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strojnog učenja
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ABSTRACT

Estimation and prediction of discharges are particularly challenging in tidal rivers and

estuaries as the water level is significantly affected by the nonlinear interaction between

tides, storm surges, and river flow. Therefore, simple hydrological approaches, such as

rating curves, are not effective for tidal rivers and estuaries; hence, as an alternative,

machine learning was offered.

The thesis was focused on developing a robust hybrid machine learning-based ap-

proach for estimation and prediction of hydrological parameters, more precisely, river

discharge and water level, in data-limited tidal rivers and estuaries. The proposed hybrid

methodology, combining LSTM and attention mechanism, was compared to stand-alone

LSTM and simple non-temporal machine learning models. The effectiveness of the pro-

posed models was analyzed using simulated and measured water level and discharge in

the Neretva River estuary. Multiple station water level data were included as the only

input features for the estimation problem, to test whether it is possible to achieve high

accuracy of estimation for the most upstream station of the tidal reach, even without ad-

ditional meteorological data or salinity. The results of the discharge estimation problem

presented a proposed hybrid solution, LSTM-Attention, as the most optimal model with

the highest accuracy for both simulated and measured datasets, for all flow conditions.

The second-best model was deemed an LSTM. This was confirmed by different evaluation

metrics, a statistical significance test, and visual inspection. Hence, LSTM-Attention

provided better generalization and even extrapolation ability when trained on time series

data.

For the forecasting problem, a hybrid approach combining CNN and LSTM was tested

on another simulated dataset, for both water level and discharge prediction. The forecast-

ing scenarios that employed a CNN-LSTM hybrid approach proved that, by the inclusion



of the time-frequency domain, the prediction accuracy could be improved when presented

with non-stationary data as inputs. Likewise, by additionally employing feature engineer-

ing, the previously used time series data results have improved, especially for the extended

forecasting horizon.

Additionally, another scenario with a signal processing technique, VMD, was em-

ployed for the best-performing models of the first estimation problem, aiming to enhance

the estimation accuracy. The application of a signal processing technique and the classifi-

cation of its results as tidal components improved the estimation accuracy of LSTM and

LSTM-Attention for intra-daily discharge oscillations. However, regarding the intra-daily

discharge variations, only the LSTM performance improved significantly. The LSTM-

Attention model has demonstrated acceptable accuracy; however, its performance in im-

proving estimation plateaus when trained on simpler and localized tidal components.

Therefore, a simpler architecture, such as LSTM, yielded greater benefits for signal de-

composition.

Keywords: Discharge, Water level, Microtidal river, LSTM-Attention, CNN-

LSTM, VMD
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PROŠIRENI SAŽETAK

Održivo upravljanje vodnim resursima zahtijeva temeljito razumijevanje dinamike pri-

obalnih rijeka i ušća. Sve češće i izraženije klimatske promjene, uz antropogene utjecaje,

dodatno ističu potrebu za razvojem inovativnih pristupa koji omogućuju precizne i pouz-

dane procjene hidroloških parametara. U ovom radu predstavljen je detaljan pregled

literature koji ukazuje na sve širu primjenu modela strojnog učenja, upravo zbog pred-

nosti koje nude u modeliranju složenih i nelinearnih hidroloških procesa, ali takoder i

inverznih problema, u odnosu na fizički utemeljene modele.

Problem procjene i predvidanja protoka predstavlja izazov za područja rijeka pod

usporom mora i prijelaznim vodama budući da na razinu vode značajno utječe složena i

nelinearna interakcija izmedu plime i oseke, olujnih uspora i protoka rijeke. Zbog toga

jednostavni hidrološki pristupi, poput protočnih krivulja, nisu dovoljno učinkoviti za takva

područja. Naime, metode strojnog učenja predstavljaju alternative kojima je moguće

modelirati složene riječne procese za područja rijeke koja su u fokusu istraživanja.

U ovom radu dan je detaljan pregled dostupnih istraživanja koja se bave problemima

procjene i predvidanja razine vode i protoka rijeke uz primjenu metoda strojnog učenja.

Kritična analiza, utemeljena na zaključcima iz prethodnih studija, ukazuje na to da su hi-

bridni pristupi potencijalno bolje rješenje, što predstavlja temelj provedenog istraživanja.

Područje istraživanja obuhvaća nizvodni tok rijeke Neretve, kojeg karakterizira mikro-

plimno Jadransko more, izražena stratifikacija slatke i slane vode te jak sezonski karakter

protoka. Za vrijeme vodnog razdoblja poveća se opasnost od poplava, dok za vrijeme

sušnog, javlja se problem prodora slane vode. U svrhu procjene protoka na najuzvodni-

joj stanici Metković, korǐsteni su podatci o razini vode s vǐse postaja, počevši od postaje

smještene na samom ušću rijeke do ciljne postaje Metković, kako bi se ispitalo je li moguće

postići zadovoljavajuću točnost, za manja riječna područja pod usporom mora i prijelaznih



voda, i u slučajevima kada dodatni parametri poput meteoroloških podataka ili podataka

o salinitetu nisu dostupni. Kod problema predvidanja, fokus je na dva hidrološka parame-

tra, razini vode i protoku. Cilj ovog istraživanja bio je razviti matematičke modele temel-

jene na umjetnoj inteligenciji za procjenu i predikciju hidroloških parametara, kao što su

protok i razine vode, za podatkovno ograničena područja.

Predložena hibridna metodologija, koja kombinira LSTM i mehanizam pažnje, testi-

rana je i usporedena sa samostalnim modelima strojnog učenja, kako vremenski ovisnima,

tako i onima neovisnima o vremenskoj dimenziji. Učinkovitost predloženih modela anal-

izirana je korǐstenjem simuliranih i izmjerenih podataka o razini vode i protoku za mikro-

plimnu rijeku Neretvu. Za problem predvidanja, hibridni pristup koji kombinira CNN i

LSTM testiran je na zasebnom simuliranom skupu podataka, sa ciljem predvidanje razine

vode i protoka. Osim toga, za modele s najboljim rezultatima u scenariju procjene pro-

toka dodatno je primijenjena tehnika obrade signala, koje su zatim klasificirani prema

kategorijama plimnih komponenti, s ciljem pobolǰsanja točnosti procjene.

Predloženi hibridni pristup, LSTM-Attention, pokazao se kao najoptimalnije rješenje

za problem procjene protoka u cijelom rasponu vrijednosti, i za mjerene i za simulirane

podatke. Kao drugi najbolji model pokazao se samostalni LSTM, čije su performanse

promatrano kroz postotno pogoršanje, bile slabije za 14,28% prema RMSE, 16,73% prema

MAE, uz mala pogoršanja u pogledu NSE za oko 0,20% te R za oko 0,10%, u odnosu na

LSTM-Attention. Usporedno s najboljim modelom, jednostavni modeli strojnog učenja

značajno su odstupali što se tiče točnosti s prosječnim smanjenjem točnosti procjene za

sve modele, s RMSE lošijim za 45,73%, MAE za 38,77%, 1,69% za NSE i 0,81% za R. Osim

mjera točnosti procjene, proveden je i test statističke značajnosti te brojni grafički prikazi

kojima su dodatno potvrdeni rezultati dobivenih mjera točnosti. Model LSTM-Attention

nadmašio je ostale modele, pokazavši bolju sposobnost generalizaciju i ekstrapolacije, što

je od osobite važnosti za kategorije protoka koja su bile najmanje zastupljene u korǐstenim

skupovima podataka. Takoder, provedene su i analize doprinosa značajki, i prije postupka

treniranja modela i nakon. Rezultati su pokazali kako razina vode na samom ušću rijeke

ima značajan doprinos za predikciju protoka najuzvodnije stanice Metković, uz razinu

vode s iste lokacije.

Scenariji predvidanja koji su primijenili hibridni pristup CNN-LSTM dokazali su

da uključivanje vremensko-frekvencijske domene može pobolǰsati točnost predvidanja
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nestacionarnih podataka, te kako primjena spektrograma predstavlja dobar potencijal

za daljnja istraživanja. Dodatnom primjenom inženjeringa značajki, unaprijedeni su

prethodni rezultati dobivenih na temelju vremenskih serija, osobito za dulji horizont

predvidanja.

Primjena tehnike obrade signala i klasifikacija dobivenih plimnih komponenti dodatno

su pobolǰsala točnost procjene pomoću modela LSTM-a i LSTM-Attention-a u pogledu

unutar dnevne oscilacije protoka. Medutim, za medu-dnevne varijacije protoka, značajno

su se pobolǰsale samo performanse LSTM modela, 21.99% za RMSE, 21.01% za MAE,

1.24% za NSE, te 0.30% za R, gledajući skup podataka za validaciju, u odnosu na sce-

narij gdje se koriste samo vremenski nizovi. Suprotno tome, LSTM-Attention ostvario je

bolje rezultate kada su korǐsteni izvorni podaci u formatu vremenskih nizova u odnosu

na dekomponirane plimne komponentama. Iako je LSTM-Attention postigao manju, ali

zadovoljavajuću točnost, njegova učinkovitost u pobolǰsanju stabilnosti procjene nije se

dodatno pobolǰsala kada je treniran na pojednostavljenim i lokaliziranim plimnim kom-

ponentama.

Ključne riječi: Protok, Razina vode, Mikoplimna rijeka, Hibridni pristupi

strojnog učenja, Obrada signala
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1. Chapter

INTRODUCTION

Contents

1.1. Context and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Research Aims, Hypothesis, and Scientific Contributions . . . . . . . . . . 4

1.3. Research Methodology . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4. Thesis Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

This chapter introduces the key concepts and structure of the thesis, establishing the

foundation of the study. It begins by defining the context and motivation behind the re-

search problem. Following this, the research aims, hypotheses, and scientific contributions

are outlined. The chapter concludes with a brief overview of the research methodology

and the overall thesis structure.

1.1. Context and Motivation

Transitional areas of tidal rivers and estuaries are characterized by complex flows,

primarily due to the nonlinear interaction between water levels and upstream discharge,

as well as the downstream tidal influence. However, other forcing mechanisms also con-

tribute to this complexity, as these areas are susceptible to extreme weather events due to

more frequent climate changes. However, over time, multiple factors of the forcing mech-

anism may exhibit variability and deviation from stationarity. These include atmospheric
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conditions (such as pressure and precipitation), internal water properties, and various

other factors. Likewise, because these areas are close to the sea, they are vulnerable to

salinity intrusion, which has become an increasingly significant problem in recent decades,

mainly due to the effects of climate change. The vulnerability of these areas and their

complex flow are in constant and increasing need of effective water resource management

and protection strategies. Therefore, the main goal is to mitigate the adverse effects of dif-

ferent natural disasters, extreme climate changes, and anthropogenic influences. For this,

continuous monitoring of hydrological parameters, including water level and discharge, is

necessary.

A problem that arises with continuous monitoring concerns the discharge parameter,

also known as streamflow or flow rate. This is because water level measurements can be

directly obtained from ground-based instruments, radars, or even satellite altimetry data.

Although some measurement instruments are considered costly, low-cost alternatives are

also widely available and utilized. However, obtaining continuous discharge records can-

not be regarded as direct or straightforward, specifically for tidal rivers and estuaries,

where river flow is not characterized as homogeneous or steady [83]. No ground-based

instruments can be used to directly obtain discharge records, as they are estimated in-

directly using various parameters, such as flow velocity and the cross-sectional area of

the river. An example of such an instrument is the Acoustic Doppler Current Profiler

(H-ADCP). The downsides of these instruments are their cost, frequent maintenance, and

inability to handle missing data or generate new data, that is, to reconstruct data outside

of their estimation period when they were first installed.

An alternative solution, which is simple, cost-effective, and used in inland rivers for

continuous discharge monitoring, represents the Stage-Discharge Rating Curve (RC).

However, its utilization is inadequate in tidal rivers and estuaries due to the nonlinear

relationship between tidal influence, discharge, and water level. There is no one-to-one

relationship or direct functional dependence between water level and discharge data in

tidal rivers and estuaries, implying that a single water level may be associated with a

range of discharge values.

Therefore, a viable approach commonly employed to model complex river processes is

the use of numerical models. The rationale for using these models resides in their ability

to explain the underlying physical mechanisms. Although numerical approaches, such
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as physically based hydraulic models and conceptual hydrologic models, are commonly

employed, they require discharge data as an input parameter. However, due to problems

such as insufficient or lacking data, which are even more pronounced in data-scarce areas,

data dependency becomes one of the crucial limitations of numerical models.

Due to the restrictions of previous approaches, machine learning was introduced as

a powerful alternative for resolving the problem of discharge estimation and prediction.

Machine learning has been extensively applied to numerous hydrological purposes, rang-

ing from generating simulations [130] to modeling water quality [110], managing water

resources [99], and many more. Furthermore, unlike simple statistical models, machine

learning models effectively handle nonlinear and nonstationary data, which are prevalent

when studying areas such as tidal rivers and estuaries. Additionally, machine learning

models can be combined with other methodologies, such as signal processing techniques,

optimization algorithms, or previously mentioned hydraulic and hydrologic models.

Available review papers are mainly focused on inland rivers, however, only recently, a

paper that provides a critical perspective on applying machine learning for hydrological

analysis on water level and discharge in tidal rivers and estuaries was published by Mihel

et al. 2024a [82]. Based on the findings of the review paper, it was concluded that

enabling effective water level management in tidal rivers and estuaries has become a

significant challenge in recent years, mainly due to the influence of climate change and

complex interactions between different factors, as well as anthropogenic activities. To

ensure protection from water-related risks and promote sustainability, various approaches

are employed and considered essential, including monitoring, forecasting, and modeling.

Motivated by the advantages of applying machine learning to problems regarding discharge

in tidal rivers and estuaries, this thesis investigates the potential of applying a hybrid

approach that combines a Recurrent Neural Network (RNN) with an Attention mechanism

for the estimation problem, and another hybrid approach for forecasting. The signal

processing had also been integrated, aiming to enhance estimation accuracy.
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1.2. Research Aims, Hypothesis, and Scientific

Contributions

The thesis is focused on successfully achieving two research aims. The first aim rep-

resents developing a robust hybrid machine learning approach capable of accurately es-

timating and forecasting river discharges and water levels across diverse flow conditions.

Additionally, the second research aim is to focus on physical processes in tidal rivers and

estuaries, where traditional estimation methods often fall short due to complex interac-

tions among tidal, river, and storm surge influences. In accordance with the declared

research objectives, the hypotheses are as follows:

The estimation and prediction of discharges and water levels can be achieved with

high accuracy by using only water level data from multiple stations.

In complex environments, such as microtidal rivers and estuaries, discharge and

water level reconstruction are more accurate when using machine learning models

for time series forecasting, compared to non-temporal machine learning models.

Hybrid machine learning approach that integrates an attention mechanism outper-

forms other machine learning models for time-series forecasting in estimation and

prediction of discharges and water levels.

Decomposing water level signals into distinct frequency bands enhances the estima-

tion accuracy for river discharges and water levels.

The scientific contributions of this research are as follows:

– Designing a machine learning-based approach for estimation and prediction of water

levels and discharges in tidal rivers and estuaries

– Building a hybrid machine learning model that integrates an attention mechanism

to better identify critical features and improve estimation and prediction accuracy

across flow conditions

– Evaluation of the impact of tidal amplitude and storm surge on water level and river

discharge estimation and prediction.
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1.3. Research Methodology

The focus of the thesis is on two types of analysis: estimation and prediction. These

analyses differ in that estimation focuses on reconstruction problems where missing data

is present, thereby extending the current sequence. In contrast, prediction aims to fore-

cast the target variable several hours, days, months, or more in advance. The research

direction was based on a review paper [82], which provided a comprehensive overview and

specifically focuses on the areas of tidal rivers and estuaries. As hybrid modeling was one

of the most promising directions, this research investigated and evaluated the integra-

tion of the attention mechanism with an advanced, recurrent neural network (RNN). The

proposed model was compared with various machine learning approaches across all flow

conditions and evaluated using two datasets: one comprising measured records and the

other simulated records. Likewise, the advantages and limitations of each approach will

be discussed — sthis dual approach aims to provide insights into the models’ robustness

and effectiveness.

Data preprocessing represents the first stage of the methodology, which involves iden-

tifying potential delays, correcting missing data, reducing the influence of high-frequency

noise, and analyzing feature significance. Cross-correlation was employed to identify pos-

sible delays, after which the time-series data was corrected accordingly. Missing data,

which can only be encountered in the measured dataset, was addressed through inter-

polation. Besides missing data, the measured dataset can also contain high-frequency

noise. Therefore, a short-term moving average was employed to mitigate its effects. After

the data had been cleaned, feature significance analysis was conducted using correlation

analysis and mutual information scores. The interactions between water level stations

concerning the discharge parameter and their importance were analyzed. Correlation

analysis is limited to finding only linear associations between the features using Pearson’s

r Correlation Coefficient [25]; therefore, to surpass such limitation, mutual information

was utilized alongside correlation. With mutual information, it is possible to identify the

complete dependence between input and output features, both linear and non-linear [90].

Although such an analysis is useful, its results must be discussed from the hydraulic per-

spective, as contradictions may occur. Hence, the elimination of a feature was dependent

on correlation, mutual information analysis, and domain-specific knowledge. The final
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step in data preprocessing was determining the sliding window length for time-dependent

models, ensuring that the window encompasses both daily and intra-day oscillations.

The second stage of the methodology involves selecting different machine learning

models, whose performance is evaluated. More precisely, two categories were considered.

The first category referred to simple supervised ML models, such as decision trees (DT),

random forest (RF), support vector regression (SVR) with radial basis function and sig-

moid kernel, light gradient boosting machine (LGBM), and extreme gradient boosting

machine (XGB). Although some of the mentioned models had been applied for recon-

structing discharge [105], models such as LGBM, which has been successfully used for

estimating water levels in tidal rivers [82], and another popular gradient boosting model

XGB [34], previously not employed for tidal reaches and water level and discharge estima-

tion, were investigated. The rationale behind employing simple machine learning models

was due to their advantages when solving regression problems, such as short training

time, low resource requirements, effectiveness in handling non-linear data, and trans-

parency [43, 120]. The second category of machine learning models, classified as complex

and time-dependent, represents time-series models, long short-term memory (LSTM), and

LSTM-Attention. LSTM-Attention represents the proposed modeling approach that com-

bines the benefits of the LSTM model with those of the attention mechanism by assigning

different weights based on the relevance of input features [125]. The goal of the proposed

hybrid methodology was to improve resilience to irrelevant and noisy data.

Additionally, these models capture temporal dependencies, a feature absent in simple

machine learning models. Developing simple machine learning models was accomplished

using the scikit-learn toolkit, while time-dependent models were built with PyTorch. Pro-

viding optimal performance for each model was crucial; therefore, a five-fold grid search

cross-validation was performed. From the aspect of computational resources, a work-

station available at the Faculty of Engineering was used to train the proposed machine

learning models.

Evaluation of the models is the third phase of the methodology. Four metrics were

employed for this purpose: root mean squared error (RMSE), mean absolute error (MAE),

Nash-Sutcliffe Efficiency coefficient (NSE), and correlation coefficient (R). The selected

metrics are commonly employed in water level and discharge estimation studies [82].

However, a detailed assessment of model performance was conducted from the perspective
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of different discharge categories: low, medium, high, and extremely high. The data

frequency was compared to the models’ adaptability. For such evaluation, a single metric

was employed. Furthermore, a Taylor diagram was used to examine the models’ total

error reduction and their ability to capture the inherent variation within the dataset. The

step preceding the final evaluation phase was conducting a statistical significance analysis

using a Wilcoxon signed-rank test, which employs the model’s residuals to determine if the

results of the models differ significantly from one another [24]. The final segment of the

model evaluation focuses on enhancing the model interpretability by employing SHapley

Additive exPlanations (SHAP) analysis [74] for simple ML models and a feature occlusion

test for the time-dependent models. These methods enabled the determination of feature

contribution to the overall model’s predictions. Feature occlusion was employed due to

the limitations of SHAP analysis for the RNN-based architecture. Ascertaining feature

redundancy, or necessity for providing accurate discharge prediction, was conducted by

integrating additional features to the model, whose performance was then assessed based

on the selected evaluation metrics.

Another hybrid approach had been applied for discharge and water level forecasting,

combining a convolutional neural network (CNN) with an LSTM, and evaluated on dif-

ferent input combinations, time series data, and spectrograms. Feature engineering was

also considered, as it offers significant advantages and potential prediction enhancements.

Including the signal processing method, Variational Mode Decomposition (VMD), and

testing the models’ performance, represents the final stage of the methodology. Decom-

posing water level signals into separate frequency bands is expected to improve the overall

model performance. The decomposed intrinsic mode functions were classified as a different

type of tidal constituent and, as such, were given to the models as input.

1.4. Thesis Overview

The thesis is structured in the following manner. Chapter 2. provides an overview of

the literature focused on the hydrological analysis of water level and discharge, explaining

the reason for employing machine learning for the discharge estimation problem in tidal

rivers and estuaries, and classifies the machine learning models currently used by type of

analysis and category of ML models. The chapter concludes by discussing the results of
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previous studies from a critical perspective.

In Chapter 3., the theoretical basis of the applied models, both simple and time-

dependent, is given. In addition, a novel hybrid approach is presented, combining an

Advanced Recurrent Neural Network called Long Short-Term Memory with an Attention

mechanism.

A brief overview of the research area and data sources is given in Chapter 4.. Specif-

ically, the chapter focuses on data acquisition, as measured data has been gathered from

various instruments, and a numerical model has generated simulated data.

In continuation of previous chapters, Chapter 5. describes and outlines the tech-

niques and methods used for data analysis and model development. Significance tests are

discussed to ensure the validity of our results, along with techniques for providing model

interpretability.

The results and discussion are presented in Chapter 6., where selected models are

tested on acquired datasets and under different flow conditions, with an emphasis on the

models’ adaptability and generalization.

The last part of the dissertation, Chapter 7., contains research summary, conclusions,

and recommendations for future research.
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2. Chapter

LITERATURE OVERVIEW

Contents

2.1. Machine Learning for Hydrological Analysis: A Modern Approach . . . . . 10

2.2. Forecasting Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3. Reconstruction Studies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.4. Stage-Discharge Relationship Studies . . . . . . . . . . . . . . . . . . . . . 27

2.5. Critical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.1. Research Gaps . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29

2.5.2. Strengths and Weaknesses of ML Categories . . . . . . . . . . . . . 31

2.5.3. Justification of Research Direction . . . . . . . . . . . . . . . . . . 35

This chapter explores the application of machine learning approaches for discharge

estimation and prediction in tidal rivers and estuaries. The reviewed studies primarily

focus on the hydrological analysis of water levels and discharge. The literature is classified

based on the type of analysis performed, and a critical discussion is provided, highlighting

existing research gaps as well as the strengths and limitations of each category of models.
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2.1. Machine Learning for Hydrological Analysis: A

Modern Approach

Inverse problems, along with the nonlinear and complex hydrological processes charac-

teristic of tidal rivers and estuaries, require robust solutions to ensure sustainability and

mitigate the risk of potential disasters. These challenges can be addressed through the

implementation of monitoring, modeling, and forecasting systems that remain effective

even under extreme conditions. The development of such systems is essential for effective

water resource management.

The application of machine learning for discharge estimation and prediction can be

attributed to the limitations of existing approaches. In hydrology, modeling complex river

processes is mainly accomplished using numerical models. Although machine learning is

still to some degree considered a black-box approach, especially in the case of neural

networks, the numerical models are substantially applied in the field of hydrology due

to their advantage of providing adequate comprehension of rivers’ physical mechanisms.

There are two basic categories of numerical models that differ based on how they describe

the physical processes: conceptual hydrologic and physically-based hydraulic models [82].

The first category of conceptual hydrologic models represents a more simplified version

of modeling complex physical laws, which does not require large datasets with numerous

parameters and high spatial resolution. Hence, such models are deemed computationally

efficient compared to the physically-based hydraulic models. In contrast to such a sim-

plified approach, physically-based hydraulic models solve complex differential equations

for the purpose of simulating the physical processes, thereby providing higher accuracy,

unlike the previous category. Likewise, the second category requires more precise data in

both temporal and spatial aspects, such as boundary conditions, river cross-section, and

many more.

As physically-based numerical models provide accurate simulations of complex river

flow, they are of more interest for discussion. However, several difficulties may occur

when using these models, with different sources. One of the probable issues is the data

requirement aspect. Hydraulic numerical models require a wide range of input data,

including not only hydrological time series but also detailed information about channel
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geometry, physical characteristics, and boundary conditions, which are often difficult to

obtain. Likewise, another potential problem relates to the model calibration, which must

be performed at appropriate intervals. The application of these models is additionally

problematized due to the complex dynamics of tidal rivers and estuaries. The definition

of boundary conditions depends on high-resolution data continuously collected, and a long

dataset is necessary for performing tidal analysis.

Web of Science (WOS), a well-known bibliographic database of scientific papers, con-

ferences, and other publications, has been used for advanced searches using specific rele-

vant keywords and terms. Although our primary focus was on discharge parameters, we

also provide an overview of research articles referring to another hydrological parameter,

water level. These parameters also differ in the underlying purpose for their analysis.

For example, water levels are mainly employed for developing early warning and flood

forecasting systems. While, for example, discharge is utilized to enable the management

of water resources and processes in river systems, as well as the development of models

for reanalysis and prediction. The conducted search was based on three query strings

with a selected TOPIC field, which filtered the WOS database based on paper titles, ab-

stracts, and keywords. All query strings utilized technical terms. The first query string

referred to the hydrological parameters and their various nomenclatures, specified as fol-

lows: (“level” or “levels” or “stage” or “discharge” or “discharges” or “flow” or “flows”

or “streamflow” or “stage-discharge” or “rating curve” or “rating curves”). The second

part of the query contained the area of focus, associated with the tidal rivers and estu-

aries, which was defined as: (“tidal river” or “tidal rivers” or “estuary” or “estuaries” or

(“tides” and “river”) or (“tides” and “rivers”) or (“sea level” and “river”) or (“sea levels”

and “rivers”)). Finally, the last part of the query contained the methodology of inter-

est, more specifically, machine learning. This part of the query string was defined in the

following manner: (“machine learning” or “artificial intelligence” or “neural network” or

“neural networks” or “ANN” or “SVR” or “deep learning” or “data driven”). The three

sets of query strings were linked together by the AND Boolean operator, which generated

results only if all three specified query strings were found.

The search engine, based on the defined query, presented 389 publications. However,

it is important to emphasize that only research and review papers were considered. An

overview of the filtered publications is presented in Figure 2.1, which is sorted by the pub-
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lication year. A continuous increase in research related to the above-mentioned keywords

and terms has been observed, with the most pronounced increase in the last five years,

where the number of scientific publications has almost doubled compared to the previous

twenty-seven years. A notable increase of roughly 74% was found, signifying a substantial

rise in interest concerning the aforementioned keywords and phrases. However, although

the search had narrowed down the number of publications, additional manual checking

of the filtered studies abstracts was necessary to find those that specifically address the

problems of modeling and predicting water levels and discharge in tidal rivers and estu-

aries. The search was further narrowed to articles published in the last 20 years. Out of

a total of 389 studies, only 35 of them focused on the requested problems, while, for ex-

ample, the remaining studies mostly addressed problems related to water quality, runoff,

sediment transport, saltwater intrusion, and even biological indicators.

Figure 2.1: WoS search based on the defined keywords and terms related to the hydro-
logical analysis of water level and discharge for the area of interest, sorted by the year of
publication (1992-2023), with visualized annual and cumulative number of publications
[82]

Until recently, there has been a lack of comprehensive studies that offer a literature

review specifically addressing tidal rivers and estuaries, related to the estimation and pre-

diction of hydrological parameters: water level and discharge. The available review papers

focused mainly on the area of inland rivers and forecasting problems. Table 2.1 presents

several examples of the review studies, highlighting their problem, output parameter, and
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period range.

Table 2.1: A brief insight into several review papers, their research focuses and the
periods considered

Authors and publication year Hydrological parameter Type of analysis Period
Yaseen et al. 2015 streamflow modeling and forecasting 2000 - 2015
Zhang et al. 2018 streamflow forecasting 2001 - 2017
Hamzah et al. 2020 streamflow reconstruction 2000 - 2019
Zhu et al. 2020 lake water level forecasting 2006 - 2020
Wee et al. 2021 water level forecasting 2000 - 2020

Ibrahim et al. 2022 streamflow forecasting 2009 - 2020
Ng et al. 2023 streamflow forecasting 2017 - 2023

Figure 2.2: Overview of research articles focused on the area of tidal rivers and estuaries,
for hydrological analysis of water level and discharge parameter

Based on the 35 papers previously found for the problem at hand, a classification of

machine learning categories for estimating water level and discharge was presented in a

review paper Mihel et al. (2024a), which focused specifically on the areas of tidal rivers

and estuaries. The following five main categories were identified in the review: (a) Simple

statistical approach, (b) Classifiers, kernel, and ensemble approach, (c) Shallow neural

network (SNN) approach, (d) Recurrent neural network (RNN) approach, and (e) Hybrid

approach. In addition to the classification of the machine learning approach, the filtered

studies that focus on water level and discharge as output features also differed in the

type of analysis conducted. Therefore, three types of analysis were identified: forecasting,
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reconstruction, and establishing a stage-based discharge relationship. The summary of the

literature is provided in Appendix A. In the following subsections, a brief overview of the

papers pertaining to each analysis is presented. Every type of analysis was divided into

three periods: the first published papers between 2000 and 2011 fall under the pioneering

work, followed by the papers published between 2012 and 2017, which are referred to

as early applications, and lastly, the recent advancement category, which encompasses

publications between 2018 and 2023. However, another category is additionally added,

which presents studies published since 2024, named the latest contributions. Therefore,

instead of 35 studies covered in the review paper, this chapter presents an overview of 46

studies, as illustrated in Figure 2.2.

2.2. Forecasting Studies

This section presents publications that focus on the predictive modeling of hydrological

parameters, employing historical data for model training, aiming to forecast unknown fu-

ture values in advance. A total of 26 publications have been found, where more than 80%

of the publications (23 research papers) focused on forecasting water levels, while the re-

maining (3 research papers) were dedicated to discharge analysis. Additional information

on the studies included in Appendix A.1, Table A.2, and A.2.

Two pioneering forecast studies were published in the same year, the goal of which

was to predict the water level several hours in advance. The first paper by Supharatid

examined the use of a Multilayer Feed-Forward (MLFF) neural network and combined

it with a Levenberg–Marquardt (LM) for the area of Chao Phraya River estuary located

in Thailand. The study emphasized two points: the first related to the use of different

training algorithms, where the proposed training algorithm resulted in a shorter training

time, and the fact that having tidal constituents is not essential for obtaining accurate

long-term forecasts. That same year, Chang and Chen introduced a hybrid methodology

to address the issue of water level prediction in the Tanshui River in Taiwan, where the ef-

fectiveness of a supervised RBFNN combined with a fuzzy min–max clustering technique

was evaluated. The model demonstrated satisfying accuracy for one-hour ahead forecast-

ing during both average and extreme conditions, i.e., during events such as typhoons and

floods. The proposed integration of unsupervised and supervised methods facilitated the
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automatic selection of model parameters.

After an almost nine-year gap, the next phase, referred to as early applications, began,

with a study by Tsai et al. where a hybrid proposition approach was presented for the

Tanshui River tidal region. The proposed approach combined classification and regression

trees (CART) with two variations of artificial neural network (ANN): multilayer percep-

tion (MLP) and radial basis function (RBF). However, although one of the proposed

variations (CART-RBF) provided higher accuracy than other models used, the study

emphasized two significant limitations, one regarding the case-dependent nature of the

model, and the other regarding the model’s generalization being completely dependent on

the given training set. The first application of wavelet function integrated with a kernel

approach known as support vector machine in the tidal reach of Tanshui River located

in Taiwan was published by Wei. The water level forecasting model demonstrated im-

provement in comparison to a Gaussian support vector machine approach during extreme

weather related to typhoon events. The next year, another publication employed wavelet

functions in both continuous and discrete forms, but this time alongside a neural network.

The mentioned study by Yang et al. was conducted for the Yangtze River in the form

of a multi-step ahead forecasting scenario, wherein the continuous and discrete wavelet

transform combined with the neuro-fuzzy system (CWD-NF) exhibited minimal error ac-

cumulation, thereby demonstrating the model’s efficacy in successfully filtering noise from

the provided signals. The pioneering study on discharge forecasting in the tidal region of

the Mahakam River was published by Hidayat et al., who demonstrated an additional use

of the LM algorithm for training a neural network, specifically an MLP model, expand-

ing upon the findings of Supharatid. This study considered using historical discharges,

wavelet analysis for tidal data, and a feature selection approach, which resulted in a model

with satisfying performance up to 48 hours ahead. The continuation of ongoing analysis

by Wei on water level forecasting during typhoon events for the same tidal area as before,

has been presented in 2015, but this time in a different manner, through an assessment of

two categories of machine learning algorithms, namely lazy and eager techniques. Despite

the comparative analysis of these classes’ performance, no definitive conclusion could be

drawn regarding a more suitable choice. However, when evaluating each class individu-

ally, it was observed that LWR for lazy learners and SVR and ANN for eager learners

outperformed the other models considered. Only a year later, a more detailed comparison
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was given by Pasupa and Jungjareantrat for the Chao Phraya river, which featured a

baseline model founded on harmonic analysis and various machine learning models. The

analysis demonstrated that the baseline model effectively represented the general trend,

although it lacked precision when individual predictions were considered. Consequently,

the evaluated machine learning models yielded better results. A particular focus was on

the performance of SVR when paired with a radial basis function kernel, resulting in the

lowest errors for the longest considered forecasting horizon. The following year, Ahmed

et al. introduced a hybrid approach for the Karnaphuli River, which combined the SVR

model with various kernel functions, where besides the commonly used radial basis func-

tion, neural and analysis of variance, known as ANOVA, were tested. The preprocessing

stage integrated methods such as moving average (MA) and exponential moving average

(EMA), followed by a resampling process where the daily data was additionally classified

into morning and night tide records. As the SVR model cannot directly handle missing

records, which were present in the given dataset, these missing values were substituted

with the average of the tidal records. Satisfying accuracy was achieved for all tested mod-

els, more precisely above 96%. The inclusion of water level data from multiple gauging

stations to address the problem of backwater effect from the main channel was explored in

a study by Sung et al.. The study focused on a tributary known as Anyangcheon stream,

which is connected to the main stream, the Han River. Various input feature combina-

tions were evaluated using the MLP approach, from which it was concluded that including

the main river water level records significantly improved the model’s performance. Hence,

MLP was proved to be a suitable and efficient alternative to complex physically based

hydrological models.

Compared to the publications from the preceding two periods, the recent advance-

ments period featured eight papers, which is noteworthy relative to the earlier total of

10 publications. The data indicate a continuous rise in publication trends, partially at-

tributable to the intensifying effects of climate change. The initial research employing

LSTM for predicting hydrological parameters in tidal regions was carried out by Jung

et al.. The study examined the Han River region, drawing comparisons to prior research

by Sung et al., which analyzed tributaries of the Han River and the water levels of the

main river. The study’s focus was on a bridge situated on the Han River, which be-

comes obstructed for both vehicles and pedestrians during flood events. The optimal
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hyperparameters for the LSTM model have been determined through sensitivity analysis,

and various input sequence lengths were assessed during the model evaluation phase. A

data input sequence of up to 1 hour yielded optimal model performance, but only for

shorter lead times. Two years later, Yoo et al. released another LSTM research on water

level forecasts. The main difference between this study and the first by Jung et al. is

the use of a weighted sum multiplied by a hyperbolic tangent (tanh) and a rectified lin-

ear activation unit (ReLu) instead of using the traditional activation function approach.

The output of such an approach was the sum of these two components. Likewise, t-test

and p-value were used to find relevant features and sensitivity analysis for optimal hy-

perparameters, as in Jung et al.. Results revealed that the hybrid activation function

improved model performance over the traditional approach while maintaining acceptable

accuracy for shorter forecasting horizons (up to 6 hours). A tool known as non-stationary

harmonic tidal analysis model (NS TIDE), firstly proposed by Matte et al., was further

investigated in a study by Chen et al. where the approach had been combined with

auto-regression (AR) analysis with the main aim of improving the model accuracy for

short-term forecasting for Yangtze River. The results show that the subtidal tides are

adequately modeled when using the proposed hybrid approach, which was a significant

limitation of the stand-alone NS TIDE model. Liang et al. 2021 introduced hybrid mod-

eling for tidal level forecasting, integrating empirical wavelet transform (EWT) with the

machine learning approach Nonlinear Autoregressive with Exogenous inputs (NARX).

EWT was used to preprocess data from four Pearl River estuary stations by generating

intrinsic mode functions (IMFs) to forecast tidal levels using a time series format. The

suggested hybrid model was compared to baseline HA, Empirical Model Decomposition

(EMD) combined with NARX, and Ensemble Empirical Mode Decomposition (EEMD)

combined with NARX. EWT-NARX significantly outperformed other approaches in pre-

dicting tidal levels. EWT also avoided mode-mixing, a limitation of EMD and EEMD,

whose deconstructed signals had real physical meaning. The utilization of the LGBM

in the area of tidal reaches, specifically for the purpose of water stage forecasting, has

not yet been investigated. Consequently, Guo et al. conducted a novel analysis in which

the results of LGBM were compared to those of previously employed models, including

RF, SVR, and MLP for the Lan-Yang River. In contrast to the grid search approach

previously employed in various studies, a Bayesian optimization approach was selected
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to identify optimal model parameters. The study showed how the proposed model pro-

vided higher accuracy than others, deeming the proposed approach robust and efficient.

The proposed storm surge solution necessitates a model that is both efficient and fast.

Consequently, the Chen et al. study conducted a comprehensive comparative analysis

of the LSTM model’s efficacy against simpler models, including linear regression (LR),

Bayesian Ridge Regression (BRR), SVR, and Gradient Boosted Decision Tree (GBDT),

for the Yangtze River. Additional input features, including meteorological data and ref-

erence factors, were considered, distinct from earlier research. While some difficulties

arose during extended forecasts, overall, the model demonstrated superior performance

compared to simpler models. Zhang et al. expands upon the work of Chen et al., where

the previous proposed hybrid approach was further evaluated and compared to a novel

hybrid approach comprised of NS TIDE and a deep neural network, for the Pearl River.

By employing the correlation analysis, the significance and strong relationship between

NS TIDE errors were confirmed. Various neural network architectures were considered

and evaluated compared to the previously proposed AR, and it was found that a model

combining the LSTM with the Feed-Forward Neural Network (FFNN) layer provided the

best performance. Similarly, testing revealed that including a dropout layer depended on

the number of neurons. A simple novel approach for water level forecasting that com-

bined EEMD with stepwise regression was proposed by Chen et al. for the tidal reach of

Tanshui River, more precisely, Taipei Bridge. Only water level signals were considered as

model input features, which were decomposed into IMFs, reconstructing the ocean and

stream components. These two components were modeled and forecasted separately us-

ing stepwise regression, with the ocean using downstream data and the stream using data

from upstream stations. The water level at Taipei Bridge was obtained by summing the

results of these two component forecasts. Through evaluation, it was revealed that the

model could achieve accurate forecasts even during extreme events, such as typhoons. The

first application of a graph convolutional recurrent network in tidal reaches was offered

by Zhang et al. to address the issue of storm surges, while the research area remained

the same as in the previous study. The model consisted of Chebyshev graph convolution

(Chebnet), whose purpose was to extract spatial information, and Gated Recurrent Unit

(GRU), which extracted temporal information. A comprehensive evaluation included var-

ious baseline models (LGBM, GRU, LSTM, and CNN-LSTM) to predict multiple station
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outputs. The proposed hybrid approach consistently outperformed baseline models even

for extended forecasting horizons (up to 12 hours ahead). A study by Vu et al. presents

another forecasting application of an LSTM model. In contrast to earlier applications,

this study incorporates previously excluded input features, including climate data and sea

level at both local and global scales, facilitating long-term predictions extending several

months into the future. Due to the problem of different scales, a frequency analysis was

conducted and aimed at two objectives: optimizing lags and the correlation among the

chosen features. The optimal input step (6 days) was sufficient for long-term forecasting,

although, greater inaccuracies were observed during floods, than during drought events.

The latest contributions category consists of 7 studies. The first application of ML

analysis for the tidal reach, Rı́o de la Plata Estuary, was presented in a study by Dato

et al.. The authors employed an MLFF model to forecast water levels up to four days

ahead at two stations (intermediate and upstream sections of the estuary), using water

levels, astronomical tide predictions, and meteorological data. Two types of models were

applied, which are referred to as Forecast Unweighted and Forecast Weighted. The differ-

ence between the models was that for the unweighted scenario, the models were trained

with real data sampling, i.e., unequal data distribution. Unlike this, the weighted case

had data with equal distribution, which was useful for predicting extreme values. The

findings indicate the effectiveness of the proposed model, revealing that the weighted

scenario errors have nearly tripled for extended lead times. In contrast, the unweighted

errors have only doubled, despite the weighted errors yielding lower errors. An extension

of previously applied AR [18], NARX was the focus of a study by Vidyalashmi et al.. The

NARX model was applied to forecast water level using three different combinations of

inputs, one containing only water level data, the second containing additional discharge,

and the last containing salinity. Through cross-correlation analysis, it was found that

the inclusion of salinity in the third input combination largely influenced the result, from

which it can be concluded that tides strongly influenced the water level. However, de-

spite this, all models performed with satisfying accuracy. Based on the results previously

presented by Gan et al., a somewhat similar approach was given by Gan et al., which

tested two different implementations of the LGBM model for water level forecasting in

the Yangtze Estuary up to two days in advance. The first model, denoted as LGBM1,

represented a single regression model that employed a recursive approach, while the sec-
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ond model, LGBM2, generated multiple regression models depending on the maximum

output step. Results indicate that LGBM2 outperformed LGBM1, especially for longer

horizons, but at a cost of additional time. However, the accuracy of proposed models

was still limited in the case of extreme events (typhoons), showcasing larger errors. An

approach consisting of an LSTM combined with a sequence-to-sequence (Seq2Seq) model

was discussed in a study by Chen et al.. The study aimed to predict discharge for three

possible scenarios: short-term, mid-term, and long-term, in the Yangtze River using dis-

charge, flow velocity gathered from three ADCP devices, and water level. Likewise, the

model was trained and tested using different hydrological conditions. During the compar-

ative analysis, the proposed model showed improvement over other approaches (LSTM,

harmonic analysis (HA) combined with Back-propagation and optimized with particle

swarm optimization (PSO-BP), and HA), with a consistent and rising percentage of pre-

diction accuracy for longer lead times, with an emphasis on effectiveness in capturing

peak values both during ebb tides and floods. A continuation of multi-station tide level

prediction research by Zhang et al. during storm surges was proposed by Shi et al.. The

authors used the same hybrid approach of graph convolution recurrent network (Cheb-

GRU), but this time for a different tidal reach, the Yangtze Estuary. Cheb-GRU had

greater accuracy than other models (LSTM, GRU, and CNN-LSTM) for the one-hour-

ahead forecasting scenario. However, its performance decreased and resulted in instability

for longer forecasting horizons. Likewise, the model was applied to the Alaska region to

test its generalization ability for different areas under the tidal influence, with a larger

dataset than initially used, showcasing its significant performance improvements. Another

study contribution referred to the tested topologies (simple and connected) to unweighted

or weighted networks, where a more detailed network resulted in higher accuracy and a

good fit. The first mention of data assimilation (DA) was given in a study by Cremer

et al., where it represented a part of the employed hybrid approach for the tidal reach of

the Elbe River. The Ensemble Kalman Filter (EnKF) represented the assimilation part,

MIKE FM, the numerical model used, and LSTM, a machine learning approach. The

LSTM was initially employed to produce synthetic data through forecasting. The syn-

thetic data was integrated with the actual observations with EnKF, subsequently serving

as input data for the numerical model. The proposed hybrid approach gave significant

improvements for shorter forecasting horizons (up to 4 hours ahead), while there was less
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difference in performance for longer horizons (up to 9 hours ahead) when compared to

the stand-alone numerical model and numerical model combined with DA. Almost four

years after the publication of the first forecasting study on tidal reaches, which utilized

signal processing, EEMD, another study emerged. An EMD for tidal reaches, with var-

ious ML methods for water level prediction in the Yangtze Estuary, has been proposed

by Gao et al.. The integrated modeling system EMD-ITG consisted of both LSTM and

GRU models, which were applied separately, depending on the type of IMFs. Hence, for

low to medium-frequency IMFs, the LSTM was used, while for high-frequency IMFs, the

GRU was used. EMD-ITG outperformed different EMD ML combinations (EMD-LSTM,

EMD-GRU, and EMD-CNN-LSTM), stand-alone models (LSTM, GRU, CNN-LSTM),

and a numerical approach (NS TIDE). Hence, applying EMD decomposition resulted in

more accurate predictions, which showed greater resistance to the presence of noise and

trend.

Author and publication Simple Classifiers, kernel SNN RNN Hybrid
year statistical and ensemble approach approach approach

approach approach
Supharatid (2003a) ✓

Chang and Chen (2003) ✓
Tsai et al. (2012) ✓ ✓ ✓

Wei (2012) ✓ ✓
Yang et al. (2013) ✓

Hidayat et al. (2014) ✓ ✓
Wei (2015) ✓ ✓ ✓

Pasupa and Jungjareantrat (2016) ✓ ✓
Ahmed et al. (2017) ✓ ✓
Sung et al. (2017) ✓
Jung et al. (2018) ✓
Yoo et al. (2020) ✓
Chen et al. (2020) ✓
Liang et al. (2021) ✓
Guo et al. (2021a) ✓ ✓
Chen et al. (2021) ✓ ✓ ✓
Zhang et al. (2023c) ✓
Chen et al. (2023c) ✓
Zhang et al. (2023b) ✓ ✓

Vu et al. (2023) ✓
Dato et al. (2024) ✓

Vidyalashmi et al. (2024) ✓
Gan et al. (2024) ✓
Chen et al. (2024) ✓ ✓
Shi et al. (2024) ✓ ✓

Cremer et al. (2025) ✓
Gao et al. (2025) ✓ ✓

Table 2.2: Forecasting study categorization
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2.3. Reconstruction Studies

The second category referred to the reconstruction analysis. This category addressed

several potential problems regarding the estimation of hydrological parameters (water

level and discharge): (a) at locations of interest (remote or ungauged), and (b) for missing

time periods (ML imputation, hindcasting, upscaling current temporal resolution) and (c)

optimization of complex water systems [82]. The reconstruction problem was the subject

of 20 studies, of which 14 focused on water level and the remaining six on discharge as

the model output. A more detailed overview of the articles is presented in the Appendix

A.2, more precisely, Tables A.3 and A.4.

For the pioneering period, three publications were found that used simple ANNs, or

more precisely, SNNs, for the purpose of water level reconstruction. The first study by

the author Adib used an MLP for the area of two rivers located in different countries, the

Karun and the Severn River. The data used to train the MLP were generated using a

numerical model, while the measured data were used to establish the regression relation.

A comparison of the two approaches showed that the ANN resulted in adequate results,

especially when it came to situations of extremely high water levels. It was also observed

that the regression relation approach significantly depended on the availability of data

from the gauging stations, as well as on the length of the time series when performing

the calibration to determine the model parameters. Aiming at the flood control problem,

a paper by Wei and Hsu explored the area of Tanshui River, where another SNN was

applied, namely FFNN with a classical backpropagation (FFBP). As flood control was

the primary objective of the research, data collected during typhoon events was utilized as

the model’s input, however, besides the main channel, tributary data was also considered.

The rationale for utilizing an ANN, stems from the constraints of the physically-based

model, CCCMMOC, which was inefficient for multireservoir operational modeling due to

its complexity. The comparison between an FFBP and CCCMMOC revealed how the

proposed ANN represented a suitable alternative. A somewhat different challenge was

investigated in a study by Chinh et al., for the Chiyoda Basin, regarding the problem

of water distribution, mainly the irrigation and drainage system. A relationship between

the amount of rainfall and water level was successfully modeled using an FFNN model

for estimation of water level at two main channel river locations, where the water levels
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in the downstream section were significantly influenced by tidal effects.

The following period of early applications was marked by two directions of conducted

research, one which focused on the comparison and improvement of models, primarily

simple ANN models and existing numerical models, and the other direction, where the

problem of discharge reconstruction in tidal reaches was introduced for the first time. The

first direction had three studies published sequentially, one after another, from 2012b to

2014. Chen et al. was the first to compare FFNN with backpropagation to both a 2D

and 3D hydrodynamic model for the area of the Danshui River. The difference between

the models was not as substantial, although ANN performed better for some locations.

The following paper by Pierini et al. conducted another comparison of FFNN with a

backpropagation, but this time to a MOHID hydrodynamic model, for the Bahia Blanca

River. This time the deviation of the hydrodynamic model was significantly larger than

the proposed FFBP model, hence, the paper suggested further exploring the proposed ar-

chitecture by feeding the network with outputs of the MOHID model. The Danshui River

region is at risk from events such as typhoons. Therefore, the accuracy of the simulations

carried out is critically significant for the designated area. For this particular reason, a

method was presented by Liu and Chung that integrates a genetic algorithm with a tradi-

tional backpropagation neural network, and its efficacy was subsequently compared to that

of a hydrodynamic model and a conventional neural network utilizing backpropagation.

The results showed that the accuracy of the Genetic Algorithm Neural Network (GANN)

model was consistently higher than the other two approaches for each location, and thus,

it was concluded that the model meets the desired performance criteria. The remaining re-

search direction describes studies regarding the reconstruction of discharge, starting with

an article by Gu et al. for the Pudong New Area. The authors tested a hybrid approach,

combining a numerical model (River Network Mathematical Model (RNMM)), a com-

mon neural network with a backpropagation algorithm, and a genetic algorithm aiming

to optimize sluice management. The main operations involved in creating the proposed

framework were as follows: the first part was training the ANN using the data generated

by the RNMM model, and the second part involved the ANN, which acted as the fitness

evaluator for the sluice operation solutions proposed by the genetic algorithm (GA). The

framework was found to attain sub-optimal rules for sluices while demonstrating notable

robustness, speed, and flexibility. The same year, another approach was presented by
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Hidayat et al., which not only provided an innovative solution in the forecasting analysis,

but also in the field of reconstruction. The study area remained the same, i.e., the Ma-

hakam River, while the input data differed, as wavelet analysis was applied to generate

tidal components, which will be given to the MLP. Hence, a hybrid approach was utilized.

The analysis proved the feasibility of reconstructing discharge using solely water level and

tidal components, with only minor variations observed in extreme scenarios (both low and

high). Three years later, a study by Garel and D’alimonte developed an MLP approach

for freshwater discharge estimation in the Guardiana River, whose estuary is described

as narrow. A single ADCP device was placed at the deepest area of the river where flow

velocities are the highest. A quasi-stationary relationship between the maximum flow and

discharge was identified using ADCP data. The proposed approach is used in cases where

it is not possible to directly determine the entropy-based velocity ratio (Ω) due to the lack

of data on the average flow velocity, with the ultimate goal of eliminating the need for

demanding transverse measurements across the entire channel section. The performance

of MLP was deemed satisfactory when the data represented all possible variations in river

flow dynamics.

After nearly three years, the recent advancement category of publications began with

Bhar and Bakshi. Their research focused on resolving the issue regarding data accessibility

and availability at the downstream station located on the Hooghly River, using an FFBP

model. To facilitate the station of interest with continuous data, as it provides records for

only half a tidal cycle, data from upstream stations were selected as the model’s inputs,

and the model performance was evaluated across several combinations. It was observed

that the performance does not improve with the inclusion of additional records from more

distant upstream stations. Accordingly, only the stations closest to the one of interest

were chosen as the optimal input combination. A satisfactory reconstruction accuracy

of the model was achieved even during spring and neap cycles. In the following year,

two studies were conducted by Guillou and Chapalain and Gan et al.. The first study

compared multiple regression approaches (linear and polynomial) with a neural network,

representing an alternative to previously used numerical models. The area of interest

was the Elorn River. Unlike the previous study, input parameters such as the French

tidal coefficient, atmospheric pressure, and wind speed were used, along with a discharge

parameter to estimate the maximum water level. The study showed small differences in
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performance between the selected models, but the MLP still proved to be better, especially

during conditions where extremely high water levels were encountered. However, all

models experienced minor underestimations during those conditions. The second study

involved a comparison between an ensemble approach, LGBM, and a numerical approach,

NS TIDE. The research focused on estimating water levels at the downstream section of

the Columbia River while using discharge data from both the main river and its tributary

(Willamette River), as well as tidal data. Despite the significant distinctions in the nature

of the tested approaches, their findings were found to be comparable. Likewise, a phase

lag was detected during the flooding season for the LGBM model, resulting in increased

prediction errors during these periods. The compound flooding problem in Kapuas River

was discussed in a study by Sampurno et al.. The hybrid framework was employed, which

consisted of two strategies: (1) employing a multiscale-hydrodynamic model, named SLIM

2D, for simulation of the compound flooding, and (2) where the data obtained as the

output of the simulation is used for training simple machine learning models, as MLR, RF,

and SVR. This means that the accuracy of simple ML models is closely tied to the accuracy

of a hydrodynamic model. In comparison, MLR performed the poorest, although, within

the acceptable performance range, the RF predictions were the closest to the empirical

observations. That same year, Thanh Hoan et al. also suggested a hybrid modeling

approach for addressing the problem of water level hindcasting for 18 water level stations

on a daily scale in the Mekong River. Three bagging-based hybrid models (RF, Sequential

Minimal Optimization (SOM), M5P) were chosen and assessed alongside the benchmark

model Reduced Error Pruning Trees (REPT). The final results showed better accuracy

but were not significantly better than the benchmark model. Nevertheless, despite the

lack of significant enhancement in accuracy, they remained a more viable alternative

compared to REPT. Missing historical daily-averaged discharge records at the downstream

station of the river have been successfully predicted using upstream water level records

from multiple stations in the Mekong megadelta, as outlined in the study conducted by

Thanh et al.. A simple RC approach was compared with the results of various machine

learning models, including DT, the ensemble method RF, kernel-based techniques such as

SVR, Least Squares Support Vector Machine (LSSVM), and Gaussian Process Regression

(GPR), as well as a statistical method, Multivariate Adaptive Regression Splines (MARS).

Data preparation involved three stages: normalizing the data within a specified range,
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applying Fourier series fitting, and performing first-order differencing. The principle of

input selection was based on the correlation coefficient and mutual information score.

The MARS and RF models exhibited satisfactory and robust performance, even under

extreme conditions such as floods, droughts, and salinity intrusion.

Lastly, the latest contribution category started with performance comparison of MLR,

multiple non-linear regression (MNLR), and ANN as the focus of a study by Lauer and

Kösters, where it was attempted to predict tidal extremes of Weser Estuary (minimum

and maximum water levels for several stations) using tidal characteristics, discharge,

and meteorological data. A variance inflation factor (VIF), station-wise linear Pearson

correlation-based calculations (PCC), and a supervised Rank-based relief attribute cal-

culations were employed to identify and select input features that are informative and

non-redundant for the regression analysis. The combination of ANN and Bayesian opti-

mization (BO) yielded greater accuracy relative to the other two models; nonetheless, the

performance for seaward stations surpassed that of landward stations across all evaluated

models. The previously discussed study by Dato et al. also performed a hindcast analysis

of water levels using an MLFF for the same tidal reach, as the initial step of its framework.

The MLFF was trained on reanalysis data (using the same input features as in forecast-

ing, but for a different time range). Four models were tested at two locations: Reanalysis

Unweighted Buenos Aires (RUB), Reanalysis Weighted Buenos Aires (RWB), Reanaly-

sis Unweighted Oyarvide (RUO), and Reanalysis Weighted Oyarvide (RWO). Unlike the

forecasting scenario, where the results begin to diverge after a lead time of 24 hours, the

results of hindcasting converge. However, a key limitation of hindcasting scenarios is that

it cannot capture potential forecasts. However, the models achieved high accuracy in

the reconstruction of both moderate and extreme events, with a delay of less than one

hour. Li et al. proposed a Deep Characteristic Learning (DCL) framework that enabled

real-time flow monitoring using H-ADCP measurements and river cross-section charac-

teristics for a location in the Shenzen River, under the influence of tides and backwater.

The proposed framework enabled dimensionality reduction through Principal Compo-

nent Analysis (PCA), adaptive ML algorithm selection (BP, Elman, RBF, Generalized

regression neural network (GRNN), and SVM), and hyperparameter optimization using a

Genetic algorithm particle swarm optimization (GA-PSO). Frameworks’ performance was

compared to the stand-alone models included in it and traditional MLR models. DCL
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significantly outperformed other models in simulating discharge and was the only model

to provide the closest discharge estimation of its minimal and maximal values.

Author and publication Simple Classifiers, kernel SNN RNN Hybrid
year statistical and ensemble approach approach approach

approach approach
Adib (2008) ✓

Wei and Hsu (2008) ✓
Chinh et al. (2009) ✓
Chen et al. (2012a) ✓
Pierini et al. (2013) ✓

Liu and Chung (2014) ✓ ✓
Gu et al. (2014) ✓

Hidayat et al. (2014) ✓ ✓
Garel and D’alimonte (2017) ✓

Bhar and Bakshi (2020) ✓
Guillou and Chapalain (2021) ✓ ✓

Gan et al. (2021) ✓
Sampurno et al. (2022) ✓ ✓

Thanh Hoan et al. (2022) ✓ ✓
Thanh et al. (2022) ✓ ✓
Fei et al. (2023) ✓

Lauer and Kösters (2024) ✓ ✓
Dato et al. (2024) ✓
Li et al. (2025) ✓ ✓ ✓ ✓

Table 2.3: Reconstruction study categorization

2.4. Stage-Discharge Relationship Studies

Although the stage–discharge relationship is presented as a distinct category of analysis

in tidal reaches, it closely aligns with the reconstruction problem, differing primarily in

the input features considered. Stage-discharge analysis category is focused on studies

that mainly resolve the problem of discharge estimation through water level data, with

exceptions of the opposite scenarios. The main difference between these two categories

lies in the input data. The reconstruction problem leverages data from various stations,

whereas the stage-discharge analysis is limited to data from the specific station of interest.

Subsequently, examples of several prior studies can be compared to this category to some

extent, those include studies authored by Hidayat et al. and Thanh et al.. While there

is an abundance of research on the stage-discharge relationship within inland regions, as

noted by various authors such as Bhattacharya and Solomatine and Ajmera and Goyal,

there are only a limited number of studies focusing on tidal rivers and estuaries (see
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Appendix A.3, Table A.5).

Modeling a stage-discharge relationship is a relatively straightforward process, as pre-

viously mentioned, where predetermined rating curves are employed due to their simplicity

and almost nonexistent cost. Meaning, for what can be defined as almost steady river

conditions in inland rivers, the relationship between these two hydrological parameters

is deemed not as complex, as those found in areas of tidal rivers and estuaries. This

is because of the influence of various physical processes, but mainly the tidal influence.

Therefore, modeling discharge cannot be done by using solely water level data from the

exact location, but also considering the tidal levels [46].

The initial proposition for establishing a stage-discharge relationship using an ANN

in a tidally influenced Chao Phraya River, was given by Supharatid. This study rep-

resents a single example in tidal reaches that achieved water level estimation via the

stage-discharge relationship, whereas all other studies derive discharge as the output fea-

ture. The input features pertained to discharge and tidal data to predict the water stage

using an MLFF. A simple stage-discharge relationship derived from using MLR and Mul-

tiple Power Regression (MPR) could not effectively capture the complex physical behavior

related to the opposite influence of discharge and tides, which means that during periods

of minimal discharge, the impact of tides becomes more pronounced. Three years later,

another study emerged on establishing a stage-discharge relationship, but with a focus

on a low-gradient tidal stream known as Isaac-Verot Coulee, where a more challenging

scenario was observed with multiple RC loops and also complex channel geometry. Hence,

Habib and Meselhe had proposed using two data-driven models, namely, an MLFF and a

Nonparametric Local Regression (LOESS), for modeling such a complex relationship. It

was found that including sufficient data from multiple stations had more impact on the

models’ performance than increasing their complexity. A greater emphasis was placed on

ANN due to its superior ability to generalize, particularly in the context of extremely high

discharge events. Nonetheless, both methodologies successfully replicated such a complex

RC. After another six-year research gap, the stage-discharge topic resurfaced with a con-

tribution fromWolfs and Willems, who explored the area of two rivers, Dender and Marke,

and modeled discharge with both RC and ML approaches. Unlike previous studies, the

area of interest was influenced by hysteresis. From the RC perspective, the Simple Rat-

ing Curve (SRC) and State-Dependent Parameter-Rating Curve (SDP-RC) were selected,
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while from the ML perspective, M5 model trees and MLP were used. Considering perfor-

mance, complexity, and transparency, the recommended solution was SDP-RC, although

M5 slightly outperformed it in terms of accuracy.

Author and publication Simple Classifiers, kernel SNN RNN Hybrid
year statistical and ensemble approach approach approach

approach approach
Supharatid (2003a) ✓

Habib and Meselhe (2006) ✓ ✓
Hidayat et al. (2014) ✓ ✓

Wolfs and Willems (2014) ✓ ✓
Thanh et al. (2022) ✓ ✓

Table 2.4: Stage-discharge study categorization

2.5. Critical Analysis

Several challenges were identified that can generally be classified into two categories:

one relating to the evolution of machine learning applications for the area of tidal rivers

and estuaries, which refers to research gaps, and the other focusing on the advantages

and limitations of the presented machine learning categories.

2.5.1. Research Gaps

The evolution of machine learning applications in tidal rivers and estuaries has encoun-

tered several impediments, such as (1) slow gain in popularity, (2) gaps in the frequency

of published studies, and (3) a limited number of available stage-discharge studies [82].

Insight into the slow growth in popularity until the 2000s is shown in Figure 2.1,

which can be attributed to several factors. The most important factor relates to the

limitations of the data available at the time and their quality. It was common until

2000 to manually collect hydrological data, which was time-consuming and problematic

in areas with limited access. Likewise, discharge was previously estimated mainly using

rating curves, which were the most cost-effective solution at that time. However, this led

to inaccuracies as the river dynamics in tidal rivers and estuaries cannot be characterized

as steady. Another aspect related to data refers to its temporal resolution, which even

in current time represents a limitation; for example, available review papers by Yaseen
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et al., Zhu et al., and Ibrahim et al. describe papers that use daily and longer temporal

resolution, in dominant percentage (around 90%), while the remaining use hourly scale,

which is required for capturing the unsteady dynamic of tidally influenced areas. Another

reason was the limited computational power, which significantly impacted the use of

machine learning approaches, especially until 2000; hence, simple statistical approaches

were more frequently employed due to the mentioned. Based on the WoS search, 10 times

the difference [82]. Another aspect highlighted the multidisciplinarity of the problem of

interest and mistrust against the black-box methodologies, which raised questions about

their reliability, as well as interpretability. This is one of the reasons why hydrological

models and simple statistical methods were considered a more acceptable option.

In addition, the presence of the problem of a lack of studies conducted over longer

periods, for example, for forecast analyses lasting eight years (between 2003 and 2012),

as well as for reconstruction scenarios where the required studies were not published be-

fore 2008, was also observed in previously published review papers dealing with general

research problems in the field of inland rivers. Although such papers are more frequent,

primarily due to the lower complexity of river dynamics, the problem of a lack of research

remains significant. Consistent findings on publication frequency further corroborate this

conclusion. Two review papers focusing on water level analysis, published in 2020, refer-

ence no more than four papers published prior to 2008, with one of them citing only five

papers from the period between 2000 and 2012 [129, 130]. A review paper published the

following year, 2021, also focused on water level parameter and followed a similar trend,

with three papers published before 2008, and only nine from 2003 to 2012 [116]. In addi-

tion to the quantitative representation of the works, the problem also referred to the time

scales used. Namely, most of the papers cited in the reviews use either daily or monthly

resolution, which is not relevant for coastal areas, especially when dealing with semidi-

urnal oscillations. Hence, the identified gaps arise from challenges related to computing

resources, data accessibility, and the challenges faced by simpler machine learning models

in accurately representing complex tidal dynamics. The gap regarding the reconstruction

studies prior to 2008 can be supported by a study conducted by Gill et al., who high-

lighted that earlier research often overlooked missing values instead of addressing their

reconstruction. This practice lasted until the emergence of more sophisticated machine

learning techniques.
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The remaining challenge referred to the limited number of studies (only five papers)

that specifically deal with the problem of establishing the relationship between water level

and discharge in tidal areas. This gap can be mainly attributed to complex flow regimes

[82], which can include additional challenges such as reversible flow, tidal asymmetry, and

related phenomena. Despite the growing trend of applying machine learning models to

hydrological problems, challenges remain in gaining insight into the underlying physical

processes, unlike numerical models, and also in unreliability during extrapolation beyond

the training set [82]. Hence, the problem of establishing the relationship between water

level and discharge still remains an under-researched problem.

2.5.2. Strengths and Weaknesses of ML Categories

When discussing the advantages and limitations of categories of machine learning

models, it is important to consider their ability to handle nonlinear and nonstationary

data while providing computational efficiency and interoperability. This subsection pro-

vides a discussion on each type of ML approaches from several important perspectives,

which is based on findings presented in a study by Mihel et al.. Figure 2.3 illustrates

the studies classified by the machine learning approach employed. The conclusion gained

from the given visualization was that the most prevalent categories (around 50% of the

reviewed studies) were SNNs and the hybrid approach. SNNs, due to their ability to

model nonlinear relationships even without prior knowledge of physical processes in tidal

environments, and hybrid models, as they can combine the advantages of different ap-

proaches and techniques (statistical methods, signal processing, optimization algorithms,

fuzzy clustering, ML architectures, numerical models) to achieve an increase in perfor-

mance. The reason for the low representation of the other categories lies in the fact that

the first and second categories of models are in most cases used as baselines, i.e. reference

models for performance comparison, while the category of advanced RNNs, for example,

has only since 2018 become popular for application in areas of tidal rivers and estuaries,

which is followed by a small but steady increase.

The category of simple statistical approaches was used in only 20% of studies and

was rarely employed as a standalone approach (only two available studies), meaning this

category of models was commonly used as a baseline for comparison with more advanced
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Figure 2.3: Classification of published studies by machine learning approach

approaches and was even used as a component for hybrid modeling, as shown in a study by

Chen et al.. By reviewing all published studies, several insights were found regarding the

applied methods: (1) models based on linear assumptions (AR and MLR) are not efficient

for capturing nonlinearities, (2) those which are capable of capturing nonlinearities to

some degree (MPR and BRR), (3) and other solutions which are more adaptable to

nonlinearities but often struggle with either overfitting, generalization or are complex to

interpret (LOESS and MARS). While the second category does not face the same challenge

of managing nonlinear data, it is more limited in terms of nonstationarity, as seen with

DT and SVR in reconstruction or KNN in forecasting studies. Likewise, the ability to

handle missing data can only be attributed to employed classifiers (DT) and ensembles

(RF), not kernel methods. In terms of interpretability, classifiers typically feature the most

simple architecture, placing them at the very top, followed by ensemble methods and then

kernel approaches. However, when the performance of all these categories was compared

to either a stage-discharge rating curve or a hydraulic analysis, which are recognized

for their sensitivity to outliers and noise, significant improvements were observed ([87,

105]). RC and HA necessitate recalibrations in response to geomorphic changes, whereas

ML approaches do not incorporate such input parameters. Recalibration or retraining

typically occurs only in extreme scenarios or when there are significant deviations.

SNNs have often been shown to provide better results than the previous category,
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as they introduce nonlinearity through their activation functions and by using different

algorithms. The most popular was the Levenberg-Marquardt, which enabled improved

speed and efficiency. In the majority of reviewed articles, SNNs showed better general-

ization ability than hydrodynamic models, especially in cases of extreme events (peaks

and typhoons). However, although this category of machine learning represents a step

forward compared to the previous one, it still contains certain limitations that negatively

affect the performance. This includes sensitivity when it comes to spatial variability, but

also the size of the data sets. In addition, the training data set needs to be sufficiently

representative of all potential scenarios, i.e., encompassing enough variation. Moreover,

regarding forecasting, a significant trend of decrease in performance has been observed as

the lead time increases.

The next category, representing mainly advanced RNNs, such as GRU and LSTM, has

only recently become popular, more precisely in the last seven years. Unlike the previous

two, this category’s key advantage is the possibility of capturing long-term dependencies

through gating mechanisms and memory cells. Hence, the problem with the vanishing

gradient is adequately addressed and does not pose a significant challenge like for ANNs,

thereby enabling more accurate predictions. Because of their ability to learn from his-

torical data, they can effectively identify complex relationships between discharge, tidal

levels, and meteorological factors in tidal reaches, which is of crucial importance. Nev-

ertheless, advanced RNNs are more computationally intensive than previous categories

and, therefore, require more time and computer memory for model training, which can be

even further extended if a larger grid of hyperparameters must be tuned. Additionally,

the possibility of interpreting the gained result becomes challenging, which cannot be said

for previous categories. Only one study pointed out the better results of advanced RNNs

compared to a hybrid approach, specifically the research conducted by Chen et al. (2024),

which utilized an LSTM Seq2Seq model.

The last category of the machine learning approaches encompasses hybrid method-

ologies, with the initial article published during the period of pioneering work in 2003,

followed by a continuous and steady publication rate during the other two periods, with

approximately seven articles per period. Several studies have shown the potential of hybrid

methods over standalone, and emphasized the improvement in performance [3, 18, 93, 122].

Several studies approached the hybrid modeling by integrating different numerical mod-
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els, for example, NS TIDE [18, 127] in forecasting analysis, or SLIM [93] and H2C [29]

in reconstruction analysis. In all studies, the hybrid approach provided more accurate

results than the standalone numerical model. This can be explained through a single

key aspect. Although the numerical models can adequately represent flow conditions in

tidal reaches, using machine learning models alongside them is additionally beneficial, as

they are better suited for finding complex and nonlinear relationships within the data.

This was highlighted in a study by Fei et al. (2023), where XGB was employed to assess

feature importance, and it was found that the inclusion of discharge data has a significant

impact on water level forecasting. Signal processing techniques have been applied in five

hybrid-based studies, where three employ the Wavelet Transform and the remaining two

use the EMD for capturing variations across daily, seasonal, and tidal scales. Although

these techniques offer multi-scale analysis, they differ in the same aspects. While WT

uses already established wavelet functions that help regarding the presence of noise, more

precisely, its isolation, the EMD is limited when presented with very noisy signals. As

EMD directly decomposes the signal into various IMFs, it is often related to the problem

of mode mixing [20]. However, this problem is partially resolved by incorporating white

noise into an improvement variant of the same technique, EEMD, as in the study by Chen

et al. (2023c). All presented studies have shown significant performance improvements,

especially in facilitating longer horizons with acceptable accuracy than stand-alone ML

approaches (SVM in Wei (2012); LSTM, GRU, and LSTM-CNN in Gao et al. (2025)).

These approaches also capture rapid changes in processed signals, which is crucial for

recognizing extreme occurrences quickly and reducing their effects. While EMD does not

require parameter adjustments, WT and EEMD do. In terms of computational complex-

ity, the methods may differ, but the complexity increases with the length of the time

series and the higher the temporal resolution. Therefore, WT and EMD are less demand-

ing, while EEMD is the most demanding because it performs additional iterations with

white noise. A different type of hybrid models relates to various combinations of different

architectures, statistical methods, fuzzy clustering, and optimization algorithms, ranging

from early studies that integrated unsupervised and supervised learning approaches [13]

to the latest optimized parallel computing frameworks [68]. A total of seven studies have

been performed, with only one of them specifically addressing the discharge parameter.

Chang and Chen (2003) enabled faster model training by employing a single-layer neural
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network in its architecture, than a standard MLP with backpropagation. The proposed

architecture gained accurate and reliable water level predictions even under extreme con-

ditions. A combination of an ensemble CART and an RBF has demonstrated superior

performance under tidal and typhoon conditions in Tsai et al. (2012), surpassing the pre-

viously discussed RBFNN, which also yielded more accurate results than standalone ANN

or CART in this study. RBF not only enhances model training time but also progres-

sively improves accuracy, influenced by the specific combinations of architectures utilized.

Similarly, ensembles, when utilized in conjunction with neural networks, enhance their

generalization capability to a certain extent, as it is typically constrained by the varying

representations of the data range. A combination of a statistical method (ANOVA) as ker-

nel of an SVR gave similar results to its stand-alone version with an RBF kernel in Ahmed

et al. (2017). However, RBF was better for longer prediction horizons due to its noise

resistance ability, as it focuses more on global patterns. At the same time, ANOVA was

more adequate and precise for capturing short-term variations. Another study conducted

by Thanh Hoan et al. (2022) examined bagging-based hybrid machine learning methods,

which have demonstrated superior accuracy for tidal reaches compared to stand-alone ML

models. Parallel computing has only recently been introduced for tidal environments by

Li et al.. This approach not only improves adaptability through self-learning but also

ensures that the size of the datasets does not limit model performance. Additionally,

through directionality reduction, even the computational complexity becomes less of a

disadvantage. Likewise, spatiotemporal feature extraction had been tested in two recent

studies [98, 126]. The Cheb-GRU model was also found to be transferable based on the

findings of Shi et al. to other tidal areas. Its performance was strongly linked to the length

of the dataset, i.e., a larger dataset has higher accuracy, which is consistent with the data

and results from the other study.

2.5.3. Justification of Research Direction

Guided by the conclusions of previous studies, and the advantages and limitations of

model categories, we focus primarily on hybrid modeling. In addition, with the emergence

of advanced recurrent neural networks for hydrological modeling in the last five years in

the tidal reaches, this study has tested the applicability of such approaches, either as
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standalone or as a part of a hybrid modeling scenario. Two research proposition were

presented, one in the form of a review article by Mihel et al., and another in an article by

Shi et al.. Both were related to the use of an attention mechanism, which until then had

not yet been applied in tidal reaches, let alone under microtidal conditions.

At the time the review paper was published, the use of the attention mechanism in

hydrology was notably limited, with only ten papers addressing the topic. Nevertheless,

the trend of implementing the aforementioned mechanism has seen significant growth

over the past two years, with five studies currently available on the application of the

attention mechanism in the tidal reaches [14, 50, 56, 75, 115]. Among these five studies,

one published by Weber de Melo et al. (2025) stands out as the most closely related to

our problem, focusing on the application of the attention mechanism to develop an early

warning system for potential threats.

The research presented in the doctoral thesis has been published in several studies. The

first paper represents the foundation for the given literature review, Mihel et al. (2024a),

which had been broadened and included publications for the last two years. Based on

the conclusions obtained from the literature review, three papers were been published.

The first paper proposed a hybrid machine learning approach that integrates an atten-

tion mechanism combined with LSTM for the problem of discharge estimation [80]. The

performance of this model had been compared to stand-alone models, including LSTM

and simple non-temporal machine learning approaches, and evaluated on two dataset, one

using measured data, and the other obtained through conducting a numerical simulation.

The subsequent two conference publications [81, 83] focused on the CNN-LSTM hybrid

model for the prediction of water level and discharge. A different dataset was used, also

generated through a numerical simulation. Although CNN had previously been applied

in three studies [35, 98, 126], its applicability showed potential for further exploration.

Furthermore, an analysis employing signal processing techniques was performed on the

best models identified in the first study to enhance estimation accuracy. All of our afore-

mentioned research was focused on the microtidal reach of the Neretva River. Details of

the conducted studies are presented in subsequent chapters.

However, not only are the machine learning categories of importance, but the selection

of evaluation metrics must also be discussed. Hence, based on the visualization presented

in Figure 2.4, the metrics with the highest applicability rate of all studies reviewed, con-
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Figure 2.4: Most frequent evaluation metrics based on the reviewed studies

sidering all types of analysis, were considered. Therefore, for the purpose of this research,

the following metrics were selected: root mean squared error (RMSE), mean absolute error

(MAE), coefficient of correlation (R), and Nash-Sutcliffe efficiency coefficient (NSE).

After reviewing the relevant literature and gaining insights into the employed method-

ology, the following chapter provides an overview of the study area, data sets, and specifics

regarding their collection and simulation.
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This chapter provides an overview of the research area and the utilized datasets. The

first part discusses the research area broadly, considering the full length of the Neretva

River, followed by a more focused examination of the tidal section of the Neretva River,

which serves as the primary area of interest. The second part comprises two datasets,

whose primary purpose is to provide a more detailed performance assessment of the se-

lected machine learning models. The field measurements were obtained from two govern-

mental institutions, whereas the other dataset was generated by employing a numerical

modeling approach. The aim of examining these datasets is to enhance understanding of

the dynamics of river flow and its hydraulic properties.
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3.1. Study Area

3.1.1. Neretva River: A General Perspective

The Neretva River, with a total length of 215 km and a catchment area of approx-

imately 10,500 km2, flows through two countries: Bosnia and Herzegovina and Croatia

(the last 22 km of its course, with a catchment area of about 280 km2). The river origi-

nates in the Dinaric karst, more precisely near the Zelengora region, and drains into the

Adriatic Sea in southern Dalmatia, near the town of Ploče (see Figure 3.1).

Due to its unique geographical features and temperature properties, it is distinguish-

able from other rivers in Croatia. It is referred to as the eastern Adriatic coast’s largest

contemporary delta system [9]. Likewise, the river has the longest course within the

eastern Adriatic basin. Climate changes related to temperature and precipitation show

the opposite trend. While, for example, temperature follows an increasing trend of av-

erage seasonal and annual values, precipitation shows a slight decreasing trend by the

same values. Air temperature varies depending on the season, with pronounced maritime

characteristics. For example, summers are moderately warm with temperatures varying

around 23.8 ◦C, and winters are moderately mild with temperatures around 7.4 ◦C. The

smallest differences are observed for spring and autumn, where during autumn temper-

atures can increase by around 1.8 ◦C. Regarding precipitation, the highest amount of

annual precipitation, up to 70%, is characteristic of the colder part of the year, from

October to March. Whereas for the period between April and September, the amount

of precipitation is significantly reduced, precisely because of the dry periods and high air

pressure. [32]

Hydropower plants are located in the upstream part of the river, which is often referred

to as an inland region. According to the distance from the river mouth, there are eight

hydropower plants: Čapljina (operational since 1979, reversible flow), Mostarsko blato

(operational since 2010), Mostar (operational since 1985), Peć-Mlini (operational since

2004), Salakovac (operational since 1981), Grabovica (operational since 1981), Jablanica

(operational since 1954), and Rama (operational since 1969) [71]. Hydropower plants

assist in regulating the water regime during high waters, however their negative impact

cannot be ignored. Therefore, concerns such as increased erosion, reduced water quality,
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Figure 3.1: The Neretva River location at different levels: a) Europe, b) Croatia and
Bosnia and Hercegovina, c) Catchment

and many more are common.

However, the focus of this research is on the lower part of the Neretva River, specifically

the downstream section, which can be described as a estuarine and tidal river section, i.e.,

the section of the river where the influence of tides is noticeable. The following subsection

provides a more detailed discussion of the Neretva River’s tidal reach.

3.1.2. The Neretva River Estuary and Tidal River Section

The final 23 km of the Neretva River’s tidal reach is located in Croatia (see Figure

3.2). This part of the Neretva River is classified as a microtidal salt-wedge estuary. The

main characteristic of the microtidal salt-wedge estuary is a two-layer vertical structure
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containing both freshwater and saltwater, which are separated by a pycnocline. The

thickness of picocline in the Neretva River estuary is less than 50 cm, which is caused by

the Adriatic Sea’s exceptionally low tidal dynamics and strong freshwater inflow [59].

Precisely because of the proximity of the sea and the influence of hydropower plants

in the upper reaches, as well as man-made structures, the water regime is altered, en-

countering problems such as a decrease in water quality and soil fertility/salinization for

certain crops, and more frequent flooding during high waters. Therefore, conducting re-

search in the specified area is important because it aims to provide better water resource

management. This will have a direct impact on agriculture and the protection of the local

population from any potential hazards.

Figure 3.2: Geographical overview of the Neretva tidal river and locations of hydrological
measurements of water level and discharge: a) Ušće (0 km from the mouth), b) Opuzen
(11 km from the mouth), c) Kula Norinska (16 km from the mouth), d) Metković (22 km
from the mouth) [80]

Hydrological processes have a pronounced seasonal character, with high flow common

from October to April and low flow from May to September, combined with a Mediter-

ranean climate, characterize this region. During high-flow periods, freshwater reserves

are replenished in aquifers, while saltwater is pushed out from the river channel towards

the river mouth. However, with high flow periods, the risk and damage of flooding in-

crease due to the amount of rainfall, potential storm surges, and high sea levels. Low-flow

periods are associated with various problems related to salinization. As climate change
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is becoming more extreme, with higher temperatures during the summer and less fre-

quent rainfall events, the saltwater can penetrate more than 20 km upstream of the river

mouth, more precisely upstream from Metković. Although coastal aquifers are available,

irrigation in the river becomes limited due to the increase in salinity, negatively affecting

agriculture [73].

3.2. Dataset Overview

Three sets of data from different sources were used for research purposes. One of the

datasets contains measurements from hydrological stations and is referred to as measured

data in the following subsection. In contrast, the remaining two sets of data contain

simulated data generated by the STREAM-1D numerical model [59] and HEC-RAS, which

are referred to as simulated data. Measured data were obtained from Croatian Waters

and the Croatian Meteorological and Hydrological Service. All datasets comprise water

level records from four hydrological stations and discharge data from a single station.

While measured and STREAM-1D simulated sets of data span between 2016 and 2021,

the HEC-RAS set encapsulates data between 2016 and 2019. The records are presented in

an hourly temporal resolution. Data resolution plays an important part in tidal reaches.

To enable the effective capture of tidal dynamics, hourly data are mandatory, unlike, for

example, inland reaches, where daily observations are often sufficient [51, 116].

3.2.1. Measured data: Acquisition and Correction

Three hydrological parameters are considered for the specified area: sea level, water

level, and river discharge. Sea levels are measured at the tidal station Ušće (Mala Neretva),

situated near the mouth of the Neretva River, but outside the influence of river flow. Water

level data is collected from three hydrological stations along the Neretva River, Opuzen

(11 rkm from the river mouth), Norin (16 rkm from the river mouth), and Metković (20

rkm from the river mouth). Discharge data is gathered using three H-ADCPs positioned

under the bridge in Metković. The stations of interest are shown in Figure 3.2.

Metković and Opuzen represent the two oldest hydrological stations on the Neretva

River, which were established to measure water levels. From a historical point of view, the
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order of the established hydrological stations that became operational is the following:

Metković in 1934., Opuzen in 1936., Ustava Ušće in 1976. The last station is Kula

Norinska, established in 1986. The only station where sea level measurements have been

available is the Ušće station since 1977. All stations, except the Kula Norinska, have

provided automated measurement reports since 2014, which are close to real-time [62].

Continuous monitoring of discharge, unlike water level, has only been available re-

cently, more precisely, for less than 10 years starting from 2015. The measuring equipment

was positioned in the cross-section under the road bridge, 90 m upstream from Metković

hydrological station, where three H-ADCP were placed [59]. These measuring instru-

ments provide a precise estimate of the discharge data. The estimations are obtained

by integrating the velocity profile over cross-sectional areas in bridge openings [80]. The

overall discharge estimation in Metković is obtained by summing the discharge of three

measuring devices. As mentioned, the data span six years, encompassing a wide range

of hydrological conditions. In summer, negative discharge values were observed due to

the low river flow and tidal currents. The highest discharge estimations are observed

during the winter period, with values of around 1890 m3/s, which is significantly larger,

approximately five times the average annual discharge of 323 m3/s. The reliability of the

fixed acoustic instruments has already been pointed out in several studies [36, 53, 94].

The challenging aspects of these instruments are the acquisition cost and maintenance

requirements.

It is not possible to estimate discharge at the Metković station directly from the water

level records of its hydrological station. Such complexity is depicted in Figure 3.3, which

illustrates the relationship, i.e., the correlation between water level and discharge, in both

hourly and daily averaged formats, with a non-unique one-to-one relationship between the

hydrological parameters, especially when focusing on lower and average flow scenarios.

This can be attributed primarily to the impact of sea levels, but also the nonstationary

flow dynamic, tidal propagation and influence of the backwater effect. Therefore, applying

a simple approach such as Stage-Discharge RC is not appropriate, and other approaches

should be considered to enable accurate flow estimate and prediction of river discharge at

the Metković station.

The problem with measuring devices like the H-ADCP is the need for periodic calibra-

tion. Therefore, additional flow measurements are performed to ensure that the devices



45 A. M. Mihel - Doctoral Thesis

(a) Hourly [80] (b) Daily averaged

Figure 3.3: Stage-Discharge relationship at Metković station

are correctly calibrated. However, in addition to this, different problems have a nega-

tive impact on the quality of the measured data, and some of these problems refer to

non-physical oscillations, missing records, the complexity of low flows, but also deviations

during data synchronization when several institutions collect them, and each of these in-

stitutions performs processing differently. Given the potential issues than can occur in

the measured dataset, the methodology also includes simulated data, primarily to ensure

reliability and robustness of proposed approaches.

3.2.2. Simulated Data

Two models were used for generating simulated data: HEC-RAS and STREAM, both

of which are based on the one-dimensional (1D) shallow water equation (SWE). In a

simpler model (HEC-RAS), the change in water level at individual stations along the

Neretva is the result of changes in sea level and river flow, assuming a homogeneous fluid

of uniform salinity and density (freshwater only). In the second, more complex model

(STREAM 1D), the change in water level at individual stations is the result of sea level

changes, salt wedge dynamics, and river flow, and it assumes a layered structure with

two layers of different densities. The following subsections present details regarding the

utilized models.
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STRatified EstaArine Model

A numerical simulation was performed using a STRatified EstaArine Model (STREAM)

model to generate the simulated dataset. STREAM is as a time-dependent and one-

dimensional (1D) model based on the two-layer shallow water equation (SWE), specifically

developed for simulating water flow in microtidal estuarine regions [59]. The preference for

1D models, rather than the frequently used three-dimensional (3D) ones, primarily stems

from their simplicity and lower computational demands, but also a better representation

of thin pycnoclines. The STREAM model has been effectively utilized in two Croat-

ian estuaries and tidal rivers, the Rječina River and the Neretva River, demonstrating

satisfactory accuracy in modeling the two-layer flow dynamics [59, 61, 63].

The governing equations for the STREAM-1D model are based on the following as-

sumptions and simplifications [64]. The vertical salt-wedge structure is represented by

two shallow layers of differing densities, separated by a pycnocline of negligible thickness,

as illustrated in Figure 3.4. According to the standard shallow water equations (SWE)

framework, it is assumed that velocity and density are uniform within each layer, vertical

accelerations are insignificant, pressure distribution is hydrostatic, the channel bed has a

gentle slope, and viscous effects such as friction and turbulence can be described using

empirical relationships. The flow is primarily one-dimensional, and the channel geometry

is defined by a sequence of irregular cross-sections. The resulting governing equations

form a coupled system of conservation laws with source terms [59].

However, these equations are further extended to incorporate the effects of irregular

channel geometry, along with detailed parameterizations of shear stress and entrainment.

As a result, STREAM-1D can simulate the behavior of salt wedges in channelized estuaries

under varying sea levels and river discharge conditions [63].

The domain of the study area, which extends beyond the tidal limit (35 km from

the river mouth), is based on the channel geometry derived from multiple cross-sections

(an example is illustrated in Figure 3.4a) within the Neretva tidal reach. Performing

the simulation requires defining boundary conditions (BC) and friction coefficients. The

boundary conditions are defined for the upstream and downstream sections of the study

area. The upstream BC requires a time series of discharge data. This data is processed

first by shifting the time series by one hour and then appying a median filter with a
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(a) Cross section view (b) Longnitudinal view

Figure 3.4: Characteristic two-layer system scheme of a STREAM 1D model for a salt-
wedge estuary [59, 63]

three-hour window. The one hour shift is applied to account for the distance between

the MEtković station where discharges are measured and upstream BC where the time

series is set. The median filter is applied to eliminate high-frequency noise and errors.

The sea level measurements from the Ušće station are set at the downstream BC (at

the river mouth). Due to the two-layer structure, a second condition must be set at

the downstream BC Its definition is based on the critical condition of two-layer flow

that defines the depth of the interfaces between the upper and lower layer. A detailed

description of the STREAM 1D implementation is given in the study by Krvavica et al..

The numerical model adequately captures the complex dynamics of the estuary, as

evident in the simulations (see Figure 3.5) that illustrate the typical behavior of the salt

wedge for different flow levels, ranging from low to high. Under low flow conditions, for

example, approximately 125 m3/s (see figure 3.5a), the saltwedge can advance upstream

of the Metković station. The outcome of such intrusion is a nearly uniform, i.e., horizontal

water level across the whole reach. The gradual advance of the saltwedge towards the

river mouth is noticeable during average flow conditions, as shown in figures 3.5b and

3.5c with flow values around 335 and 570 m3/s. The gradient shows a smaller increase

compared to the horizontal water surface over the tidal range, which is a consequence of

the proximity of the saltwedge to the river mouth. A third possible outcome occurs under

high-flow conditions, characterized by a steep slope upstream from the river mouth, when

the salt wedge is strictly confined to the river mouth area. Figure 3.5d shows a high-flow

scenario characterized by the flushed saltwedge from the tidal area.
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(a) 125 m3/s (b) 335 m3/s

(c) 570 m3/s (d) 1003 m3/s

Figure 3.5: Changes in longitudinal profile of the River Neretva water levels according
to different river discharges [80]

HEC-RAS

Another dataset was created using the Hydrologic Engineering Center-River Analysis

System (HEC-RAS), a simulation software used for modeling water flow in various river

environments. The software supports the creation of 1D, 2D, or even a combined 1D/2D

simulations, although this mainly depends on the modeling requirements. Also, HEC-

RAS can effectively simulate steady or unsteady flow conditions. The 2D simulations are

run by solving the SWE or the Diffusion Wave Equations (DWE).

Unlike the previous simulation using STREAM 1D, in which the flow is divided into

two layers by a pycocline, the employed HEC-RAS simulation is different, i.e., barotropic.

For such a simulation, the salinity and temperature are constant throughout the entire

considered channel (riverbed length of 46km), and the fluid is characterized by equal

density, i.e., it is homogeneous. To create such simulations, three prerequisites must be

met. Firstly, the details about the channel geometry must be uploaded into the software,

as well as two boundary conditions. Boundary conditions are defined for the lowest and
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highest points of the river channel. Hence, the measured sea levels must be provided for

the downstream section of the river channel, while the flow rates must be provided for

the upstream reach. Equaly, as in Subsections 3.2.1. and 3.2.2., water level and discharge

data have been generated at four locations (Ušće, Opuzen, Norin, Metković).

After presenting the research area and the process of data collection and numerical

simulations, the next chapter discusses the theoretical foundations of the selected machine

learning models, from simple to hybrid approaches.
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This chapter provides an overview of the applied machine learning models, divided

into two categories: simple and time-series models. The first category includes simple

supervised machine learning models: decision tree (DT), random forest (RF), support

vector regression (SVR), light gradient boosting machine (LGBM), and extreme gradi-

ent boosting machine (XGB). The second category focuses on models that integrate long
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short-term memory (LSTM) main advantage of identifying temporal dependencies. Like-

wise, it also discusses the proposed hybrid modelling approach that combines the attention

mechanism with an LSTM for better handling sequential data.

4.1. Simple Machine Learning Models

4.1.1. Decision Tree

The decision tree (DT) represents the base structure of ensemble machine learning

models. DT is defined as non-parametric, simple to understand, interpretable, and built

in a supervised manner [48]. The regression approach for DT is based on predicting the

continuous numerical value, unlike the classification approach, whose goal is to provide

a class label [95]. The main goal of DT is to reduce the output variable variance, and

this is done by starting from the root node, which is then divided into the subsets of

the data by employing a criterion for selecting the best split, such as mean squared

error (MSE) or mean absolute error (MAE). Branches are generated with each split, and

tree development ceases when a stopping criterion, which may pertain to maximum tree

depth or other decision tree features, is met. The present study utilized a CART model

for regression analysis. The selected criterion for splitting a node in the tree refers to the

MSE, represented by the following mathematical expression:

∆MSE = MSE(S)−
(
|Sl|
|S|

MSE(Sl) +
|Sr|
|S|

MSE(Sr)

)
(4.1)

, where |Sl| represents the number of samples in the left subset, |Sr| number of samples

in the right subset, |S| total number of samples in the initial set, MSE(S) initial error,

MSE(Sl) weighted MSE for the left subset, and MSE(Sr) weighted MSE for the right

subset.

Despite the numerous advantages of the DT approach, it may encounter certain chal-

lenges. A primary concern pertains to overfitting. Overfitting can be partially mitigated

using the pruning strategy, focusing on optimizing pruning parameters and performing

validation on unseen data. Another issue to consider is the linear regression loss.
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4.1.2. Random Forest

Random forest (RF) is an ensemble approach constructed of multiple DTs. Like

DT, its application is possible for both regression and classification analysis. The more

complex architecture of the RF model, in comparison to the previous DT, makes it more

applicable for problems of a more complex nature while aiming to provide satisfactory

accuracy. The development of the RF model is carried out through three general steps,

shown in Figure 4.1. Data preparation represents the first step, with preprocessing and

bootstrap sampling. With the second step, the construction of an RF model begins by

generating multiple DTs with a random feature selection performed for every division.

Lastly, the predictions of every DT are aggerated to produce the final prediction results,

i.e., the averaged value of all constructed DTs [54], whose term can be expressed as [91]:

fRF (x) =
1

tr

Ntree∑
n=1

ĥtr(x) (4.2)

where tr represents the overall number of DT in a forest, Ntree is the maximal size of DT,

and ĥtr is the results of each regression DT that will be further averaged.

Figure 4.1: RF workflow: 1) Generate vectors with random elements, 2) Construct DTs,
3) Average all DTs’ predictions

RF differs from DT based on the techniques utilized to construct the mode, which are:

bagging (bootstrap aggregation), feature randomness, and binary recursive partitioning.

Bagging is a technique that plays a key role when it comes to overfitting. The technique

works on the principle of generating different subsets from the original data set by random
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selection. This will result in certain data points being included several times while, for

example, others may not be included even once. The purpose of applying this approach

is to reduce variance and achieve greater stability [77]. Every DT in RF is constructed

using a different subset of data, i.e., a bootstrap sample. In this way, noise has a reduced

impact on the prediction accuracy. Another advantage of RF is feature randomness,

where a random set of features is used for every node split. Hence, the possibility of a

high correlation between different trees is reduced. This is considered one of the more

impactful limitations of DT compared to RF. Feature randomness technique thereby aims

to improve the model’s generalization ability on unseen data and its robustness.

The RF model is limited when it comes to extrapolating values that are outside the

range of the training data set [41]. In such situations, the model could either result in

overestimations or underestimations. This stems from its dependence on historical data.

Another limitation is that the model’s accuracy depends significantly on the distribution

of the dataset. At the beginning of the RF model-building process, three parameters must

be defined: the number of regression DTs, the independent variables that are randomly

selected at the nodes, and the minimum number of observations that are required at the

terminal node of each tree [67].

4.1.3. Support Vector Regression

Support Vector Regression (SVR) is a kernel-based machine learning approach specif-

ically designed for regression problems. This represents an adaptation of the foundational

SVM methodology, primarily employed for classification purposes, as presented by Vapnik

in 1999 [111].

The operational scheme of the SVR approach is presented in Figure 4.2. From a more

general perspective, SVR architecture has three main layers: input, hidden, and output.

The input features construct the input layer, which is then given to the hidden layer

where the kernel function is applied to process the given features. Finally, the kernel

function outputs are passed to the output layer to provide the final predictions. The SVR

approach is capable of addressing both linear relationships through the linear kernel and

intricate nonlinear relationships using nonlinear kernel functions.

Unlike the SVM whose optimal goal is to find the optimal hyperplane, SVR aims
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Figure 4.2: Operational scheme of the SVR model

to determine the optimal regression function based on a predefined error tolerance (ε)

for data approximation. The formulation of SVR, which considers the predefined error

tolerance, can be defined as [44]:

minimize
1

2
∥w∥2 + C

N∑
i=1

(ξi + ξ∗i )

f(xi) = wT · ϕ(xi) + b

subject to:


yi − f(xi)− b ≤ ϵ+ ξi

f(xi)− yi + b ≤ ϵ+ ξ∗i

ξi, ξ
∗
i ≥ 0, i = 1, 2, . . . , N

where w is the matrix of regression weights (is being minimized to reduce the model’s

complexity), C is the penalty parameter, non-negative slack variables, ϕ is the nonlinear

mapping function, b is the bias, and ϵ is the insensitive loss function parameter.

Given that SVR utilizes a kernel-based methodology, the selection of kernels is influ-

enced by the distribution of the data and the specific problem being addressed. Four

primary types of kernels exist: linear, polynomial, RBF, and sigmoid. All of the kernels

discussed, with the exception of the linear one, are capable of managing nonlinear data.

However, given the complex nature involved, only two kernels were chosen: RBF and sig-

moid. The use of an RBF kernel function in SVR facilitates the learning of intricate non-

linear relationships by transforming the input features into an infinite dimensional space.
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In contrast, the sigmoid kernel bears a closer resemblance to the activation function of

neural networks, specifically the hyperbolic tangent function (tanh). The mathematical

expression for the RBF kernel can be expressed in the following manner [91, 105]:

K
(
xi, xj

)
= exp

(
−

∣∣∣∣∣∣xi − xj

∣∣∣∣∣∣2), γ > 0 (4.3)

while the expression for the sigmoid function (where k is the kernel parameter) as [91]:

K
(
xi, xj

)
= tanh

(
xT
i · xj + r

)
(4.4)

4.1.4. Light Gradient Boosting Machine

Light Gradient Boosting Machine (LGBM) represents a notable advancement in en-

semble machine learning techniques, having been introduced in 2017. to address the earlier

challenges associated with high-dimensional features and large datasets [58]. The LGBM

approach distinguishes itself from other ensemble methods by including two additional

techniques: Gradient-based One-Side Sampling (GOSS) and Exclusive Feature Bundling

(EFB). GOSS filters out instances with small gradients, keeping only those that add to

information gain. EFB optimizes LGBM by clustering mutually exclusive or less frequent

features, reducing their quantity. These methods boost LGBM performance while re-

taining satisfactory prediction accuracy and computational efficiency and also reduce the

possibility of overfitting.

LGBM is based on leaf-wise, also known as best-first, tree growth strategy, shown in

Figure 4.3. Opposite to level-wise tree growth, this strategy does not equally expand the

tree structure at the same depth, i.e., uniformly, but is more focused on finding the leaf

node that provides the highest error reduction and information gain, although this results

in a deeper tree structure. It is often described as a greedy approach compared to a level-

wise strategy. A leaf-wise strategy is effective in cases of large datasets and results in

faster training [34] than a level-wise strategy. Besides the mentioned advantages, LGBM

facilitates parallel training, resulting in the development of trees that can be considered

efficient [108]. However, due to the existing tree structure imbalance, overfitting can pose

a problem; therefore, appropriate regularization is essential.

LGBM’s objective function for improving the model’s performance consists of two
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Figure 4.3: Step-by-step LGBM leaf-wise tree growth strategy

parts: the second-order Taylor approximation term and the regularization term. The

first term aims to effectively update the model, while the second term controls the tree

complexity. The expression for the LGBM objective function whose goal is to minimize

or maximize the scoring metric or loss can be written as [42]:

Objt =
n∑

i=n

[
gift(xi) +

1

2
hif

2
t (xi)

]
+

t∑
i=1

Ω(fi) (4.5)

The first and second derivatives are expressed as [42]:

gi = ∂ŷi(t−1)l
[
yi, ŷi

(t−1)
]
, hi = ∂2

ŷi
(t−1)l

[
yi, ŷi

(t−1)
]

(4.6)

where yi is the observed value, ŷi is the estimated value, ŷi
(t−1) is the estimated value of

t− 1 step, ft(xi) is predicted value of step t, gi and hi are loss function derivatives (first

and second), and Ω represents the regularization function for each decision tree. The

gi loss function represents the gradient, i.e., the first order of the Taylor approximation,

while hi is the second order, i.e., the Hessian. The main aim of employing the mentioned

loss functions is to enable fast learning.

4.1.5. Extreme Gradient Boosting Machine

Extreme gradient boosting, often known as XGB, is yet another method within the

ensemble gradient boosting framework. The present version of the XGB model represents

an enhancement of the 2001 model introduced by Friedman. In contrast to the traditional

RF approach, which does not incorporate integrated regularization and tree pruning, both

LGBM and XGB offer distinct benefits. The improvements lead to a notable decrease in
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model complexity and overfitting [89], as well as a reduction in training time. Furthermore,

the XGB model encompasses CPU multithreading parallelization and block technology

with the objective of enhancing performance [89].

Although both LGBM and XGB are machine learning approaches based on gradient

boosting techniques, they differentiate in tree growth strategy. XGB employs a level-wise

tree growth strategy as illustrated in Figure 4.4. This strategy creates a more balanced tree

structure, where nodes are produced uniformly across the same level. The aforementioned

strategy generates a model characterized by simpler and shallower tree architecture. Like

LGBM, the goal is to minimize the loss function, which is conducted through node splitting

at the entire tree level while finding the optimal split for every tree node. This means that

all nodes are generated for every level, ensuring that each level of the tree is filled before

proceeding to the next step. This is considered beneficial in situations where smaller

datasets are provided, and a study by Gan et al. has demonstrated how more consistent

results can be achieved compared to the LGBM approach.

Figure 4.4: Step-by-step XGB level-wise tree growth strategy

The objective function outlined in Formula 4.5 is applicable to the XGB approach as

well, with the primary difference in the computation of gradients and their subsequent

aggregation. LGBM employs a histogram-based approach to approximate the gradient

and Hessians, resulting in distinct bins for continuous data. In contrast, XGB calculates

these values accurately for each data point, followed by aggregation at the leaf level. This

allows for a meticulous optimization process to be carried out by the model. A more

general overview of the same objective function can be expressed as [38]:

J (t) =
n∑

i=1

l(yi, ŷi) +
K∑
k=1

Ω(fk) (4.7)

where t is the time step, l is the training loss, yi is the observed value, ŷi is the estimated

value, Ω represents regulation term, and fk is the K-tree function.
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4.2. Time-Series Machine Learning Models

4.2.1. Long Short-Term Memory

The recurrent neural network (RNN) approach is commonly utilized for sequential

data. However, it is important to address the fact that its ability to preserve the data

over longer periods is limited, which is especially evident in the training phase as the

vanishing gradient problem arises. To address this limitation, a novel approach known as

Long Short-Term Memory (LSTM) was introduced by Hochreiter and Schmidhuber. The

presented model effectively mitigated the issue of vanishing gradient and demonstrated

satisfactory accuracy for problems related to sequential data processing, confirmed by

numerous studies across different areas of study [97].

Every LSTM network comprises multiple LSTM cells that serve as its basic building

block (see Figure 4.5). These cells are a part of the hidden layer within the LSTM

network, and multiple cells can also be connected to form an LSTM layer. LSTM cell

features two memory units: internal cell state (ct) representing the long-term component,

the candidate state (c̃t), or new possible short-term memory component. In addition to

memory units, three gating mechanisms are present: input (it), forget (ft), and output

(ot). Gating mechanisms enable the LSTM network to manage the flow of information

selectively, meaning this part of the network determines which information is stored,

updated, or passed forward. A simpler explanation would define these gating mechanisms

as switches, which are either turned on or turned off, depending on the input data [124].

This is possible by employing two types of activation functions: the sigmoid and hyperbolic

tangent. Besides, the mentioned LSTM cell also contains a hidden state (ht), which is

defined as the output of each LSTM cell for a defined time step.

The flow of the information between gates occurs in the following manner. Using

ht−1, the previous time step hidden state, and xt or the input of the current time step,

the calculations for the three mentioned gating mechanisms and the candidate state c̃t

are performed. Forget gate (expression shown in Eq. 4.8) applies a sigmoid function,

which will produce a value in the range between 0 and 1, that determines the quantity of

the previous cell state (ct−1) retention in the current, i.e., updated cell state (ct). If the

resulting value is closer to 1, the information is kept, while if the resulting value is closer
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Figure 4.5: Internal structure of an LSTM cell

to 0, it is discarded.

ft = σ
(
Wf ·

[
ht−1, xt

]
+ bf

)
(4.8)

After this step, input gate calculations are performed, which (unlike the forget gate)

determine whether new information will be added to the internal cell state (ct) by em-

ploying a sigmoid function. If the result of the input gate is around 0, the information is

ignored; however, if the resulting value is around 1, the new information is fully added to

the current internal cell state (ct). This enables the LSTM network to improve its ability

to learn and retain important past information over time.

it = σ
(
Wi ·

[
ht−1, xt

]
+ bi

)
(4.9)

Based on the output of the input gating mechanism, the candidate cell state (c̃t) is

either added or ignored during the update of the internal cell state by using a hyperbolic

tangent function, which converts the data into a range between -1 and 1. Therefore, the

candidate cell state (c̃t) represents the potential new information to be incorporated into

the cell state (ct).

c̃t = tanh
(
Wn ·

[
ht−1, xt

]
+ bn

)
(4.10)
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The next phase represents the update of the cell memory, where the forget gate (ft)

determines how much of the previous cell state(ct−1) is retained, while the input gate (it)

task is to determine how much of the new information, i.e., candidate cell state (Tildect)

is included. The result represents an updated internal cell state (ct) containing only vital

information.

ct = ft · ct−1 + it · c̃t (4.11)

The last step involves the output gate (ot) and generates a hidden state (ht) that is

either passed to the next time step or used for prediction. The primary function of the

output gate (ot) is to determine how much of the internal cell state (ct) information will

be used to generate a hidden state (ht). If the value of the output gate (ot) is close to 0,

only some small part of the information from the internal cell state (ct) will be used to

generate the hidden state (ht). In contrast, if the output gate (ot) is close to 1, most of

the internal cell state (ct) information will be used to generate a hidden state (ht).

ot = σ
(
Wo ·

[
ht−1, xt

]
+ bo

)
(4.12)

ht = ot · tanh(ct) (4.13)

In Equations 4.8 - 4.13, the weights associated with the gating mechanisms and the

candidate cell are denoted as Wf , Wi, Wo, and Wn. The corresponding biases are rep-

resented by bf , bi, bo, and bn, while the activation functions are indicated by σ for the

sigmoid function and tanh for the hyperbolic tangent function [80].

4.2.2. Convolutional Neural Network with Long Short-Term

Memory

The utilized architecture for the forecasting task employs a hybrid approach combining

a CNN and an LSTM. The justification for the application of this model refers to the

use of spectrograms as input, independently and in combination with time series. Such

architecture had been previously applied for tidal reach, for example, Shi et al. (2024)
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and Gao et al. (2025). However, such an approach has not been applied to the area

of microtidal river and discharge prediction, nor by integrating spectrograms. As the

fundamental theory behind LSTM was previously discussed, the focus of this subsection

is on CNN and its advantages when applied together with LSTM.

The first CNN architecture was proposed by LeCun et al. in 2002, better known as

LeNet, applied for the handwritten digit recognition task. The multi-building blocks

of CNN architecture refer to convolution, pooling, and fully connected layers, but also

activation and loss functions.

The convolution layer can process both 1D and 2D inputs, in the form of sequence

or matrices, including images. For 1D input, such as time series, it focuses on capturing

local temporal patterns, while for 2D inputs, such as the spectrogram matrices used in

this research, it operates similarly to image processing, extracting local features across

both time and frequency dimensions. The convolutional layers are constructed of learn-

able filters, better known as kernels, and employ activation functions. By calculating

the dot product between the inputs and kernels, a feature map is generated. Given the

complex nature of tidal reach data, introducing nonlinearity is essential; therefore, the

ReLu activation function is applied to each convolutional layer. The pooling layer per-

forms sub-sampling of the feature maps generated by previous convolutional layers [6].

There are various types of pooling layers, such as min, max, average, and others. For the

purpose of this research, a single Max Pooling layer was used. The final layer of a typical

CNN architecture is a fully connected layer, which generates a vector representing the

final regression predictions, i.e., continuous numerical values.

The selected architecture for water level and discharge forecasting consisted of two

convolutional layers, a single Max Pooling layer, followed by LSTM and dropout, to

further avoid overfitting, and lastly, a fully connected layer [81]. The first study on

employing a CNN-LSTM for tidal reaches as a baseline model, integrated available spatial

features, thus a more complex Chebnet model demonstrated significant advantages over

CNN-LSTM [126]. In the absence of spatial features for the current research, CNN-LSTM

serves as a suitable alternative, effectively extracting relevant local time-frequency and

temporal patterns from the data. A holistic data analysis approach was achieved through

this methodology.
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4.2.3. Proposed Hybrid Model: Long Short-Term Memory

with Attention Mechanism

The proposed architecture for this study is a hybrid modelling approach, which com-

bines the previously discussed LSTM approach with an attention mechanism. The pro-

posed model is referred to as the LSTM-Attention model. While the LSTM approach

has been utilized in several studies concerning tidal rivers, particularly for water level

estimation problems [15, 57, 114, 124, 126], the application of the attention mechanism

remains an unexplored area for this specific problem in the field of hydrology.

The attention mechanism is a technique specifically developed for processing sequential

data. It is utilized as a part of the hybrid modelling approaches, for example, sequence-

based architectures like Transformers or Encoder-Decoder models. Although the attention

mechanism has been widely utilized in Natural Language Processing (NLP), its applica-

tion in hydrology remains limited. This is further corroborated by a recent study by Mihel

et al., which found that only ten articles in the WoS database used the attention mecha-

nism as part of a hybrid approach. LSTM offers advantages such as capturing long-term

dependencies and temporal patterns within given sequential data while also, by including

the attention mechanism, the model can further dive into the given data and identify the

most relevant parts of the given input sequence. The attention mechanism serves as a

means of enabling the model to selectively focus only on information that is considered

important. Identifying relevant information can be rendered by dynamically assigning

weights to different input parts.

Previously, we stated that the proposed hybrid architecture consists of two main types

of layers: LSTM and the attention mechanism. Although LSTM layers generate hidden

and cell states at each time step, only the hidden states are propagated to the attention

mechanism (see Equation 4.13), whose role is to assign different weights to them. As

previously discussed, these weights reflect the relevance of different sequence parts for the

prediction assignment.

The attention mechanism consists of several steps. In the first step, the generated

hidden states of the LSTM layer are forwarded to the attention mechanism, after which

a standard linear transformation is performed by multiplying them with a weight matrix.

The multiplication result represents the hidden attention space to which the LSTM hid-
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den states are mapped to calculate the attention scores. Due to the complexity of the

problem, the tangent hyperbolic activation function (tanh) is employed to introduce the

nonlinearities into the model and normalize the multiplication result into a specific range

between [-1, 1] (see Equation 4.14). The purpose of utilizing the tanh function is to enable

modelling complex, non-linear relationships and intricate patterns, which are commonly

encountered in areas of interest, i.e., tidal reaches, where the interaction between tides,

water level, and discharge can be described as highly complex. The next step involves an-

other linear transformation, which takes the previously generated vector ut and multiplies

it with a transposed weight vector vT . This multiplication results in a scalar attention

score for every timestep t (see Equation 4.15).

ut = tanh(W1ht + b1) (4.14)

et = vTut (4.15)

The second activation function, softmax, performs normalization of the given scalar

attention scores into a range of [0, 1], resulting in a probability distribution where the sum

of all normalized attention scores equals 1 (see Equation 4.16). In this context, features

associated with higher attention weights are considered more relevant to the final pre-

diction than those with lower weights. The normalized attention scores are subsequently

multiplied by the corresponding hidden states at each timestep (t) and then summed to

produce a weighted sum, commonly referred to as a contextual vector (c) (see Equation

4.17). The weighted sum can be described as a comprehensive summary of information

derived from the given sequence. The output of the attention mechanism, that is, the

contextual vector, is forwarded to a fully connected layer, where it is multiplied with a

learned weight matrix (Wout), which transforms the output in the adequate dimension

and also produces the final prediction of the model (see Equation 4.18). The bias term

(bout) is also added as it helps the model better adjust to data while providing flexibility

in modelling.

αt =
exp et∑T

k=1 exp(ek)
(4.16)

c =
T∑
t=1

αtht (4.17)
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ŷ = Woutc+ bout (4.18)

After presenting the theoretical background of all employed machine learning models,

from stand-alone to hybrid, the next chapter provides an overview of the methodology,

detailing the entire process from data processing to model development.
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5. Chapter

METHODOLOGY
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This chapter outlines the techniques and methods employed for the purpose of dis-

charge estimation in a Neretva tidal river while utilizing the machine learning models

discussed in Chapter 4.. Several phases are considered for enabling a systematic research

process: data preparation and preprocessing, signal processing, model development con-

sisting of training, optimization, and evaluation, and lastly, providing explainable and

transparent models - with the aim of ensuring reproducibility. During the data prepara-

tion phase, collection, correction, and preprocessing steps are discussed in detail. After

ensuring that the data has been adequately handled and prepared, the model development

specifics regarding the model training and the optimization of hyperparameters are given.

Following the model development, evaluation metrics and statistical significance tests are
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explained, emphasizing their previous application in the field of hydrology. The final phase

of the methodology explores techniques that provide interpretability and transparency of

the final models’ results.

5.1. Data Preparation and Preprocessing

Data preparation for training and testing the selected machine learning models was

carried out in several steps. The first step was to inspect the possibility of potential

time lag between the input parameters of the hydrological stations’ water levels and

the discharge output variable at a single location. The inspection was carried out by

employing a cross-correlation analysis, whose results are shown in Figures 5.1 and 5.2.

Through visual inspection, it was concluded that a two-hour lag exists in both datasets

(measured and simulated). Hence, the following step involved adjusting both time series

accordingly to resolve the time lag.

Figure 5.1: Two-hour time lag between multiple water level stations and a single dis-
charge of the measured dataset [80]

The second step of data preparation was to apply a splitting method, which would

create a training dataset used by the model to learn patterns in the dataset, and the testing

dataset which would be employed for evaluating the models’ performance on new unseen

data. As the range of our dataset spans from 2016 to 2021, and there were around 50000
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Figure 5.2: Two-hour time lag of the simulated dataset [80]

records, it was decided to employ a splitting approach where 80% of the data represented

the training dataset, while the remaining 20% was the testing dataset. More precisely,

the training dataset contained records from January 2016 up to October 2020, while the

testing from November 2020 up to December 2021. The remaining HEC-RAS dataset

records ranged from 2016 to 2019, totaling approximately 30000 records. The training

data spanned from January 2016 to February 2019, while the testing data covered the

period from March 2019 to December 2019.

The next step in data preparation was scaling. The rationale behind using the scaling

method was the significant difference in value ranges between water levels and discharge

records. The scaling was performed by using MinMaxScaler from scikit-learn Python

library developed for machine learning models. MinMaxScaler resizes the data to a pre-

defined range of [0, 1], while maintaining the original data distribution. The mathematical

expression for the MinMaxScaler approach is [117]:

x̂ =
xi − xmin

xmax − xmin

(5.1)

where xi is the current observation, xmin the overall minimal value of a variable, and xmax

the overall maximal value of a variable.

As previously discussed, this research investigates the predictive capability of both
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simple machine learning models (such as DT, RF, SVR, LGBM, and XGB) and time-

series models (like LSTM and LSTM-Attention). However, these models differ in terms

of the importance of data order. Time series machine learning models require data to be

arranged in chronological order, as this reflects the nature of real-world data. In contrast,

simple machine learning models do not always rely on sequential order and can be trained

even with randomly shuffled data. Hence, defining the adequate structure of input data

for models is of critical importance. A sliding window approach pertaining to a 24-hour

window was considered for predicting the discharge of the preceding hour. A 24-hour

window of historical data was selected as it contains a full tidal cycle, including both high

and low tide periods, hence properly representing the complex dynamic of the Neretva

River flow. The window length selection can be further supported through the Adriatic

sea dynamic characteristics of the tidal regime, which is referred to as a mixed tidal signal

[60]. In such a tidal regime, daily or diurnal and half-daily or semidiurnal constituents

are equally present and strong, without one being more dominant. Therefore, capturing

both types of oscillations requires a window length of at least 24 hours.

5.2. Signal Processing

5.2.1. Spectrogram-Based Time-Frequency Representation

Using only the time domain may be a too restrictive approach for modeling non-

stationary signals in tidal rivers and estuaries, such as water level and discharge. As these

hydrological parameters are influenced by extreme conditions, seasonal variations, tidal

cycles, and more, gaining simultaneous insights into the time and frequency domains may

enhance the understanding of such signals. While the Fourier transform (FT) enables

transforming a time series into a frequency domain signal, and back, it still lacks the

ability to provide information on the energy density of a signal in both the time and

frequency domains at the same time. Therefore, a well-known time-frequency distribution

(TDF), Short-term Fourier transform (STFT), proposed by Gabor in 1946, was selected

to produce its magnitude display spectrogram. A mathematical expression for STFT is

[96]:

STFTx(t, f) =

∫ +∞

−∞
x(τ) g(τ − t) e−j2πfτ dτ (5.2)
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where t represents time, f frequency, x(τ) signal in time domain, g(t−τ) window function

centered around t, e−j2πfτ complex exponential function.

Spectrogram is derived from the previous Equation 5.2, which represents fundamental

STFT, by calculating its squared magnitude. Therefore, the complete expression for

STFT is presented in Equation 5.3 [81]:

SPECx(t, f) =

∣∣∣∣∫ +∞

−∞
x(τ) g(τ − t) e−j2πfτ dτ

∣∣∣∣2 (5.3)

where t represents time, f frequency, x(τ) signal in time domain, g(t−τ) window function

centered around t, e−j2πfτ complex exponential function.

The selected window function for performing analysis was the Hamming window. The

main advantage of the utilized windowing function lies in minimizing possible spectral

leakage. Likewise, as a 24-hour sliding window was utilized for input data, the dimension

of each generated spectrogram was 24x12, as shown in a single example in Figure 5.3.

Figure 5.3: Example of a single spectrogram using STFT and Hamming window [81]

5.2.2. Variational Mode Decomposition

Variational Mode Decomposition (VMD), proposed by Dragomiretskiy and Zosso in

2013., is a signal processing technique that decomposes the original input signal f into

K sub-signals or modes, referred to as Intrinsic Mode Functions (IMFs) from EMD.



Estimation and prediction of discharges in tidal rivers and estuaries using machine
learning 72

VMD relies on three building blocks: (1) Wiener filtering, (2) Hilbert transform, and

(3) frequency shifting. By combining these elements, VMD formulates a constrained

variational problem, aiming to extract K band-limited modes in the following manner

[28]:

min
{uk},{ωk}


∥∥∥∥∥∑

k

∂t

[(
δ(t) +

j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥∥
2

2


s.t.

∑
k

uk(t) = f(t)

(5.4)

where k is the index of a mode, uk represents set of all models, ωk is assigned central mode

frequency, K is the total number of decomposed modes, δ(t) is Dirac function, ∗ is the

convolution operator, wk is the central frequency of kth mode, t denotes time,
(
δ(t) + j

πt

)
∗

uk(t) represent an expression of the Hilbert transformation of uk to an analytical signal,

and e−jωkt enables frequency shifting to the baseband.

Hence, Dragomiretskiy and Zosso decided to introduce the Lagrangian multiplier (α)

and a quadratic penalty term, which converted the previously constrained variational

problem to an unconstrained one. The quadratic penalty term primarily emphasizes the

enhancement of reconstruction fidelity, whereas the Lagrangian multiplier is employed

to enforce constraints rigorously [28]. Consequently, the formulation of the augmented

Lagrangian multiplier can be expressed as [49]:

L({uk}, {ωk}, λ) := α
∑
k

∥∥∥∥∂t [(δ(t) + j

πt

)
∗ uk(t)

]
e−jωkt

∥∥∥∥2

2

+

∥∥∥∥∥f(t)−∑
k

uk(t)

∥∥∥∥∥
2

2

+

〈
λ(t), f(t)−

∑
k

uk(t)

〉 (5.5)

where k is the index of a mode, uk represents set of all models, ωk is assigned central

mode frequency, K is the total number of decomposed modes, δ(t) is Dirac function, ∗

is the convolution operator, wk is the central frequency of kth mode, t denotes time, f

represents original signal, λ is the Lagrange multiplier, α represents bandwidth, and

mathcalL is the augmented Lagrangian.

The solution to the minimization problem outlined in Equation 5.4 involves perform-

ing a sequence of iterative sub-optimizations, using the alternate direction method of

multipliers (ADMM). This process is repeated until convergence is achieved. Three steps
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are executed and repeated iteratively. These steps refer to mode update (see Equation

5.6), center frequency update (see Equation 5.7), and the Lagrangian multiplier λ (see

Equation 5.8), presented in the given Algorithm 1. [28]

Algorithm 1 ADMM optimization concept for VMD [28]

Initialize: {u1
k}, {ω1

k}, λ1, n← 0
Repeat:
n← n+ 1
For k = 1 : K do
Update uk:

un+1
k ← argmin

uk

L
(
{un+1

i }i<k, {un
i }i≥k, {ωn

i }, λn
)

(5.6)

End for
For k = 1 : K do
Update ωk:

ωn+1
k ← argmin

ωk

L
(
{un+1

i }, {ωn+1
i }i<k, {ωn

i }i≥k, λ
n
)

(5.7)

End for
Dual ascent:

λn+1 ← λn + τ
(
f −

∑
k

un+1
k

)
(5.8)

Until convergence: ∑
k

∥un+1
k ∥22 − ∥un

k∥22
∥un

k∥22
< ϵ.

In the given Algorithm 1 k is the index of a mode, uk is the k-th mode function, ωk

is k-th mode central frequency, λ Lagrangian multiplier, τ is step size parameter for the

dual ascent update, n is ADMM iteration step, ϵ is convergence tolerance, t denotes time,

f is the original signal in time domain, and L is the augmented Lagrangian.

Currently, no study has employed VMD in tidal rivers or estuaries for water level or

discharge estimation or prediction. Only one paper by Chen et al. (2023b), was found

through theWoS search. This study employed a combined approach of VMD with machine

learning, focusing on ship traffic flow and congestion. An additional search identified four

studies on the application of VMD in tidal rivers and estuaries; however, none of the

studies integrated machine learning approaches.
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5.3. Model Development

5.3.1. Model Training and Optimization

Model training and validation phases were combined through a technique known as

k-fold grid search cross-validation. The selected 80% of the training dataset were divided

into folds, and all folds except one were utilized for model training. At the same time, the

excluded fold served for validation purposes, i.e., finding the optimal hyperparameters of

each model from the predefined range by testing all possible combinations. Hence, the

final result of such a brute force paradigm gave us the best-fitted set of hyperparameters.

The value for k-fold was selected based on the provided amount of data and the adequate

tradeoff between bias and variance. Applying this technique can potentially minimize the

problem of overfitting, as multiple evaluations are done on different folds during cross-

validation.

Based on the previously mentioned criteria, and with the additional aim of balancing

computational demands for the given dataset, a five-fold split was selected. Through each

step of the performed cross-validation, four folds are used to train the model (k − 1),

while only one is used to evaluate the model performance. This process is performed

for every possible combination of hyperparameters through grid search, and it continues

until the last combination. When the best set of hyperparameters is found, the final

result represents the average performance score obtained across all folds during the cross-

validation. Hence, the main evaluation criteria used for refitting the models was the

MSE, followed by a few other scoring criteria, such as the RMSE, MAE, Nash-Sutcliffe

coefficient of efficiency (NSE), and coefficient of correlation (R).

However, performing k-fold cross-validation and grid search for PyTorch models is not

directly possible, as is the case with scikit-learn library models, where these approaches

are integrated into the mentioned framework. Therefore, using a library skorch, which

acts as an intermediary between those libraries, was mandated. The compatibility with

scikit-learn framework that enables the use of k-fold cross-validation and grid search in

a standardized manner is enabled through a NeuralNetRegressor wrapper. The main

advantage of such an approach is the ability to utilize already existing functions for either

optimization, evaluation, or others without needing to develop new methods.
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PyTorch models require a few additional parameters to be defined before proceeding to

the training process. These relate to selecting an optimization algorithm, a regularization

technique, and a number of epochs. The literature overview analysis revealed that Adap-

tive Moment Estimation (Adam) was the predominant optimizer for minimizing neural

network loss function. Likewise, its advantages are further confirmed in a review study

by Ahmed et al., where it is used specifically in combination with the LSTM approach.

However, for our problem, a slightly different Adam optimization variant was employed,

namely, Nesterov-accelerated Adaptive Moment Estimation (Nadam). This optimizer in-

tegrates the favourable characteristics of the Adam optimizer with Nesterov momentum,

aiming for accelerated convergence [113]. The selection of regularization methods and

the number of epochs are intertwined. The early stopping strategy showcases the appli-

cation of regularization, wherein model training ceases when the validation loss, i.e., the

MSE, fails to decrease after a specified number of epochs. Such a strategy prevents the

possibility of overfitting, minimizes training time, and is resource-efficient, even if the de-

fined number of epochs is large. Employing an early stopping technique, especially during

cross-validation, is highly useful to avoid and even prevent improper predictions [5]. The

chosen step for early stopping was 15, and the total number of epochs was set to 500.

5.3.2. Evaluation Metrics and Statistical Significance Tests

In the evaluation phase, several performance metrics are considered to find the optimal

hyperparameters of each model and validate the model performance on new unseen data.

Those metrics are MSE, utilized as the main evaluation metric for finding the optimal

model during the k-fold grid search cross-validation, followed by RMSE, MAE, NSE, and

lastly, R. The aim is to obtain the lowest MSE, RMSE, and MAE, with the highest NSE

and R value. While, for example, MSE and RMSE evaluate larger errors more strictly

or give them greater weight, MAE provides an average error and, at the same time,

better stability. Also, RMSE and MAE provide a calculation of the prediction error in

measuring units of the output data. In parallel, two remaining metrics are applied, the

aim of which is to assess the efficiency, i.e. the precision of the model through the NSE

metric, and to find the correlation between the actual and predicted data, which refers to

the R metric. An additional metric had been employed for the forecasting, mean absolute
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percentage error (MAPE). The previously mentioned evaluation metrics were selected to

fulfil two key criteria, comprehensive model assessment and aligning with the standards

for hydrological modelling, as outlined by Gupta et al.. The expressions for evaluation

metrics mentioned above are [80, 81]:

MSE =

n∑
i=1

(yi − ŷi)
2

n
(5.9)

RMSE =

√√√√ n∑
i=1

(yi − ŷi)2

n
(5.10)

MAE =
1

n

n∑
i=1

|yi − ŷi| (5.11)

NSE = 1−
∑n

i=1(yi − ŷi)
2∑n

i=1(yi − y)2
(5.12)

R =

∑n
i=1(yi − y)(ŷi − ŷi)√∑n

i=1(yi − y)2
∑n

i=1(ŷi − ŷi)2
(5.13)

MAPE =
1

n

n∑
i=1

∣∣∣∣yi − ŷi
yi

∣∣∣∣× 100%, (5.14)

where n is the number of observations, yi is the observed value of i-th sample, and ŷi is

the predicted value of i-th sample, and ȳi is the mean of the observed i-th sample.

To determine the optimal VMD parameters for decomposing signals, two metrics were

selected: orthogonality index (OI) and reconstruction error ratio. Decomposition often

suffers from problems such as mode mixing. Therefore, to quantify the extent of such

problems, OI was applied. The expressions for these metrics are given below [86, 101]:

IO =

∑
t

∑N+1
j=1
i ̸=j

ci(t)cj(t)∑
t x

2(t)
(5.15)

where t is timestamp, x(t) represents original signal, i and j are indexes of components,

ci(t) and cj(t) are mode functions, and the expression
∑

t x
2(t) represents the total energy

of the original signal.
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Error =

∥∥∥X̂N×L −XN×L

∥∥∥
2

∥XN×L∥2
(5.16)

where XN×L is the original signal, and XN×L is the reconstructed signal.

Statistical significance tests enable drawing conclusions concerning defined hypotheses

related to one or more samples. The hypotheses can either be rejected or failed to be

rejected based on the probability evaluation, whether about the relationship or difference

in data and whether it pertains to chance. Based on the data distribution criteria, two

categories of statistical significance tests can be found: parametric and nonparametric.

Parametric tests are employed when the data is assumed to follow a known distribution.

A typical example of data distribution where parametric tests are used is the normal

distribution. Examples of parametric tests are t-test, F test, and ANOVA. In contrast,

nonparametric tests do not require prior knowledge of data distribution, and here, it is

valid that if the criterion of normal distribution of data is not satisfied, nonparametric tests

are applied [78]. Also, a significant advantage of applying these tests can be seen when it

comes to extreme values since they are less sensitive to them. Examples of nonparametric

tests are Mann-Whitney U, Kruskal-Wallis, and Wilcoxon signed-rank tests. Since our

data does not follow the normal distribution, we focus on the nonparametric category,

more precisely, the Wilcoxon signed-rank test.

Wilcoxon signed-rank test has already been applied in a previous study by Corazza

et al. 2013 in a similar manner as here, mainly due to its robustness regarding the t-

test assumptions, i.e., deviations from them [23]. The nonparametric test was based

on the absolute residuals of every model, which then provided a statistical assessment

of whether the median of pairwise differences can be considered statistically significant

or not, depending on the calculated p-values. The p-value threshold α was set to 0.05,

consistent with the study by Corazza et al.. If the statistical test result showed that the

p-value was less than the given threshold, it was possible to conclude how the difference

between the two samples is statistically significant, and if otherwise, it was not. However,

these results only provide additional acknowledgement of the previous results obtained

through evaluation criteria and the fact that the difference between the absolute residuals

is not due to chance.
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5.4. Model Interpretability and Transparency

Nowadays, with the significant rise in countless variations of machine learning mod-

els, the need for providing complete model transparency has increased. Most of today’s

applied models can be considered black-box models, which is especially the case with

Deep Neural Networks (DNN). Despite the potential for high accuracy, there is very little

understanding of the model’s internal operational mechanics. So, the need for human-

understandable reasoning behind the models led to the development of explainable ar-

tificial intelligence (XAI) with the aim of satisfying ethics and regulatory demands. A

significant increase in research interest related to XAI has only been observed since 2017

[8]. In the same paper, a taxonomy of different approaches is given based on their level

of transparency and explainability, where three classes can be differentiated: transparent

models, post-hoc explainability (model-agnostic and model-specific), and hybrid mod-

els. However, when providing a specific focus on the hydrological community, in the

last five years, had, there been a significant application of XAI, which is further proved

by numerous studies [76]. An example of a review paper by Maier et al. 2024 on XAI

application in hydrology provided a different outlook on the application of XAI, more

specifically a classification focused on different types of explanations, mainly: assessment

of feature contributions, assessment of a model’s adaptability to feature variations, and

lastly, selection of significant features. As XAI offers vital tools for explaining complicated

mechanisms, our research mainly focused on assessing feature contributions while includ-

ing domain-specific knowledge to provide adequate result analysis and prevent misleading

assumptions.

The first step of determining feature contribution was conducted in the data prepro-

cessing stage by employing two Exploratory Data Analysis (EDA) techniques: correlation

analysis and mutual information score. The techniques differ based on the type of feature

interdependency. While correlation analysis is mainly focused on finding a linear asso-

ciation between the features and the strength and direction of the relationship between

them [107], the mutual information score is a broader concept of analysis, where the goal

is to find any type of dependence between features, i.e., it is applied if complex nonlinear

relationships between features are present [10]. The second stage of determining feature

contribution was performed during the model evaluation phase by employing the SHAP
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technique for the category of simple machine learning models. In contrast, the feature

occlusion test was used for the time-series machine learning models.

SHAP is a methodology founded on Sharpley values and concepts from cooperative

game theory (CGT) [121]. Unlike other XAI methods, in SHAP, the predictions are

represented as a summation of every feature contribution [100]. More precisely, calcu-

lated SHAP values quantify the magnitude of every feature deviation, whether above or

below, from the model’s prediction relative to the baseline, i.e., average estimation. Fur-

thermore, SHAP differentiates itself from other interpretability approaches by its math-

ematical framework since it effectively fulfils three critical properties: local accuracy,

missingness, and consistency [74]. Another aspect that makes this method significantly

different from others is the possibility of insight into local and global interpretations of

model results. Global SHAP interpretations answer the question of the most important

features for the overall model predictions. At the same time, local SHAP is more focused

on the question of how every feature influences the model’s individual predictions [7].

However, it is important to emphasize that global interpretations are derived from local

ones. The local and global interpretation can be described by the following mathematical

expressions [92]:

g(z′) = ϕ0 +
M∑
k=1

ϕk(z
′
k) (5.17)

g(z′) = ϕ0 +
M∑
j=1

ϕjz
′
j (5.18)

where ϕ0 represents the baseline, z
′
k and z′j are the binary variables (0 = feature is included,

1 = feature is not included), ϕk(z
′
k) is the kth feature attribution, and ϕj is the feature

attribution for jth feature. The biggest difference between these formulations is related

to the input z′, as in local expression, it represents an alliance vector whose values can be

either 0 or 1 (z′ ∈ {0, 1}M), while in global expression it represents all possible coalitions

of features (z′ ∈ [0, 1]M).

The use of the SHAP technique is quite straightforward for the simple machine learning

category, particularly for DT, RF, LGBM, and XGB, where the Tree Explainer method
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is employed. However, the issue arises with the SVR approach, as the necessary calcu-

lations cannot be performed across the entire range of predictions due to the computing

power required and the significant amount of time involved (regarding aspects such as

the algorithm’s complexity), but rather only on a subset of the data utilizing a model-

agnostic Kernel Explainer. In contrast to Tree Explainer, Kernel Explainer is considered

to be resource-intensive. It operates under a black-box methodology, which can lead to

biased outcomes if adequate representative data is not supplied. Additionally, it offers an

estimation of feature contributions without incorporating kernel-specific transformations.

A drawback of SHAP techniques pertains to any RNN-based layer, specifically in our

case, LSTM. PyTorch LSTM implementation is not supported by the available SHAP

framework; therefore, a different approach for determining feature contribution must be

considered. Besides the aforementioned points, a potential issue that could adversely af-

fect the SHAP interpretation is linked to the presence of highly correlated features. In

such cases, the importance may not accurately represent the true significance, thereby

further limiting the effectiveness and precision of the SHAP method [84]. Therefore, it is

possible to make false conclusions regarding certain features and whether they are truly

indispensable or of negligible importance.

Feature occlusion analysis is a methodology also conducted in the post-evaluation

phase, in which models were retrained from the beginning by systematically excluding

variables that exhibit the highest correlation with other features. The selected approach is

another form of providing model interpretability. The correlation was determined through

the correlation matrix, along with additional insights from SHAP regarding feature con-

tribution across various models. The rationale for eliminating a feature that has a high

correlation with another is that it contains nearly identical information; hence, evaluating

the model to ascertain the redundancy of that feature might yield valuable insights into

the problem at hand. This strategy is computationally intensive; nevertheless, it allows

us to determine if the model can be simplified with minimal impact on performance and

possibly a model that is easier to interpret and uses less time for the training process.

Based on the applied methodology, the subsequent chapter presents the results of

the conducted estimation and prediction analysis, followed by a discussion regarding the

findings.
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6. Chapter

RESULTS AND DISCUSSION
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This chapter presents an overview of the results and discussions related to three re-

search directions: (1) discharge estimation, (2) forecasting of discharge and water level,

and (3) the impact of signal decomposition on discharge estimation. While measured data

and STREAM-1D simulated datasets were used for directions (1) and (3), the HEC-RAS

simulated dataset was employed for direction (2).
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6.1. Discharge Estimation

The discharge estimation problem has been investigated from two different perspec-

tives, one by using measured data and the second by using a simulated data generated

by the STREAM-1D numerical model. Each of the datasets had been evaluated us-

ing different machine learning models, from simple approaches, such as DT, RF, SVR,

LGBM, and XGB, to more complex time series models, LSTM, and proposed hybrid mod-

eling approach LSTM-Attention. As previously mentioned, each scenario used only water

level information from four available stations as model inputs. The following subsection

presents results and discusses models’ performance by using different evaluation metrics

and statistical significance tests, as well as identifying feature significance.

6.1.1. In-depth Analysis for Measured Data

The order of the models according to the accuracy shown on the test set is as follows:

LSTM-Attention, LSTM, LGBM, XGB, RF, DT, SVR-rbf, and SVR-sigmoid. Appendix

B.1 includes Table B.1 detailing selected hyperparameters, their tested ranges, and the op-

timal values identified via a five-fold grid search cross-validation method. According to the

results of the evaluation metrics shown in Table 6.1, time series models, LSTM-Attention

and LSTM, in addition to providing the highest accuracy in discharge estimation, also

show the highest consistency in performance, both in the training set and in the testing

set. For LSTM-Attention, the differences in performance were 1.56% for RMSE, 5.39%

for MAE, 3.59% for NSE, and 2.02% for R, while for LSTM 7.21% for RMSE, 13.24%

for MAE, 3.61% for NSE, and 1.92% for R. Furthermore, it is important to emphasize

that the training data set does not contain the highest peak value. Nonetheless, even

in such cases, common for real-world scenarios, the time series models demonstrated an

exceptional ability of data generalization and extrapolation. The largest oscillations in

performance were observed for XGB-rbf, RF, and DT, whereas LGBM and XGB-sigmoid

exhibited only moderate oscillations. The difference in performance between the best-

performing model, LSTM-Attention, and the worst, SVR-sigmoid, was 30.12% for RMSE,

26.77% for MAE, 2.77% for NSE, and 4.25% for R. The difference in performance between

the second-best-performing model, LSTM, and the worst, SVR-sigmoid, was 22.71% for
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RMSE, 18.94% for MAE, 2.27% for NSE, and 4.15% for R. The difference between the

two best performing models, LSTM-Attention and LSTM, was 9.59% in RMSE, 9.66% in

MAE, 0.52% in NSE, and 0.10% in R.

Table 6.1: Evaluation of models on the training and testing dataset obtained from
measured data

Training Testing

Method
RMSE
(m3/h)

MAE
(m3/h)

NSE R
RMSE
(m3/h)

MAE
(m3/h)

NSE R

DT 59.203 42.828 0.933 0.966 76.147 54.368 0.955 0.980
RF 55.812 40.674 0.941 0.970 73.306 52.159 0.958 0.982
SVR-sigmoid 70.577 54.090 0.905 0.952 82.155 58.992 0.947 0.947
SVR-rbf 60.472 43.564 0.930 0.965 77.387 54.410 0.953 0.979
LGBM 59.572 43.360 0.932 0.966 73.130 52.260 0.958 0.983
XGB 48.500 35.601 0.955 0.977 73.212 51.836 0.958 0.982
LSTM 58.916 41.490 0.934 0.969 63.495 47.821 0.969 0.988
LSTM-Attention 56.509 40.874 0.939 0.969 57.406 43.201 0.974 0.989

Figure 6.1 displays the predicted versus observed plots for all machine learning ap-

proaches. The visualization only affirms the general results of evaluation metrics. Models

with the widest dispersion of points, i.e., lowest accuracy in prediction, are DT, RF, SVRs

(rbf and sigmoid), LGBM, and XGB. The same models encounter challenges when pre-

dicting values above 1500 m3/h. Although most of these models tend to underestimate

discharge above 1500 m3/h, it is primarily the SVR approaches that show significant over-

estimates of these values. Different results are shown for LSTM-Attention and LSTM,

whose points are closely scattered to the best-fit line, indicating a good fit, which is also

supported by the R2 metric. Nonetheless, LSTM-Attention exhibits a more balanced dis-

tribution of points, whereas LSTM shows minor deviations with points positioned below

the best-fit line.

A more detailed assessment of predicted discharge values as categories is presented

in Figure 6.2. Discharge values were categorized into four distinct groups: (1) Low dis-

charges are defined as values below 300 m3/h; (2) medium discharges encompass values

ranging from 300 to 1050 m3/h; (3) high discharges include values between 1050 and 1500

m3/h; and (4) extremely high discharges correspond to values of 1500 m3/h and above.

Low discharges encompass the largest proportion of values, approximately 60% of the en-

tire data set. The subsequent category accounts for around 30%, followed by a category

slightly under 10%, and the final category represents less than 1%. The frequency dis-
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Figure 6.1: Measured data: Predicted versus observed

tribution of discharge categories is also illustrated in Figure 6.2. The smallest deviations

in performance were observed for categories (1) and (2). The MAE of the first category

was less than 20 m3/h, the second between 60 and 80 m3/h, while greater deviations

apply to category (3), where MAE values were approximately in the range between 60 to

110 m3/h, and the highest for category (4) whose MAE values deviate most significantly,

starting from the best models whose MAE was below 100 m3/h to the worst models whose

MAE was higher than 200 m3/h. In three out of four categories, LSTM-Attention had

shown consistently better prediction accuracy, while in the (4) category, it was outper-

formed by less than 40 m3/h by LSTM. However, although some deviations are observed,
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LSTM-Attention and LSTM were still the only ones that provide less than 100 m3/h for

the (4) category, which contains the most extreme discharge values with the lowest data

frequency. Hence, the MAE below 100 m3/h is still considered satisfying.

Figure 6.2: Measured data: MAE metric and frequency distribution of discharge cate-
gories

Another visual statistical description, the Taylor diagram, was included to generate

a holistic assessment, as it employs three metrics: R, standard deviation, and centered

RMSE. Figure 6.3 shows how each model performs in compliance with these three metrics.

As the reference value of standard deviation for field measurements was 358.343, the mod-

els with the closes and lowest relative deviation were LSTM-Attention (-3.29%), LSTM

(-3.28%), SVR-sigmoid (1.68%), and SVR-rbf (3.93%). Other approaches had relative

deviations below -5%. However, although SVR-sigmoid had the closest standard devi-

ation, it demonstrated poorer performance in estimation ability and lack of fit. Hence,

the models that provided an adequate balance between all metrics, especially superior

performance in RMSE and R, were LSTM-Attention and LSTM.

An approach that enabled us to determine whether there are statistically significant

differences between the evaluation metrics of simple and time series machine learning

models, given in Table 6.1 and plots of predicted versus observed given in Figure 6.1,

was selected. The results of the Wilcoxon signed-rank test are presented in Figure 6.4 in

matrix form with p-values. The analysis of the LSTM-Attention model’s results revealed

a statistically significant difference in performance when compared to simpler machine
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Figure 6.3: Measured data: Taylor diagram

learning models and LSTM, which exhibited the closest performance in terms of both

evaluation metrics and predicted versus observed outcomes. Similarly to the LSTM-

Attention, LSTM also demonstrated a statistically significant difference in performance

when compared to simple machine learning models. This analysis has confirmed the effec-

tiveness of time series models for discharge estimation problems using field measurements

that still contain noise and irregularities. No significant performance differences were

observed in the absolute error values between the LGBM and XGB models, as well as

between the RF and LGBM models. Nonetheless, the relationship between RF and XGB

models exhibited a minimal difference, with the p-value close to one.

Determining the feature importance of input variables was carried out in two phases.

During the first phase, which was carried out before training the model, the correlation

matrix and mutual information were used.

The correlation matrix provided in Appendix B.2 as Figure B.1 depicts a linear rela-

tionship between input features (water level stations) with the output feature (discharge

feature measured at Metković). The order of water level stations based on the correla-

tion was: Metković (0.54), Kula Norinska (0.48), Opuzen (0.45) and lastly Ušće (0.21).

The order of water level stations based on the calculated correlation coefficient was the

same as their distance from the discharge Metković station. The highest correlation at



87 A. M. Mihel - Doctoral Thesis

Figure 6.4: Measured data: Matrix of Wilcoxon Signed-Rank p-values performed on
model errors

Metković was expected as there is a direct relationship between discharge and local water

level. Other stations exhibit moderate (Kula Norinska and Opuzen) to low correlation

with the target station Metković. A strong interdependence was found between adjacent

water level stations, ranging from 0.96 for relationship between Kula Norinska i Opuzen,

to 0.62 for relationship between Metković and Ušće. The result of the correlation analysis

indicates that closer stations (Metković, Opuzen, and Kula Norinska) were more infor-

mative for predicting discharge at Metković, than water level station located at the river

mouth (Ušće).

As a correlation matrix is limited to finding linear interactions between the features,

mutual information was employed (see Appendix B.2, Figure B.2). The same trend re-

garding the input feature predictors was also observed, where Metković was the most

significant feature, followed by a moderate importance of Kula Norinska, Opuzen, and

the least important predictor, Ušće.

However, from the hydraulic viewpoint, the assumption that the downstream stations
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do not contribute to predicting the discharge of the upstream stations is not acceptable.

Domain knowledge has already affirmed how tidal dynamics and sea levels influence both

the water level and the flow pattern of the upstream stations in a tidal reach. Hence,

excluding Ušće from our input features can cause potential issues as an oversimplified

system.

The second phase of determining feature importance was conducted after model train-

ing. For simple machine learning models, SHAP analysis, whose results are presented in

Appendix B.2, as Figures B.3a to B.3d, was applied. For all models, it was confirmed that

the most significant influence on final predictions had the Metković and Ušće water level

stations. The gained insight into the input feature significance supported the previous

claim on including downstream stations, which was also supported by domain knowledge.

As the SHAP approach had limitations regarding the time series models developed in

PyTorch, the feature occlusion method was utilized to determine feature significance by

testing it on different combinations of input features. Both LSTM-Attention and LSTM

showed a significant decline in performance, around 50% and more when only water level

from Metković station was used. This also supported the claim of using additional water

level station data. The results indicated that additional input features were required to

gain satisfying estimation accuracy. The largest improvement was observed when the

water level from Ušće was used alongside Metković. Hence, this also confirms previous

SHAP analysis results. By adding a single station, the results were improved, LSTM

by 37.45% for RMSE (see Figure 6.5), and LSTM-Attention by 46.87% (see Figure 6.6).

The remaining input features also showed improvements but in smaller percentages, less

than 10%. Hence, the highest impact on the model estimations had the upstream and

downstream stations, with a smaller impact by including midstream stations. A detailed

assessment of the performed feature occlusion is provided in Appendix B.2, in Tables B.3

and B.4.

6.1.2. In-depth Analysis for Simulated STREAM-1D Data

As for the field measurements, the first step of the model evaluation phase involved the

analysis of performance, whose results are presented in Table 6.2. The presented models,

as previously, were optimized using a five-fold grid search cross-validation, and final hy-
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Figure 6.5: Measured data: Feature occlusion using LSTM [80]

Figure 6.6: Measured data: Feature occlusion using LSTM-Attention [80]

perparameters, their tested ranges, and optimal values are located in the Appendix B.1,

specifically Table B.2. Similarly to field measurements, the order based on the model’s

performance on the testing set did not change drastically; only a slight deviation was ob-

served. Hence, models arranged by decreasing estimation accuracy are LSTM-Attention,

LSTM, XGB, RF, DT, SVR-sigmoid, LGBM, and SVR-rbf. Only LGBM showed poorer

performance on the simulated dataset than on field measurements, while SVRs main-

tained their poor performance, and time series models performed the best. Differences in

performance between the training and testing datasets have lowered, hence starting from

the highest estimation accuracy model, LSTM-Attention, here is the statistical overview.

LSTM-Attention gave better RMSE in test set of about 2.11%, 0.99% for MAE, 1.01% for

NSE, and 0.60% for R, also as LSTM 2.49% for RMSE, 1.86% for MAE, 1.51% for NSE,

and 0.80% for R. A comparison between the LSTM-Attention and SVR-rbf showed dif-

ferences in performance by 57.97% in RMSE, 38.37% in MAE, 3.22% in NSE, and 1.42%

in R. While with the second-best performing model, LSTM the differences were 50.97%

in RMSE, 25.98% in MAE, 3.01% in NSE, and 1.32% in R. A comparison of the two

best models showed that LSTM-Attention outperformed the LSTM approach by 14.28%

in RMSE, 16.73% in MAE, 0.20% in NSE, and 0.10% in R.
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Table 6.2: Evaluation of models on the training and testing dataset obtained from
numerical simulation

Training Testing

Method
RMSE
(m3/h)

MAE
(m3/h)

NSE R
RMSE
(m3/h)

MAE
(m3/h)

NSE R

DT 39.005 29.541 0.971 0.985 51.747 37.492 0.979 0.990
RF 33.542 24.919 0.979 0.989 48.729 34.669 0.981 0.991
SVR-sigmoid 47.756 37.784 0.957 0.978 53.010 40.978 0.978 0.990
SVR-rbf 39.712 29.797 0.970 0.985 70.128 36.554 0.962 0.983
LGBM 37.392 28.176 0.973 0.987 53.797 36.341 0.977 0.989
XGB 31.147 23.761 0.982 0.991 48.428 34.739 0.982 0.991
LSTM 35.240 27.561 0.976 0.988 34.384 27.057 0.991 0.996
LSTM-Attention 30.094 22.753 0.983 0.991 29.473 22.530 0.993 0.997

A better insight into the model’s performance was gained through the predicted versus

observed plot, presented in Figure 6.7. The same trend as in field measurements was

observed, that the best models with the narrowest spread of points around the best-fit

line for the time series models (LSTM-Attention and LSTM), while remaining simple

machine learning approaches produced a significantly wider dispersion with either large

underestimates for values above 1500m3/h (DT, RF, LGBM, and XGB), or overestimated

(SVR variants). Regarding the same data range for time series models, LSTM-Attention

shows almost ideal alignment for the values above 1500 m3/h, while LSTM was not

as successful, with some deviations indicating overestimations. However, one specific

characteristic was seen in all models, and it was the widest dispersion of points below

500 m3/h. Therefore, the results of the evaluation metrics were further confirmed by the

illustrated plot, which provided an insight into the models’ performance on the overall

discharge range.

Besides the predicted versus observed plot, a focus is also given to different discharge

category ranges to determine how each model performs in different ranges, which is closely

related to the data frequency of each category, as shown in Figure 6.8. Consistent with

field measurements, four categories of discharge are considered and evaluated, and in each

category, LSTM-Attention outperformed all models, including LSTM, especially for the

category of extremely high discharge values, while also achieving high estimation accuracy.

The second-best model was LSTM, whose performance drastically declined for the last

category; nonetheless, given the MAE remained below 100 m3/h, its accuracy was still

deemed satisfactory. Consequently, the low discharge categories exhibited a mean absolute
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Figure 6.7: STREAM-1D dataset: Predicted versus observed

error (MAE) ranging from 20 to 40 m3/h, the medium category from 20 to 50 m3/h, and

the high category for time-dependent models below 40 m3/h. In contrast, simple machine

learning approaches yielded an MAE between 40 and 60 m3/h. Finally, the last category

demonstrated the poorest performance for simple machine learning models, with an MAE

ranging from 160 to 460 m3/h.

Taylor’s diagram in Figure 6.9 depicts how the selected models perform according

to three metrics. The standard deviation reference for the STREAM-1D dataset was

358.275, and the order of the models from the closest to the furthest was: LSTM-Attention

(-0.18%), XGB (-2.04%), RF (-2.04%), LSTM (2.10%), DT (-2.12%), LGBM (-2.77%),
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Figure 6.8: STREAM-1D dataset: MAE metric and frequency distribution of discharge
categories

SVR-sigmoid (3.73%) and SVR-rbf (5.09%). These results are quite close to the results of

RMSE and R; however, there are some minor inconsistencies. LSTM had a slightly higher

relative deviation than XGB and RF. Nevertheless, the remaining metrics, which were

significantly better, suggest that these differences are more consequential. Additionally,

the interchange in ranking between LGBM and SVR-sigmoid did not reveal any major

performance disparities. Hence, the two best-performing models that exhibited balance

in all considered metrics were LSTM-Attention, with almost ideal alignment with the

standard deviation reference and LSTM.

Wilcoxon signed-rank (Figure 6.10) test verified that the results of the LSTM-Attention

can be referred to as statistically significant, with p-values for all compared models being

less than 0.05. The same rationale applied to LSTM, but this did not extend to all simple

machine learning approaches. Hence, the models whose p-values exceeded the predefined

threshold were RF and XGB (p-value=0.054), while the comparisons between models such

as SVR-rbf and XGB (p-value=0.538), and RF and SVR-rbf (p-value=0.687) yielded sig-

nificantly higher p-values. The result of the statistical test between the RF and XGB

models approaches the predefined threshold. In contrast to the other two cases, which

demonstrated compelling evidence of no statistically significant difference, this case does

not share the same validity. This result indicates a possible difference between the mod-

els. However, unlike other cases where models have p-values very close to zero, here, the
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Figure 6.9: STREAM-1D: Taylor diagram

rejection of the null hypothesis is not sufficiently supported. For the remaining two cases,

the results strongly imply that there is no statistically significant difference between the

models’ residuals.

The feature importance for the simulated data was firstly assessed before training the

models by examining the correlation matrix and mutual information, to gain insights into

both linear and nonlinear relationships of input features with the output feature.

The correlation matrix, depicted in Appendix B.2 Figure B.4, gave results comparable

to those of the measured data. The strengths of the linear relationship between the water

level stations and discharge, derived from the most significant predictors, were associated

with the discharge from the target station. Hence, the water level station exhibiting

the highest predictive power was Metković (0.56), followed by of Kula Norinska (0.53)

and Opuzen (0.49) with moderate impact, while Ušće demonstrated the least predictive

power (0.24). Focusing on input features showing interdependence, adjacent stations

demonstrated the strongest correlation, specifically Metković and Kula Norinska (0.97),

Kula Norinska and Opuzen (0.95). The lowest correlation was observed between Ušće and

Kula Norinska (0.68), as well as Ušće and Metković (0.65). This visualization allowed us

to determine that higher predictive power is associated with the nearest stations.

Mutual information showed a similar influence of features, with exactly the same order
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Figure 6.10: Simulated data: Matrix of Wilcoxon Signed-Rank p-values performed on
model errors

as in the correlation matrix, with slightly less impact of the downstream station Ušće, and

a slightly increased impact of stations above the river mouth. The decision to remove the

Ušće station data was rejected because although these methods show that its influence is

almost insignificant, considering domain knowledge, this claim cannot be valid. Therefore,

for training the model, data from all water level stations, was used.

The SHAP analysis, presented in Appendix B.2 in Figures B.6a to B.6d, and feature

occlusion, in Figures 6.11 and 6.12, were applied in the second stage of determining feature

importance.

The previous decision to use water levels from the Ušće station proved to be of ex-

ceptional importance for model predictions, because it was precisely these water levels,

together with water levels from Metković, that proved to be the two most important input

features that had the greatest impact on the estimates of all models as depicted in SHAP

analysis. The only deviation in these results was for the DT model, where Opuzen had a

slightly higher impact, almost negligible, than Kula Norinska.
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The feature occlusion, whose results for time series models are presented as RMSE

metric in Figure 6.11 for LSTM, and Figure 6.12 for LSTM-Attention, had only further

validated SHAP analysis results concerning feature significance. Hence, results indicated

that including water level from Ušće improved the RMSE by around 73% for both models.

By including the additional variable Opuzen, a performance decline of about 7.81% for

LSRT, and increase of 8.37% for LSTM-Attention, when compared to two feature RMSE

metric. The performance of LSTM declined by 9.87% with the addition of the Kula

Norinska station compared to three feature scenario, whereas LSTM-Attention exhibited

an increase in performance of approximately 11.37%. A comprehensive evaluation of the

performed feature occlusion can be found in Appendix B.2, namely in Tables B.5 and B.6.

Figure 6.11: Simulated data: Feature occlusion using LSTM [80]

Figure 6.12: Simulated data: Feature occlusion using LSTM-Attention [80]

6.1.3. A Comparative Analysis: Measured versus Simulated

data

Previously, a separate analysis of machine learning model results was presented, one

using solely field measurement (real-world conditions) and the other using solely simu-

lated data generated by the STREAM-1D numerical model (ideal, noiseless conditions).
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To generate a clearer overview of this dual dataset approach and compare them, power

spectral density plots, i.e., spectrograms, were created for every water level station (see

Figure 6.13). Although these visualizations follow a similar trend, for field measurements,

more variability was detected, as well as noise. Hence, with these two approaches, one

primarily focused on assessing each machine learning model’s robustness (field measure-

ments) and the other used for performance validation (STREAM-1D dataset), a balanced

evaluation is ensured.

Figure 6.13: Comparison between simulated and measured data of water level power
spectral density ranging from the tidal station to the most upstream part of the tidal
reach

Firstly, these approaches differed in data quality. STREAM-1D data represented

a more controlled environment, where, unlike the scenario with measured data, where
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the presence of noise or possible irregularities poses a problem, it is possible to gain a

deeper insight into the model’s performance and estimation accuracy. As the measured

data consisted of two datasets collected from two different agencies, some challenges were

encountered. Features collected from one agency, water levels, passed the quality check,

while discharge data from another agency encountered common problems. One issue

related to missing data periods, mostly several hours, on one device, which was resolved

with interpolation using the remaining two ADCPs. Another issue was the presence

of high-frequency noise characteristics for ADCP devices, which can be attributed to the

tidal currents and salt wedge dynamic influence in tidal environments, and outliers, which

was resolved by applying a moving average of three hours.

Different evaluation metrics, statistical tests, and visual comparisons have led to sev-

eral conclusions. LSTM-Attention and LSTM have shown great potential in accurately

estimating discharge with high and satisfying accuracy, ranking as the two most effective

models. LSTM-Attention performance was regarded as the superior choice.

The analysis revealed variations in the magnitude of metrics across results but also

consistency in relative performance. Specifically, LSTM-Attention demonstrated improve-

ment for the simulated dataset, achieving a 48.66% reduction in RMSE, a 47.85% reduc-

tion in MAE, a 1.95% increase in NSE, and a 0.81% increase in R compared to field

measurements. Similarly, LSTM also demonstrated improvements with a lower RMSE

of 45.85%, an MAE of 43.42% , a higher NSE 2.22%, and a R 0.81% for the simulated

dataset.

Predicted versus observed validated the findings of general evaluation metrics, re-

vealing small deviations in model performance between the two datasets. The LSTM-

Attention demonstrated a more suitable fit for the discharge values exceeding 1500 m3/h

in the simulated dataset than for field measurements, although both exhibited sufficient

accuracy.

The MAE assessment of discharge categories showed that LSTM-Attention outper-

formed all machine learning approaches in all four categories for the simulated data and

three out of four categories for field measurements. The only instance in which the LSTM

outperformed LSTM-Attention occurred within the extremely high discharge category, ap-

proximately 30 m3/h. However, the LSTM-Attention results remained below 100 m3/h,

rendering the difference acceptable. Unfortunately, all simple machine learning model
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results significantly declined for the extremely high discharge category.

Models were evaluated holistically using a Taylor diagram for both datasets, which

exhibited nearly identical reference standard deviations of 358.343 for measured data and

358.275 for simulated data. Time series models demonstrated superior performance in

minimizing total error, particularly highlighting the effectiveness of LSTM-Attention in

capturing data variability. The LSTM approach demonstrated tendencies for overpre-

diction when applied to simulated data, and simple machine learning models exhibited

greater deviation from time series models across all examined metrics.

The evaluation metrics were analyzed statistically by conducting a Wilcoxon signed-

rank test on model residuals. In both scenarios, LSTM-Attention demonstrated a statis-

tically significant improvement over other models, including LSTM, which gave the same

results when compared to simple machine learning models. Differences were observed

for the analysis of simple machine learning which indicated that certain models yield

comparable results to each other, suggesting that the differences among them were not

statistically significant.

Discharge time series comparing the results of the two most accurate models, LSTM-

Attention and LSTM, on the test set for simulated (see Figure 6.14) and measured (see

Figure 6.15) data showed a good overall agreement, with some minor discrepancies. Febru-

ary, the month with the highest discharge, had an excellent model agreement for the

simulated data, with slightly lower accuracy for the measured data. However, daily os-

cillations of the same month are adequately captured for the measured data. In August,

the month with the lowest discharge, in both scenarios, underestimations occured, with

a more pronounced effect found for the measured data. This insight is probably a result

of the influence of complex tidal-fluvial interactions. As stated in Matte et al. (2013),

the tidal oscillations can be amplified or dampened by the river discharge. The operation

of the upstream hydroelectric power plants complicates the situation even more. Hence,

it is recommended in the future to apply an NS TIDE model with a hybrid time series

model to enable robust capturing of high-frequency oscillations and also to investigate

the impact of the time window length, which may limit the model in capturing diurnal

oscillations.

Previous studies by Habib and Meselhe (2006) and Hidayat et al. (2014) have suc-

cessfully demonstrated that the selection of input variables more precisely water levels,
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Figure 6.14: Time series: STREAM-1D dataset

Figure 6.15: Time series: Field measurements

from multiple locations in the tidal reaches, enhances model performance and accuracy.

The selection of water levels from various locations was guided by the findings of prior
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research. This approach is particularly significant in instances where additional data on

the river’s physical characteristics and meteorological information are unavailable. In

addition, the length of the tidal reach, as observed in this study of a small salt-wedge

estuary not exceeding 25 km from the river mouth, does not necessitate additional data.

This finding aligns with the study conducted by Vu et al. 2023, which examined a river

hydrographic network of approximately 135,000 km.

The pre-training feature importance techniques, such as correlation matrix and mutual

information, were limited and insufficient in their ability to identify predictors with the

highest influence on discharge estimation. Therefore, applying only these methods and

relying on them for variable exclusion is not adequate for tidal reaches that embody

complex hydrological systems. The post-training techniques, such as SHAP and feature

occlusion results, have demonstrated alignment with domain knowledge regarding the

influence of tides and sea levels on discharge. Hence, the prior issue to identify Ušće

station as a important feature has been resolved. The combination of Metković and Ušće

gained noticeable improvements in estimation, than by relying solely on water level data of

Metković station. Additionally, the inclusion of other features also showed improvements,

but not as high. Hence, this led to the conclusion that all considered water level stations

are significant, in both measured and simulated data.

The study showed the suitability of the LSTM-Attention model for estimating dis-

charge in tidal rivers and estuaries, using only water level data from multiple stations,

from the river mouth up to the target discharge location. This approach offered several

advantages that are not present in other models, including generalization and extrapola-

tion ability beyond the training set. Additionally, it identifies critical features, effectively

manages datasets with imbalanced data distribution, and consistently improves perfor-

mance in both simulated and measured data. The extrapolation in modeling environmen-

tal processes is of critical importance, mainly because of the increasing climate change

that leads to more frequent extreme conditions absent in historical data. The decision

to include simple machine learning models was based on previous studies, establishing

them as baseline models. Some of the observed issues regarding these models involve ex-

trapolation, as noted in Guo et al. (2021a), and data imbalance, as highlighted in Thanh

et al. (2022). Besides their limitations, they have been extensively applied because of

their ability to handle nonlinear data, fast training, and also transparency. Although
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LSTM-Attention required more time for training, the computational cost was justified by

percentage improvement in estimation.

Although a direct comparison of the study results with previous studies is not pos-

sible due to differences in either data ranges (values and time), tidal river and estuary

characteristics, selected input features, and the used machine learning models, a more

general comparison was still feasible. According to Habib and Meselhe (2006), the simple

machine learning approaches showed poor performance during estimation of extreme dis-

charge values, as was observed in the conducted study. As applying ANN had a positive

impact on resolving such problems, the same can be said for advanced RNNs. A study by

Wolfs and Willems (2014) employed simulated data to avoid potential issues associated

with measured data, as observed in the conducted research. Hence, this was the rationale

behind employing simulated data to validate the results of the measured data. Likewise,

ANN generalization ability was closely tied to the size of the dataset, especially in the

context of temporal dependencies, which motivated the use of advanced RNNs. Hidayat

et al. (2014) study differed in terms of used input features, which does not contain water

levels from the station of interest, as our study, in discharge ranges which were signif-

icantly higher than ours, and also the data range as we use a six-year data, while the

only had less than a year of data. Hence, these differences can justify better results of

our methodology when comparing studies based on the NSE metric. Thanh et al. (2022)

study differed in both temporal resolution, as they had available daily observations for

an extended period above ten years, while our study had available hourly observations

for a six-year period. Likewise, they employed several preprocessing techniques to remove

trend and seasonality as well as the nonstationary nature of the data, and this is why their

results of the simple machine learning models were higher than ours or the measured sce-

nario. However, a major distinction between these two studies is also in the water level

stations, as they chose stations where tidal influence is not present, and in ours, it is.

Another issue regarding extreme discharge values is in differences in frequencies of such

events for their study, where we only have a single event above 1500 m3/h. However, the

results of the simulated dataset were quite close to the NSE of their yearly round value

of DT, RF, and SVR. The last study by Vu et al. (2023) showcased similar performance

to our LSTM regarding high and extremely high discharge, i.e., flood periods, as its per-

formance decreased in comparison to average conditions, even after including additional
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meteorological parameters. Nonetheless, we did not observe the same trend for LSTM-

Attention, as its performance remains relatively stable and its estimation satisfying even

during such infrequent events.

6.2. Signal Decomposition: Measured Data

This subsection represents a continuation of the research on discharge estimation,

where earlier findings identified two time series models, LSTM-Attention and LSTM,

which were found to be the most effective and accurate. By employing the VMD method,

the original time series of all water levels were converted into mode functions, then clas-

sified as different categories of tidal constituents, and given to the previously best models

in order to assess if the decomposition improves the discharge estimation process.

6.2.1. Analysis of VMD Mode Functions

The selection of VMD fundamental parameters for all water level stations, such as the

number of mode functions (K), and the quadratic penalty term (α), was the first step of

the experiment. The convergence tolerance was set to 1e-6, the bandwidth enforcement

(τ) to 0, and other VMD parameters were set to default. Tested mode functions ranged

between 2 and 15, whereas the quadratic penalty term ranged from 100 to 5000.

The first criterion that needed to be satisfied for the decomposition process, was

the requirement that the minimum K captures all categories of tidal constituents. The

classification was conducted based on the study by Lopes and Machado (2017), where

four categories were defined: long period (LP), diurnal (D), semidiurnal (S), and higher

harmonics (HH).

Two examples are presented in Appendix C.1, as Figures C.1 and C.2, where classifi-

cation of mode functions for the stations Ušće and Metković was performed with specified

periods obtained from dominant frequencies. It was observed that if K is too small,

more precisely, less than 5, it does not provide sufficient decomposition of the water level

signal; therefore, the diurnal component is completely missing, which is referred to as

under-decomposition. For K from 8 onward, over-decomposition occurs, where the signal

is decomposed into a larger number of high-frequency modes whose content has no useful
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physical meaning. Therefore, K between 5 and 8 was further investigated for each water

level station with different α in order to find the most optimal combination.

Additionally, two metrics were used, the orthogonality index (OI) and the reconstruc-

tion error ratio. The results of these metrics are presented in Appendix C.1, more precisely

from Figure C.3 to C.6. The reconstruction error for all stations was satisfactory for K=5

and K=6. The water level station Ušće had the highest reconstruction error, therefore α

was set so that the reconstruction error would give a lower value. Therefore, α above 1000

was taken into further consideration. Regarding the OI metric, similarly to the previous

case, only the Ušće station had the highest values among the other stations, and its best

value could be obtained for K=5 and K=6, and for α=2000 and above. Since the goal

is to find the minimum K, which satisfies all the necessary criteria, the selection process

continued with K=5. The final step was a visual inspection of all signals decomposed in

the frequency domain, where values below 5000 showed a wider frequency band, leading

to spectral leakage, however, α=5000 did not show such problems for any station. Based

on extensive research into possible optimal values, the final values of K=5 and α=5000

were determined. The conducted decomposition of signals is presented in Appendix C.2,

from Figure C.7 to C.10.

After decomposition, the mode functions were classified into the previously mentioned

categories. However, although decomposition had occurred, the residual remained. The

problem of residual presence was addressed by further decomposing the residual using the

VMD decomposition. This is because the residual maintained both diurnal and semidi-

urnal components. Despite this, as shown in Appendix C.2, Figure C.11, it did not lead

to complete separation of the signal, and it remained strong. For this reason, the residual

was summed with a high harmonic component, which is referred to as a residual mixed

signal. The final summed and decomposed tidal constituents are presented in Appendix

C.3, as an example, for the tidal station Ušće (see Figure C.12) and the upstream target

location Metković (see Figure C.13).

6.2.2. Comparison with Prior Research

Table 6.3 shows a comparison between the results obtained by training the model

on time series data and when using decomposed VMD mode functions. Although time



Estimation and prediction of discharges in tidal rivers and estuaries using machine
learning 104

series data showed better results for the LSTM-Attention model, the opposite insights are

shown when VMD is applied to the original input features.

Compared to the previous best LSTM-Attention model, LSTM with VMD, improved

estimation results by 13.71% for RMSE, 12.56% for MAE, 0.72% for NSE, and 0.20% for

R for the test set. In comparison to its variant trained on time series data, the LSTM

performance had improved by 21.99% for RMSE, 21.00% for MAE, 1.24% for NSE, and

0.30% for R, also for the test set.

Evaluation metrics of the LSTM-Attention model, when time series input variables

were used in relation to the mode functions generated by VMD, revealed a minimal but

present decline in performance. The model exhibited opposite behavior to that of LSTM

when VMD was applied as a data preprocessing strategy. The RMSE decreased by 1.91%,

the MAE by 0.83%, the NSE by 0.10%, and the R by 0.10%. Despite the existence of

minor deviations, this performance decline was statistically negligible, as there has been

no meaningful degradation regarding all considered evaluation metrics. Nevertheless,

this overall summary of model performance necessitates a more detailed analysis; so, a

predicted versus observed plot has been used for a more thorough investigation of model

performance.

Table 6.3: Time series vs. Mode functions: LSTM performance comparison with LSTM-
Attention on training and testing datasets

Training set Testing set

Model Input
RMSE
(m3/h)

MAE
(m3/h)

NSE R
RMSE
(m3/h)

MAE
(m3/h)

NSE R

H TS 58.916 41.490 0.934 0.969 63.495 47.821 0.969 0.988
LSTM

H MF + R 53.590 41.491 0.945 0.974 49.533 37.776 0.981 0.991
H TS 56.509 40.874 0.939 0.969 57.406 43.201 0.974 0.989

LSTM-Attention
H MF + R 52.433 36.586 0.948 0.976 58.524 43.564 0.973 0.990

H = water level, TS = time series, MF = mode functions, R = residual mixed signal

Figure 6.16 presents two models, LSTM and LSTM-Attention, trained on different

datasets: one using time series data, and the other using generated mode functions to-

gether with the remaining residual. Only the LSTM model with classified tidal con-

stituents showed the most tightly clustered dispersion of points around the best-fit line.

Other models demonstrated that the best-fit line does not align with the center of the

point distribution, except for LSTM-Attention, based on time series data, indicating a

trend of underprediction for discharge at the Metković location. According to the R2
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metric, the model that explained the least variance of the target output was LSTM when

trained on time series data, whereas the model with the highest variance was the same

model, but trained on decomposed mode functions and mixed residual signal. The use of

VMD here shows no significant enhancement in the accuracy of LSTM-Attention, which

maintained it comparable to that achieved with time series data, as supported by the

R2 value. The model’s performance declined significantly, even more than that of other

models, for discharge values exceeding 1500 m3/h.

Figure 6.16: Time series versus mode functions: Predicted versus observed

Previous visualization showed how the models perform over the entire range of dis-

charge values. Additionally, another assessment was provided that evaluated the models’

performance within various discharge categories in relation to the MAE metric. The

lowest discharge category, defined as below 300 m3/h, demonstrated little variation in

model performance, with the mean absolute error (MAE) that varied by less than 3
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m3/h. The best MAE was achieved by LSTM-Attention (27.86) with mode functions.

The second discharge category, representing medium discharge values between 300 and

1050 m3/h, displayed moderate variations in performance between the models, with the

lowest MAE achieved for LSTM utilizing mode functions (43.26). The largest difference

in model performance within this category was observed between the same model trained

on time series data, approximately 37.89%, while minor, for LSTM-Attention, ranging

from 26.06% to 28.96%. The third category of high discharge values, between 1050 and

1500 m3/h, resulted in almost equal MAE in LSTM with mode functions and LSTM-

Attention with time series data, with a difference of less than 2%. LSTM with time series

and LSTM-Attention with mode functions were similar in performance, with a difference

of 6.48%. In the final category of extremely high discharge values exceeding 15000 m3/h,

the model exhibiting the lowest MAE was LSTM utilizing time series data (58.809), fol-

lowed by LSTM with mode functions (71.269), LSTM-Attention with time series data

(91.741), and finally, LSTM-Attention with mode functions (151.344). Although LSTM-

Attention models provided the best estimate of values for the predominant category of

low discharges, LSTM with mode functions still proved to be the most consistent solution,

providing optimal performance through all discharge categories. LSTM-Attention with

time series was nearly comparable to that of LSTM with mode functions for extremely

high discharges, where the difference in accuracy increased by 22.31%.

Figure 6.17: Time series versus mode functions: MAE metric and frequency distribution
of discharge categories
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Figure 6.18 shows a comparison of the two best models, LSTM with VMD decom-

position and LSTM-Attention with time series, for the testing set, outlining the months

of the highest (February) and the lowest (August) flow. During the month of highest

discharge, LSTM aligns most accurately with the original trend; however, it fails to com-

pletely estimate the highest discharge peak, a limitation that was also discovered in the

prior estimation study. However, in addition to the above, LSTM also contains fewer

oscillations in the estimated discharge, compared to LSTM-Attention. Under low flow

conditions, LSTM-Attention follows the original signal less accurately than its VMD-

LSTM variant, while the opposite was observed when LSTM was trained on time series

data. This suggests that by decomposing the water level signal with VMD, even a simpler

model like LSTM was able to accurately retain the predominant tidal periodicities in the

model output, while minimizing the impact of short-term high-frequency variations. This

modeling approach aligns with the hydrodynamic processes typical for tidal reaches.

Figure 6.18: Time series versus mode functions: Two best performing models

In order to gain a deeper understanding of the model’s performance, a Butterworth fil-

ter was applied to separate the discharge signal into interdaily variations, which are driven

by river discharge, and intra-daily oscillations, which are driven by tides. Visualizations
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of the utilized filter are presented in Appendix C.4, in Figures C.14 and C.15.

Exploring the case of interdaily variations, LSTM-Attention effectively estimates these

values, demonstrating satisfying performance with the time series data. However, its

performance declines when VMD decomposition is utilized. The opposite is valid for

the LSTM model, where VMD decomposition has significantly improved its accuracy.

Although it achieves the highest accuracy, it does not significantly differ from the LSTM-

Attention based on time series.

In the context of intra-daily oscillations, the use of VMD decomposition has shown

consistent improvements in both LSTM and LSTM-Attention, with a more pronounced

effect on the LSTM model. LSTM-Attention struggles more with such rapid changes,

and, hence, making it more suitable for scenarios that involve interdaily variations, or

only the use of raw time series data.

The introduction of VMD decomposition showed both improvements, when it comes

to the LSTM model, and stagnation, when it comes to the performance of the LSTM-

Attention model. By comparing the models with different input combinations, we ob-

served that the LSTM with mode functions provides the most optimal results for the

entire range of discharge values at the Metković location. Such results can be attributed

to the reduced spectral complexity of the data. Classical time series data contain complex

and hidden patterns that are easy to detect and correctly modeled using the attention

mechanism. This was also seen by comparing previously modeled LSTM and LSTM-

Attention models that use time series as input. However, as VMD separates the signals of

each water level station, the signals become simpler and localized, and here, the previous

significant advantage of the LSTM-Attention model is reduced, and at the same time, the

additional complexity of the model in this case is a topic for discussion.

6.3. Forecasting: In-depth Analysis for HEC-RAS

Data

Two studies were conducted using a hybrid approach, which combined a CNN with

an LSTM model, for different input feature combinations. The first study was conducted

for the purpose of discharge forecasting, where the use of spectrograms was compared
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to the time series dataset approach. The study considered only water level data from

multiple stations and discharge as the main input features. The second study addressed

the problem of water level forecasting. It was even further extended by employing a

feature engineering approach, which included additional input features. The following

subsections present the study results and accompanying discussions.

6.3.1. Discharge Prediction

Discharge forecasting was performed on three different datasets: (1) time series, (2)

spectrograms, and lastly, (3) a combination of time series data and spectrograms. As

defined in the Methodology section, the models were optimized using a five-fold grid-

search cross-validation, whose ranges and optimal values are presented in Table D.1 of

Appendix D.1. The proposed hybrid model consisted of two CNNs, a max-pooling layer,

a single LSTM, and a fully connected layer. For this specific architecture, a modification

of the Adam optimization algorithm, known as AdamW, was used. This optimization

algorithm allows combining the benefits of the adaptive learning rate with decoupled

weight decay regularization. The selected batch size was 256. In the conducted study,

it was observed that the optimal values of output channels in CNN layers do not differ

significantly for different input datasets. This suggests that the CNN part of the model

has a similar capacity for local feature extraction, although it is implemented in a different

way depending on the given type of input dataset. At the same time, the learning rate and

LSTM hidden units were equal for all different input dataset combinations. The dropout

rate was higher for time series data than for spectrogram-based combinations, which can

be partly attributed to the higher variance of the original raw time series data compared

to the other spectrogram data.

The evaluation metrics give us a general insight into the performance of the model

depending on the lead time and the used dataset on which the hybrid model was trained.

The use of the time-frequency domain as a stand-alone approach or in combination with

time series has proven to be useful for a tidal river area characterized by a dynamic flow

regime. For up to one hour ahead predictions, the smallest difference in evaluation metrics

was observed for datasets containing spectrograms and a combination of spectrograms and

time series. The observed trend continues up to the longest forecasting horizon of 12 hours.
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The largest oscillations in performance were observed for the time series data, which, for

example, for one hour in advance, gave the largest differences compared to other input

datasets. Its RMSE was lower by about 30-36%, MAPE by about 38-62%, and NSE by

about 6-7%. Nonetheless, all models exhibited a significant decrease in performance as

the lead time increased. The difference in performance for a lead time of 12 hours is

between 4-6% for RMSE, 6-12% for MAPE, and 0.7-1% for NSE. This indicates that as

the horizon increases, the difference in the performance of the better models has decreased

by approximately 7 times for RMSE, 6 times for MAPE, and 2 times for NSE. Although

it is worth noting that the largest drop in model performance occurs for forecasts between

3 and 6 hours in advance. Beyond this timeframe, performance metrics were still quite

low, but the decrease in percentage was less pronounced.

Table 6.4: Hybrid model performance on the test dataset using various input combina-
tions

Input dataset Lead time (h) RMSE (m3/h) MAPE (%) NSE
1 27.670 8.652 0.988
3 41.567 11.112 0.972
6 59.229 14.013 0.943

time series

12 72.531 16.172 0.915
1 17.696 3.278 0.995
3 32.413 8.781 0.973
6 54.406 11.766 0.952

Spectrogram

12 68.532 14.187 0.924
1 19.309 5.293 0.994
3 35.355 8.743 0.980
6 56.603 13.223 0.948

Spectrogram and time series

12 69.523 15.051 0.922

Figures 6.19 and 6.20 present a comparison of predicted and observed data across

different lead times, ranging from one hour up to 12 hours. The best possible alignment

can be observed in the one-hour scenario, where the data points are closely clustered. This

indicates that the prediction achieved a satisfactory accuracy, with R2 values ranging from

0.988 to 0.995. The last visualizations for the 12-hour ahead scenario revealed notable

deviations, particularly regarding high flow values, with the minimum R2 of 0.915.

Figure 6.21 presents an additional visualization with an MAE metric, which was cal-

culated according to the classification of discharge values. Three groups of discharge

values were defined: low flows, which contain values below 300 m3/s; medium or average

discharge, whose values are in the range of 300 to 1050 m3/s; and extreme discharges,

whose values exceed 1050 m3/s. The most represented categories are low and medium,
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Figure 6.19: Predicted versus observed: 1-hour ahead

Figure 6.20: Predicted versus observed: 12-hours ahead

with percentages of around 40-50%, while less than 5% of the values represented high

discharge. Low discharge values were captured with the highest accuracy when spectro-

grams and the combination of spectrograms and time series were used. However, with the

extension of the prediction horizon, the performance of the time series model approaches

theirs. The same is also true for average discharge values, while, for example, the only

significant difference was observed for high discharge, where the datasets containing the

spectrogram performed poorer than the time series.

6.3.2. Water Level Prediction

The second study focused on the application of the proposed hybrid model, but this

time aimed at forecasting the water level of the station situated in the uppermost section

of the tidal river, Metković. The architecture of the hybrid model remained consistent

with the previous study, and had also been optimized in an equal way (ranges and optimal

values are presented in in Table D.2 of Appendix D.1. This study stands out from the



Estimation and prediction of discharges in tidal rivers and estuaries using machine
learning 112

Figure 6.21: Evaluation of utilized datasets for the hybrid approach using MAE for
various discharge categories

previous one by broadening the data set through a feature engineering approach. Along-

side water level and discharge, a range of time-based features (hour, part of the day, day,

week, month, season, year) and variables, including daily values, daily mean values, and

a 24-hour rolling mean, had been used as input data. Separate tests were conducted on

four distinct approaches. Two of these approaches utilized a single type of input data,

specifically time series and spectrograms. The other two approaches integrated the pre-

vious two methods with separate feature engineering techniques. An examination of the

significance of individual variables was conducted utilizing mutual information (MI), with

the findings illustrated in Figure 6.22. The lowest impact was observed for almost all

time-based features, except for month and summer, which is theoretically justified due to

the monthly fluctuations in water levels influenced by weather conditions; for instance,

during the summer months, the water levels are at their lowest.

Table 6.5 presents evaluation metrics of the test dataset for different combinations of

composite features. As the lead time increases from 1- to 24 hours ahead, a decrease

in performance is observed, similar to the previous study. The largest differences in

performance are observed for the 1-hour ahead scenario, where the order of the best-

performing combination was time series, spectrogram, time series with feature engineering,

and lastly, spectrogram with feature engineering, although the first two combinations

have the slightest differences in performance. The percentage differences between the two

best approaches are about 27% in terms of RMSE, around 15% in terms of MAE, and

0.3% in terms of NSE. Therefore, for the shortest lead time, feature engineering does

not provide additional information to improve prediction performance; thus, stand-alone
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Figure 6.22: Extended dataset with feature engineering analyzed using mutual infor-
mation (* denotes hourly scale, ** daily scale, *** daily mean, and **** rolling mean of
24-hours)

combinations are sufficient for accurately estimating rapid changes. However, this changes

for the remaining lead times, as a slight difference in performance order was observed.

Time series and time series with a spectrogram have switched places, meaning the order

regarding the performance is as follows: time series with feature engineering spectrogram,

time series, and lastly, spectrogram with feature engineering. Throughout all lead times,

spectrogram-based features have shown consistency in performance. Similarly, the stand-

alone combinations exhibit comparable performance, showing an average difference in

longer lead times, with RMSE under 2%, MAE below 5%, and NSE less than 0.2%.

Feature engineering, when combined with time series, showed great potential for longer

lead times. However, when utilized alongside spectrogram data, it resulted in the poorest

results as the spectrogram by itself is sufficiently representative (in both the time and

frequency domain).

Previously discussed results are further supported by the presented visualizations in

Figures 6.23 and 6.24. While in the first hour of forecasting, the clustering of points

around the best-fit line is most satisfying for the time series and spectrogram. Within the

very first hour, a combination of spectrogram analysis and feature engineering demon-
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Table 6.5: Hybrid model performance on the test dataset using various input combina-
tions

Composite features Lead time (h) RMSE (m3/h) MAE (m3/h) NSE
1 0.026 0.021 0.994
6 0.081 0.052 0.946
12 0.096 0.069 0.925

time series

24 0.100 0.070 0.919
1 0.055 0.040 0.975
6 0.073 0.052 0.957
12 0.080 0.057 0.947

time series with Feature Engineering

24 0.093 0.064 0.928
1 0.033 0.024 0.991
6 0.078 0.056 0.950
12 0.095 0.067 0.926

Spectrograms

24 0.100 0.069 0.919
1 0.081 0.060 0.946
6 0.121 0.092 0.880
12 0.112 0.081 0.896

Spectrograms with Feature Engineering

24 0.115 0.080 0.892

strated inadequate performance, exhibiting a significant tendency to underpredict water

level values. Consequently, this combination systematically underestimates water level

values above 1.5 m, a pattern that persists and becomes even more pronounced across

prolonged prediction horizons. Longer prediction horizons are considered to be more im-

portant, primarily for the implementation of early warning systems, facilitating prompt

risk mitigation and strategic planning. Consequently, the optimal hybrid model, devel-

oped using a time series dataset augmented with feature engineering, is considered the

most effective solution for this particular issue.
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Figure 6.23: Simulated HEC-RAS data: Predicted versus observed for 1-hour ahead
forecasting

Figure 6.24: Simulated HEC-RAS data: Predicted versus observed for 24-hour ahead
forecasting
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7. Chapter

CONCLUSION

7.1. Summary of Contributions

In this thesis, two research aims were successfully achieved. The first objective was to

develop a robust hybrid machine learning approach for estimating and forecasting river

discharges and water levels across diverse flow conditions using time series data.

Estimation of discharge had been successfully conducted using the proposed hybrid

LSTM-Attention machine learning model on both measured and simulated data for the

area of the microtidal river, Neretva. This was the first comprehensive analysis conducted

for a tidal reach, aiming to provide a robust machine learning approach effective for both

real-world and ideal scenarios.

The results of the proposed approach were compared to those of the baseline time

series approach, LSTM, and various non-temporal machine learning approaches, DT, RF,

SVR, LGBM, and XGB. Evaluation metrics and visual inspection have shown the highest

performance improvement and estimation accuracy for the LSTM-Attention model for

both considered datasets. The model resulted in satisfying accuracy for all flow conditions

by effectively identifying critical features.

Likewise, the study demonstrated high accuracy by using only water level data from

multiple locations in the tidal reach, both upstream and downstream, as model inputs.

Hence, the LSTM-Attention estimation ability was not impaired by the lack of meteoro-

logical data. However, such a scenario can only be considered and applied if the length

of the tidal reach is limited, as in this case.
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Forecasting using a machine learning-based approach, CNN-LSTM, revealed that in-

tegrating the spectrogram into the discharge prediction resulted in improvements in ac-

curacy. Additionally, by integrating feature engineering in water level prediction, the

performance had improved for time series data, particularly for the longest horizon.

This work on estimation and forecasting contributes by developing two machine learning-

based approaches. Improving discharge estimation accuracy and outperforming other ma-

chine learning approaches was achieved by integrating the attention mechanism within a

hybrid model. Accurate forecasting of water level and discharge at the upstream discharge

station, Metković, was achieved by implementing a hybrid CNN-LSTM model.

The second research aim, focusing on gaining insights into physical processes of tidal

rivers and estuaries and thereby enhance estimation accuracy, was also achieved. The

VMD decomposition technique was utilized for signal processing, and the resulting mode

functions were classified into different categories of tidal components. These features

were then used as inputs for the best-performing models of the prior aim, namely the

LSTM-Attention and LSTM models.

The results showed a significant increase in performance for the LSTM model that

incorporated mode functions and the residual, in contrast to its variant based solely on

time series data. Nonetheless, a minor deviation from previous research on discharge esti-

mation was observed regarding the LSTM-Attention model, whose performance remained

almost unchanged, with an insignificant decline in performance.

As a result, another contribution was achieved by decomposing water level signals

into distinct frequency bands, leading to LSTMs improved estimation accuracy for river

discharge.

7.2. Future Work

With the increase in number of studies in the field of hydrology and increasing use of

machine learning approaches, there is a significant variety of approaches which have not

been tested so far for areas of tidal rivers and estuaries, which, unlike inland rivers, pose

greater challenges for modeling due to the complex nature of tidal flow dynamics. Based

on the reviewed literature and the approaches tested in this thesis, several suggestions for

potential future research directions are outlined below.
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Firstly, the application of the Physics Informed Neural Network (PINN) machine learn-

ing technique could address potential issues of data scarcity. The PINN methodology

approximates PDE solutions by transforming the task of directly solving the governing

equations into an optimization problem using a loss function. This ensures that estima-

tions or predictions do not rely entirely on observational data, but are also physically

consistent.

Another suggestion is the use of alternative time-frequency distributions, including the

quadratic class of time-frequency distributions, to better address the residual component

that contains diurnal and semidiurnal patterns.

As a fixed sliding window had been utilized for estimation and prediction problems,

employing an adaptive window length on time series or for decomposed tidal components

of water level signals may ensure that relevant temporal information would be adequately

captured, covering both short- and long-term patterns.

Likewise, as the same LSTM-Attention architecture was employed for the time series

and VMD decomposed tidal components, considering different attention architectures

could potentially result in a more effective solution for modeling decomposed tidal com-

ponent signals, while also integrating additional hydrological parameters such as salinity

and temperature.
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Santamaŕıa, J., Fadhel, M. A., Al-Amidie, M., and Farhan, L. (2021). Review of

deep learning: concepts, CNN architectures, challenges, applications, future directions.

Journal of Big Data, 8:1–74.

[7] Antonini, A. S., Tanzola, J., Asiain, L., Ferracutti, G. R., Castro, S. M., Bjerg, E. A.,

and Ganuza, M. L. (2024). Machine Learning model interpretability using SHAP values:



Estimation and prediction of discharges in tidal rivers and estuaries using machine
learning 122

Application to Igneous Rock Classification task. Applied Computing and Geosciences,

23:100178.
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A Survey of Reviewed Publications Focusing on

Tidal Rivers and Estuariues

A.1 Forecasting Hydrological Parameters

Table A.1: Listed reviewed publications from the period between 2000 and 2023 focused
on water level forecasting. This summary is based on a review study by Mihel et al.
(2024a), as well as additional studies published from 2024 to the present day, presenting
details regarding the selected input and output features, the employed machine learning
approach, applied evaluation metrics, and the temporal scale of input and output features.

Author/s Method Input Input Output Output Evaluation

Time Time Metric

Scale Scale

Supharatid MLFF Scenario 1: hourly, tidal level hourly, EI, RMSE,

(2003a) water level weekly, MAD

monthly

MLFF Scenario 2: hourly tidal level hourly EI, RMSE,

tidal level MAD

Chang and Chen RBFNN lunar month, hourly water level hourly R, RMSE

(2003) lunar day,

time,

water level

Tsai et al. CART-ANN precipitation, hourly water level hourly MSE, MAE

(2012) (MLP, RBF), water level,

benchmark historic releases

models: CART,

BPNN, RBFNN

Wei WSVM, water level, hourly water level hourly RMSE

(2012) SVM average precipitation, SVM

reservoir releases

Yang et al. CDW-NF, water level daily water level daily RMSE, MAE,

(2013) CDW-ANN, (average value R2

CDW-LR of two time

high-tide level)

Wei LWR, KNN, water level, hourly water stage hourly CC, MAE,

(2015) LR, SVR, average RMSE, AIC,

ANN precipitation, computational

reservoir releases, efficiency

tidal effects

Pasupa and Jungjareantrat LR, KR, SVR, water level hourly water level hourly RMSE

(2016) KNN, RF

Ahmed et al. SVR (RBF, daily, morning, hourly tide level daily MAE

(2017) ANOVA) + and night tide

(MA, EMA) data

Sung et al. MLP water level, hourly water level hourly RMSE, R2,

(2017) rainfall NSE

Jung et al. LSTM dam discharges, hourly water level hourly RMSE,

(2018) water level, NSE

predicted tide

level

Yoo et al. LSTM precipitation, hourly water surface hourly RMSE, PE,

(2020) discharge, elevation NSE

tide level

Chen et al. NS TIDE + AR discharge, hourly water level hourly RMSE

Continued on next page
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Table A.1 – - Continued from previous page

Author/s Method Input Input Time Output Output Time Evaluation

Scale Scale Metric

(2020) tides

Liang et al. NARX+EWT, tidal hourly tidal hourly RMSE, R,

(2021) NARX+EEMD, level level MAPE,

NARX+EMD, MAE

HA

Guo et al. BO + SVR/RFR, rainfall, hourly water level hourly NSE, R2, MAE,

(2021a) /MLPR water level, RMSE, PWE, ETP

/LGBMR tide

Chen et al. LSTM, BRR, meteorological data, hourly water level hourly MAE, RMSE,

(2021) GBDT, LR, water level, ACC

SVR additional reference

factors

Zhang et al. NS TIDE + discharge, hourly water level hourly LOSS, RMSE,

(2023c) (LSTM+FNN water level, R2

+Q, LSTM+FNN,

LSTM, AR)

Chen et al. SMLR + EEMD water level hourly water level hourly RMSE, R

(2023c)

Zhang et al. Cheb-GRU, tide level, hourly tidal level hourly RMSE, MAE

(2023b) Conv-LSTM, meteorological data,

LSTM, GRU time

Dato et al. MLFF water level, hourly water level hourly RMSE, TP, FP

2024 meteorological data,

predicted astronomical

tide

Vidyalashmi et al. NARX water level, hourly water level hourly MSE, R

2024 discharge,

salinity

Gan et al. LGBM1, water level hourly water level hourly RMSE, MAE

2024 LGBM2

Shi et al. Cheb-GRU, tide level, hourly tide level hourly RMSE, MAE,

2024 GRU, LSTM, meteorological data R2

ConvLSTM

Cremer et al. LSTM + MIKE water level, hourly water level hourly URMSE

2025 FM + DA, discharge,

DA + MIKE FM, wind speed,

MIKE FM wind direction

Gao et al. LSTM, GRU, water level hourly water level hourly RMSE, NSE,

2025 LSTM-CNN, MAE, MAPE

(LSTM, GRU,

LSTM-CNN)

+EMD,

EMD-ITG,

NS TIDE

Table A.2: Listed reviewed publications from the period between 2000 and 2023 focused
on discharge forecasting. This summary is based on a review study by Mihel et al.
(2024a), as well as additional studies published from 2024 to the present day, presenting
details regarding the selected input and output features, the employed machine learning
approach, applied evaluation metrics, and the temporal scale of input and output features.

Author/s Method Input Input Output Output Evaluation

Time Time Metric

Scale Scale

Hidayat et al. MLP water level, at-site historical discharge data, hourly discharge hourly RMSE, R2, NSE

Continued on next page
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Table A.2 – - Continued from previous page

Author/s Method Input Input Time Output Output Time Evaluation

Scale Scale Metric

(2014) predicted tide level

Vu et al. stacked piezometer, sea level, air temperature, daily discharge daily R, R2, RMSE

(2023) LSTM atmospheric pressure, precipitation,

soil moisture, relative humidity,

evaporation rate

Chen et al. HA, PSO-BP, flow velocity, half-hourly discharge half-hourly RMSE, RSD,

2024 LSTM, water level, PCC

LSTM+Seq2Seq discharge
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A.2 Reconstructing Hydrological Parameters

Table A.3: Listed reviewed publications from the period between 2000 and 2023 focused
on water level reconstruction. This summary is based on a review study by Mihel et al.
(2024a), as well as additional studies published from 2024 to the present day, presenting
details regarding the selected input and output features, the employed machine learning
approach, applied evaluation metrics, and the temporal scale of input and output features.

Author/s Method Input Input Output Output Evaluation

Time Time Metric

Scale Scale

Adib MLP discharge, daily water level daily R2

(2008) tide elevation,

distance from

the river

mouth

Wei and Hsu FFBP, water level, hourly water level hourly RMSE

(2008) CCCMMOC reservoir discharge,

total lateral

discharge,

control-point

levels, tributary

discharge

Chinh et al. FFNN water level, minutes water level minutes RMSE

(2009) rainfall

Chen et al. BPNN, water level, hourly water level hourly RMSE,

2012a vertical 2D, freshwater R, E

3D hydrodynamic discharge

models

Pierini et al. BPNN, ANN: tidal hourly tide level hourly RMSE, R,

(2013) data, Numerical: SKI

water level,

current, wind

Liu and Chung BPNN, freshwater discharge hourly water level hourly MAE,

2014 GANN downstream RMSE,

water level PE

Bhar and Bakshi MLP tide level half-hourly water level single day RMSE, E,

2020 R, MAPE

Guillou and Chapalain MLR, MPR, French tidal hourly water level hourly MAE, R2,

2021 MLP coefficient, maxima RMSE

atmospheric pressure,

wind speed

river discharge

Gan et al. LGBM, river discharge, hourly water level hourly MAE, RMSE,

2021 NS TIDE tide CC, SS

Sampurno et al. SLIM 2D + discharge, tide, hourly water level hourly RMSE, NSE

2022 MLR/SVM/RF weather parameters

Thanh Hoan et al. Bagging + water level daily historical water daily R2, RMSE,

2022 RF/SMO/M5P, level MAE

REPT

Fei et al. H2C-XL, HLHC, discharge, hourly, daily water level hourly NSE, KGE

2023 HHLC, H2C water level,

tidal level,

precipitation,

evapotranspiration

Lauer and Kösters ANN + BO, MLR, tidal low/high hourly minimal and maximal hourly RMSE

2024 MNLR water levels, tidal water levels

tidal range,

tidal mean water

Continued on next page
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Table A.3 – - Continued from previous page

Author/s Method Input Input Time Output Output Time Evaluation

Scale Scale Metric

level, flood and

ebb duration, discharge,

meteorological data

Dato et al. MLFF water level, hourly water level hourly RMSE, TP, FP

2024 meteorological data,

predicted astronomical

tide

Table A.4: Listed reviewed publications from the period between 2000 and 2023 focused
on discharge reconstruction. This summary is based on a review study by Mihel et al.
(2024a), as well as additional studies published from 2024 to the present day, presenting
details regarding the selected input and output features, the employed machine learning
approach, applied evaluation metrics, and the temporal scale of input and output features.

Author/s Method Input Input Time Output Output Time Evaluation

Scale Scale Metric

Gu et al. RNMM + BPNN boundary condition, hourly discharge, hourly RMSE

(2014) + GGA opening degree stage

and time,

average stage of

inner river,

stage of outer

river

Hidayat et al. WMLP water levels, hourly discharge hourly RMSE, R2,

(2014) predicted tide levels, NSE

amplitude of tidal

components

Garel and D’alimonte MLP velocity daily freshwater discharge daily -

((2017)

Thanh et al. GPR, LSSVM, SVR, water stages daily discharge daily RMSE, R,

(2022) MARS, DT, RF NSE, MAE

Li et al. DCL, SVM, GRNN, river characteristics, not specified discharge not specified RMSE, R2

2025 RBF, Elman, BP, cross-section shape,

PCA-MLR, MLR-20, discharge, cell

MLR, LR velocity data
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A.3 Establishing Stage-Discharge Relationship

Table A.5: Listed reviewed publications from the period between 2000 and 2023 focused
on modeling the stage-discharge relationship. This summary is based on a review study by
Mihel et al. (2024a), and a search for additional studies published from 2024 to the present
day, presenting details regarding the selected input and output features, the employed
machine learning approach, and applied evaluation metrics.

Author/s Method Input Output Evaluation

Metric

Supharatid (2003a) MLFF tidal range, discharge water level EI, RMSE, MAD

Habib and Meselhe (2006) MLFF, LOESS water level discharge RMSE, E

Wolfs and Willems (2014) SRC, SDP-RC, MLP, M5 local water level, discharge MAPE, RMSPE, R2, R̄2

local water level gradient

Hidayat et al. (2014) WMLP water levels, predicted discharge RMSE, R2, NSE

tide levels, amplitude of

tidal components

Thanh et al. (2022) GPR, LSSVM, SVR, MARS, DT, RF water stages discharge RMSE, R, NSE, MAE
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B Estimation of Hydrological Parameters

B.1 Optimization of Hyperparameters for Discharge

Estimation Task

Table B.1: Optimal hyperparameters for different machine learning models using mea-
sured data [80]

Model Hyperparameter Tested search range Optimal

value

DT

max depth [10, 200]∗ 20

min samples leaf [10, 100]∗ 40

min samples split [10, 100]∗ 10

RF

max depth [10, 50]∗ 10

min samples leaf [10, 100]∗ 10

min samples split [10, 100]∗ 10

n estimators [10, 200]∗ 90

SVR - rbf

C 0.001 x 10n for n ∈ {0, 1, ..., 6} 1000

γa [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 1] 1

εb [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] 0.01

SVR - sigmoid

C 0.001 x 10n for n ∈ {0, 1, ..., 6} 1000

γa [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 1] 0.0005

εb [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] 0.05

LGBM

learning rate [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05] 0.05

max depth [10, 50]∗ 10

n estimators [10, 200]∗ 200

num leaves [10, 100]∗ 10

XGB

learning rate [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05] 0.05

max depth [10, 50]∗ 10

n estimators [10, 200]∗ 120

LSTM

batch size 64, 128, 256, 512 512

learning rate [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05] 0.01

hidden units [8, 128]∗∗ 56

LSTM-Attention

batch size 64, 128, 256, 512 64

learning rate [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05] 0.001

hidden units [8, 128]∗∗ 96

agamma; bepsilon
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Table B.1: Optimal hyperparameters for different machine learning models using mea-
sured data [80]

Model Hyperparameter Tested search range Optimal

value

∗step = 10; ∗∗step = 8

Table B.2: Optimal hyperparameters for different machine learning models using
STREAM-1D simulated dataset [80]

Model Hyperparameter Tested search range Optimal

value

DT

max depth [10, 200]∗ 10

min samples leaf [10, 100]∗ 10

min samples split [10, 100]∗ 10

RF

max depth [10, 50]∗ 20

min samples leaf [10, 100]∗ 10

min samples split [10, 100]∗ 20

n estimators [10, 200]∗ 130

SVR - rbf

C 0.001 x 10n for n ∈ {0, 1, ..., 6} 1000

γa [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 1] 1

εb [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] 0.01

SVR - sigmoid

C 0.001 x 10n for n ∈ {0, 1, ..., 6} 1000

γa [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1, 1] 0.005

εb [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05, 0.1] 0.05

LGBM

learning rate [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05] 0.05

max depth [10, 50]∗ 50

n estimators [10, 200]∗ 200

num leaves [10, 100]∗ 100

XGB

learning rate [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05] 0.05

max depth [10, 50]∗ 10

n estimators [10, 200]∗ 140

LSTM

batch size 64, 128, 256, 512 64

learning rate [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05] 0.0005

hidden units [8, 128]∗∗ 48

LSTM-Attention

batch size 64, 128, 256, 512 64

learning rate [0.0001, 0.0005, 0.001, 0.005, 0.01, 0.05] 0.0001

hidden units [8, 128]∗∗ 112

agamma; bepsilon
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Table B.2: Optimal hyperparameters for different machine learning models using
STREAM-1D simulated dataset [80]

Model Hyperparameter Tested search range Optimal

value

∗step = 10; ∗∗step = 8

B.2 Feature Significance

Figure B.1: Measured data: Correlation matrix
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Figure B.2: Measured data: Mutual information

Table B.3: Feature occlusion performed on measured data for the LSTM model for sev-
eral scenarios. Single input scenario included only the water level from the target location,
Metković. Second, the two-input scenario included the previous input combined with the
tidal station data. The third scenario additionally included the Opuzen midstream sta-
tion, and the fourth considered all available water level stations. [80]

Metrics Single Inputa Two Inputsb Three Inputsc Four Inputsd

RMSE 117.506 73.497 64.744 63.495
MAE 84.356 54.454 48.684 47.495
NSE 0.892 0.958 0.967 0.969
R 0.963 0.982 0.987 0.988
a Input feature: Metković
b Input features: Ušće and Metković
c Input features: Ušće, Opuzen, and Metković
d Input features: Ušće, Opuzen, Norin, and Metković

Table B.4: Feature occlusion performed on measured data for the LSTM-Attention
model for several scenarios. Single input scenario included only the water level from
the target location, Metković. Second, the two-input scenario included the previous input
combined with the tidal station data. The third scenario additionally included the Opuzen
midstream station, and the fourth considered all available water level stations. [80]

Metrics Single Inputa Two Inputsb Three Inputsc Four Inputsd

RMSE 129.384 68.744 64.709 57.406
MAE 91.337 52.539 48.626 43.201
NSE 0.870 0.963 0.967 0.974
R 0.959 0.985 0.986 0.989
a Input feature: Metković
b Input features: Ušće and Metković
c Input features: Ušće, Opuzen, and Metković
d Input features: Ušće, Opuzen, Norin, and Metković
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(a) DT

(b) RF

(c) LGBM

(d) XGB

Figure B.3: Measured data: SHAP analysis [80]
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Figure B.4: Simulated data: Correlation matrix

Figure B.5: Simulated data: Mutual information
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(a) DT

(b) RF

(c) LGBM

(d) XGB

Figure B.6: Simulated data: SHAP analysis [80]
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Table B.5: Feature occlusion performed on simulated data for the LSTM model for sev-
eral scenarios. Single input scenario included only the water level from the target location,
Metković. Second, the two-input scenario included the previous input combined with the
tidal station data. The third scenario additionally included the Opuzen midstream sta-
tion, and the fourth considered all available water level stations. [80]

Metrics Single Inputa Two Inputsb Three Inputsc Four Inputsd

RMSE 118.727 31.267 33.708 34.384
MAE 83.864 24.125 25.894 27.054
NSE 0.890 0.992 0.991 0.991
R 0.962 0.996 0.996 0.996
a Input feature: Metković
b Input features: Ušće and Metković
c Input features: Ušće, Opuzen, and Metković
d Input features: Ušće, Opuzen, Norin, and Metković

Table B.6: Feature occlusion performed on simulated data for the LSTM-Attention
model for several scenarios. Single input scenario included only the water level from
the target location, Metković. Second, the two-input scenario included the previous input
combined with the tidal station data. The third scenario additionally included the Opuzen
midstream station, and the fourth considered all available water level stations. [80]

Metrics Single Inputa Two Inputsb Three Inputsc Four Inputsd

RMSE 126.045 33.254 30.334 29.473
MAE 89.793 24.893 23.157 22.530
NSE 0.876 0.991 0.993 0.993
R 0.948 0.996 0.997 0.997
a Input feature: Metković
b Input features: Ušće and Metković
c Input features: Ušće, Opuzen, and Metković
d Input features: Ušće, Opuzen, Norin, and Metković
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C Signal Processing Using VMD

C.1 Optimal VMD Parameters

Figure C.1: Ušće station: Example of tidal component classification of mode functions
across tested range of K
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Figure C.2: Metković station: Example of tidal component classification of mode func-
tions across tested range of K

Figure C.3: Ušće station: Reconstruction error and OI for different K and α combina-
tions
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Figure C.4: Opuzen station: Reconstruction error and OI for different K and α combi-
nations

Figure C.5: Norin station: Reconstruction error and OI for different K and α combina-
tions
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Figure C.6: Metković station: Reconstruction error and OI for different K and α com-
binations
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C.2 Decomposed Original Water Level Signals

Figure C.7: Ušće station: VMD mode functions in time and frequency domain
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Figure C.8: Opuzen station: VMD mode functions in time and frequency domain
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Figure C.9: Norin station: VMD mode functions in time and frequency domain



Estimation and prediction of discharges in tidal rivers and estuaries using machine
learning 166

Figure C.10: Metković station: VMD mode functions in time and frequency domain
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Figure C.11: Ušće station: Second-level VMD decomposition of the residual
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C.3 Tidal Constituents

Figure C.12: Ušće station: Tidal constituents

Figure C.13: Metković station: Tidal constituents
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C.4 Intra-daily Oscillations Versus Interdaily Variations

(a) Interdaily variations

(b) Intra-daily oscillations

Figure C.14: Butterworth filter (order=4) applied on time series to examine models’
performance on interdaily variations and intra-daily oscillations
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(a) Interdaily variations

(b) Intra-daily oscillations

Figure C.15: Butterworth filter (order=4) applied on VMD classified mode functions
and residual to examine models’ performance on interdaily variations and intra-daily
oscillations
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D Forecasting of Hydrological Parameters

D.1 Optimization of Hyperparameters for Simulated Data

Forecasting Task

Table D.1: Discharge Forecasting: Optimal hyperparameters obtained through k-fold
grid search cross validation

Input dataset Hyperparameter Hyperparameter range Optimal value
Learning rate [0.0001, 0.001, 0.01] 0.0001
CNN - First layer [64, 128, 256] 64
CNN - Second layer [64, 128, 256] 128
LSTM hidden units [64, 128, 256] 64

Time-series

Dropout [0.1, 0.2, 0.3] 0.3
Learning rate [0.0001, 0.001, 0.01] 0.0001
CNN - First layer [64, 128, 256] 128
CNN - Second layer [64, 128, 256] 64
LSTM hidden units [64, 128, 256] 64

Spectrogram

Dropout [0.1, 0.2, 0.3] 0.1
Learning rate [0.0001, 0.001, 0.01] 0.0001
CNN - First layer [64, 128, 256] 64
CNN - Second layer [64, 128, 256] 64
LSTM hidden units [64, 128, 256] 64

Spectrogram and Time-series

Dropout [0.1, 0.2, 0.3] 0.1

Table D.2: Water Level Forecasting: Optimal hyperparameters obtained through k-fold
grid search cross validation

Composite features Hyperparameter Hyperparameter range Optimal value
Learning rate [0.0001, 0.001, 0.01] 0.0001
CNN - First layer [64, 128, 256] 64
CNN - Second layer [64, 128, 256] 64
LSTM hidden units [64, 128, 256] 128

Time-series

Dropout [0.1, 0.2, 0.3] 0.3
Learning rate [0.0001, 0.001, 0.01] 0.001
CNN - First layer [64, 128, 256] 64
CNN - Second layer [64, 128, 256] 64
LSTM hidden units [64, 128, 256] 64

Time-series with Feature Engineering

Dropout [0.1, 0.2, 0.3] 0.2
Learning rate [0.0001, 0.001, 0.01] 0.0001
CNN - First layer [64, 128, 256] 64
CNN - Second layer [64, 128, 256] 128
LSTM hidden units [64, 128, 256] 128

Spectrograms

Dropout [0.1, 0.2, 0.3] 0.2
Learning rate [0.0001, 0.001, 0.01] 0.0001
CNN - First layer [64, 128, 256] 64
CNN - Second layer [64, 128, 256] 128
LSTM hidden units [64, 128, 256] 64

Spectrograms with Feature Engineering

Dropout [0.1, 0.2, 0.3] 0.2
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