It represents a square marker featuring a specific

black and white pattern that cameras detect and track, providing precise 3D pose and

orientation information [102]. The function of the marker in this research is to acquire data

on the inclination of the S Pen during writing. Although feasible, ArUco markers were

not utilized during finger writing in this study. The reason for this is the challenges posed

by finger writing, notably marker occlusion, occurring when the marker is obstructed

or partially obscured by the finger. To attach the marker to the stylus during writing,

custom mounts were created using 3D printing technology. Holders of various sizes were
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Figure 3.3: The S Pen stylus equipped with both a magnet and an ArUco marker,
securely held in place by custom-designed holders created using 3D printing technology.

designed and created to accommodate different dimensions of ArUco markers. Multiple

designs were tested to determine the most appropriate option, resulting in the selection of

a 15× 15 mm variant utilizing the original ArUco dictionary. The marker was printed on

a piece of paper with the appropriate dimensions, adhered to the holder and then secured

to the top of the stylus. The S Pen stylus equipped with the described magnet holders

and a mount for the ArUco marker is shown in Fig. 3.3.

3.2.3. Piezoelectric sensors

Regarding external sensory components, the proposed apparatus includes two piezo-

electric sensors. These devices function as audio capture instruments, similar to conven-

tional microphones. However, in contrast to microphones, these sensors are not affected

by distant sounds and are suitable for capturing noises while writing. Their research

purpose is to gather sounds from the tablet surface corresponding to the momentary

pressure exerted to the screen during writing. Additionally, it is feasible to detect the

vibration patterns and directional changes arising from the stylus or finger moving across

the display. The recorded audio signal therefore includes data pertaining to the gestures

performed on the touchscreen, such as gliding, swiping, tapping, and pressure applica-

tion. For the purposes of this study, the piezoelectric sensors are capable of delivering

the required bandwidth and dynamic range for the audio signal. The analog-to-digital

conversion capabilities of both devices were presumed identical, and thus, no additional

analysis or examination was conducted.

Sensors operate based on the piezoelectric effect, in which particular materials, like
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quartz or specific ceramics, produce an electric charge. An electrical output is generated

when mechanical force or stress is applied to the piezoelectric crystal. Different pressure

levels on the screen during writing produce signal variations, enabling recognition of

unique user patterns.

The generated signal is obtained using the tablet integrated microphone input. The

limitation of the device is the absence of a physical 3.5 mm audio connector. To overcome

this constraint, an external USB 2.0 sound card dongle manufactured by Delock was

utilized for sound acquisition. The adapter is equipped with a USB 2.0 Type-A male

connector and offers connectivity options for both microphone input via a 3.5 mm mono

jack and speaker output through a 3.5 mm stereo jack. It incorporates the CMedia

CM119 chipset, ensuring low power consumption and reliable audio processing. The

device features a signal-to-noise ratio (SNR) of approximately 90 dB and supports a

sample rate of 16-bit / 48 kHz. The sound card proved suitable for research purposes as

it does not require an external power source.

A USB-C to USB-A adapter was used to connect the sound card to the tablet. Since

the apparatus includes another audio recording device, a smartphone was also used to

incorporate an additional piezoelectric sensor. The device model utilized includes a 3.5

mm audio input interface, hence an adapter was unnecessary in this case.

The Fig. 3.4 depicts two distinct models of piezoelectric sensors utilized within the

proposed apparatus. Both sensors are positioned beneath the tablet, with one situated in

the bottom left corner and the other in the bottom right corner. Two distinct types were

selected, varying in shape, dimensions, and technical specifications. The devices differ in

their output signal strengths, frequency spectra, dynamic ranges, and sensitivity levels.

In addition to the two mentioned models, a variety of other piezoelectric sensor types have

been tested during the research. These types involved different shapes and dimensions,

including those in the form of a rod as depicted in Fig. 3.5. Moreover, there are more

expensive sensor variants available on the market, featuring larger surface areas, higher

sensitivity, and increased capacity. However, considering the specific objectives of this

study, the selected piezoelectric devices nonetheless provide acceptable results.

Both piezoelectric sensors employed in the apparatus are described in detail below.

The first model utilized is rectangular in shape, featuring a metal plate made of elastic

steel and larger ceramic dimensions measuring 50×30 mm. The second model is circular,
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Figure 3.4: The square PZT-5 and the round FT-50T-3A1 piezoelectric sensors models in
the apparatus, positioned beneath the lower left and right edges of the tablet, respectively.

Figure 3.5: Comparison of different piezoelectric sensor models with varying sizes and
shapes, tested in the apparatus during the research.
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with a metal plate made of brass and a ceramic diameter of 25 mm.

According to the provided data, the first PZT-5 square model is characterized by a

larger attached piezo crystal and a higher current rating. As a result, it is expected to

provide a stronger signal, a hypothesis that has been experimentally confirmed. This

device features a higher resonant frequency, making it more sensitive to higher frequen-

cies. In contrast, the FT-50T-3A1 model demonstrates a lower resonant frequency and

is more responsive to lower frequencies. A more detailed overview and comparison of the

characteristics of the piezoelectric sensors are provided in the Table 3.3.

A coaxial mono audio cable was employed to facilitate the connection between the

sensors and the tablet or smartphone. These types of cables are commonly utilized to

connect devices such as microphones, musical instruments, or other audio sources to

amplifiers, mixers, or sound systems. The single center conductor of the coaxial cable was

soldered to the center of the piezo contact surface to facilitate signal transmission. The

shielding ground conductor was subsequently soldered to the metal contact substrate of

the piezo sensor. Furthermore, a standard 3.5 mm mono audio plug is soldered to the

Table 3.3: Characteristics comparison of the two distinct piezoelectric models employed
as sound vibration and pressure input sensors.

Model FT-50T-3A1 PZT-5
Shape Round Square

Metal plate material Brass Elastic Steel
Contact material Silver Copper

Metal plate dimensions [mm] Φ50 65 × 37
Metal plate thickness [mm] 0.18 0.25

Metal plate area [mm2] 1963 2405
Metal plate volume [mm3] 353.34 601.25
Ceramic dimensions [mm] Φ25 50 × 30
Ceramic thickness [mm] 0.27 0.2

Ceramic area [mm2] 490.9 1500
Ceramic volume [mm3] 132.54 300
Total thickness [mm] 0.45 0.45

Operating temperature range [◦C] −20 to 70 −20 to 70
Resonant frequency [kHz] 3.2 28

Maximum voltage [V ] 15 12
Resonant impedance [Ω] ≤ 200 1002

Static capacity [nF ] 4.2 102
Maximum current [mA] 3 8
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Figure 3.6: Various audio amplifiers were tested during the research in an attempt to
amplify the signals obtained from the piezoelectric sensors.

opposite end of the coaxial cable for device connectivity. In this case, the inner conductor

of the cable was soldered to the tip terminal, and the ground conductor to the sleeve

terminal of the audio connector.

During the research, three different amplifiers were tested in an attempt to amplify

the obtained signal from both piezoelectric sensors. The objective was to investigate how

various amplifier models affect signal enhancement. This was particularly relevant in

scenarios where the acquired signal exhibits lower intensity, such as during finger-writing

tasks. In addition to signal amplification, it was required to minimize the levels of noise

introduced into the signal. The Fig. 3.6 shows several models of audio signal amplifiers

that were examined in this study. All amplifier models operate on a DC power supply

ranging from 3V to 12V, capable of delivering output power ranging from 0.5W to 12W.

Audio input is accepted through a standard 3.5 mm audio jack for connecting sensor.

For testing amplifier performance, sensor was used in various scenarios: without am-

plifiers and in three different cases using distinct amplifier models. The Fig. 3.7 showcases

the data obtained from the FT-50T-3A1 piezoelectric sensor model described earlier. It

is divided into four segments, each displaying a specific waveform corresponding to a par-

ticular use case. The x-axis represents time in seconds, while the y-axis indicates the

amplitude of the sensor readings. The amplitude of signals varies significantly across the

40
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(a) Raw piezo sensor signal, no amplification.

(b) Low amplification level

(c) Moderately amplified signal.

(d) Highest amplification level.

Figure 3.7: Waveforms of piezoelectric sensor signals at different amplification levels,
illustrating variations in amplitude, signal detail, and noise. The amplitudes have been
normalized, and the signals are displayed using Audacity software.

different segments, along with the level of noise present in the signals. The readings per-

tain to the vibrations and changes in pressure detected on the screen during writing the

same word using a stylus.

The very top segment (Fig. 3.7a) displays the raw readings obtained from the sensor
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without any amplification. The acquired signal lacks the pronounced peaks observed in

the amplified measurements. When compared to the third and fourth segments (Fig. 3.7c

and 3.7d), it exhibits signal of lower amplitude and sparser distribution with occasional

spikes. Nevertheless, the waveform demonstrates a notably cleaner profile maintaining a

relatively low noise level. The second segment (Fig. 3.7b) shows a less detailed wave-

form with lower amplitude and fewer smaller spikes compared to the first segment. The

signal appears less cluttered with fewer high-frequency components, featuring smoother

transitions between peaks and troughs. This suggest that the amplification level may not

be able to adequately capture finer details of stylus or finger writing motions. Here, an

amplifier operates akin to a trigger system activated by a strong spike, whereas in other

instances, the signal remains unamplified. There is a certain level of noise present, al-

though it is less prominent compared to the third and fourth segments. Finally, the third

and fourth segments (Fig. 3.7c and 3.7d) demonstrate more prominent signal features,

indicating stronger amplification. With increased amplitude, the signal reveals finer vari-

ations that were previously too weak to detect. However, this also amplifies background

noise, making it more noticeable and introducing small oscillations that may not be part

of the original signal. The fourth segment, distinguished by its highest amplification,

displays the greatest amount of noise. However, it also reveals the most detailed signal

characteristics. Both waveforms exhibit dense and high-amplitude signals with prominent

peaks. In this context, the noise is more pronounced, manifesting as increased fluctua-

tions and irregularities in the signal. This suggests that excessive amplification may lead

to distortion, making it harder to distinguish meaningful signal features from noise.

Considering all the points discussed, it has been concluded that utilizing the raw

piezoelectric signal is an adequate and appropriate option for research purposes. The

measurements obtained during writing provides sufficient details regarding the actions of

gliding, tapping, and applying pressure, whether on the touchscreen or the tablet itself.

The sensor readings, without the use of amplifiers, were suitable to capture these actions

while avoiding the noise introduced by amplifiers. Despite the absence of amplifiers, the

apparatus incorporates two different models of piezoelectric sensors, each characterized

by unique technical specifications. This enables improved tracking of pressure and vibra-

tion dynamics. Moreover, it extends the sensitivity range, facilitating the detection of a

broader spectrum of signal intensities and variations.
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3.2.4. Smartwatch sensors

The Samsung Electronics smartwatch has been incorporated into the apparatus to

facilitate the acquisition of additional data from its integrated sensors. The available

device model used in the research was the Galaxy S3 Frontier, which was introduced in

2016. It operates on version 4.0.0.7 of the wearable platform based on the Tizen operating

system, along with One UI Watch version 1.5. The gadget is equipped with a 1.3-inch

circular AMOLED display, offering a resolution of 360×360 pixels, offering a pixel density

of ∼ 278 pixels per inch (ppi). The device employs the Exynos 7 Dual 7270 chipset and

is equipped with 768 MB of RAM. It is outfitted with various sensors, comprising a

heart rate monitor, barometer, ambient light sensor, accelerometer, and gyroscope. The

primary function of the smartwatch in the proposed apparatus is to collect gyroscope and

accelerometer data while users actively engage in writing on the tablet screen.

The S3 Frontier incorporates an integrated LSM6DSL iNEMO 6DoF inertial measure-

ment unit (IMU) [103], produced by STMicroelectronics. The system-in-package (SiP)

encompasses both a 3D digital accelerometer and a 3D digital gyroscope. This combina-

tion facilitates precise orientation detection and movement tracking. Featuring low power

consumption and high accuracy, the IMU is suitable for smartphones, battery-operated

IoT devices, wearables, household devices, and gaming peripherals. Its characteristics

and technical specifications are detailed in the Table 3.4.

To acquire accelerometer and gyroscope readings from the smartwatch, the official

Galaxy Wearable application was employed. This proprietary software by Samsung Elec-

tronics enables the connectivity and administration of Samsung wearable devices with

compatible smartphones or tablets. It functions as an integrated framework for managing

devices, configuring options, personalization, and installing updates.

The reason for the smartwatch not being directly connected to the tablet is due to re-

strictions imposed by the manufacturer. In particular, establishing a connection between

the Gear S3 Frontier smartwatch and the Galaxy S6 Tab tablet device proved unattain-

able. Due to several constraints, including battery life, the sensors were unable to stay

operational during the entire experimental process. Since the smartwatch and tablet

models used were not compatible, communication was mediated through a smartphone.

In particular, the instructions to commence and halt sensor data acquisition were origi-
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Table 3.4: The characteristics of the LSM6DSL system-in-package, which includes a 3D
digital accelerometer and a 3D digital gyroscope. The SiP is integrated into the Galaxy
S3 Frontier smartwatch utilized within the proposed apparatus.

Model LSM6DSL

Power consumption [mA]
0.4 (combo normal mode)
0.65 (combo high-performance mode)

Analog supply voltage [V ] 1.71 to 3.6
Independent IOs supply [V ] 1.62
External magnetic
sensor corrections

hard and soft ironing

Serial interface
I2C & SPI with main
processor data synchronization feature

Smart Embedded Functions
pedometer, step detector, step counter,
significant motion, and tilt

Full-scale acceleration range [g] ±2,±4,±8,±16
Full-scale angular rate range [dps] ±125,±245,±500,±1000,±2000
Temperature range [◦C] −40 to +85
Smart FIFO up to 4kbyte based on features set

Auxiliary SPI
for OIS data output for both
gyroscope and accelerometer

Android compliance Android M compliant
Footprint [mm] 2.5 × 3 × 0.83

Standard interrupts
free-fall, wakeup, 6D/4D orientation,
click and double-click

nally sent from the tablet to the smartphone. The smartphone subsequently forwarded

directives to the smartwatch through a successfully established connection.

A specialized desktop application for Windows OS has been developed for handling

the acquired data from the smartwatch. The program was developed using the Python

programming language, featuring an intuitive user interface designed to simplify user in-

teraction. To facilitate communication between the watch and the computer, the Smart

Development Bridge (SDB) was employed. It represents a command line tool that man-

ages multiple connections with target devices and sends commands to specific devices.

The SDB provides features like file transfer, port forwarding, remote shell commands,

and target log output control. This client-server utility was utilized to bundle all files

containing accelerometer and gyroscope sensor measurements. The approach facilitates

the management of sensor data files, including tasks such as transferring, moving, and

deleting files from the device’s memory.
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3.2.5. Smartphone sensors

The accessible smartphone device included in experimental setup was the Samsung

Galaxy S9+ model. Released in 2018, it operates on the Android 9 (Pie) operating system,

incorporating the One UI version 1.0 user interface. The device features a AMOLED

display with HDR10 (high dynamic range) standard support. The display measures 6.2

inches diagonally and exhibits a screen-to-body ratio of approximately 84.2%. With a

resolution of 1440 × 2960 pixels, it has a pixel density of approximately 529 pixels per

inch. The specific model is based on the Exynos 9810 chipset, designed for distribution

in the EMEA (Europe, Middle East, and Africa) market. It features an internal storage

capacity of 64GB and a RAM capacity of 6GB.

In addition to enabling connectivity with a smartwatch, the primary function of the

smartphone in this study was to utilize the built-in camera sensor. The sensor is capable

of capturing videos at 4K resolution with 30/60 frames per second (FPS), 1080p resolution

with 30/60/240 FPS, and 720p resolution with 960 FPS. It was employed to document the

complete experimental procedure of handwriting with a stylus. As previously indicated,

acquiring data regarding the inclination of the stylus was unattainable due to constraints

within the S Pen Remote SDK. Consequently, the ArUco marker was positioned atop

the S Pen stylus to address this limitation. Detecting and analyzing the positions of the

ArUco markers from the video files facilitates the determination of the angle at which

a participant holds the stylus. The custom developed Android application on the tablet

device logs the start and end times of each task performed by the user. Since the camera

recording is continuous, these time markers were utilized by a custom Python script to

automatically trim the video based on the stored timestamps. The approach yields sep-

arate video segments corresponding to individual records of signatures, sentences, words,

and letters. This allows for the precise identification of stylus inclination values that

correspond to the particular writing task of the user.

The advantage of the Galaxy S9+ model is the presence of a physical 3.5 mm audio

connector, a component absent in most modern smartphones. Therefore, it was suitable

to employ this feature for interfacing with an external piezoelectric sensor. The headphone

jack is additionally used for capturing supplementary touch screen pressure during the

writing process. In this context, a secondary piezo sensor with a smaller surface area and
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a spherical shape is utilized. This sensor is similarly positioned underneath the tablet,

opposite the one attached to it. As previously noted, Fig. 3.4 shows both piezoelectric

sensors: one is attached to the tablet using a sound card, while the other is directly

connected to the smartphone using a 3.5 mm audio connector.

3.3. Experiment participants

In a controlled environment, a total of 60 subjects participated in the experiment.

Out of the entire group of participants, 12 were female and 48 were male. The majority

consisted of young students, enrolled at the Faculty of Engineering, University of Rijeka.

A subset of the respondents in the experiment consisted of students who were currently

enrolled in a Human-Computer Interaction (HCI) course. This proved beneficial as they

observed the process and actively contributed to the execution of an HCI experiment in a

real-world scenario. The remaining participants were colleagues and acquaintances of the

author of this dissertation. The demographic characteristics of the participants are shown

in Figure 3.8, which presents pie charts for age distribution, handedness (right-handed vs.

left-handed), and gender (male vs. female).

Only nine persons identified themselves as predominantly left-handed. All subjects

confirmed regular use of touchscreen devices and indicated expertise in their utilization

techniques. The majority of users reported previous experience of writing on a touch-

sensitive screen, either with an active or capacitive stylus. A smaller number wrote with

their index finger, as they primarily used fingers for drawing activities.

The experiment took place in a controlled setting, where participants followed a pre-

determined schedule. An adequate time interval was maintained between their arrivals

to allow for necessary recharging of devices, which was one of the limiting factors in the

study. The testing period for each individual ranged from 70 to 90 minutes, including

breaks. The test subjects were granted the flexibility to take pauses at any point dur-

ing the experiment and for any duration they preferred. Simultaneous execution was

considered unfeasible due to the absence of requisite equipment.

Before the experiment commenced, applicants were asked to provide their personal

details, specifically their full name. An identification number was randomly assigned to

facilitate differentiation between users. Each participant was provided with a document
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Figure 3.8: Visualization of demographic data, including age distribution, handedness,
and gender breakdown of the participants.

that outlined a brief overview of the experiment, including the aims, the data collection

procedures and research objectives. They were given explanations regarding the appa-

ratus, detailing the devices used and their respective purposes. Additionally to written

instructions, users received verbal guidance for further clarification. The experiment su-

pervisor, who is also the author of this dissertation, demonstrated several trials showcasing

the usage of the proposed system. If necessary, participants were advise to seek additional

guidance at any point during the experiment.

A handwritten signature was requested as consent to participate in the conduct of

the experiment and the gathering and examination of obtained data. The consent form

can be found in the dissertation Appendix A. Each of the signed documents was properly

stored and archived for future reference. Subjects were clearly informed that the origin

of the data would be completely anonymized to ensure the protection of the privacy. The

study protocol, the conduct of the experiment and the collection of data received approval

by the Ethics Committee of the University of Rijeka, Faculty of Engineering (approval

no. 640-08/23-01/3). The approval can be found in the dissertation Appendix B.

47



A Deep Learning Model for Touchscreen Handwriting Recognition

3.4. Experimental procedure

The participants were seated at a table where the proposed apparatus was positioned

at a predefined location. They were instructed to secure the smartwatch on their dominant

wrist. The device was worn while engaging in writing activities using both a stylus and

a finger. In a specific instance of finger-based writing, individuals utilized a custom 3D-

printed ring that served as a holder for robust neodymium magnets. Another type of

input modality involves the use of a specially equipped stylus, which includes 3D-printed

holders for magnets and an AruCo marker. The objective was to examine how different

input methods, such as using a stylus or a finger, affect the identification of individuals.

Before the experiment commenced, participants were given time to interact with the

setup. In this manner, they were able to attain a detailed understanding of the system’s

functionality. This preliminary training stage could take place prior to the actual conduct

of the experimental activities. Subjects were instructed to practice writing activities

on the tablet screen, initially utilizing a stylus and subsequently using an index finger.

During this phase, all sensor operations were suspended and consequently no data was

collected or stored. Once the user had attained a thorough understanding of how the

system functions, the process of data collection could be initiated.

To assure the precise and consistent sensor readings, the magnetometer was individ-

ually calibrated for every user at the onset of the experiment. Reference values were

determined by computing the mean readings of the magnetometer along the x, y, and z

axes derived from 1000 recorded measurements. While involved in the experiment, sub-

jects were mandated to perform designated writing tasks. Given that signatures represent

a pre-learned action for each individual, alternative methods of user identification were

investigated. Apart from producing handwritten signatures, tasks included writing a pre-

determined number of sentences, words, and letters. The research examines differences in

the process of writing sentences, words, and individual letters among various individuals.

Furthermore, the study investigates the intrinsic, individual characteristics inherent to

these writing processes for each person.

To initiate data gathering, users were instructed to click on a dedicated button labeled

as “Start” within the developed Android application. At this stage, the data acquisition

process was initiated by the activation of all sensors. After concluding the writing task,
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Figure 3.9: User conducting an experiment utilizing the proposed apparatus.

pressing the “Stop” button terminated sensor readings and saved the acquired measure-

ments. This approach ensured data gathering occurred only within the time frame defined

by the two defined events: pressing the “Start” and the “Stop” button. Moreover, it pro-

vided participants with the option to take breaks as required. The average duration of

testing sessions per person ranged from 70 to 90 minutes, considering pauses.

At the beginning of the experiment, the participants were directed to reproduce their

signature 25 times. They were instructed to replicate signatures in accordance with

their typical signing practices on official documents, such as personal identification cards,

driver’s licenses, or other legal forms. Fig. 3.9 shows a user conducting an experiment

using the proposed apparatus, writing on the tablet device with a stylus.

Regarding the composition of sentences, there were 10 phrases in total, evenly dis-

tributed between English and Croatian. They mainly comprised a selection of few brief

terms, intentionally chosen to include most of the letters of both alphabets. More pre-

cisely, the sentences were composed of either two or three words. The participants were

prompted to write each of the sentences a total of 5 times. Moreover, no limitations were
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imposed regarding the utilization of printed or cursive writing.

Furthermore, 5 English and 5 Croatian words were selected employing the same

methodology to incorporate the majority of the alphabet’s letters. In this context, the

selection method prioritized longer words. Similar to the procedure applied to sentences,

participants were required to write each word a total of 5 times. Regarding both the

sentences and words in Croatian, certain terms featured diacritical marks specific to the

language (letters č, ć, d, š, and ž). Three digraphs, representing combinations of two

letters forming a single sound, were included as well (dž, lj, and nj).

Concerning the letters, all characters from the English alphabet were incorporated.

However, digraphs from Croatian alphabet were excluded in this instance. The objective

was to focus only on individual letters rather than combinations of characters. In addition

to the capital letters, the collection of handwritten characters also contained lowercase

letters. In comparison to phrases and words, each letter was written three times.

All handwritten forms, namely signatures, sentences, words, and letters, was system-

atically collected in duplicate. To be precise, after concluding the writing process with a

stylus, the whole activity was repeated using a finger. The entire procedure followed a

predefined schedule, according to the specified sequence for writing different handwriting

forms. This configuration could be adjusted by modifying settings using the implemented

Android application before the experiment commenced. Furthermore, a dedicated area

on the screen was assigned for writing, with dimensions that adjusted based on the hand-

writing from currently being obtained. During the course of writing, participants were

provided with prompts of the current sentence, word, or letter being collected to ensure

correct input.

3.5. Sensor data overview

As a part of this research, a novel dataset is introduced encompassing readings derived

from a multitude of sensors. This dataset was collected using the proposed apparatus de-

scribed in Section 3.4. The resulting dataset comprises sensor measurements gathered

from different devices during the handwriting activities, using both the stylus and the

finger. Since readings are collected from a variety of sensor types, multiple data formats

are employed for storage. The records for each subject are separately archived and cat-
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Figure 3.10: The data structure comprises the measurements acquired from apparatus
employing three distinct devices, incorporating a diverse array of sensors. These readings
are collected during the process of writing signatures, sentences, words, and individual
letters on the tablet screen.

egorized by input modality (finger or stylus) and the type of device used to capture the

measurements. An external hard drive was utilized for the storage of collected data. To

ensure data integrity and prevent potential loss, regular backups were performed using

cloud-based file hosting services.

Fig. 3.10 illustrates the dataset structure, providing details on the devices of the

proposed apparatus, the sensors utilized, along with the data acquired by these sensors.

The selection of particular devices was motivated by the inclusion of a broader array of

sensors, encompassing both integrated and external types. As required, supplementary

sensors can be incorporated by seamlessly integrating them with existing devices.

When utilizing a traditional pen and paper for writing, certain biometric information

may inadvertently be omitted or remain unrecorded [104, 105]. The extensive dataset

collected through proposed apparatus within this study is specifically intended to address

this issue. The Fig. 3.11 presents an illustrative example of data obtained from a hand-

writing sample utilizing the proposed setup. As illustrated, each data point collected

within the handwritten text encapsulates a multitude of information, distinct from that

acquired through conventional pen and paper writing methods. For instance, each point

can be associated with its respective x and y coordinates, timestamp, pressure, velocity,

51



A Deep Learning Model for Touchscreen Handwriting Recognition

size, and orientation. Additionally, unlike paper-based writing, it is feasible to acquire

sensor readings from the magnetometer, gyroscope, and accelerometer. Consequently,

examining the data from each corresponding point enables identification of the specific

user’s handwriting. The curvature, thickness, and width of the strokes are determined by

the unique characteristics of each individual user. These attributes are derived from the

analysis of various factors such as pressure level, velocity, touch size, stylus tilt, and other

relevant parameters. Some characteristics can only be obtained during stylus use, while

others are specific to finger input, as detailed in the following sections of the paper.

Through further analysis of the obtained data, it is possible to derive additional in-

formation about the characteristics of individuals’ handwriting. For instance, by utilizing

event information extracted from the MotionEvent object (such as stylus down, move,

up), it is feasible to determine the number of gestures performed. Specifically, as indi-

cated by the number inside the circle in Fig. 3.11, the count of individual strokes can be

derived from the pen-down and pen-up events. In particular, the number 1 represents the

initial gesture, corresponding to writing the letter “i” in a single motion. Following this,

gesture 2 signifies the action where the user lifts the stylus and subsequently returns it to

the screen to append the dot to the letter. Finally, gesture 3 denotes writing the letters

“c” and “e” in one continuous movement without lifting the stylus. When another user

writes the word “ice”, it is possible that they will not write the letters “c” and “e” in

a continuous stroke. Instead, they may interrupt the writing process after “c” by lifting

the stylus and subsequently resume it to complete the letter “e”. This indicates that

Figure 3.11: A few instances of the characteristics that may be acquired by employing
the suggested apparatus while writing with a stylus on tablet device.
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the different user could employ 4 distinct gestures to write the same word. This also

demonstrates the variability among individuals, resulting in unique gesture patterns that

differentiate their individual writing styles.

3.5.1. Touchscreen data

With regard to the tablet device, the touchscreen sensor enables the acquisition of a

diverse array of data. As stated, the MotionEvent object in Android is employed to collect

information about actions associated with the motion of a finger or stylus. Depending on

the device specifications, it may contain absolute or relative motions, along with additional

information. These movements are characterized through an action code and a collection

of axis values. The action code indicates the state transition that took place, such as

a pointer being lifted up or down. The axis values specify the location and additional

features of the motion, such as size and orientation of the contact area, pressure level, and

type of interaction. Therefore, a MotionEvent includes details about the type of action

that occurred, as well as the coordinates and various other attributes of the action. For

instance, as soon as the individual initially interacts with the screen, the device sends a

touch signal with the action code ACTION DOWN. Moreover, a collection of axis values

encompasses the x and y positions of the input, along with details regarding the pressure,

size, and orientation of the point of contact.

The MotionEvent object signifies user input interactions, encompassing aspects such

as the location and motion of touch pointers on the screen. It encapsulates data pertaining

to various aspects of a user interface event, involving:

• Actions: physical interactions with the device, including touching the screen, mov-

ing a pointer across the display, or hovering a pointer over the display area.

• Pointers: identifiers for objects that interact with the display, such as a stylus, fin-

ger, or mouse. Many screens support multi-touch functionality, wherein the system

allocates a pointer for each finger, stylus, or other pointing object interacting with

the display. A pointer index allows obtaining axis information for a specific pointer.

• Axis: the type of data, for example x and y coordinates, pressure, orientation,

hover data (distance), and more.
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Alongside the used devices and gathered sensor data, the Fig. 3.10 further contribute

to a comprehensive understanding of the acquired MotionEvent parameters. The following

sections present an extensive outline of the various touch event properties employed in

this research scope. Certain attributes are only available when using a stylus input, while

others can be obtained during finger-based writing activities. To store the aforementioned

data, particularly for structuring information relevant to touch events, the JavaScript

Object Notation (JSON) format was used.

When considering pointing devices such as touchscreens, the attributes AxisV alueX

and AxisV alueY denote the value of the specific axis, or register a value of 0 in instances

where the axis is unavailable. The axis parameter of a method indicates the particular

axis for which the value is to be retrieved. Axis values of the pointers can be retrieved

utilizing the parameter pointerIndex. If the pointer index is not specified, the system

will return the value associated with the first pointer, which is pointer zero (0). The units

of measurement employed in this context are display pixels.

The properties RawX and RawY specify the raw coordinates of a touch event within

the coordinate space of the device’s display. This applies regardless of system decorations

or multi-window mode. The obtained values are not modified by any adjustments or

transformations performed on the display, such as screen orientation and scaling. The

coordinates are measured in pixels, starting from the top-left corner of the display. For

devices with subpixel precision, the value may include fractional components.

Furthermore, the view represents fundamental element for developing user interface

components within the Android operating system. Each view performs the tasks of han-

dling events related to user interactions, including the processing of touch events such as

tapping and dragging. In contrast to the attributes RawX and RawY , the attributes

X and Y provide the coordinates of a touch input relative to the view that received it.

In this instance, the X and Y coordinates are within the coordinate space of the view

handling the motion event. These attributes are measured in pixels, originating from the

top-left corner of the view. For devices that achieve subpixel precision, the value may in-

clude a fractional portion, indicating decimal values representing fractions of pixels. The

differences between the X and Y coordinates and the RawX and RawY coordinates are

illustrated in Fig. 3.12, highlighting the distinction between the two properties.

The parameter Orientation represents the angular measurement of the touch region
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Figure 3.12: The X and Y values denote coordinates relative to the view that initiated
the touch event. Here, the green circle indicates touch position on the button labeled
STOP . Attributes RawX and RawY represent the absolute coordinates of a touch
event, with respect to the screen of a device.

and tool area. The tool area refers to the specific region of the screen interacted with using

a digital tool, such as a stylus. It is represented in radians, denoting the angle measured

clockwise or counterclockwise from the reference axis, namely the vertical axis. Hence,

this attribute specifies the direction or alignment of the touch event or gesture occurring

with respect to this axis. For instance, an angle of 0 radians signifies that the touch or

gesture is vertically aligned, ideally circular, or indicates an indeterminate orientation.

Clockwise rotation is indicated by angles greater than 0 radians, while counterclockwise

rotation is represented by values less than 0 radians. The complete range extends from

−π/2 radians, indicating a stylus directed fully to the left, to π/2 radians, signifying an

orientation entirely to the right. Fig. 3.13 illustrates the orientation of a stylus on a

tablet device, wherein it is directed towards the left.

In Android, a sequence of motion events containing actions is used to represent an

entire gesture. These actions determine the transitions and motions of the pointer state,
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Figure 3.13: An example of the stylus tip orientation, indicating a direction to the left
with an angle of approximately −2.27 radians.

specifically the stylus or finger. Thus, the EventActionType parameter specifies the

particular category of action that has been performed. Different constants are employed

to denote various types of touch events or actions executed on the screen, including

pressing down, moving, or releasing a finger. For example, a gesture begins with a motion

event comprising the ACTION DOWN attribute, which indicates the position of the

initial pointer down. This implies the primary pointer has made first contact with the

screen or a particular area on the screen. The pointer movements following the initial

touch are determined by motion events utilizing the ACTION MOV E action constant.

The action usually manifests when the user glides their finger or stylus over the screen

without raising it. A gesture concludes when the last pointer is lifted off the screen with

ACTION UP or when the touch event is terminated with ACTION CANCEL.

Furthermore, the parameter Pressure indicates the pressure level at a specific point

applied to the screen. It is associated with a touch events, particularly when employing

stylus input on devices with pressure-sensitive displays. The pressure levels usually range

from 0 (which denotes the absence of pressure) to 1. However, values exceeding 1 can

be attained in specific scenarios. This depends on the initial calibration or hardware

characteristics of the input device. During the research, the acquisition of pressure data

was unattainable when finger input was employed for writing. The touchscreen of the
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Figure 3.14: Representation of the normalized stylus pressure: minimal pressure on the
left (value 0), maximal pressure on the right (value 1).

tablet lacked pressure sensitivity for finger touch, consistently resulting in a measurement

of 0. Fig. 3.14 illustrates how line thickness varies, reflecting different degrees of pressure

applied by a stylus on the screen while writing. On the left side of the figure, labeled with

number 0, the thinnest line indicates the minimum pressure level. It thickens progressively

to the right as the pressure exerted by the stylus increases. The line is thickest on the

rightmost side, marked with the number 1, signifying the maximum pressure applied.

The attribute Size concerns the dimensions of the region on the display touched during

a specific motion event. It indicates the estimated size of the touch interaction area

between the user’s finger or stylus and the touchscreen, typically obtained in pixels. The

tapped surface area is approximated by normalizing the actual touch value in pixels with

the range of values specific to the device. Afterward, these measurements are adjusted to

span the interval from 0 to 1. This component includes more details regarding the touch

interaction, distinguishing between accurate touches and general gestures. Moreover, it

could be utilized to detect the presence of fat touch events.

The MotionEvent object provides two separate timestamps serving different purposes,

specifically the DownTime and the EventT ime. The first attribute denotes the start of

the touch interaction, indicating the time of initial contact. It serves as a reference for

monitoring the duration of the touch event, remaining unchanged during a gesture. The

EventT ime denotes timestamps for specific events within the touch gesture, for instance

finger or stylus movements or releases. These values vary for each discrete event within

the touch sequence, indicating the time of a specific action in relation to the start of the

touch gesture. Both attributes are commonly expressed in milliseconds, either since the
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Figure 3.15: The coordinate system utilized by the Sensor API in relation to a device.

device was powered on or since the epoch 1.

The VelocityTracker API within the Android SDK was employed to determine the

velocity of touch events. It facilitates the measurement of the velocity at which a pointer,

such as a finger or stylus, traverses the screen. When determining the direction and

speed of gestures, it is feasible to obtain the velocity of movement independently along

the horizontal (x) and vertical (y) axes. Moreover, the parameter units can be specified

for velocity measurement. For instance, a value of 1 represents units per millisecond, and

1000 denotes units per second, and so forth. The defined units are in accordance with

those employed for reporting motion. More precisely, the measurement of motion along

the x and y axes is expressed in terms of pixels.

3.5.2. Magnetometer data

Apart from the described touchscreen data, the proposed dataset comprises readings

from various other sensors. An additional sensor employed from the tablet is the inte-

grated magnetometer, accessed through the Android sensor framework. The obtained

1the count of non-leap seconds that have elapsed since 00 : 00 : 00 UTC on Thursday, 1 January 1970
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A. Salkanović - doctoral dissertation

data pertains to measurements of the environmental geomagnetic field across three axes

(x, y, and z). The values are reported individually for each coordinate axis within a single

event. These readings are expressed in units of µT (microteslas).

To represent data values, the sensor API typically uses a standard 3-axis coordinate

system. The coordinate system is specified relative to the display when the device is in its

default position, as illustrated in Fig. 3.15. The orientation of the axes remains consistent

despite any adjustments in the device’s screen orientation. In the default orientation, the

x axis lies horizontally, extending to the right, the y axis stands vertically and points

upward, while the z axis projects outward from the front of the display. Within this

system, coordinates positioned behind the display are represented with negative z values.

The sensor category utilized corresponds to an uncalibrated magnetic field type. It

represents raw magnetic field measurements without any corrections for device-specific

errors or environmental interferences. Therefore, the provided data does not include hard

iron calibration, which addresses distortions caused by magnetized iron, steel, or perma-

nent magnets on the device. However, these hard iron bias values are returned separately

to facilitate custom calibrations. In the research, calibration was performed by assessing

the environmental magnetic field across all three axes. Measurements were conducted

over a total of 1000 steps, after which the average values were calculated. The corrected

readings were obtained by subtracting these average values from the current readings.

Additionally, the sensor operates without periodic calibration, ensuring continuity in the

data stream during use.

Within the context of Android’s sensor framework, there are various constants de-

signed to regulate how often the measured values are delivered to the application. In this

study, constant SENSOR DELAY FASTEST was utilized to maximize the frequency

of updates for magnetometer readings. This setting typically operates at the maximum

sampling rate supported by the hardware and the operating system.

Among the reasons the tablet utilized in the apparatus was not updated to the latest

available OS version was the sensor refresh rate constraint in Android 12. In this instance,

the magnetometer sampling rate is limited to 200 Hz depending on the access to sensor

data. To gather measurements at a higher rate, specific permission must be approved by

the user, or a security violation will be indicated by an exception.
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3.5.3. Accelerometer and gyroscope data

In the context of accelerometer and gyroscope sensor data, readings were acquired

using a smartwatch during stylus or finger input. Both the accelerometer and gyroscope

reference axes are depicted in Fig. 3.16. The Sensor API of the Tizen operating system

was employed to access measurements from the sensors. For the accelerometer, the devel-

oped application captures changes in the velocity of a device while writing. It measures

the acceleration vector along 3 axes (x, y, and z) relative to the body frame of a device.

The acquired data represents a composite of linear acceleration and gravity components.

Linear acceleration, which denotes the device’s linear motion, can be derived by subtract-

ing the gravitational components from accelerometer data. The accelerometer reference

axes and the vector denoting user-driven acceleration are illustrated in Fig. 3.16a. The

measured 3 Cartesian axis values are expressed in m/s2, while the provided timestamp is

given in microseconds. An acceleration of 1g is consistently observed on the axis aligned

with Earth’s gravitational field. While the device is idle, the readings indicate a value of

1g (the gravity offset) on one of its axes. This signifies the specific device axis that aligns

with the direction of gravity.

The second sensor on the smartwatch pertains to the gyroscope, which detects angular

(a) The accelerometer measures velocity
changes in 3 axes relative to the device’s body
frame. “A” denotes user-driven acceleration.

(b) The gyroscope detects and measures an-
gular velocity or angular rates of a device
along all 3 axes.

Figure 3.16: Accelerometer and gyroscope reference axes.
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velocity or rates of rotation of a device. The 3D gyroscope data demonstrates high

sensitivity when measuring incremental rotation angles. The sensor registers measurement

data for all 3 axes in degrees per second (◦/s), with timestamps captured in microseconds.

The gyroscope reference axes are illustrated in Fig. 3.16b.

3.5.4. Camera tracking data

Due to the limitations of the S Pen Remote SDK discussed previously, an ArUco

marker was positioned at the top of the stylus. Its function involves acquiring data

related to the tilt of the stylus during the user’s writing activity. The camera sensor from

a smartphone was utilized to capture the entire process of handwriting with the stylus

during the experiment. The recorded video files are intended to determine the tilt of

the stylus by tracking ArUCo markers during writing. The video assets were encoded

in MPEG-4 Part 14 (MP4) format, with a resolution of 720p and a frame rate of 30

frames per second (FPS). This format and quality ensure clear and detailed footage,

while also maintaining a relatively small file size. Such attributes make the video suitable

for analyzing the writing process and performing accurate ArUco marker detection.

Since the entire experiment process was recorded for each user, the clips were trimmed

based on exact timestamps saved in a separate textual file while writing. These times-

tamps indicate the precise moments at which the writing process began and ended for

each specific writing task. Each trimmed video recording represents a distinct instance

of writing, whether it’s an individual signature, sentence, word, or letter. This ensures

that every clip corresponds to a specific written element, allowing for precise analysis of

each separate writing instance. After trimming, the recordings were further processed for

ArUco marker detection using a custom Python script. The 3D translation (position)

and rotation vectors of the detected markers were then extracted and stored in separate

textual files to determine the inclination of the stylus while writing.

As for the ArUco marker, it was generated using predefined dictionaries within the

ArUco module. These dictionaries define a specific collection of distinct binary patterns

that are employed to create individual markers. In the study, the standard ArUco dictio-

nary was utilized, where the marker ID was 9 and its size measured 150 mm. Following

the successful calibration process, the marker was tracked using trimmed video recordings
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of signatures, sentences, words, and letters. The pose estimation process of the detected

markers resulted in acquiring its orientation and position relative to the camera. The

values returned correspond to rotation vectors, translation vectors, and object points.

Rotation vectors provide information about the alignment of detected markers in re-

lation to the camera frame. The vectors do not explicitly represent the direction the

marker is facing. When converted into rotation matrices, they indicate the 3D rotation

(axis and angle of rotation) required to align the marker’s local coordinate system with

the coordinate system of a camera. By default, the coordinate system of the marker is

centered at its midpoint, with the z axis oriented perpendicular to the surface of the

marker. The coordinated of the four corners of the marker within its local coordinate

system are presented as follows:(
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Here, markerLength refers to the physical size of the marker, specifically the length

of one of its square sides. Additionally, it is feasible for the coordinate system to be

positioned in the upper left corner of the marker. The dataset proposed in the study

contains information about the orientation of the marker in 3D space represented as a

three-element vector. The first two elements specify the axis of rotation defined by the

direction vector, while the third element indicates the angle of rotation around this axis.

Translation vectors describe the position of the detected markers in 3D space relative

to the camera. They provide information about the displacement along all three axes from

the camera’s origin (usually center of the camera) to the center of the marker. In this

research, these values were obtained and stored in the dataset as 3D vectors comprising

parameters that specify the translation (movement) along the x, y, and z axes. This

information facilitates the accurate identification of the spatial position of the ArUco

markers in relation to the smartphone’s camera, serving as the reference point.

Object points describe an optional parameter representing the known 3D coordinates
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Figure 3.17: An example of ArUco marker detection during stylus writing, exhibiting
variations in axis directions among three different users. The correspondence of axes to
colors is as follows: x is represented by red, y by green, and z by blue.

of the four marker corners within its local coordinate system. This vector, combined with

rotation and translation vectors, facilitates the complete reconstruction of the 3D pose of

the marker. Alternatively, specifying the real physical dimensions of the marker enables

automatic calculation of the coordinates. Fig. 3.17 displays examples of detected ArUco

markers from a video recording during an experiment involving three different partici-

pants. While using a stylus for writing, participants demonstrate diverse approaches to

gripping the device. Consequently, the acquired rotation and translation vectors exhibit

values that vary among users, reflecting distinct writing styles.

Upon completion of the experiment, stylus tilt data were extracted from each video file

by tracking the ArUco marker. The custom script was implemented for this purpose, per-

forming camera calibration and marker detection from the trimmed videos. To establish

an accurate mapping between a 3D point in the physical environment and its correspond-

ing 2D projection in the image plane, it is essential to perform camera calibration. To

calibrate the sensor, the process involves obtaining the distortion coefficients and intrinsic
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parameters of the camera. This information allows for an accurate geometric interpreta-

tion of the captured images in relation to real-world coordinates. Once determined, the

calibration parameters remain constant unless the camera’s optics are modified. Details

of the camera calibration procedure are provided in Appendix C.

3.5.5. Piezoelectric sensors data

Regarding the piezoelectric sensors, two were connected to both the smartphone and

tablet to gather data on the vibrations and changes in pressure applied to the screen when

writing. Considering their function as audio recording devices similar to conventional

microphones, the data were stored in individual audio files. The recorded signal includes

information about gliding, tapping, and applying pressure to either the touchscreen or the

device itself. Readings from external piezoelectric sensors were saved using the Waveform

Audio File Format (WAVE or WAV). This file format maintains the integrity of the

original audio data, ensuring no loss in quality or information. The file was encoded using

Pulse Code Modulation (PCM), a widely accepted method for converting analog audio

signals into digital format [106]. All files within the proposed dataset consist of a single

audio channel, maintaining a constant bit rate mode of 706 kbps. Furthermore, each

sample in the audio file is represented with a bit depth of 16 bits, while the sampling rate

was set to 44.1 kHz. Fig. 3.18 displays a waveform and spectrogram representation of

Figure 3.18: Time-domain and frequency-domain representations of a signal collected
by a piezoelectric sensor while a user was writing on a tablet screen using a stylus.
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a signal obtained from a piezoelectric sensor when writing with a stylus. The recordings

provide detailed insights into the interaction between both the stylus and the finger with

the surface. This allows for a deeper analysis of pressure dynamics and motion or vibration

patterns during the writing process and user interaction with the touchscreen.

3.5.6. Screenshots

Furthermore, a screenshot is taken at the conclusion of each writing session, for each

trial of writing by each user, whether it involves signatures, sentences, words, or letters.

This visual record helps in assessing characteristics like stroke patterns, variations in

writing style (such as slant, curvature, and spacing), and the relative size and proportions

of letters and words. The screenshot is saved in Portable Network Graphics (PNG) format,

which preserves clarity and quality, providing a high-resolution, unaltered visual record

for future reference and analysis. Although these screenshots were saved, they were not

utilized in the construction of the deep learning model. However, they could serve as

valuable resources for future research.

Fig. 3.19 displays handwriting samples of the sentence “We trust you” across three

columns, where each column is associated with a distinct user. Within each column, the

Figure 3.19: Handwriting samples from multiple users, where each column represents
successive attempts by the same individual to write the sentence ’We trust you’ using
stylus. Similarities are observed within each user’s attempts, while noticeable differences
in letter formation and spacing are evident between different users.
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user has made multiple attempts to write the same sentence. The figure shows that the

attempts by the same user within each column are generally similar, displaying consistent

characteristics such as the overall style of writing, the size of letters, and the spacing

between words. For example, in each column, the shape and formation of letters like

’W’ and ’T’ remain relatively consistent across the attempts, indicating the unique writ-

ing pattern of each individual. However, noticeable differences between users across the

columns can be observed. These variations include the way certain letters are written,

such as the slant of the ’W’, the crossing of the ’T’, and the curvature of the ’Y’. Ad-

ditionally, users exhibit different spacing between words and distinct handwriting flow,

which can be seen in the overall structure and arrangement of the text. These differences

present valuable perspectives into the unique handwriting characteristics of each user.

66
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Chapter 4

MODEL DEVELOPMENT

Before delving into model development, this chapter describes the initial steps taken

to explore the feasibility of handwriting-based person recognition. This included the vi-

sualization of handwriting data to uncover similarities in handwriting dynamics within

the same individual and differences between various users. These observations are sup-

ported not only by graphical representations but also by numerical values described in

Section 4.1. Specifically, Dynamic Time Warping (DTW) was applied to a preliminary

dataset, further validating the consistency of intra-person similarities and inter-person

differences. Additionally, it provided valuable information on the classification potential

for user identification, as discussed in Section 4.2.

Once the classification potential was demonstrated, these initial steps guided the sub-

sequent stages of model development using CNN. The following sections of this chapter

outline the dataset utilized in the study, followed by a description of the data preprocess-

ing steps required to prepare the data for analysis. Furthermore, it details the methods

employed for feature extraction and the classification techniques utilized to identify indi-

viduals based on their handwriting.

4.1. Dynamic Time Warping (DTW)

Dynamic Time Warping (DTW) s a technique used to measure the resemblance be-

tween two time series, such as speech, gestures, handwriting, or any sequence that may

differ in length or timing [107]. It identifies the best correspondence between sequences by
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adjusting them non-linearly through expansion or contraction along the time dimension.

DTW has been widely applied in speech recognition, gesture recognition, or handwrit-

ing analysis, where it remains relevant in contemporary research [108]. It determines

the best non-linear route across two vectors, minimizing their total cumulative distance.

For instance, considering two time series Q = [q1, q2, . . . , qn] and C = [c1, c2, . . . , cm],

DTW aligns these sequences by constructing an n × m warping matrix in which each

element D(i, j) denotes the absolute difference between the corresponding elements qi

and cj: D(i, j) = |qi − cj| [109]. The objective is to identify a path through this matrix

that reduces the overall cumulative distance to a minimum. The recurrence relation for

computing the cumulative distance γ(i, j) is:

γ(i, j) = D(i, j) + min


γ(i, j − 1)

γ(i− 1, j − 1)

γ(i− 1, j)

. (4.1)

Here, D(i, j) is the distance in the current cell, while γ(i, j) represents the cumulative

distance at that position, incorporating the smallest cumulative distances of the three

neighboring cells. The path is traced from the first cell to the last, ensuring minimal

distortion in the alignment of the sequences [110].

At the beginning of this research, prior to collecting the main dataset, an initial

validation of the apparatus was conducted to provide proof-of-concept for its functionality.

The primary objective was to demonstrate that the apparatus could effectively capture

diverse biometric data, ensuring it was suitable for subsequent data collection and analysis.

For this validation, an initial dataset was gathered from five participants, with each

participant required to repeat the writing of signatures, sentences, words, and individual

letters multiple times across different trials. This preliminary dataset is the same as the

one described in Section 3.5., which was collected in an experiment with 60 participants,

except it contains data from only five individuals. It included input from two modalities,

with participants using both a stylus and their finger for writing.

To demonstrate the feasibility of signature-based (and more generally, handwriting-

based) person recognition, DTW was applied to analyze handwriting patterns using a

preliminary dataset. It measured both intra-person and inter-person differences in the
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handwriting samples, with the objective of comparing writing patterns and identifying

differences in handwriting dynamics. Intra-person refers to the variation within an in-

dividual’s writing samples, examining how consistent a person’s handwriting is across

multiple trials. A lower intra-person distance indicates consistent handwriting, which

is desirable in authentication contexts, as it reflects the stability of a user’s handwrit-

ing. Inter-person distance refers to the differences between participants, highlighting how

distinct their handwriting is when compared to one another. Higher inter-person value

is preferable because it indicates that the system can easily distinguish between users’

handwriting.

A detailed analysis of time-series data was performed using DTW metrics. The pre-

liminary dataset included measurements from various sensors during the writing of the

sentence “We trust you“ by five different individuals. For each user, intra-person distance

was computed by measuring pairwise distances between all trials, populating a distance

matrix with the resulting values. Comparisons of identical trials were excluded, resulting

in ten pairwise comparisons per user for five trials. Inter-person variability was calculated

by comparing each user’s trials against all other users’ trials. This approach resulted in

25 inter-person distances for each pair of users. The average values of both intra-person

and inter-person distances were then computed to evaluate the extent of similarity within

individual users and the degree of differentiation between different users.

For sensors that capture multi-axis data, such as magnetometers, accelerometers, and

gyroscopes, the magnitude was computed to simplify the complex multidimensional data

for further analysis. In this context, magnitude represents a scalar quantity derived from

measurements along the x, y, and sometimes z axes, depending on the sensor type. Instead

of treating each dimension separately, the magnitude of the vector at each point can be

calculated to reduce the three-dimensional data (x, y, z) into a single time series for each

trial. It is obtained by calculating the Euclidean norm of the vector formed by these axes,

providing a single magnitude value for each trial. The magnitude is calculated as:

Magnitude =
√

x2 + y2 + z2, (4.2)

where x, y, and z are the sensor measurements along the x, y, and z axes, respectively.

In addition to DTW distances calculated for each individual axis, distances are also com-
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puted between magnitude time series for each user. This comparison helps evaluate how

consistent or varied a user’s behavior is across different writing trials. Using magnitude as

a unified metric simplifies the comparison of trials across different users by consolidating

the data into a single dimension.

Section 5.1. presents the DTW analysis results, with numerical data highlighting

consistent handwriting within individuals and notable differences between users. These

findings are additionally supported by graphical representations that further illustrate

and reinforce the observations.

4.2. Classification potential

The Classification Potential (CP) ratio was introduced to provide quantitative measure

of distinguishing handwritings and maintaining consistency in person identification tasks.

This ratio is computed by dividing the inter-person metric by the intra-person metric:

CP =
inter-person DTW

intra-person DTW
. (4.3)

CP metric is considered favorable when the numerator (inter-person variability) is as high

as possible, indicating that the handwriting of different individuals is easily distinguish-

able. On the other hand, the denominator (intra-person variability) should be as low

as possible, showing that each individual’s handwriting is highly consistent across trials.

A higher CP value indicates better classification potential by showing that differences

between individuals are much more pronounced than the variations within a single indi-

vidual’s attempts. In this scenario, handwriting is more distinct between people than it

is within a person’s own handwriting, resulting in more effective differentiation between

individuals. In contrast, a lower CP suggests poor classification potential, either because

handwriting is not distinct enough between individuals or there is significant inconsistency

within the same individual’s trials. The obtained values of the CP metric can be useful

in the context of sensor selection and fusion optimization. Specifically, a combination of

higher sensor cost (whether from purchase price or the effort needed for experimental in-

tegration) and a low CP value suggests that the sensor could be a candidate for exclusion

from the fusion. In other words, if a researcher intends to remove certain sensors or groups
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of sensors from the fusion for any reason, CP, along with the cost, serves as a relevant

factor in making this decision. Within the scope of this research, it was crucial to take

this into account before initiating the experiment, which required a considerable amount

of time to conduct. This facilitated a preliminary analysis on a small dataset before pro-

ceeding with finding relevant participants for the experiment, collecting a larger amount

of data, and applying neural networks for the classification task. The comparison of the

CP metric values for various sensors and measurements, along with the intra-person and

inter-person results, is provided in Chapter 5.2.

4.3. Dataset

Handwriting samples were collected while users wrote on the tablet screen using a

finger or stylus, and these samples were represented as a series of data points. Since

multiple sensors are utilized, each data point corresponds to measurements from different

internal and external sensors collected during the writing process. Consequently, every

point within the handwriting sample has associated sensor readings that capture a range

of writing characteristics, including pressure, velocity, magnetometer readings, gyroscope

data, and accelerometer measurements, among others. All data from the dataset outlined

in Section 3.5. were organized individually for each participant, categorized by input

modality (finger or stylus), handwriting form (signature, sentence, word, letter), and the

type of device from which the measurements were obtained.

The readings obtained from the sensors have been organized into 24 distinct vectors.

Each vector contained particular measurements obtained from a specific sensor during

handwriting sessions, resulting in one vector for each sensor feature. As an illustration,

readings collected from the magnetometer along the x, y, and z axes formed three discrete

vectors. Measurements from the gyroscope also produce three distinct vectors along these

axes, as do the readings from the accelerometer. Additionally, six separate vectors were

formed by the translation and rotation values obtained from the positional data of ArUco

markers, both corresponding to the x, y, and z axes. The readings from the piezo sensors

will result in a single vector for each piezo sensor, as they do not measure along any specific

axis (e.g., x, y, or z), but instead detect changes in characteristics such as pressure or

vibrations. Therefore, each sensor captures unique features, with each feature represented
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as a vector of values. Below is a description of the 24 feature vectors, highlighting the

specific characteristics obtained from the various sensors:

• Touchscreen features:

– relposx: The x-coordinate of the touch event’s position on the touchscreen,

measured relative to the device’s view area. It specifies the horizontal location

where the stylus or finger touches the screen.

– relposy: The y-coordinate indicates the vertical position of the touch event

on the screen. Similar to the x-coordinate, it is measured relative to the active

view space where the interaction occurs.

– velx: The velocity of the touch event along the x-axis.

– vely: The velocity of the touch event along the y-axis.

– pressure: Pressure applied by the stylus on the screen. It is captured by the

sensor embedded in the touchscreen, and it varies based on the force exerted

during the writing. Not valid for finger input.

– size: Finger touch size on the screen. Represents the area of contact when a

finger touches the display. This value indicates the size of the pressed surface

on the touchscreen, normalized between 0 and 1. Not valid for stylus input.

– orientation: The orientation of the stylus as it interacts with the screen. It

is measured in radians and represents the angle of the stylus in relation to the

vertical axis of the display. Not valid for finger input.

• Magnetic sensor readings:

– magx, magy, magz: The readings from the magnetometer sensor, measuring

the magnetic field across the x, y, and z axes during the writing process. The

magnetometer detects magnetic field disturbances from the stylus or finger,

both equipped with magnets. These values help identify the unique hand-

writing pattern by tracking magnetic interference during writing. The mag-

netometer readings were adjusted by calibration measurements of the ambient

magnetic field.
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• Piezoelectric sensor readings (attached to the tablet and smartphone):

– tablet piezo: Readings from the piezoelectric sensor, connected to the tablet

and positioned underneath, capture vibrations and mechanical strain applied

on its surface while writing with a stylus or a finger.

– smartphone piezo: Similar to the tablet piezo, but located in a different

position beneath the tablet. It is connected to the smartphone and provides

complementary data on vibrations and pressure.

• Smartwatch sensor readings:

– rx, ry, rz: Rotation rates around the x, y, and z axes, which are recorded

by the gyroscope sensor from the smartwatch. It measures angular velocity,

tracking how the user’s hand rotates while writing using stylus or a finger.

– ax, ay, az: Acceleration readings from the smartwatch in the x, y, and z

directions, captured by the accelerometer sensor. It detects the linear accelera-

tion of the user’s hand, tracking how quickly the hand moves in any direction,

whether the writing is performed using a stylus or a finger.

• Camera-based tracking (ArUco markers):

– aruco tx, aruco ty, aruco tz: 3D translation of the marker in space, pro-

viding the x, y, and z coordinates of the marker, contributing to the analysis

of the pen’s exact movement during the writing process.

– aruco rx, aruco ry, aruco rz: 3D rotation of the marker in space, deter-

mining the rotation angles around the x, y, and z axes. The rotation values

help in determining how the stylus is oriented and rotated while writing.

Furthermore, each of the 24 vectors was organized into 6 distinct categories, referred to

as sensor subsets in the text. This categorization was introduced to simplify the analysis

and was based on the type of data and the sensors used to obtain them. Every category

included specific measurement parameters:

– touchscreen: Includes touch positions (x, y) and touch velocities (in x and y

directions) while writing.
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– magnetometer: Measurements of magnetic fields along the x, y, and z axes.

– input specific: For the stylus, the values represent stylus tilt and pressure, while

for the finger, they correspond to the touch size.

– piezos: Obtained piezoelectric data from two piezoelectric sensors connected to

tablet and smartphone.

– smartwatch: Gathers rotational data and acceleration data across three axes from

gyroscope and accelerometer.

– visual tracking: Monitors the translation and rotation of a stylus using ArUco

markers tracked from the camera recording.

The dataset gathered consisted of data from various sensors outlined in previous chap-

ters, captured during the handwriting with either a finger or a stylus. Before preprocessing

(resampling, normalization, and padding), the dataset was split into train and test sets.

Additionally, as illustrated in Fig. 4.1, the test set was further split into gallery and query

subsets:

– gallery subset: Functions as the system’s reference or “enrollment” set. It contains

pre-enrolled handwriting samples from the participants, which act as templates for

identification.

– query subset: Contains samples that are “queried” or compared against the

gallery. The system receives these samples and attempts to identify the individ-

ual by matching the query to one of the enrolled samples in the gallery.

Train Test

Gallery Query

D   A   T   A   S   E   T

Figure 4.1: Visualization of the dataset split into training and test sets, with the test
set further divided into gallery and query subsets.
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The train set size represents all biometric samples (recordings) from 10, 20, or 30 randomly

selected participants. The size of the test set, comprising the gallery and query subsets,

depends on the train set, as it is derived from the remaining participants (50, 40, or

30, respectively). Depending on the input method (stylus or finger), handwriting form

(signature, sentence, word, letter), and train size, 2 × 4 × 3 datasets were generated and

observed independently.

Furthermore, specific rules are applied for each handwriting form to allocate samples

to the gallery and query subsets. For the sentence and word handwriting forms, the

gallery subset comprised the second and fourth samples, while the query subset contained

the first, third, and fifth samples. For the letter handwriting form, the second sample was

included in the gallery subset, while the first and third samples were assigned to the query

subset. Since there were 25 samples for signatures, the assignment to gallery and query

subsets was determined using their ordinal positions after applying a modulo operation

with the value 5. This facilitated the same selection pattern applied to the sentence and

word samples, ensuring a consistent and systematic distribution across the gallery and

query subsets.

4.4. Data preprocessing

Data preprocessing ensures that all handwriting data collected from various sensors

(touchscreen, piezo sensors, gyroscope, accelerometer, magnetometer, etc.) is uniformly

formatted and ready for use in training deep learning models. Resampling, normalization,

and padding address the issues of varying sample sizes and scales.

As various sensors typically record at different frequencies, the vectors contain raw

sensor measurements that vary in size. Consequently, the length of all vectors (number of

data points) is determined by the number of feature points collected by specific sensors

during the writing process. In other words, it depends on factors such as the duration of

the recording while the user is writing and the sampling rate of each sensor. For instance,

the touchscreen might record touch events every ten milliseconds, while the piezo sensor

may sample every five milliseconds, leading to a mismatch in the number of data points.

Additionally, factors like writing speed and the complexity of the stroke affect the number

of samples collected. For example, a person who writes slowly generates more data points
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than someone who writes quickly. Other considerations include differences in writing

styles, the pressure applied, and pauses during writing, all of which can influence the

amount of data captured by the sensors.

Resampling standardizes these differences by adjusting the number of samples in each

vector to achieve uniformity in size. This crucial preprocessing step enables the com-

parison or fusion of data originating from different sensors. If vectors are not resampled

to the same length, they cannot be used together in a consistent way for deep learning

models. To maintain consistency, each vector was adjusted to contain the same number

of samples. This number, denoted as Ns, matches the minimum sample count obtained

from all sensors. In this specific context, Ns represents the length of the vector derived

from the tablet’s touchscreen sensor, which recorded the fewest samples. Consequently,

the lengths of each feature vector were either reduced or increased to align with Ns. This

adjustment guarantees that all 24 feature vectors are aligned in terms of sample size,

allowing for direct comparison and utilization in deep learning models.

The maximum lengths of vectors per collected handwriting form were as follows: sig-

nature 613, sentence 777, word 607, and letter 130. Based on the number of samples Ns

in the dataset, a predefined maximum size (MAX SIZE) of 1024 samples was selected.

Once the data is resampled to a consistent size, the next step was normalization. This

process ensures that all data from different sensors is on the same scale, as different sensors

can produce vastly different ranges of values. The influence of sensor-specific value ranges

is mitigated, preventing any single sensor from disproportionately affecting the training

process. For instance, stylus pressure levels range from 0 to 1, while magnetometer

readings can vary considerably based on the magnetic field. Min-max normalization is

applied to each of the 24 vectors representing sensor readings, scaling all values to a range

between 0 and 1. To achieve a uniform data representation across all vectors, min-max

formula is applied:

vector[i] =
vector[i] − min(vector)

max(vector) − min(vector)
,∀i ∈ [0, Ns]. (4.4)

Here, vector[i] represents the original value at index i, min(vector) is the minimum value

in the vector, and max(vector) is the maximum value.

To ensure every vector has the same size, with a target length of 1024 (MAX SIZE) in
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A. Salkanović - doctoral dissertation

this case, padding is applied. The process involved extending the vectors by appending

zeros to the right side of the samples until the maximum size is achieved (right-padding).

4.5. Convolutional neural network

In online signature verification or identification, various types of neural networks are

frequently employed to capture and analyze the distinctive features and dynamic charac-

teristics of handwritten signatures. Based on the complexity of the task and the nature of

the dataset, some common architectures of neural networks used include: convolutional

neural networks (CNNs) [111], recurrent neural networks (RNNs) [112], Siamese networks

[113], and autoencoders [114]. Each of the network types has specific strengths in pro-

cessing different aspects of signature data, from spatial features to temporal sequences.

The CNNs represents one of the most widely utilized and prominent architectures

within the domain of deep learning (DL) networks [115]. Due to their effectiveness in

feature learning, they are commonly employed across various domains [116]. These include

applications in autonomous vehicles, object detection, character recognition, computer

vision, medical image processing, natural language processing, and handwritten signature

verification or identification [117]. CNNs, initially introduced by LeCun et al. [118], were

primarily developed for image processing tasks.

Unlike their 2D counterparts tailored for images, 1D CNNs are well-suited for cap-

turing local patterns in one-dimensional signals. They are designed to extract features

from sequential or temporal data, such as financial time series, audio, and text. The

architecture is built upon the same principles as CNNs for images, but the convolution

operations are applied along one dimension [119]. In a 1D CNN, the core operation is

the convolution, which involves sliding a one-dimensional filter (or kernel) over the input

sequence to compute local weighted sums. The general mathematical formulation for the

convolution operation is given by:

y(t) =
k−1∑
i=0

x(t + i) · w(i) + b, (4.5)

where x is the input sequence, w is the filter of length k, b is a bias parameter, and t

indexes the output positions. The equation computes the output y(t) at each time step
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by summing the element-wise products of the input sequence and the filter weights [120].

This operation allows the network to capture local patterns and dependencies within the

data. The process is repeated as the filter slides along the input, producing a feature map

that highlights the presence of specific patterns. The formula is often adapted based on

several important hyperparameters, including kernel size, stride, padding, and the number

of filters. Specifically, the kernel size determines the window over which the convolution

is computed, the stride specifies the step size of the sliding filter, and padding can be used

to control the dimensionality of the output relative to the input [121].

The common architecture of a 1D CNN starts with an input layer that feeds raw

sequential data into one or more convolutional layers. Each convolutional layer applies

several one-dimensional filters to extract different features from local regions of the signal,

producing its own feature map. Typically, the output of a convolution is passed through

a non-linear activation function (such as ReLU, sigmoid, or tanh), which allows the net-

work to model complex relationships within the data [122, 123]. Convolution layers are

often combined with pooling operations, such as max pooling or average pooling, which

downsample the feature maps to reduce data dimensionality and make the network less

sensitive to small shifts in the input [124]. To further improve generalization and prevent

overfitting, regularization techniques such as dropout and batch normalization are often

applied between layers. Finally, the extracted features are typically passed through one

or more fully connected layers that combine the features extracted by the convolution and

pooling layers. This step allows the network to perform tasks such as regression or clas-

sification based on the combined features. For tasks involving classification, the softmax

function is commonly applied [125].

In this research, alternative architectures such as ResNet50, VGGNet, EfficientNet,

and DenseNet were considered by transforming all vectors into 2D images, with each

row representing a vector. The chosen 1D-CNN architecture is justified by several key

considerations, offering advantages compared to the other models:

• reduced parameter count and model size:

– considering all 24 vectors, the model trains around 5 million parameters com-

pared to approximately 25.6 million in models like ResNet50

– the memory footprint of a model is only 39 MB, providing the best trade-off
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between size and accuracy

• comparable accuracy:

– despite its reduced complexity, it achieves comparable accuracy to the larger

and more advanced architectures

Regarding the network depth, experimental results from preliminary testing demon-

strated that increasing the number of convolutional layers from two to three resulted in

a notable improvement in accuracy. Adding a third convolutional layer enhanced feature

extraction capability, allowing it to capture more complex patterns in the data.

4.6. Feature extraction

After data preprocessing, the next step involves feature extraction (FE). In this phase,

the normalized, padded, and resampled raw sensor data is transformed into a lower-

dimensional form that is appropriate for model predictions. The main method for feature

extraction is the 1D CNN (Conv1D), which is appropriate for processing sequential or

time-series data, such as sensor measurements in this case. Convolutional layers, key to

this process, apply filters (kernels) that slide across short, consecutive segments of the

input data. These filters act as pattern detectors, capturing important local features such

as transitions in pressure, velocity, and changes in writing direction.

As illustrated in Fig. 4.2, the structure consists of three convolutional layers, which

identify local patterns within the input data. The layers are followed by the rectified

linear unit (ReLU) activation layer, the batch normalization layer and the dropout layer

to prevent overfitting. Lastly, a fully connected linear layer reduces the number of features,

after which a Softmax function is applied for classification. Each of these layers and their

functions are discussed further in the subsequent paragraphs.

The training process for feature extraction focuses on identifying relevant features from

the train subset. Each of the 24 input vectors, representing data from different sensors

(e.g., accelerometer, gyroscope, magnetometer), is processed by its dedicated Conv1D-

based feature extractor network. As a result, a separate feature extractor is trained for

each vector, consisting of convolutional layers designed to identify local patterns in the
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Figure 4.2: The configuration of a convolutional neural network specifically designed for
the objective of feature extraction, accompanied by a fundamental training classifier.

input data. Stacking multiple convolutional layers enables hierarchical feature extraction,

allowing deeper layers to capture more complex patterns by integrating simpler features

from earlier layers.

The first convolutional layer operates on the full length of the input vector, which

contains 1024 data points. This layer applies 128 convolutional filters (feature maps), each

with a kernel size of 3, meaning that each filter processes three consecutive data points

at a time. A kernel of this size is suitable for detecting short-range relationships between

data points, such as slight changes in pressure or velocity in handwriting. The stride of

1 ensures that the convolution moves by one data point at a time, thereby evaluating

every possible sequence of three points across the input vector. This helps the network

capture subtle details in the input. To preserve the original input size of 1024 points,

a zero was added to the start and end of the vector. It allows the model to recognize

local patterns in the handwriting and ensures that the convolution operation does not

reduce the dimensionality of the output. As a result, the first layer generates 128 distinct

feature maps, each representing a specific patterns present in the handwriting data. In

the second convolutional layer, the network applied another set of 128 filters to the feature

maps generated by the first layer. Instead of operating directly on the raw input data,

this layer processes the 128 feature maps that were learned previously. The objective

was to refine the learned feature representations, combining them into more complex

representations that capture relationships between different aspects of the handwriting.

Once the convolutional layers have extracted the relevant features, ReLU is applied to
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incorporate non-linearity into the model. Convolutional layers by themselves only perform

linear operations, which would limit the network’s ability to understand detailed patterns

[122]. Without ReLU, the network would only learn linear transformations, making it

unable to recognize extensive characteristics in handwriting data. Attributes related to

writing, captured through sensor fusion, involve highly non-linear relationships among

input signals. For instance, subtle variations in stroke pressure, speed or stylus angle

reflect distinctive, user-specific writing patterns. This activation function ensures that

these variations are recognized by emphasizing only significant activations. By applying

ReLU, the model is able to learn more intricate, non-linear connections in the data,

important for recognizing subtle differences in handwriting styles and characteristics [126].

Unlike other activation functions that require advanced calculations (like sigmoid or tanh),

ReLU is fast and straightforward, which is important for processing large amounts of

sensor data. This simplicity contributes to faster convergence during training, enabling

the network to learn more quickly from large volumes of multi-sensor data. Furthermore,

this activation function is typically the primary choice suggested for deployment in the

majority of feedforward neural networks [127].

After generating the ReLU output, the resulting values can vary considerably, with

large fluctuations influenced by different users or writing styles. This variability can be

difficult for the network to learn efficiently from the activations in the following layers.

As a result, it may focus on overly large activations while overlooking smaller, important

activations that represent detailed handwriting characteristics. By applying batch nor-

malization after ReLU, the method prevents any individual feature, such as high pressure

or fast movements, from dominating the learning process. BatchNorm1D normalizes the

inputs to the next layer by modifying and rescaling the activations, ensuring the training

process remains stable. This enables the network to concentrate on identifying the key

patterns instead of being affected by variations in the sensor data. This is particularly

important when data from multiple sensors includes its own noise or range of values.

Additionally, BatchNorm after ReLU helps the network train faster, minimizes the risk

of overfitting, and enhances performance by allowing for higher learning rates [128].

Dropout was implemented following the convolutional layers, ReLU activations, and

batch normalization, just prior to the fully connected layers. The convolutional layers

capture fine-grained patterns in the sensor data, such as pressure variations and sudden
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velocity changes. By introducing dropout, the model learns to generalize these features

across different users’ handwriting styles instead of becoming overly specific to the train-

ing data. Since handwriting data is subject to variability between different users, dropout

enables the system to focus on consistent patterns rather than individual writing details.

For example, instead of relying on a specific sensor input (such as a pressure peak from a

particular writing instance), the network learns to interpret the overall variation in pres-

sure across different users. This approach makes the model more robust when identifying

individuals based on handwriting, as it does not depend on specific sensor measurements

from the train set. Dropout contributes to avoiding overfitting to the limited train sam-

ples. This technique ensures that the model generalizes better when evaluating new,

unseen handwriting samples [129].

In the training phase of the feature extractor, a simple classifier was used with a sin-

gle, fully connected linear layer, whose output size corresponds to the train set size. This

layer functions to map the high-level features learned by the convolutional layers to the

final prediction, transforming these features into a format suitable for classification. A

softmax layer was applied after the linear layer, which converts a vector of arbitrary real

values into a probability distribution, enabling the classification of handwriting samples.

Additionally, during this phase, a cross-entropy loss function was used with the adap-

tive moment estimation (Adam) optimizer to effectively classify handwriting, minimize

classification errors, and optimize model parameters [130]. The values of the hyperparam-

eters were determined by empirical fine-tuning, with the learning rate set to 10−4 and the

weight decay set to 10−5. The training was performed for 1000 epochs with a batch size

of 32. To facilitate the training process, the Nvidia RTX 4090 GPU with 24 GB VRAM

was utilized.

4.7. Classification

Following the training of the feature extractors, all layers of each respective feature

extractor were frozen, meaning their parameters were no longer updated during classifier

training process. By employing this approach, the weights within the feature extractor

network remain unchanged. This method ensured that the classifier’s training process only

modifies its own weights without affecting the previously learned representations of the
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FEs. The feature extractor layers function as fixed tools for converting raw input data

to higher-level feature representations. In the context of classifier training, the gallery

subset was used as detailed in Section 4.4. The classifier learns to differentiate users using

the known handwriting data of various individuals (collected through multiple sensors)

from this gallery set. Subsequently, its performance was assessed using the query subset

for evaluation purposes, with testing conducted on new, unseen samples from this set.

Regarding classifier models, the feature vectors derived from each of the N feature

extractors are concatenated vertically, resulting in a a matrix of dimensions N×128. The

matrix in question consists of N rows, each pertaining to an individual feature extractor,

and 128 columns designated for every feature vector sample. In this context, the number

N depends on the number of sensors employed; when all sensors are taken into account,

N equals 24. As each feature vector contains 128 elements, and with 24 such vectors from

each sensor, the resulting matrix had a size of 24 × 128. Thus, each row corresponded to

a feature vector from a different sensor, and each column represented individual features

of these vectors. This matrix was the input to the classifier, which tried to identify the

individual (or handwriting owner) based on these stacked feature representations. During

ablation study, different configurations of feature vectors were used (i.e., using fewer sensor

measurements), leading to variations in the matrix size.

The classifier architecture illustrated in Fig. 4.3 employed a series of layers designed

to process the stacked feature vectors extracted from multiple sensors. The architecture

begins with a 1D convolutional layer performing a convolution operation over the input

matrix of stacked feature vectors with dimensions N ×128, transforming it into an output

vector of size 1×128. By utilizing a kernel size of 3, this layer captures local dependencies

...
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Figure 4.3: The structural arrangement of the classifier model undergoing training on
the gallery dataset and subsequently assessed on a designated query subset.
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and patterns within the feature data. Following the convolutional layer, a fully connected

layer links each neuron in the convolutional layer to the next layer, which helps to expand

learned features into a higher-dimensional space. Specifically, the first linear layer mapped

the output from the convolutional layer (of size 128) to a new representation with 256

dimensions. To introduce non-linearity into the model, a ReLU activation function was

used following the fully connected layer. It helps the model learn complex patterns by

allowing it to capture non-linear relationships in the data. Additionally, the activation

pattern generated by the ReLU function enhances generalization by making the network

less likely to overfit the training data.

To further address the challenge of overfitting, which occurs when the model exces-

sively learns from the training data and leads to weak performance on unseen data, a

dropout was added after the ReLU activation. By applying a dropout rate of 0.3, a sub-

set of neurons is randomly deactivated in every training iteration. Following the dropout

layer, a batch normalization was utilized to stabilize the training process. This layer

modifies and scales the activations to normalize the output from the preceding layer.

By reducing the effects of internal covariate shift, in which the input distribution varies

throughout training, batch normalization accelerates model convergence.

The architecture proceeds with a final linear layer that reduces the output from 256

dimensions to a value that corresponds to the unique classes (number of users in the

gallery and query subset) for each user’s handwriting. This layer acts as a mapping

function, converting the learned feature representation into class scores. Finally, the soft-

max activation function transforms the raw outputs from the last layer into a probability

distribution for the class labels.
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Chapter 5

RESULTS AND DISCUSSION

This chapter outlines, analyzes, and addresses the findings from the research carried

out within the scope of this dissertation. The results of the DTW analysis are presented,

along with graphs that visually support the findings, demonstrating similarities in hand-

writing dynamics within the same individual and noticeable differences between different

users. Additionally, it provided valuable insights into the classification potential of each

sensor for identifying individuals.

The obtained results showed that the proposed handwriting recognition model achieves

high accuracies, with CNN used for feature extraction and classification tasks. Perfor-

mance varied across different handwriting forms, with the highest accuracy for signatures

and the lowest for individual letters. Furthermore, the outcomes of the three-way repeated

measures ANOVA are presented, investigating the main effects with regard to the influ-

ence of three different factors (handwriting form, input modality, and train set size) on

the system’s accuracy. Finally, the findings of an ablation study are provided, analyzing

the impact of individual sensors within the fusion-based setup.

5.1. DTW results

In the following paragraphs, the outcomes of the DTW analysis are outlined, along

with graphs that visually support the findings. The results show clear similarities in hand-

writing dynamics within the same individual and noticeable differences between different

users. These observations are supported not only by numerical data but also by graphi-
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cal representations, which further confirm the consistency of intra-person similarities and

inter-person differences. The analysis focuses on sensor measurements collected during

the task of writing the randomly chosen phrase “We trust you“ using both a stylus and

a finger. Different individuals completed the task over multiple attempts, consistently

writing the same phrase each time. All the graphs and tables presented on the following

pages are based on data collected while writing this specific phrase.

As described, a smartwatch is utilized to collect data through its built-in accelerometer

and gyroscope sensors. Fig. 5.1 provides a visual representation of the acceleration in

three directions for three distinct users, each making multiple attempts to write the same

phrase. Upon closer inspection of the acceleration values across the x, y, and z axes, it is

evident that the data from the same individual exhibits a high degree of consistency across

the different writing trials. This consistency suggests that each individual’s writing motion

is relatively stable within their own attempts. However, when comparing the data across

distinct users, there are noticeable differences between their attempts. These variations

can likely be attributed to differences such as wrist movement and posture, writing speed,

or hand positioning, which are reflected in the sensor readings. The accelerometer sensor

thus captures these subtle variations, demonstrating how user-specific factors, such as

writing pace, can be used to distinguish between users. Table 5.1 presents a comparison

of intra-person and inter-person variability for accelerometer readings, as well as the

magnitude, when using a stylus and a finger for writing. It can be noticed that intra-

person variability is consistently lower than inter-person variability in all accelerometer

sensor measurements.

Consistent measurements can be observed in Fig. 5.2 pertaining to the gyroscope

sensor integrated into the smartwatch. The provided graph displays distinct peaks in

the gyroscope readings, indicating repetitive patterns occurring at certain time intervals

throughout identical user attempts. This is particularly noticeable when examining the

rotation rate of the gyroscope along the x-axis, as shown by the blue lines on the graph.

Similar trends are visible on the y and z axes, indicating consistent movement patterns

across different directions. However, variations between users are evident, with some ex-

hibiting sharper and more pronounced peaks, particularly on the x-axis. These differences

likely reflect variations in wrist movement dynamics and hand motion patters during writ-

ing. Furthermore, intra-person consistency remains high, as trials for the same individual
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Table 5.1: Comparison of intra-person and inter-person measurements for stylus and
finger using data obtained from an accelerometer. Five participants in the experiment
wrote the same phrase in five different attempts.

Stylus Finger

Measurement Axis Intra-
Person

Inter-
Person

Intra-
Person

Inter-
Person

Accelerometer [m/s2]

X 4.19 20.91 4.56 17.23

Y 8.58 110.47 8.33 78.13

Z 8.01 58.35 6.05 94.59

Magnitude 8.50 117.23 4.70 124.68

exhibit similar rotational profiles. This suggests stable movement behavior during writing,

while inter-person variations highlight distinct movement styles that can be attributed to

the specific techniques of an individual’s handwriting.

The gyroscope-based values in Table 5.2 demonstrate similar patterns to the ac-

celerometer readings, with intra-person variability being notably lower than inter-person

variability. For both stylus and finger input modalities, intra-person variability is con-

sistently lower than inter-person variability across all axes (x, y, z) and the magnitude.

In conclusion, the gyroscope data shows consistency with similar results observed from

the accelerometer data. This further supports the idea that measurements from both the

accelerometer and gyroscope sensors integrated into the smartwatch show greater vari-

ability between different individuals, while remaining more consistent within the same

person across multiple writing trials.

Table 5.2: Analysis of intra-person and inter-person differences in writing with a stylus
versus a finger, based on gyroscope data. Each of the five participants completed five
distinct trials, writing the same phrase each time.

Stylus Finger

Measurement Axis Intra-
Person

Inter-
Person

Intra-
Person

Inter-
Person

Gyroscope [rad/s]

X 244.18 541.28 210.34 408.35

Y 94.49 215.95 109.69 246.60

Z 91.60 196.48 81.02 174.83

Magnitude 198.83 495.22 162.89 405.33
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Fig. 5.3 presents magnetometer measurements along the x, y, and z axes captured from

a tablet device during five trials conducted by three different participants. As explored

in the author’s previous research [34], the magnetometer detects subtle changes in the

magnetic field caused by strong neodymium magnets, identical in size and characteristics,

moving in front of a tablet. These magnets, affixed to the stylus and a ring worn on

the user’s finger, cause interference of the magnetic field during the writing process. Such

fluctuations can be analyzed and stored as a unique “magnetic signature“. It is important

to highlight that the magnet remained in a relatively constant starting position, and the

magnetometer was consistently calibrated at the beginning of each experiment session.

Notable variations in the magnetometer sensor readings were observed across different

users. As shown in Fig. 5.3, these differences were most pronounced in the magnetic

field readings along the x and y axes, while the z-axis measurements exhibited less varia-

tion. Furthermore, the minimum and maximum values for the same users show minimal

deviation from the mean across all five writing trials, suggesting consistency in their writ-

ing. The graph illustrates that each user may have a unique activity surface, reflecting

a distinct set of writing attempts. For person recognition, the current writing attempt

must fall within the existing activity surface for a specific user, as determined by the

magnetometer readings.

Similar to an accelerometer and gyroscope in a smartwatch, the magnetometer data

reveals notable differences between intra-person and inter-person variability, as shown in

Table 5.3. For magnitude readings obtained using the tablet device with an integrated

Table 5.3: Comparison of intra-person and inter-person variability in magnetometer
readings across the x, y, and z axes, as well as their magnitudes, for stylus and finger
inputs. These readings were collected from five different participants, each of whom
completed five distinct writing trials.

Stylus Finger

Measurement Axis Intra-
Person

Inter-
Person

Intra-
Person

Inter-
Person

Magnetometer [µT]

X 70.98 143.40 63.84 290.57

Y 83.23 540.27 104.12 625.94

Z 78.78 441.09 96.61 604.51

Magnitude 63.95 493.07 80.61 542.80
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magnetometer, the intra-person distance with the stylus is notably lower than the inter-

person distance. Similarly, for the finger writing, the inter-person distance is considerably

greater when compared to the intra-person distance. This suggests that an individual

likely has a unique “magnetic signature“ that distinguishes them from other users.

The velocity at which a pointer, namely a finger or stylus, moves across the screen is

monitored using the VelocityTracker Android API. When determining the direction and

velocity of gestures, it can be measured independently along the horizontal (x) and verti-

cal (y) axes, as seen in Fig. 5.4a and 5.4b. Compared to the readings from other sensors,

the averaged minimum and maximum values for a particular user exhibit a marginally

greater deviation from the mean reading values. However, the average velocity lines (in

red) remain relatively stable across trials for each user, indicating that each individual

maintains a consistent writing velocity. Additionally, considerable differences in velocity

are observed along both the x and y axes across distinct users. Some individuals demon-

strate a wider range of velocities, suggesting more noticeable fluctuations in their writing

velocity. In contrast, others exhibit a more limited range, indicating a more consistent

and stable writing velocity throughout the trials. This pattern can be anticipated, as the

writing velocity tends to remain consistent for each individual, while different individuals

could write the same sentence at varying velocities.

Table 5.4 underscores that writing velocity measurements display lower variability

within individuals compared to variability between individuals for both stylus and fin-

ger inputs. The magnitude data indicates comparable differences in intra-person and

inter-person variability, consistent with the x and y-axis measurements. These results

suggest that while velocity measurements for an individual remain relatively stable, there

Table 5.4: Comparison of intra-person and inter-person variability in velocity readings
for stylus and finger inputs. The data was collected from five participants, each completing
five separate trials.

Stylus Finger

Measurement Axis Intra-
Person

Inter-
Person

Intra-
Person

Inter-
Person

Velocity [pixels/s]

X 19,465.04 19,883.20 1112.40 1419.23

Y 328,021.36 325,161.88 1958.50 2786.84

Magnitude 329,110.20 319,536.78 1561.99 2093.88
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(a)

(b)

Figure 5.4: The minimum (blue), average (red), and maximum (green) measurements
of the velocity in the x-direction (a) and y-direction (b) for four users during five trials of
writing using a stylus.
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is noticeable variability between different people. This could be attributed to individ-

ual differences in motor control, writing habits or techniques. Additionally, the stylus

demonstrates notably higher velocity values than the finger, possibly because it facili-

tates smoother and faster motion compared to finger input. In conclusion, both input

modalities show greater intra-person consistency than inter-person variation.

An ArUco marker was used to overcome S Pen API limitations, capturing inclination

data and extracting x, y, and z coordinates from video recordings to track stylus rotation

and translation. Fig. 5.5 illustrates variations in stylus tilt measurements, with only x

and y coordinates shown for simplicity, based on multiple attempts by different users.

Data points with similar hues (same user across multiple trials) show a tendency to

form clusters, suggesting that individuals may exhibit relatively consistent stylus tilt

patterns across attempts, though slight variations are present within the clusters. Clusters

represented by different colors (different users) appear to have some level of separation,

indicating potential differences in stylus tilt patterns among users. However, overlapping

regions suggest that these differences may not always be clearly distinguishable.

The numbers in Tables 5.5 and 5.6 show a notable difference between intra-person and

Figure 5.5: The x and y coordinates of the stylus tilt are determined by using the ArUco
marker positioned on the tip of the stylus. Distinct hues of a single color signify multiple
trials of the same person, whereas varying colors denote the inclinations of the stylus for
different individuals.
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Table 5.5: The rotation vector variability for stylus tilt readings examined across the
x, y, and z axes, as well as its magnitude, within individuals and between users. Five
participants completed five separate trials, with no data collected for finger writing.

Measurement Axis Intra-Person Inter-Person

Stylus rotation [rad]

X 9.11 18.83

Y 7.33 14.68

Z 2.18 4.37

Magnitude 5.42 18.52

Table 5.6: Intra-person and inter-person variability of the translation vector for stylus
tilt across the x, y, and z axes and magnitude. Data for finger writing was not available.
Each of the five participants performed five separate trials using a stylus.

Measurement Axis Intra-Person Inter-Person

Stylus translation [mm]

X 0.65 2.62

Y 0.85 3.52

Z 1.62 6.78

Magnitude 1.94 8.06

inter-person variability for stylus tilt readings, with intra-person variability being lower

across all three axes for both rotation and translation vectors. For the magnitude of

the rotation vector, intra-person variability is lower than inter-person variability, which

exceeds three times the former. Similarly, for the magnitude of the translation vector,

intra-person variability is lower, with inter-person variability being more than four times

higher. These comparisons highlight the greater variability in stylus tilt during writing

across different individuals, as opposed to within a single person. The reason could be

that each individual develops a unique way of holding and using the stylus, similar to

how one holds a pencil. This may be influenced by factors such as motor coordination,

ergonomic preferences, and writing experience. As shown in Fig. 3.17 from Chapter 3,

the way the stylus is held further supports this claim, reflecting variations in individual

handling and grip preferences. In contrast, within an individual, these factors tend to

relatively consistent over time, resulting in less variability in stylus tilt.

Since the stylus S Pen Remote SDK could not provide pressure level data from the

stylus, the MotionEvent object was used to capture pressure readings instead. Pressure

typically varies from 0 (no pressure) to 1 (normal pressure), based on how the input device
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Figure 5.6: Average pressure levels recorded during five writing trials using a stylus,
with each color representing one of the five users.

is calibrated. Figure 5.6 illustrates variations in the normalized mean pressure levels across

five users, each writing the same phrase five times. It can be seen that some variations

in pressure patterns exist between users, with one individual (yellow line) exhibiting a

much higher and fluctuating pressure range compared to others. The remaining four

users display relatively lower and steadier pressure trends, though with some variability.

This indicates that differences in pressure during stylus-based writing can be captured,

highlighting variations in writing dynamics and pressure application across individuals.

These variations could be associated with personal variations in writing technique, grip

strength, and physical interaction with the stylus, which vary more between people than

within a single individual. In contrast, variability between users is lower as each person’s

writing style remains more consistent across trials. However, it should be noted the

MotionEvent object does not support capturing pressure data for finger-based input.

Fig. 5.7 shows variations in pressure application across users, while trials from the

same user tend to be more consistent. Some individuals distribute pressure more evenly,

creating smoother and more uniform color transitions across trials, whereas others exhibit

greater variation, resulting in noticeable shifts in color intensity within their strokes. The

patterns of pressure distribution suggest distinct writing styles, with some marked by
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Table 5.7: Pressure data was collected for stylus writing only, with no measurements
available for finger writing. Five participants completed five trials each, with intra-person
and inter-person measurements compared.

Stylus Finger

Measurement Intra-Person Inter-Person Intra-Person Inter-Person

Pressure 0.34 0.97 N/A N/A

consistently higher pressure, leading to more saturated colors, while others apply a lighter

touch with lower overall pressure. Despite these differences, repeated trials from the same

user generally maintain a similar pressure pattern, reflecting a stable writing behavior.

For pressure metrics, the stylus data from Table 5.7 suggests a distinction between

intra-person and inter-person distances, indicating that pressure may help differentiate

between users, although the values are smaller compared to other metrics. This implies

that pressure could be a more subtle, yet potentially useful, metric for user identification.

While exact pressure data for finger-writing input cannot be obtained, the Motion-

Event object estimates the touched area on the screen. When a touch occurs, the nor-

malized pixel value of the touch area is given, which is adjusted based on the device’s

pixel range. Fig. 5.8 illustrates the average results of five writing attempts by four dis-

tinct users, showing the estimated finger-pressed area on the screen. The mean touched

area varies across individuals, irrespective of them writing the identical phrase. Each

participant appears to exhibit distinct touch size patterns, where variations likely reflect

individual differences in touch dynamics, finger contact area, applied finger pressure while

writing, or interaction with the touchscreen surface. Certain individuals displayed a wider

range of touch sizes, suggesting larger fluctuations in pressure or contact area. While some

participants consistently had a larger touch area, potentially due to a flatter finger posi-

tion or greater pressure, others exhibited a smaller touch area, possibly reflecting a more

precise or lighter touch.

For touch size metrics, as shown in Table 5.8, finger input reveals a difference between

intra-person and inter-person distances. This suggests that touch size may help differen-

tiate users, but it is less distinct compared to other metrics. Data for the stylus was not

available due to the inability to estimate the surface area touched while writing with the

stylus, so no comparison can be made for that input method.
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Figure 5.8: Estimation of the screen surface area touched while writing with a finger.
The values represent the averages from four users, each completing five trials, with data
for stylus input unavailable.

Table 5.8: Variability in touch size area measurements for finger input during writing
tasks. Data was collected from four individuals, each completing five trials, with no data
available for stylus input.

Stylus Finger

Measurement Intra-Person Inter-Person Intra-Person Inter-Person

Touch size area N/A N/A 0.02 0.09

Fig. 5.9 shows five attempts by four different users to write the same phrase “We

trust you“. Since each user tends to form letters and words uniquely, the figure highlights

variations in the writing process among users, such as differences in gesture durations and

pause intervals. A “gesture“ refers to the time between placing the stylus on the screen

and lifting it off, encompassing the writing of a single character (e.g., a letter, period,

or comma) or multiple characters when the user combines them while writing. Although

there are variations in the writing patterns across trials for each individual, certain trends

suggest that users tend to follow relatively consistent patterns within their own writing
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Figure 5.9: The number of stylus gestures performed by four users across five distinct
writing trials. The writing periods are highlighted in blue, indicating active writing, while
the white spaces represent pauses in writing.

process. Overall, there is noticeable variability in the duration and frequency of pauses

across users. Some writing patterns appear more steady, with fewer interruptions, while

others show frequent pauses, indicating differences in writing fluency and pacing. The

visualization also illustrates the varying numbers of gestures performed, which differ from

user to user, reflecting individual writing styles during the task.

The variability of x and y coordinates and their magnitudes, during five trials con-

ducted using a stylus or finger as input methods, is presented in Table 5.9. Relative

Table 5.9: Comparison of intra-person and inter-person variability in relative position
measurements (x, y coordinates) and magnitudes for stylus and finger writing, based on
five trials from each of the five participants.

Stylus Finger

Measurement Axis Intra-
Person

Inter-
Person

Intra-
Person

Inter-
Person

Relative Position (X,Y) [pixel]

X 101.73 306.44 93.27 219.74

Y 79.34 129.70 99.56 202.03

Magnitude 103.37 220.40 100.89 226.56
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Table 5.10: Piezoelectric sensor data from five participants, each completing five trials
with a stylus, comparing intra-person and inter-person variations. Piezoelectric sensor
1 corresponds to the rectangular model, while piezoelectric sensor 2 corresponds to the
circular model.

Stylus Finger

Measurement Intra-
Person

Inter-
Person

Intra-
Person

Inter-
Person

Piezoelectric sensor 1 73,069.27 103,811.43 81,153.56 110,985.47

Piezoelectric sensor 2 16,213.3 26,570.19 13,116.84 24,172.57

coordinates represent the position of an event within a specific view, with the view space,

in this case, being the area on the tablet screen where users can write. The findings

indicate that intra-person variability is consistently lower than inter-person variability,

suggesting that users maintain stable and repeatable input behaviors across trials, result-

ing in distinct movement trajectories on the tablet surface.

Fig. 5.10 displays vibration readings and pressure variations from a piezoelectric sensor

during tablet writing by three users, each writing the same sentence three times. Although

two distinct piezo sensor models with different properties were positioned underneath the

tablet, the data relates to the larger sensor, which captured a higher amplitude signal.

Notable disparities are seen in the quantity and intensity of signal spikes, signal duration,

as well as in the variation of amplitude strength throughout the writing. The observed

variations in the piezo sensor readings may reflect individual differences in writing habits,

speed, the intensity and direction of the exerted force, and stylus handling.

The data in Table 5.10 indicates that both piezoelectric sensors exhibit higher varia-

tion between different people compared to repeated actions by the same person. When

comparing the two sensors, the first sensor generally exhibits higher variability than the

second, both in intra-person and inter-person measurements. This suggests that the first

sensor may be more responsive to variations in pressure or vibration, whether observed

between different individuals or in repeated attempts by the same person.
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5.2. Classification potential results

As discussed in Section 4.1., the proposed CP metric that evaluates the trade-off be-

tween inter-person and intra-person variability helps guide decisions about sensor inclusion

or exclusion from the fusion. Tables 5.11 and 5.12 compare intra-person and inter-person

variability, along with classification potential, for various sensors and measurements. The

data is sorted in descending order, from the highest to the lowest CP, to highlight the

sensors or measurements with the highest classification potential. In both tables, “Piezo-

electric sensor 1” designates the larger rectangular model, while “Piezoelectric sensor 2”

represents the smaller circular model.

The accelerometer appears to outperform other sensors or measurements in terms of

CP, especially in the finger-writing task. This reveals that acceleration patterns, influ-

enced by unique hand movements and writing styles during handwriting, may be highly

individualized and remain consistent within each person.

The magnetometer seems to be a valuable component for both input modalities,

Table 5.11: A comparison of the classification potential (CP) for different sensors and
measurements from the proposed apparatus. The data was collected during stylus-writing
tasks where five participants completed five trials. The units are consistent with those
from tables in Chapter 5.1.

Sensor/Measurement
Intra-Person
Variability

Inter-Person
Variability

Classification
Potential (CP)

Accelerometer 8.5 117.23 13.79

Stylus orientation 0.28 2.76 9.86

Magnetometer 63.95 493.07 7.71

Stylus translation 1.94 8.06 4.15

Stylus rotation 5.42 18.52 3.42

Pressure 0.34 0.97 2.85

Gyroscope 198.83 495.22 2.49

Touch position 103.37 220.4 2.13

Piezoelectric sensor 2 16,213.3 26,570.19 1.64

Piezoelectric sensor 1 73,069.27 103,811.43 1.42

Velocity 329,110.2 319,536.78 0.97
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Table 5.12: A comparison of classification potential for various sensors, based on finger-
writing tasks where five participants completed five trials. The units match previous
tables in Chapter 5.1.

Sensor/Measurement
Intra-Person
Variability

Inter-Person
Variability

Classification
Potential (CP)

Accelerometer 4.7 124.68 26.53

Magnetometer 80.61 542.8 6.73

Touch size area 0.02 0.09 4.5

Gyroscope 162.89 405.33 2.49

Touch position 100.89 226.56 2.25

Piezoelectric sensor 2 13,116.84 24,172.57 1.84

Piezoelectric sensor 1 81,153.56 110,985.47 1.37

Velocity 1561.99 2093.88 1.34

demonstrating notable CP values across both stylus and finger writing tasks. The sensor

captures subtle variations in the magnetic field during the writing process, suggesting

that the manner in which users move the stylus or finger through space while writing

creates distinct and unique “magnetic signatures“. These signatures can help distinguish

between different individuals, whether they are writing with a stylus or a finger.

Stylus orientation values, which are only available for stylus writing, show notably

lower intra-person and inter-person variability. However, these values also stand out with

a higher CP compared to other sensor readings. This implies that the way individuals hold

and angle a stylus, as indicated by the touch area orientation, may contain personalized

characteristics that could be useful for identification purposes. For finger writing, the

touch size area might be an important factor in terms of CP, although it shows notably

lower intra-person and inter-person variability comparing to other measurements.

Regarding the remaining sensors and measurements from Tables 5.11 and 5.12, they

provide varying levels of classification potential. For instance, stylus translation and

rotation demonstrate moderate classification potential compared to other measurements,

while both piezoelectric sensors exhibit relatively low CP values across both writing tasks.

Similarly, velocity readings for both input modalities show the lowest CP, indicating poor

classification potential and minimal expected contribution to the sensor fusion setup.
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5.3. Classification results

To account for the inherently non-deterministic nature of neural networks and their

training process, the feature extractor and classifier were each trained and evaluated over

30 repeated runs. The accuracies obtained from these runs were then averaged, and the

standard deviation was calculated.

The mean values and standard deviations of model accuracies are presented in Fig.

5.11. As anticipated, the highest scores were predictably obtained for signatures, regard-

less of input modality (stylus or finger). This trend was observed even with the smallest

train set size (10). It can be likely attributed to the unique and distinctive nature of

signatures as a form of handwriting [22]. In biometrics, handwritten signatures are clas-

sified as behavioral traits, representing the learned patterns and habits inherent in an

individual’s handwriting. The repetitive strokes and patterns in signature writing may

help the model to more effectively learn and recognize these unique features. In contrast,

all participants wrote the same sentences, words, and letters, which may have contributed

to less variability. Since each person’s signature was unique, introducing noticeable inter-

person differences, it can be argued that this may explain why accuracies were highest

specifically for signature writing.

In all instances, higher accuracies were observed when participants wrote individual

words as opposed to sentences. While sentence writing yields more dynamic information

than writing specific words, the intra-person variability in sentence composition introduces

noise, making it more challenging to distinguish between individuals. This could be

attributed to potential variations in spacing between words in a sentence, a variability

absent when only single words are written exclusively. Since writing sentences takes

more time and requires more space, some degree of variation across different attempts

by the same participant is to be expected. When focusing only on words, people could

experience reduced cognitive load [131], enabling them to concentrate better on accurately

forming each word. Additionally, repeatedly writing shorter words may promote greater

consistency in execution, compared to writing longer, more complex sentences that could

require greater focus and increased mental processing and planning [132].

The lowest accuracies were found for letters across both input modalities, with partic-

ipants using a stylus and a finger. This may be due to the shorter time required to write
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individual letters compared to sentences and words, which results in a smaller amount

of data available for analysis. The limited information gathered from writing individual

letters could make distinguishing between individuals more challenging. With reduced

data, identifying enough unique features for the model might prove difficult, especially

given the less precise nature of finger input [133].

The higher accuracy achieved with a stylus compared to a finger is likely due to the

greater precision and control it offers. Using a stylus provides finer motor control, resulting

in greater accuracy and consistency in writing [134]. Many individuals find that writing

with a pen-like tool feels more intuitive, as it closely mimics the experience of writing on

paper. In addition, using a stylus can minimize screen smudging and improve visibility, a

frequent issue when writing with fingers. The lower accuracy observed with finger input

can be attributed to the limited precision of using a finger on a touchscreen, commonly

known as the fat-finger effect [135]. Unlike a stylus, fingers are broader and less stable,

leading to more variable and inconsistent writing [136].

5.4. Main effects

A three-way (2 × 3 × 4) repeated measures ANOVA was conducted to assess the in-

fluence of three within-subject factors on the model’s accuracy: input modality (stylus,

finger), train set size (10, 20, 30), and collected handwriting forms (signatures, short sen-

tences, words, and individual letters). To address violations of sphericity, the Greenhouse-

Geisser correction (ϵ) was applied in instances where violations of sphericity had been

detected. When statistically significant effects were identified, post hoc pairwise compar-

isons were performed using the Bonferroni correction.

Mauchly’s test indicated a violation in the assumption of sphericity only for the vari-

able related to the collected handwriting form: χ2(5) = 23.866, p < 0.001.

The results of the repeated measures RM ANOVA indicated significant main effects

for the examined factors as follows:

1. Input modality – Model’s mean accuracy differs statistically significantly between

two input modalities, F (1, 29) = 10915.991, p < 0.001, η2 = 0.997.

2. Train set size – A size of the train set significantly affects the accuracy of the
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model, F (2, 58) = 3615.583, p < 0.001, η2 = 0.992.

3. Handwriting form – Significant main effect was observed for collected handwriting

form as well, F (2.193, 63.609) = 38213.282, p < 0.001, ϵ = 0.731, η2 = 0.999.

Consequently, in terms of input modality, stylus-based handwriting yields higher model

performance (0.892 ± 0.103) compared to finger-based writing (0.835 ± 0.16), with a sta-

tistically significant difference (p < 0.001). Utilizing a stylus appears to produce more

consistent handwriting strokes and patterns across multiple writing attempts. On the

other hand, writing with a finger on a touchscreen tends to introduce greater variability,

likely due to reduced precision and control over writing movements.

Regarding the train set size, post hoc analysis showed how the model’s accuracy

significantly improves as the train set size increases. In particular, the model showed a

significant improvement in accuracy with a train set size of 30 (0.89± 0.118), as opposed

to train set sizes of 20 (0.87±0.136) and 10 (0.831±0.16), with p < 0.001 for both pairwise

comparisons. The accuracy difference between the train set sizes of 10 and 20 was also

found to be statistically significant (p < 0.001). This supports the initial expectations,

as a larger dataset helps to minimize overfitting by reducing the likelihood of the model

memorizing specific examples from the train set.

In terms of the collected handwriting form, the model achieves the highest accuracy

when using signatures (0.982±0.005), followed by words (0.927±0.03), sentences (0.884±

0.036), and individual letters (0.661 ± 0.1). Post hoc analysis indicated a significant

difference in all pairwise comparisons observed herein, with p < 0.001 for each case.
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5.5. Comparison to existing approaches

When comparing with other studies, Table 5.13 provides a summary of relevant re-

search in this field. Unlike most studies in the related work that focus on verification

systems, the table highlights research that, like this study, identifies individuals through

handwriting. It is important to emphasize that the number of such studies is notably

lower compared to those focusing on verification. Therefore, among many studies, only

those related to the recognition of individuals through handwriting were considered.

In addition to the list of sensors employed, the table presents the different handwrit-

ing forms used for user identification, along with the reported accuracy from the corre-

sponding studies. It shows that the handwriting forms used mainly refer to signatures,

in contrast to this research concerning broader handwriting-based identification. The

comparison becomes more relevant when focused only on studies that involve online (dy-

namic) handwriting, particularly those conducted on smartphones or tablets. Compared

to similar research, the proposed approach supports the inclusion of a larger number of

sensors for person recognition through handwriting, instead of using only one or a rather

small number of specific sensors. As shown in the table, many existing studies rely on

image-capturing devices or digital tablets, rather than utilizing sensor fusion.

The proposed solution has achieved high accuracy in signature recognition (0.982),

which is adequately comparable to the results of other studies reviewed. Additionally, it

has shown high accuracy in recognizing words (0.927) and short sentences (0.884), while

exhibiting lower accuracy for individual letters (0.661). The results obtained reinforce the

concept of using different forms of handwriting, extending beyond signatures, as potential

alternative methods for recognizing individuals through handwriting. It is important to

highlight that the accuracies provided here represent the mean classification accuracies

for two input modalities (stylus and finger) and three different train test sizes (10, 20,

30). Therefore, the results of the ablation study presented next may be more relevant for

comparison with related studies. Despite achieving competitive results, certain challenges

remain, such as the lower accuracy for letter-based recognition, highlighting potential

areas for future improvements.
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5.6. Ablation study

The purpose of the ablation study is to assess how each of the six sensor subsets

influences the accuracy of handwriting-based person recognition. This procedure entails

removing one sensor subset at a time to evaluate its effect on the model’s accuracy with

the remaining subsets. For example, if excluding a specific sensor subset leads to an

improvement in accuracy, it indicates that this subset negatively affects user identification

in the given context. Therefore, the model training is additionally conducted for six setups

independently, each of which had five active sensor subsets.

The results regarding the obtained accuracies are presented in Table 5.14. In the

respective procedure, the train set size was fixed to 30, as this particular size demon-

strated the highest accuracy results. The achieved accuracies are presented for two input

modalities (stylus or finger) and different handwriting forms (signatures, sentences, words,

letters). Each row represents cases where a particular sensor subset was excluded, with

the exception of the final row, which presents results when all sensor subsets in the fusion

were enabled. The table data indicates that excluding certain sensor subsets influences

accuracy differently across the observed categories.

For recognizing a signature using a stylus, the model achieves its highest accuracy

(0.9911) when either the touchscreen or piezo sensors are excluded. Including all sensors

in the fusion results in a slight decrease in the model’s accuracy for both stylus (0.9866)

and finger (0.9844) inputs. For input with a stylus, the outcome suggests that these sensors

do not contribute to improving signature recognition. A possible reason for this is the

nature of signature dynamics, which involve a pre-learned action. A signature is generally

a short, established, and specific movement pattern that often involves predetermined

motions, leading to more stable and repeatable dynamics. Therefore, their shape and

execution remain relatively stable across instances, especially when compared to writing

sentences or words, which involve more variability in motion and structure. As a result,

signatures may not depend on detailed touch position tracking (from the touchscreen) or

precise force and pressure tracking (offered by piezo sensors) to attain high recognition

accuracy. Additionally, for all other handwriting forms (sentences, words, and letters),

recognition accuracies are consistently higher when all sensors are included. Readings

from multiple sensors appears to be beneficial for these forms, as they likely depend on
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Table 5.14: Impact of different sensor subsets on handwriting-based person recognition
accuracy with a train set size of 30. The table displays accuracy scores for various hand-
writing forms (signatures, sentences, words, letters) using stylus and finger inputs, with
the highest scores highlighted in bold.

(a) Recognition accuracy using a stylus

Excluded sensor subset Signatures Sentences Words Letters
Touchscreen 0.9911 0.9141 0.9554 0.7945

Magnetometer 0.9866 0.8862 0.9018 0.7570
Input specific 0.9821 0.8806 0.9275 0.7683

Piezos 0.9911 0.9241 0.9531 0.8060
Smartwatch 0.9799 0.8973 0.9241 0.7144

Visual tracking 0.9799 0.9018 0.9230 0.6719
All included 0.9866 0.9263 0.9576 0.8130

(b) Recognition accuracy using a finger

Excluded sensor subset Signatures Sentences Words Letters
Touchscreen 0.9710 0.8884 0.9163 0.6347

Magnetometer 0.9665 0.6953 0.7020 0.5019
Input specific 0.9821 0.9163 0.9163 0.6344

Piezos 0.9911 0.9141 0.9286 0.6293
Smartwatch 0.9821 0.8683 0.8683 0.4973

Visual tracking 0.9821 0.9107 0.9241 0.6447
All included 0.9844 0.9051 0.9185 0.6369

the fusion of diverse signals to capture a broader range of variations that occur when

writing sentences and words. In different writing attempts, each word or sentence is more

prone to vary as a person may change writing speed, punctuation, spacing, letter height,

and other aspects. Such changes lead to greater variations in the structure and dynamics

of the movement, especially when transitioning from one word to another.

In contrast, when finger input is used, the model achieves its highest accuracy (0.9911)

when the piezo sensor is excluded, suggesting it negatively affects accuracy in this case.

Compared to a stylus, which allows for more precise control and input, a finger is less

accurate and produces broader, less defined touch points. Furthermore, finger input causes

more variability in the interaction with the touchscreen due to the larger touch area and

inconsistent pressure. The piezo sensor, which measures pressure variations, may not

contribute notably to finger input, as the touch pressure and force applied with a finger

are less stable and harder to capture accurately. This indicates the variability in a finger’s

touch dynamics makes piezo sensors less beneficial for recognizing persons. The ablation

112
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study confirms the relevance and validity of the introduced CP metric, as seen in both

Tables 5.11 and 5.12 from Section 5.2. The tables show that the CP values for both

piezoelectric sensors are notably lower compared to the measurements from other sensors.

Regarding the impact of magnetic field measurements, excluding the magnetometer

leads to a slight decrease in accuracy for both stylus and finger inputs. The magnetome-

ter appears beneficial in capturing distinct patterns and movements during the writing

process. The sensor helps differentiate the dynamics and motion involved in writing, re-

gardless of whether a permanent magnet is mounted on the stylus or the finger. This is

also consistent with the previously obtained data related to the CP metric, as shown in

both Tables 5.11 and 5.12. It is evident that for both input modalities, the CP values for

the magnetometer are higher compared to the measurements from other sensors.

In tasks involving sentence writing with a stylus, the model achieves its best accuracy

(0.9263) when the full fusion setup is enabled. This indicates that a multi-sensor approach

provides valuable information for sentence recognition with stylus input, which involves

more complex and extended strokes compared to signatures. On the other hand, when

only finger input data is used, the model achieves its peak accuracy (0.9163) when input-

specific sensors are omitted. The decrease in accuracy can be attributed to the lack of

input specific sensor data when using finger input, which introduces noise into the analysis.

While stylus input provides valuable data on tilt and pressure levels, these measurements

are not available with finger input, where they are replaced with zeros. This substitution

can introduce noise and inconsistencies, leading to variations that negatively affect the

model’s accuracy. Interestingly, in sentence-based tasks with finger input, excluding the

magnetometer measurements notably reduces the model’s accuracy, dropping to 0.6953.

As with stylus-writing, this highlights the importance of magnetometer data, showing

its ability to detect subtle changes in the magnetic field during writing with a finger.

Even slight differences in how a person moves their finger, like variations in angle, tilt,

and rotation, can form unique patterns that the magnetometer can detect. All of this

further confirms the importance of the introduced CP metric, with magnetometer and

stylus orientation readings showing higher CP values than other sensors.

The recognition of written words follows a similar pattern, with the model achieving

its highest accuracy of 0.9576 for stylus input when all sensors are active. This outcome

reaffirms the importance of sensor fusion utilized in this research, this time for word
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recognition tasks. In comparison, the model based on finger input achieves its best per-

formance (0.9286) when the readings from the piezo sensor are excluded. Since the same

observation applies to finger-based signatures, it suggests that the piezo sensor may intro-

duce noise. This could potentially reduce its effectiveness in capturing the tactile details

of finger movements. As mentioned, the reason could be that the less precise nature of

finger input, along with variable pressure and a broader contact area, might contribute

to greater inconsistency in touchscreen interaction when writing words.

Similar to sentence writing, removing the magnetometer sensor data when writing

words notably decreases the model’s accuracy, especially for finger input. This highlights

the important contribution of the magnetometer to word classification tasks. Excluding

the smartwatch sensors (accelerometer and gyroscope) also leads to a decrease in model

accuracy during word writing, especially when considering finger-writing (0.8683). This

could be attributed to the larger and more varied wrist movements involved in finger-

based writing, which the smartwatch is capable of capturing. In contrast, when using a

stylus, the wrist remains relatively stable, and finer control is managed by the fingers,

reducing the smartwatch’s impact on recognition accuracy. This once again justifies the

introduction of the CP metric, where Tables 5.11 and 5.12 demonstrate a notably higher

classification potential for the accelerometer and gyroscope readings when compared to

the measurements from other sensors.

Letter recognition follows a a slightly different trend, with the model achieving its

highest accuracy for stylus input (0.813) when all sensors are included. Here, the fu-

sion of sensors also demonstrates its benefits, indicating that detailed multi-sensor data

is essential for interpreting finer handwriting details. In contrast, the model based on

finger input reaches its peak accuracy (0.6447) when the visual tracking sensor subset is

excluded. These results could be anticipated, as the ArUco marker was only used during

stylus writing to detect tilt, which was not applicable to finger input. Consequently, the

absence of samples in this scenario could potentially introduce noise and inconsistencies

in the analysis. Similar to word writing, excluding the smartwatch sensors during indi-

vidual letter writing leads to a notable decrease in model accuracy (0.4973). This further

underscores their importance in capturing the fine-grained movements and dynamics of

finger writing, particularly for handwriting forms like individual letters.

Notably, accuracies for letter classification tend to be lower across most sensor subsets,
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suggesting that letters are inherently more challenging to classify accurately. This could

be attributed to the subtle differences in writing certain letters, the short writing duration,

and the similarities in the shapes used to form specific letters.

Overall, the results indicate that the best sensor fusion subset is greatly influenced by

both the handwriting form and the input method. In cases when all sensors are included,

the accuracy of the model improves for recognizing sentences, words, and individual let-

ters written with a stylus. This underscores the benefit of employing a comprehensive

multi-sensor setup for capturing handwriting dynamics. Hence, it can be concluded that

incorporating additional sensors can certainly enhance the person recognition accuracy,

thereby justifying their inclusion into the experiment apparatus.
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Chapter 6

CONCLUSION

The presented research focuses on biometric identification systems by analyzing the

unique patterns and characteristics of an individual’s handwriting, with a particular em-

phasis on the dynamic writing process on touchscreen devices. Existing studies in this

field highlight the dominance of specific research approaches. First, most of the reviewed

studies focus on verification systems, which intends to differentiate authentic from forged

handwriting samples. Second, the emphasis is primarily on analyzing signatures, while

the broader context of user recognition across different forms of handwriting is often over-

looked. Third, in most cases, the proposed solutions rely on custom-designed devices or

specialized sensors rather than off-the-shelf components to gather biometric data.

To address the identified research gap, a novel handwriting-based user recognition

technique is introduced. It broadens the focus from verification to a wider range of

handwriting identification tasks, involving a general process of detecting the handwrit-

ing owner through multi-class classification. This approach extends beyond signatures

for handwriting-based person recognition by incorporating various forms of handwriting,

namely short sentences, words, and individual letters. The objective was to explore al-

ternative approaches for person recognition, moving beyond the traditional dependence

on signatures, which are generally regarded as pre-learned actions. To collect data on the

dynamics of handwriting and signing, commonly available smart devices were utilized,

leveraging their built-in sensors along with additional external sensors and accessories.

Unlike most existing systems, which primarily rely on a single sensor (or a rather small

number of sensors), the novel experimental apparatus incorporates a sensor fusion concept,
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aiming to collect and leverage a much larger volume of handwriting dynamics information.

Additionally, two different methods of handwriting input are analyzed, based on a stylus

and a finger.

In a controlled experiment focused on acquiring biometric characteristics of touch-

screen handwriting, a total of sixty participants were involved. The outcome of the

conducted experiment is an original dataset that includes sensor readings from various

sensors, specifically utilizing a camera, accelerometer, gyroscope, magnetometer, touch-

screen, and two piezo sensors. These readings were collected during both stylus and

finger input across a variety of writing tasks. In addition to providing their own signa-

tures, users also wrote short sentences, words, and individual letters. This diverse range

of writing tasks enabled the collection of detailed biometric handwriting data, resulting

in a comprehensive dataset of handwriting dynamics across different input modalities.

The hypothesis that dynamic features from touchscreen handwriting show consistency

within individuals and variability across individuals is supported by sensor measurements,

which reveal notable differences between intra-person (within the same user) and inter-

person (between different users) variability. This can be clearly observed in the tables

displaying the DTW metric, as well as in the corresponding graphs, which further highlight

the potential of these measurements in differentiating between users. These distinctions

are consistently observed across both stylus and finger input modalities.

To facilitate handwriting recognition, a CNN-based model was developed for feature

extraction and classification tasks. The accuracy of the model was analyzed with regard

to the influence of three different factors: train set size, input modality, and handwriting

form. During the model training process, train set sizes of 10, 20, and 30 were used. The

results demonstrate a statistically significant effect of set size on the model’s accuracy,

with the highest accuracies achieved using the largest train set size.

The statistical analysis also revealed a significant difference in the model’s accuracy

when writing with a stylus compared to a finger. In line with findings from other studies,

finger-writing is characterized by larger, less precise motions, whereas stylus usage im-

proves precision and ensures greater consistency. Experiment participants also reported

that the stylus provided greater precision than finger, closely resembling the experience

of writing with a traditional pen and paper.

Among the different handwriting forms examined, the highest accuracy was achieved
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for signatures (0.982), which is anticipated, as each signature reflects a pre-learned, unique

action specific to the individual participant. However, recognition accuracy was also found

to be quite high for other handwriting forms, particularly for words (0.927). The model

showed a statistically significant improvement in accuracy when recognizing words, com-

pared to both sentences (0.884) and letters (0.661). The lower accuracy for sentences may

be attributed to their typically inconsistent spacing and the greater time and cognitive

effort required for composition. In contrast, writing shorter words repetitively may re-

inforce muscle memory, potentially reducing the mental effort involved and allowing for

more consistent word formation. The lowest accuracy of the model in recognizing indi-

vidual letters may stem from the small number of strokes involved, which consequently

leads to a considerably reduced amount of sensor data being collected.

Although the model’s accuracies are slightly lower for words and sentences, the out-

comes convincingly support the hypothesis that, besides signatures, other forms of hand-

writing can be used for person identification. Furthermore, these findings also confirm that

deep learning models based on CNNs can be developed for successful person recognition

based on touchscreen handwriting, for both stylus and finger input.

An ablation study was carried out to analyze the impact of individual sensors within

the fusion-based setup. The outcomes from this analysis provide strong evidence support-

ing the hypothesis that the implementation of a sensor fusion approach could improve the

accuracy of person recognition based on touchscreen handwriting. Overall, the results

indicate that the best subset of sensors for fusion is strongly influenced by both the type

of handwriting and the input modality used. When all sensors are enabled, the model’s

accuracy improves for recognizing sentences, words, and letters written with a stylus.

This highlights the benefit of utilizing a comprehensive multi-sensor setup. Hence, it can

be concluded that incorporating additional sensors can certainly enhance the accuracy of

the model, thereby justifying their integration into the experiment apparatus.

Concerning limitations, the experimental setup faced several notable challenges, pri-

marily associated with device connectivity and battery life. These issues impacted both

the overall performance and the data collection process. One of the foremost challenges

was the connectivity issue between the tablet and the smartwatch devices. While a con-

nection was successfully established between the smartwatch and the smartphone, it failed

to pair with the tablet. This limitation required routing commands for initiating and ter-
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minating data collection from the tablet to the smartphone, which then communicated

with the smartwatch. The indirect communication setup introduced additional complex-

ity and dependency, which could be easily avoided if the manufacturer allowed direct

pairing between the smartwatch and the tablet devices.

The battery life of the devices also proved to be a considerable constraint throughout

the experiment. Continuous operation of the sensors, such as the accelerometer and

gyroscope, was not feasible due to the high energy demands, which limited the duration

of the experiment and the number of participants who could be included. To address this,

the system could be optimized to minimize energy consumption while ensuring efficient

data collection for a larger sample size. This could possibly be achieved by adjusting

sensor parameters, such as reducing the sampling rate.

Another important limitation was due to the functionality of the S Pen Remote SDK,

which does not support the collection of pressure levels or tilt data from the stylus.

This constraint was overcome by developing a workaround that utilizes external sensors,

including piezoelectric sensors for pressure measurement and ArUco marker-based video

tracking for tilt estimation. While the workaround solution allowed for the extraction of

stylus tilt data through ArUco marker tracking, it had a major drawback with the high

energy consumption required for video recording. Enhancing the SDK to support these

functionalities natively would reduce energy consumption and eliminate the need for the

current solution. Another approach would involve using styluses with open-source SDKs

or alternative digital pens that inherently support pressure and tilt data acquisition.

Regarding future work, research could focus on the consistency of biometric features

through a longitudinal study to examine how an individual’s handwriting characteristics

evolve over time. Such a research would explore the impact of factors such as aging,

changes in writing habits, and physical conditions on handwriting dynamics.

Additionally, future studies could investigate handwriting biometrics across differ-

ent languages and scripts. Collecting samples from diverse character sets would provide

insight into the universality of handwriting recognition techniques and help determine

whether adaptations are necessary for non-Latin scripts.

The effectiveness of the proposed solution could be explored by integrating new sensors

or devices into the existing fusion-based apparatus. For example, incorporating motion

capture devices or electromyography (EMG) sensors could enable a more detailed analysis
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of muscle activity during handwriting. Optical or infrared sensors could also be utilized

to track hand movements, potentially capturing subtle biometric markers that may en-

hance the model’s ability to distinguish individuals. Different placements of piezoelectric

sensors could also be examined to determine the best positions for capturing pressure and

vibrations on the tablet screen. By experimenting with various models of piezoelectric

sensors, researchers could gain valuable insights into their performance, sensitivity, and

overall suitability for analyzing handwriting dynamics.

The presented apparatus can also extend beyond identification, particularly in the

field of human-computer interaction. Since it can monitor all types of touchscreen in-

teractions, it offers the potential to study users’ interaction patterns during activities

such as touch-drawing or performing basic operations like swipe, pinch, drag, and point-

and-select. Finally, another important consideration is the practical application of the

proposed solution in various real-world scenarios that, from a security perspective, either

support or require handwriting-based identification.
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A. Salkanović - doctoral dissertation

[30] Ibraheem M Alharbi. Efficient handwritten signatures identification using machine

learning. Int. J. Adv. Comput. Sci. Appl., 14(3), 2023.

[31] Zainab Hashim, Hanaa Mohsin, and Ahmed Alkhayyat. Offline handwritten signa-

ture identification based on hybrid features and proposed deep model. Iraqi Journal

For Computer Science and Mathematics, 5(1):220–236, February 2024.
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A. Salkanović - doctoral dissertation

4.2 The configuration of a convolutional neural network specifically designed

for the objective of feature extraction, accompanied by a fundamental train-

ing classifier. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4.3 The structural arrangement of the classifier model undergoing training on

the gallery dataset and subsequently assessed on a designated query subset. 83

5.1 Smartwatch accelerometer data shows variations in acceleration between

different users along all three axes, with the stylus serving as the input

modality. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

5.2 The gyroscope time-series sensor data was acquired from a smartwatch

during the period in which three distinct individuals wrote on the tablet

device using a stylus. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

5.3 Magnetometer data collected from three users throughout five trials of writ-

ing with a stylus. The minimum, average, and maximum magnetometer

reading values of the sensor are represented by the green, blue, and orange

lines, respectively. The values shown are the average of all five trials per

user. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5.4 The minimum (blue), average (red), and maximum (green) measurements

of the velocity in the x-direction (a) and y-direction (b) for four users during

five trials of writing using a stylus. . . . . . . . . . . . . . . . . . . . . . . 93

5.5 The x and y coordinates of the stylus tilt are determined by using the ArUco

marker positioned on the tip of the stylus. Distinct hues of a single color

signify multiple trials of the same person, whereas varying colors denote

the inclinations of the stylus for different individuals. . . . . . . . . . . . . 94

5.6 Average pressure levels recorded during five writing trials using a stylus,

with each color representing one of the five users. . . . . . . . . . . . . . . 96

5.7 Reconstructed handwriting strokes based on x, y coordinates, and pressure

values from three users, with each column representing three different tri-

als from the same user. Color variations indicate pressure intensity, with

darker tones representing higher pressure. Cubic spline interpolation is

applied for smoother trajectories. . . . . . . . . . . . . . . . . . . . . . . . 97

145



A Deep Learning Model for Touchscreen Handwriting Recognition

5.8 Estimation of the screen surface area touched while writing with a finger.

The values represent the averages from four users, each completing five

trials, with data for stylus input unavailable. . . . . . . . . . . . . . . . . . 99

5.9 The number of stylus gestures performed by four users across five distinct

writing trials. The writing periods are highlighted in blue, indicating active

writing, while the white spaces represent pauses in writing. . . . . . . . . . 100

5.10 A visual representation of vibration and pressure changes captured by a

piezoelectric sensor beneath the tablet. . . . . . . . . . . . . . . . . . . . 101

5.11 The mean values and standard deviations of classification accuracies for two

input modalities (stylus and finger) are presented for three train set sizes

(10, 20, and 30) and four collected handwriting forms (signature, sentence,

word, and letter). . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

C.1 Example of a checkerboard calibration pattern employed for camera cali-

bration in the context of ArUco marker detection. . . . . . . . . . . . . . . 160

146
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LIST OF ABBREVIATIONS

The following abbreviations are used in this dissertation:

2D Two dimensional space

3D Three dimensional space

AMOLED Active-matrix organic light-emitting diode

API Application programming interface

AUC Area under the curve

CIR Channel impulse response

CNN Convolutional neural network

CWT Continuous wavelet transform

dB Decibel

DCT Discrete cosine transform

DL Deep learning

DT Decision tree

DTW Dynamic time warping

EER Equal error rate

FAR False acceptance rate

FFT Fast Fourier transform

FPS Frames per second

FRR False rejection rate

HCI Human-computer interaction

HDR High dynamic range

IC integrated circuit

IMU Inertial measurement unit
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IoT Internet of things

kHz Kilohertz

KNN k-nearest neighbors

LR Logistic regression

LSB Least significant bit

LSTM Long short-term memory

MB Megabyte

MBS Multimodal biometric system

MFA Multi-factor authentication

MLP Multilayer perceptron

OTP One-time password

PCM Pulse code modulation

PPI Pixels per inch

RAM Random-access memory

RBF Radial basis function

ResNet Residual network

RF Random forest

RM Repeat measures

RNN Recurrent neural network

SDB Smart development bridge

SDK Software development kit

SiP System-in-package

SNR Signal-to-noise ratio

SVM Support vector machine

T Tesla

TAR True acceptance rate

UBS Unimodal biometric system

UI User interface

USB Universal serial bus

WAVE or WAV Waveform audio file format

PIN Personal identification number
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User Testing Informed Consent Form 

under Ethics committee approval no. ______________ 

 

Study administrator:  _______________________________ 

Participant:  _______________________________ 

Participant ID (if applicable): _______________________________ 

 

This is a study on the execution of handwritten signatures and handwritten 

letters/words/phrases on a touchscreen tablet. When interacting with a mobile device via finger 

or stylus, data is retrieved from different sensors, based on the concept of sensor fusion. The collected 

data can be used to extract biometric features of handwriting and signature. The final goal of the 

research is to build a system for advanced user authentication, and your participation in the 

experiment will help construct a data set that will be amenable to the application of machine learning 

methods. 

In this session, you will work in an experimental environment that, in addition to a tablet, includes a 

smartphone, a smartwatch, and a specially enriched stylus. Information about interaction with the 

touchscreen will be monitored through several built-in and external sensors. You will be asked to 

perform tasks typical users might do, such as signing and writing letters/words/short phrases. The 

study administrator(s) will be in the same room, quietly observing and, if necessary, taking notes. If 

you have any problems or questions regarding the exam session, you can ask for help from study 

administrator(s). 

All information collected in the test session(s) belongs to Faculty of Engineering, University of 

Rijeka, and will be used for internal purposes. Test session may be videotaped, audiotaped, and/or 

photographed. We may publish our results from this and other sessions in our reports/papers, but all 

such reports/papers will involve confidentiality and will not include your name. Also, in addition to 

anonymizing data, it will be ensured that sensitive data is not further shared. 

This is a test of the interaction system. We are not testing you. You may take breaks as needed and 

stop your participation in the study at any time. 

 

Statement of Informed Consent 

I have read the description of the study and of my rights as a participant. I voluntarily agree to 

participate in the study. 

 

Print Name:  _______________________________ 

Signature:  _______________________________ 

Date:  _______________________________ 
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C. Camera calibration procedure

The distortion coefficients form a vector containing 5 or more elements, which describes

the distortion caused by a smartphone camera. The two primary types of distortion

include radial distortion and tangential distortion. The first type causes straight lines to

bend, and the effect becomes more noticeable as points move further from the center of

the image. It can be expressed in the following manner:

xdistorted = x(1 + k1r
2 + k2r

4 + k3r
6),

ydistorted = y(1 + k1r
2 + k2r

4 + k3r
6).

(C.1)

In this context, x and y denote the position of a point in the undistorted image. The

altered coordinates of a point that was originally positioned at (x, y) in the image are

indicated as xdistorted and ydistorted. These coordinates represent the distorted position

of a point resulting from radial distortion correction. Furthermore, the coefficients k1,

k2, and k3 quantify the degree of radial distortion in the image. Finally, the variable r

signifies the radial distance between the image center and the point (x, y).

Figure C.1: Example of a checkerboard calibration pattern employed for camera cali-
bration in the context of ArUco marker detection.
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Tangential distortion arises due to the camera lens not being precisely oriented parallel

to the imaging plane. Consequently, some regions of the image may seem nearer than

anticipated. This type of distortion can be quantified as follows:

xdistorted = x + [2p1xy + p2(r
2 + 2x2)],

ydistorted = y + [p1(r
2 + 2y2) + 2p2xy].

(C.2)

Here, xdistorted and ydistorted indicate the distorted coordinates of a point in the image,

after applying the distortion to the original coordinates (x, y). Thus, x and y denote the

original, undistorted coordinates of the same point. The coefficients p1 and p2 represent

the effects of tangential distortion. The radial distance r between the point and the center

of the image, typically the principal point of the camera lens, is calculated as r2 = x2+y2.

To summarize, camera calibration requires the determination of 5 distortion coefficients:

Distortion coefficients = (k1 k2 p1 p2 k3) (C.3)

Intrinsic parameters include information like focal length and optical centers of the par-

ticular sensor. The Python script is used to generate a camera matrix for correcting

distortion caused by the lens. It is specific to a particular camera type and model, repre-

sented by a 3 × 3 matrix:

Camera matrix =


fx 0 cx

0 fy cy

0 0 1

. (C.4)

The parameters fx and fy denote the focal length of a camera, while cx and cy represent

the optical centers. To determine these values, sample images featuring a clearly de-

fined pattern must be provided. These images are employed to establish correspondences

between environmental points and their projections in the camera image from various

viewpoints. In this study, these correspondences are derived from the corners of chess-

board patterns, as shown in the Fig. C.1. As a result of successful calibration, camera

calibration parameters were obtained: the camera matrix and distortion coefficients nec-

essary for tracking ArUco markers. These parameters are crucial for correcting distortions
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and ensuring accurate spatial measurements in the captured images. Once the camera

matrix and distortion coefficients are known, they can be applied to accurately detect the

tilt of the stylus in relation to the camera.
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