
UNIVERSITY OF RIJEKA
FACULTY OF ENGINEERING

Ante Sikirica

ADAPTIVE MESH REFINEMENT FOR
COMPUTATIONALLY EFFICIENT

LARGE EDDY SIMULATIONS

DOCTORAL THESIS

Rijeka, 2025.

HTTPS://UNIRI.HR/
HTTPS://RITEH.UNIRI.HR/

UNIVERSITY OF RIJEKA
FACULTY OF ENGINEERING

Ante Sikirica

ADAPTIVE MESH REFINEMENT FOR
COMPUTATIONALLY EFFICIENT

LARGE EDDY SIMULATIONS

DOCTORAL THESIS

Supervisor: Prof. Lado Kranjčević, PhD

Rijeka, 2025.

HTTPS://UNIRI.HR/
HTTPS://RITEH.UNIRI.HR/

SVEUČILIŠTE U RIJECI
TEHNIČKI FAKULTET

Ante Sikirica

ADAPTIVNO UPRAVLJANJE
NUMERIČKIM MREŽAMA ZA

RAČUNALNO UČINKOVITE
SIMULACIJE VELIKIH VRTLOGA

DOKTORSKI RAD

Rijeka, 2025.

HTTPS://UNIRI.HR/
HTTPS://RITEH.UNIRI.HR/

Doctoral thesis supervisor: Prof. Lado Kranjčević, PhD

The doctoral thesis was defended on at the University of Rijeka,

Faculty of Engineering, Croatia, in front of the following Evaluation Committee:

1. Prof. Jerko Škifić, PhD, University of Rijeka, Faculty of Engineering

2. Prof. Siniša Družeta, PhD, University of Rijeka, Faculty of Engineering

3. Assoc. Prof. Severino Krizmanić, PhD, University of Zagreb, Faculty of Mechani-

cal Engineering and Naval Architecture

https://uniri.hr/
https://riteh.uniri.hr/
https://uniri.hr/
https://riteh.uniri.hr/
https://uniri.hr/
https://riteh.uniri.hr/

ABSTRACT

Computational fluid dynamics simulations often involve a trade-off between accuracy and com-

putational cost, particularly when modelling complex flows with localised phenomena across

varying scales. This trade-off becomes especially pronounced in high-fidelity simulations,

which require fine grid resolution to capture intricate flow structures. Maintaining such res-

olution across the entire domain can, however, be computationally prohibitive. Adaptive mesh

refinement is a promising methodological alternative that dynamically refines the grid in regions

requiring higher accuracy and coarsens it in others. Still, its application for large eddy simu-

lation is challenging since changes in grid resolution can induce instabilities, affect numerical

dissipation, and ultimately compromise accuracy.

This thesis aims to address these limitations by developing and validating a computation-

ally efficient adaptive mesh refinement strategy tailored for large eddy simulation within the

OpenFOAM 10 framework. The central hypothesis is that an effective and physically grounded

refinement criterion can be defined to guide mesh adaptation efficiently. To implement the en-

visioned strategy, several code contributions have been made. First, native mesh refinement

capabilities were extended to handle two-dimensional problems. Second, new classes were

developed for two-dimensional and three-dimensional adaptive mesh refinement, enabling re-

finement decisions based on logical combinations of multiple criteria, including scalar fields

and geometric constraints. Third, to address parallel performance concerns, two new load bal-

ancing classes were implemented. These distributors rely on direct measurements to assess load

imbalance and trigger mesh redistribution.

A core contribution is the formulation of a composite refinement criterion tailored specifi-

cally for large eddy simulations. The criterion combines the vortex identification method with

a measure of local mesh resolution relative to the turbulent Taylor microscale. This ensures that

coherent vortical structures are captured and the mesh is sufficiently fine to resolve the relevant

turbulent scales locally.

Validation was performed systematically on a selected set of test cases. These confirmed

that the implementation functions as intended and demonstrated the potential of multi-criteria

I

adaptive mesh refinement. The composite refinement criterion was applied to benchmark large

eddy simulation cases, yielding comparable or superior accuracy relative to simulations using

a conventional grid generation approach. The load balancing algorithms were also evaluated,

demonstrating improved parallel efficiency and reduced simulation times.

The results suggest that the proposed approach effectively balances accuracy and com-

putational cost for large eddy simulations. By integrating targeted refinement criteria with

performance-aware load balancing, the adaptive mesh refinement strategy is able to provide

high-fidelity numerical results with significantly lower computational demands, making it a

practical solution for complex research and industrial problems.

Keywords: Adaptive Mesh Refinement, Load Balancing, Large Eddy Simulation, Computa-

tional Fluid Dynamics, OpenFOAM

II

PROŠIRENI SAŽETAK

Simulacije u domeni računalne dinamike fluida često uključuju kompromis izmed̄u točnosti i

računalnog troška, osobito prilikom modeliranja složenih strujanja s lokaliziranim pojavama

različitih skala. Taj kompromis postaje posebno izražen u simulacijama koje zahtijevaju finu

razlučivost numeričke mreže, kako bi se obuhvatile složene strukture strujanja. Ipak, održa-

vanje takve razlučivosti na razini cjelokupne domene može biti računalno preskupo. Adaptivno

upravljanje predstavlja obećavajuću metodološku alternativu koja dinamički modificira numer-

ičke mreže u područjima koja zahtijevaju veću točnost, dok ih u drugim područjima razrjed̄uje.

Med̄utim, primjena ove metode u simulacijama velikih vrtloga predstavlja izazov jer promjene

u razlučivosti mreže mogu izazvati nestabilnosti, utjecati na numeričku disipaciju i na kraju

utjecati na točnost.

Ova disertacija ima za cilj ponuditi rješenje za navedena ograničenja razvijanjem i vali-

dacijom računalno učinkovite strategije adaptivnog upravljanja, prilagod̄ene simulacijama ve-

likih vrtloga unutar OpenFOAM 10. Središnja hipoteza jest da se može definirati učinkovit i

fizikalno utemeljen kriterij za upravljanje mrežom, koji će učinkovito usmjeravati adaptaciju

mreže. Za provedbu zamišljene strategije ostvareni su brojni programski doprinosi. Prvo,

izvorne mogućnosti proširene su kako bi podržale dvodimenzionalne probleme. Drugo, razvi-

jene su nove klase za dvodimenzionalno i trodimenzionalno adaptivno upravljanje, omoguću-

jući donošenje odluka o upravljanju temeljenih na logičkim kombinacijama više kriterija, poput

skalarnih polja i geometrijskih ograničenja. Treće, kako bi se riješio problem učinkovitosti

pri paralelnom izvod̄enju, implementirane su dvije nove klase za uravnoteženje opterećenja.

Spomenute klase oslanjaju se na izravna mjerenja resursa za procjenu neuravnoteženosti i ini-

ciranje redistribucije mreže.

Ključni doprinos je formulacija kompozitnog kriterija upravljanja posebno prilagod̄enog za

simulacije velikih vrtloga. Kriterij kombinira metodu identifikacije vrtloga s mjerom lokalne

razlučivosti mreže u odnosu na turbulentnu Taylorovu mikroskalu. Na taj se način osigurava da

su koherentne vrtložne strukture obuhvaćene te da je mreža dovoljno fina za lokalno razlučivanje

relevantnih turbulentnih skala.

III

Validacija je provedena sustavno na odabranom skupu testnih slučajeva. Na temelju do-

bivenih rezultata utvrd̄eno je da implementacija djeluje prema očekivanjima te je potvrd̄en po-

tencijal kompozitnog kriterija za upravljanje numeričkim mrežama. Kompozitni kriterij prim-

ijenjen je na referentne slučajeve simulacija velikih vrtloga, pri čemu su ostvareni rezultati

pokazali usporedivu ili veću točnost u odnosu na simulacije koje koriste konvencionalni pristup

generiranju mreže. Algoritmi za uravnoteženje opterećenja takod̄er su evaluirani, pri čemu je

zabilježena poboljšana paralelna učinkovitost i smanjenje ukupnih proračunskih vremena.

Ostvareni rezultati sugeriraju da je moguće definirati kompozitni kriterij koji, u kombinaciji

s algoritmima za uravnoteženje opterećenja, omogućuje postizanje numeričkih rezultata visoke

točnosti uz znatno niže računalne zahtjeve, čime se potvrd̄uje praktična primjenjivost pred-

ložene metodologije u složenim istraživačkim i industrijskim problemima.

Ključne riječi: adaptivno upravljanje numeričkim mrežama, distribucija opterećenja, simu-

lacije velikih vrtloga, računalna dinamika fluida, OpenFOAM

IV

CONTENTS

1 Introduction 1

1.1 Theoretical Foundations and State of the Art 1

1.1.1 The Importance of Adaptive Mesh Refinement 2

1.1.2 Early Developments . 3

1.1.3 Adaptive Mesh Refinement Paradigms 5

1.1.4 Methods and Data Structure . 6

1.1.5 Adaptation Strategies . 8

1.1.5.1 h-refinement . 8

1.1.5.2 p-refinement . 9

1.1.5.3 r-refinement . 10

1.1.5.4 Hybrid Strategies . 10

1.1.6 Refinement Criteria . 11

1.1.7 Impact and Current Research Trends 13

1.2 Hypothesis and Research Goals . 14

1.3 Scientific Contribution . 15

1.4 Thesis Structure . 16

2 Numerical Modelling and Validation Cases 17

2.1 Governing Equations of Fluid Flow . 17

2.1.1 Conservation of Mass . 18

2.1.2 Conservation of Momentum . 19

2.1.3 Conservation of Energy . 20

2.2 Principles of the Finite Volume Method . 20

2.3 Turbulence Modelling . 21

2.3.1 Reynolds-Averaged Navier-Stokes Equations 22

2.3.2 Large Eddy Simulation . 24

2.4 Numerical Modelling in OpenFOAM . 26

V

2.5 Validation of Laminar and RANS Benchmark Cases 28

2.5.1 Flow Around a Cylinder . 28

2.5.2 Rising Bubble Dynamics . 32

2.5.3 Breaking of a Dam . 36

2.6 Validation of LES Benchmark Cases . 39

2.6.1 Turbulent Channel Flow . 39

2.6.2 Flow Around a Square Cylinder . 42

2.6.3 Turbulent Mixing of Jet in Crossflow 46

3 Adaptive Mesh Refinement in OpenFOAM 50

3.1 Native Implementation . 50

3.2 Extension for Two-Dimensional Problems . 52

3.2.1 Implementation Details . 52

3.2.2 Validation for Two-Dimensional Problems 54

3.3 Validation for Three-Dimensional Problems 55

4 Multi-Criteria Adaptive Mesh Refinement 57

4.1 Multi-Criteria Refinement Strategy . 57

4.1.1 Mathematical Formulation . 57

4.1.2 Implementation Details . 58

4.2 Application of mcAMR to Two-Dimensional Problems 60

4.2.1 Criteria and Validation for 2D Rising Bubble Dynamics 61

4.2.2 Criteria and Validation for 2D Flow Around a Cylinder 62

4.3 Application of mcAMR to Three-Dimensional Problems 64

4.3.1 Criteria and Validation for 3D Flow Around a Cylinder 64

4.3.2 Criteria and Validation for 3D Breaking of a Dam 65

5 Load-Aware Dynamic Load Balancing 68

5.1 MPI-Based Load Redistribution . 68

5.2 Archive-Based Load Redistribution . 70

5.3 Computational Efficiency . 71

6 Refinement Criterion for Large Eddy Simulation 78

6.1 Composite Refinement Criterion . 78

VI

6.1.1 Established Refinement Criteria . 78

6.1.2 Practical Considerations . 80

6.1.3 Formulation of the Criterion . 81

6.2 Application of mcAMR to LES . 83

6.2.1 Assessment for Turbulent Channel Flow 84

6.2.2 Assessment for Flow Around a Square Cylinder 90

6.2.3 Assessment for Turbulent Mixing of Jet in Crossflow 96

6.3 Computational Cost and Accuracy . 101

7 Conclusion 103

Bibliography 106

List of Figures 117

List of Tables 121

Curriculum Vitae 122

List of Publications 123

VII

1 INTRODUCTION

Achieving accurate and efficient computational fluid dynamics (CFD) simulations largely de-

pends on the appropriate discretisation of the computational domain. The traditional discreti-

sation approach is to utilise a uniformly refined computational grid. While straightforward,

when high resolution is required, this can become computationally prohibitive, i.e., results in

excessive computational costs and memory usage. An alternative, zonally refined approach in-

troduces refinement in specific regions identified beforehand. While more efficient, this static

approach still requires a priori knowledge of where high resolution is needed.

Adaptive mesh refinement (AMR) is an effective solution to these challenges. The funda-

mental principle of adaptive mesh refinement is to dynamically refine the computational grid

in regions demanding higher accuracy, typically identified by significant solution gradients or

errors, and to coarsen it in areas where the solution is smooth or the error is low [44, 47].

While the theoretical benefits of AMR are well-established, its practical application, partic-

ularly in complex simulations such as large eddy simulation (LES), presents significant chal-

lenges. LES seeks to resolve the large, energy-containing turbulent eddies directly, making it

highly sensitive to grid resolution and numerical dissipation. To apply AMR effectively, it is

crucial to establish refinement criteria that can accurately capture and track relevant turbulent

structures without introducing excessive numerical dissipation or instability. Additionally, ex-

isting AMR implementations, such as that in the widely used open-source toolkit OpenFOAM

[29], typically face limitations in terms of functionality and dynamic load balancing.

1.1 Theoretical Foundations and State of the Art

Adaptive mesh refinement is widely used in computational sciences, particularly for problems

exhibiting localised phenomena with varying length and time scales [88]. These problems are

common in fields such as astrophysics [77], climate modelling [30], and computational fluid

dynamics [13, 44]. Over the years, AMR has evolved from a mere tool for enhancing computa-

tional efficiency and accuracy to a necessity in increasingly complex simulations [82, 106].

1

1.1.1 The Importance of Adaptive Mesh Refinement

Numerical solutions to partial differential equations (PDEs) that describe physical phenomena

are computed over a problem domain using a finite set of points, elements, or volumes. Estab-

lished methods for this purpose differ in how they approximate derivatives, enforce conservation

laws, and handle boundary conditions, making each suitable for different classes of problems.

These methods include the finite difference method (FDM), the finite element method (FEM),

and the finite volume method (FVM) [25, 27, 44]:

• FDM approximates derivatives in the governing PDEs using function values at discrete

grid points, typically derived from Taylor series expansions [25, 27]. It is relatively simple

to implement on structured grids due to its straightforward stencil-based formulation.

However, it can be less suitable for complex geometries and does not inherently guarantee

the conservation of physical quantities [27].

• FEM discretises the problem domain by subdividing it into a mesh of finite elements [27,

114]. The solution is approximated within each element using basis or shape functions

[84, 114]. FEM is based on the weak formulation of the governing equations and employs

a weighted residual approach, where integration over each element yields a system of al-

gebraic equations [27]. The accuracy and stability of the solution are strongly influenced

by the quality and resolution of the mesh [31]. It is widely used in structural mechanics,

heat transfer, and electromagnetics.

• FVM is based on the integral form of the conservation equations applied to discrete con-

trol volumes in the computational domain [25, 27]. By balancing fluxes across the faces

of each control volume, FVM ensures local and global conservation of physical quanti-

ties [27]. Although robust and conservative, the accuracy depends on flux approximation

schemes. FVM can handle complex geometries and is widely used in fluid dynamics [27].

The effectiveness of the aforementioned methods is heavily influenced by the computational

grid. A common discretisation approach is to use a uniform grid, where grid point spacing or

element size remains constant across the domain. For high resolution grids, this implies sub-

stantial computational cost. On the other hand, a coarse uniform grid might be computationally

efficient but can fail to capture the essential physics and, therefore, lead to unreliable results.

This inherent inefficiency led to the development of adaptive mesh refinement. AMR en-

compasses a range of techniques designed to adjust the computational grid dynamically. This

2

adaptive approach improves accuracy while maintaining efficiency [84]. The implementation

of AMR varies depending on the underlying numerical method:

• FDM variant adjusts grid point density. This implies dynamic adjustment of stencil struc-

tures and consistent interpolation across regions with differing resolutions.

• FEM variant modifies the grid primarily via element subdivision or adjustment to the

polynomial degree of the basis functions.

• FVM variant implementation often depends on the grid. The process typically involves

subdivisions and merging of control volumes to adapt grid resolution.

1.1.2 Early Developments

Berger and Oliger [14] are often mentioned as central figures in the development of local AMR

[90, 102]. Their landmark 1984 paper introduced a foundational AMR concept for hyperbolic

PDEs. The proposed approach utilised dynamically generated subgrids within user-defined re-

gions of interest, which were overlaid on top of the initial, coarser computational grid. Subgrids

were designed to be independent, allowing for independent numerical integration. Building

upon this initial work, Berger and Colella [13] presented an automated local AMR strategy

specifically focused on shock hydrodynamics. This method similarly used nested refined sub-

grids aligned with the underlying coarse grid. Furthermore, the authors elaborated on the grid

generation process and error estimation procedure. Blayo and Debreu [15] explored the ap-

plicability of the concept presented in [14] for numerical ocean circulation models that use

finite difference discretisation. Their findings suggested that AMR substantially reduces CPU

time, with reported speedups of approximately threefold, while simultaneously preserving the

essential statistical characteristics of the numerical solution [15]. Compared to traditional tech-

niques for local prediction, the authors noted that the adaptive approach delivered comparable

or even superior results for the same computational effort. Expanding on the algorithmic foun-

dations laid by Berger and Colella [13], Rendleman et al. [89] presented a parallelisation strat-

egy for structured AMR algorithms. The proposed parallelisation approach utilised dynamic

load balancing to distribute the computational workload across multiple processors, relying on

message-passing for inter-processor communication.

3

The concept of grid adaptation, however, has roots in earlier foundational research. Notable

contributions include the works of Babuška [8] and Babuška and Rheinboldt [7, 9], who ex-

plored the theory and implementation of adaptive approaches within the context of FEM during

the 1970s. Gago et al. [35] presented an adaptive refinement strategy based on a posteriori error

measurements, which governs the refinement of a finite element grid. A notable contribution to

the field was the paper by Quirk and Hanebutte [88]. The paper outlines the structure and imple-

mentation of the proposed parallel AMR approach. The authors noted that the block-structured

nature of AMR algorithms inherently lends itself to parallelisation, thereby allowing for signif-

icant computational efficiency gains. The discussed adaptive grid algorithm for computational

shock hydrodynamics has been introduced in Quirk’s PhD thesis [87] and is inspired by [13].

Jones and Plassmann [47] introduced a parallel AMR algorithm for unstructured triangular fi-

nite element grids, which can be generalised to three-dimensional space. Similarly, Traxler

[100] presented a fast algorithm for local AMR in n dimensions, which uses simplex bisection

to refine tetrahedral grids. Prakash [84] focused on the development of an integrated AMR tool

tailored specifically for finite element flow modelling within three-dimensional geometries of

arbitrary complexity. The thesis details the design and implementation of a hierarchical data

structure and a cost-effective error estimator.

Arney [6] introduced an adaptive finite volume procedure for two-dimensional Euler equa-

tions on grids using quadrilateral cells. The approach combines mesh movement and localised

mesh refinement based on solution error. Kallinderis and Vijayan [51] proposed an adaptive

algorithm for tetrahedral finite volume grids. The algorithm employs a dynamic cell division

process to adapt the grid based on the evolution of the solution. Notably, the authors introduced

two distinct refinement approaches to address the issue of hanging nodes that inevitably occur

during cell subdivision: centroidal node division and directional division. The former involves

introducing a new node at the cell’s centroid, followed by its subsequent subdivision. The lat-

ter subdivides the cells in question into either two or four smaller cells, depending on whether

multiple hanging nodes exist on a single face or a single hanging node exists on an edge. In

a subsequent paper, Kallinderis [49] expanded upon earlier work by extending the proposed

algorithm to handle hybrid grids composed of tetrahedra and prisms. The adaptation process

for these hybrid grids is dual: prismatic cells undergo directional refinement, with tetrahedral

cells treated analogously to those in [51]. Müller and Giles [72] proposed a finite volume AMR

technique for triangular grids based on adjoint error analysis. In their approach, grid refinement

4

was driven by an estimation of the residual error, weighted by adjoint variables [72].

Vilsmeier and Hänel [105] investigated adaptive methods on unstructured grids with a focus

on two-dimensional Euler and Navier-Stokes equations using the FVM. The authors noted that

adaptive methods were still immature for the Navier-Stokes equations. A study by Muzaferija

and Gosman [73] presented a solution-adaptive local AMR strategy, a novel spatial discreti-

sation approach and an error estimation technique based on a Taylor series expansion. In his

thesis, Ochs [79] presented an adaptive quadtree refinement method for incompressible Navier-

Stokes equations within the finite volume framework. Various criteria for identifying cells

requiring subdivision were explored, such as total velocity difference and cell-size-weighted

velocity derivatives. Jasak and Gosman [46] presented an implementation of an error-based

AMR algorithm within the finite volume-based toolkit FOAM. The authors provided a detailed

description of the algorithm, the criteria used to determine where adaptation is necessary, and a

solution mapping procedure to transfer data between different levels of grid refinement.

Noted works established the basis for AMR development over the following decades. Sub-

sequent studies refined and expanded upon these initial concepts. More recently, the field has

seen significant development in machine learning-based refinement strategies [28, 33, 78, 80].

A brief overview of selected key milestone papers related to AMR is given in Table 1.1.

Table 1.1: Selected milestones in the development of AMR.

Reference Notes & context
[7, 9, 35] Strategy for adaptive mesh refinement. A posteriori error analysis.

[13, 14, 89] Algorithmic framework for hyperbolic partial differential equations.
[6] AMR for Euler equations with mesh movement in two-dimensional space.

[87, 88] Parallel AMR algorithm for computational shock hydrodynamics.
[105] AMR for two-dimensional Euler and Navier-Stokes equations on triangular grids.

[49–51, 79] AMR strategy for three-dimensional finite volume Navier-Stokes equations.
[46, 73, 103] Algorithm for general computational fluid dynamics.

[84, 91] Three-dimensional AMR for flow modelling on tetrahedral grids.
[78, 80] Deep learning-based AMR strategies.
[28, 33] Reinforcement learning-based AMR strategies.

1.1.3 Adaptive Mesh Refinement Paradigms

AMR paradigms can be classified into structured adaptive mesh refinement (SAMR) and un-

structured adaptive mesh refinement (UAMR) based on the underlying grid structure and data

5

hierarchy [22]. While a brief comparative overview is given in Table 1.2, the core aspects of

each are detailed below:

• SAMR operates on grids that maintain a logically rectangular structure, even during re-

finement [22, 24]. It employs a hierarchy of refinement levels. The computational domain

is typically covered by the coarsest level, with finer levels embedded within it [22]. This

structured arrangement enables implicit and efficient storage of mesh connectivity [22].

Consequently, fast and efficient computational kernels based on finite difference and finite

volume methods can be employed [22]. Key challenges in SAMR include interface man-

agement between different refinement levels [22]. Furthermore, SAMR struggles with

complex geometries [22].

• UAMR works on grids where the local connectivity of elements can vary arbitrarily, such

as the triangular or tetrahedral grids commonly used with finite element or finite volume

methods [18, 22]. Individual elements are directly modified in UAMR. This approach

is, therefore, better suited for complex geometries [22, 44]. The adaptation process gen-

erally involves two main stages: first, elements are marked for refinement or coarsening

based on error indicators or other criteria; subsequently, the grid is modified to ensure

conformity [22]. Due to the irregular connectivity, explicit mesh element relationship

data storage is required [22].

Table 1.2: Comparative overview of SAMR and UAMR [22].

Property SAMR UAMR
Refinement unit Block/patch with many elements Individual elements
Data structure Hierarchy of grids Element-based
Connectivity Regular (implicit) Irregular (explicit)
Discretisation Usually FDM/FVM Usually FEM/FVM

Challenges Internal boundary handling,
over-refinement, low-flexibility

Maintaining mesh quality, hanging
nodes, data access

Efficiency Use of highly efficient contiguous
arrays

Less efficient due to indirect
addressing

1.1.4 Methods and Data Structure

The performance and flexibility of adaptive mesh refinement are closely tied to the chosen re-

finement method and associated data structures. Broadly, AMR refinement methods can be clas-

sified into three main types: cell-based, patch-based, and block-based. Additionally, a fourth

6

hybrid block-based AMR approach exists, which combines elements of the patch-based and

block-based methods. Figure 1.1 provides a brief overview of basic refinement methods.

(a) (b) (c)

Figure 1.1: Main refinement methods: (a) cell-based, (b) patch-based, (c)
block-based.

The cell-based method modifies the computational grid at the individual cell or element

level [86]. Grid relationships are explicitly maintained, enabling flexibility, i.e., there is no

need to adhere to a rigid subdivision pattern. The grid data is organised using a hierarchical

tree structure [18]. Each leaf node in the tree corresponds to a single element. This structure

inherently captures parent-child relationships between refinement levels and enables efficient

search and traversal operations [10, 12].

Grid modifications in the patch-based method are applied within predefined rectangular

regions called patches [22, 44]. This method relies on a hierarchy of nested, uniform rectan-

gular grids, where adaptivity is only possible within the bounds of a specific patch [22, 44].

Patch-based implementations were among the earliest AMR approaches but were unsuitable for

complex geometries and unstructured grids [10]. The methodology is fundamentally rooted in

the pioneering works of Berger and Oliger [14] and Berger and Colella [13].

The block-based method uses non-overlapping blocks of cells [115]. Adaptation is per-

formed at the block level [44]. A hierarchical tree structure is employed where, unlike the

cell-based approach, each leaf node represents an entire block. Refinement implies replacing a

leaf block with a set of child nodes, each representing a block at the next resolution level. Typ-

ically, transitions between neighboring blocks are constrained to a 1:2 refinement ratio. This

method leverages the benefits of hierarchical organisational structure while maintaining compu-

tational efficiency due to the use of locally structured blocks [18]. Block-based and patch-based

methods are sometimes considered equivalent or used interchangeably by some authors [108].

7

1.1.5 Adaptation Strategies

Grid adaptation strategies modify the grid in order to accelerate computations, improve solu-

tion accuracy, or accelerate convergence. These strategies involve either changes to the mesh

elements or the functions/methods used for approximation or calculation [84, 114]. Adaptation

strategies are commonly classified into three main categories [46]:

• h-refinement: The grid element size h is modified through subdivision (refinement) or

merging (coarsening) of elements [20, 41, 114].

• p-refinement: The polynomial order p (scheme) is modified while keeping the mesh

topology unchanged [84, 114].

• r-refinement: The spatial distribution r of mesh nodes is adjusted without changing the

total number of elements or connectivity [11, 59, 64, 84].

These primary strategies and various hybrid approaches offer distinct benefits and intro-

duce specific implementation challenges [114]. Additionally, it is worth noting that the strategy

classification itself can vary across the literature. For instance, Zienkiewicz et al. [114] consid-

ers r-refinement a subset of h-refinement, whereas other sources adopt stricter definitions that

distinguish the methods based explicitly on changes in size, order, or position [46]. A brief

graphical overview of noted approaches is given in Figure 1.2.

(a) (b) (c) (d)

Figure 1.2: Main adaptation strategies: (a) initial grid, (b) h-refinement,
(c) p-refinement, (d) r-refinement.

1.1.5.1 h-refinement

h-refinement (h-adaptivity) modifies the characteristic size of elements in the computational

grid [114] through a series of basic geometric operations [84]. This process combines the

8

subdivision of existing elements into smaller ones (by introducing additional grid points) if

higher resolution is needed (refinement) and the merging of smaller elements into larger ones

if fine resolution is no longer required (coarsening) [114]. As a result, the grid connectivity is

altered.

A key consideration for h-refinement is the choice between isotropic and anisotropic refine-

ment. Isotropic refinement implies uniform subdivision of elements in all spatial directions [52].

While simpler, this can be inefficient for directionally dominated features like thin boundary or

shear layers, potentially resulting in excessively fine (thin) elements and consequently lead-

ing to increased computational cost [84]. Anisotropic refinement, in contrast, allows preferen-

tial subdivision along specific directions, generating elongated elements aligned with dominant

features. This can lead to significantly higher computational efficiency and accuracy [52, 84].

However, anisotropic refinement can introduce additional complexity, particularly regarding the

directional criteria and grid connectivity [84].

Despite its advantages, h-refinement introduces several challenges. Hanging nodes are usu-

ally created where fine and coarse elements meet. These nodes require special numerical treat-

ment (interpolation or constraint enforcement) to preserve accuracy and stability and ensure

conservation [95, 114]. Furthermore, the dynamic nature of the grid can lead to computational

load imbalance across processors during parallel execution. To ensure efficient load distribu-

tion, dynamic mesh repartitioning and data migration may be required, introducing additional

communication overhead and algorithmic complexity [22, 95].

1.1.5.2 p-refinement

When employing p-refinement (p-adaptivity), the underlying computational grid remains fixed,

and its connectivity is unchanged, i.e., there is no change in the grid size or the number of grid

points [84]. Adaptation is achieved by selectively changing the local order of the discretisation,

i.e., the degree of the numerical approximation, in regions of interest [46, 52, 84]. Consequently,

p-refinement can lead to improved accuracy on coarser grids compared to those typically used

in h-refinement [114].

A key advantage of p-refinement, particularly for problems with smooth solutions, lies in its

capacity to yield exponential convergence rates as the number of degrees of freedom increases

[35, 46, 84]. This is in contrast to the algebraic convergence rates typically associated with h-

refinement [114]. From a methodological standpoint, p-refinement is most commonly employed

9

with FEM [46], where the formulation naturally allows for simple implementation of higher-

order discretisation. In contrast, its application within the FVM is less straightforward due to

the nature of the discretisation and the challenges associated with maintaining conservation and

stability inherent to finite volume formulations.

1.1.5.3 r-refinement

r-refinement (r-adaptivity) is commonly referred to as mesh movement or redistribution. The

central idea is to keep the number of grid elements and their connectivity constant while modi-

fying the spatial distribution of grid points [6, 52, 84, 114]. Grid points are typically clustered

in regions with high solution gradients or large estimated errors. Since the total number of el-

ements remains fixed, r-refinement does not increase the overall resolution and may, therefore,

be inadequate to achieve desired accuracy [46, 114]. Historically, it has been used primarily for

two-dimensional problems [84].

A notable advantage of r-refinement is its inherent ability to produce directionally stretched

elements. This allows for increased resolution in one direction, which is particularly important

for resolving anisotropic features such as boundary layers, shear layers, or wakes. Conse-

quently, for problems dominated by strong directional characteristics, r-refinement might be

more efficient than h-refinement [84].

The main challenge associated with r-refinement is grid folding, wherein excessive node

movement leads to degraded element quality, resulting in inverted elements with negative vol-

umes, ultimately leading to numerical instability [114]. A fundamental limitation of r-refinement

is that it can only redistribute existing resolution, i.e., it cannot increase the overall resolution to

capture finer solution scales if the initial number of nodes is insufficient [114]. Consequently,

r-refinement alone might not be adequate to meet stringent accuracy requirements. For this

reason, r-refinement is often combined with h-refinement, and some authors have argued that it

should not be regarded as a fully independent adaptation strategy [6, 114].

1.1.5.4 Hybrid Strategies

In practice, codes implementing AMR algorithms often go beyond the basic h-, p-, and r-

refinement concepts, combining them to take advantage of their respective strengths while ad-

dressing their limitations. One of the most widely studied strategies is hp-refinement. This

strategy modifies the characteristic element size and the polynomial order and is often guided

10

by a posteriori error estimation [21, 35]. It leverages the complementary nature of its compo-

nents: h-refinement is particularly well suited for resolving singularities or regions with low

solution regularity, while p-refinement is more efficient in regions with high solution regularity

[35, 114]. Despite its theoretical appeal, hp-refinement has not seen widespread use in prac-

tical settings due to its implementational complexity. The simultaneous use of local h- and

p-refinement introduces challenges, particularly in managing transitions between elements of

different refinement levels or polynomial orders. To address these issues, alternative formula-

tions such as the multi-level hp-method have been developed [113].

Another important hybrid method is hr-refinement, which combines h-adaptivity with r-

adaptivity. This strategy benefits from the relatively low cost of point redistribution while h-

refinement is used to overcome the connectivity constraints of pure r-refinement [23]. In many

cases, r-refinement is used as the primary mechanism to improve point placement, with h-

refinement applied selectively when mesh quality deteriorates [114].

Other, less common approaches include rp-refinement and the more general hrp-refinement.

In rp-refinement, the grid connectivity remains fixed while the polynomial degree and point

locations are adjusted [31]. This strategy is limited by the constraints of fixed grid connectivity.

The most comprehensive approach, hrp-refinement, integrates all three adaptation types. While

this provides the greatest theoretical flexibility, coordinating h-, p-, and r-refinements within a

single framework is technically demanding and computationally expensive.

A conceptually different, broader alternative to local refinement strategies is complete re-

meshing [84, 114]. This process involves generating a new mesh based on the error distribution

in the current solution. Some authors consider remeshing a subset of h-refinement [114], though

its scope is generally broader. The process comes with a considerable computational cost, par-

ticularly for three-dimensional problems, and requires careful management of solution transfer

between grids [84, 114]. Even so, the improved mesh quality often offsets these drawbacks;

hence, remeshing is frequently used as a fallback when other strategies are ineffective.

1.1.6 Refinement Criteria

Refinement criteria are quantitative or qualitative (less common) rules that determine where and

how AMR is applied within a computational domain. These criteria are essential to efficiently

improve resolution in regions that contribute most significantly to numerical error or to the

accuracy of specific output quantities of interest [15, 22, 44].

11

Historically, the most common refinement criteria were those based on a posteriori error es-

timation. This approach evaluates discretisation errors after obtaining a numerical solution and

employs local error indicators to guide mesh adaptation [7, 9, 23, 35, 46]. A widely adopted

concept is the principle of error equidistribution, which seeks to refine the grid such that the

estimated local error becomes approximately uniform across the domain [12]. Residual-based

estimators measure how well the numerical solution satisfies the governing equations by eval-

uating residuals within elements and across element interfaces [72, 74, 114]. Recovery-based

estimators, such as the Zienkiewicz-Zhu estimator, quantify error based on the discrepancy be-

tween computed and smoothed gradient fields [84, 114].

While error estimation strategies aim to reduce global solution error, many engineering

applications require targeted accuracy for specific quantities. Goal-oriented or adjoint-based

refinement strategies are particularly effective for problems with a specific global quantity of

interest. These methods rely on solving an auxiliary adjoint problem to determine how local

residuals in the primary solution influence the targeted quantity [72, 74, 103].

Refinement criteria can also be based on spatial features of the solution rather than error

estimation. For example, gradient-based criteria can trigger refinement in regions with large

spatial gradients of flow variables or derived quantities, such as vorticity [12, 25, 95]. These

criteria are relatively easy to implement and effectively capture dynamic structures like shock

fronts or shear layers [12, 40]. In compressible flows, refinement is often driven by density

gradients or measures of compressibility to resolve shocks and contact surfaces accurately [18].

In turbulent flows, particularly in LES, refinement can be governed by turbulent scales or guided

by principles from variational multiscale theory [4, 39, 105].

Some criteria are based on estimates of local truncation error, either derived from terms

inherent in the discretisation scheme or through comparisons between solutions on coarse and

fine grids [14, 61]. Multi-resolution techniques exploit differences between solutions at various

grid resolutions to identify regions requiring additional refinement [13, 14]. Geometric triggers,

such as proximity to boundaries or specific features, can also govern refinement.

In practice, complex problems often benefit from the use of multiple refinement criteria to

ensure robust and efficient grid adaptation [25, 40, 80]. These choices are highly problem-

dependent and require careful consideration to balance accuracy gains with computational cost.

Table 1.3 provides an overview of refinement criteria employed for high-fidelity AMR compu-

tational fluid dynamics simulations.

12

Table 1.3: Use of AMR for high-fidelity CFD simulations.

Reference Software Refinement criteria Note

[62] FLUSEPA Pressure truncation error, velocity
truncation error Detached eddy simulation

[68] Kestrel Q-criterion Detached eddy simulation
[5, 40] OpenFOAM Local error, phase fraction Detached eddy simulation

[101] Cerisse Vorticity magnitude, density and pressure
gradient Large eddy simulation

[42, 58, 60,
66, 97, 110] OpenFOAM Gradients, scalars, various Large eddy simulation

[96] StarCCM+ Vorticity Large eddy simulation
[4] TermoFluids Vorticity, residual velocity Large eddy simulation

[102] TFP-AMR Mask inclusion method Large eddy simulation
[39] UMBT Turbulent kinetic energy Large eddy simulation

[56]
ML-based
AMR
(OpenFOAM)

Dominant balance analysis, Gaussian
mixture model Large eddy simulation

[32] Basilisk Phase fraction Direct numerical simulation
[18] HAMISH Gradients of species and temperature Direct numerical simulation

1.1.7 Impact and Current Research Trends

Adaptive mesh refinement is an important tool in fields where simulations must resolve phys-

ical processes spanning multiple orders of magnitude in space and time. In astrophysics and

cosmology, AMR is indispensable for capturing complex phenomena related to galaxy forma-

tion, stellar collapse, and the evolution of large-scale cosmic structures [22, 25, 34, 82, 99]. In

computational fluid dynamics, it is essential in simulations involving compressible flows and

reactive fronts as well as eddy-resolving simulations [4, 18, 39, 40, 57, 66]. Additionally, it is

used for high-fidelity modelling in complex real-world applications [38, 53, 107]. Beyond fluid

dynamics, AMR has become instrumental in climate and Earth system modelling [12, 15, 22],

combustion, plasma physics, solid mechanics, and biomedical simulations [16, 58, 82, 112].

An important avenue in current AMR research is the development of frameworks for mul-

tiphysics simulations. These frameworks often integrate Eulerian fluid solvers with arbitrary

Lagrangian-Eulerian methods [22, 89]. Handling complex, moving, or embedded geometries is

another active area. AMR techniques are integrated with immersed boundary and cut-cell meth-

ods to accurately capture curved, complex, or evolving interfaces without conformal meshing

[109].

13

Machine learning methods are increasingly being leveraged to improve AMR decision-

making. Techniques such as reinforcement learning are shown to be applicable to govern the re-

finement process [28]. Some studies rely on supervised learning or employ convolutional neural

networks to predict refinement needs [78]. These data-driven methods promise improved au-

tomation and adaptability but struggle with scalability, generalisation, and seamless integration

with existing codes [28, 33, 56].

Still, several fundamental challenges persist in AMR. Refinement criteria are often heuristic,

requiring expert tuning or a trial-and-error approach. The use of error estimators is not univer-

sally applicable and can introduce substantial computational overhead, particularly in nonlinear

or tightly coupled systems [28, 40]. Consequently, the development of robust, problem-agnostic

refinement indicators remains an active and important area of research [56]. Algorithmic com-

plexity and parallelism are another challenge. Implementing scalable AMR implies managing

hanging nodes, maintaining stability across grids, and ensuring conservation across multi-level

grid hierarchies on distributed systems [4, 13].

1.2 Hypothesis and Research Goals

Adaptive mesh refinement is an important tool in computational fluid dynamics. Within Open-

FOAM [29, 111], a widely used open-source finite-volume toolkit, AMR capabilities exist but

lack standardisation and, in some cases, basic functionality, largely due to code fragmentation

across different versions and forks. Although relevant OpenFOAM studies frequently demon-

strate and emphasise the efficiency benefits of AMR, they tend to focus narrowly on case-

specific implementations, often neglecting broader limitations or unresolved challenges.

Employed refinement criteria are often problem- or domain-specific, as different use cases

aim to resolve different physical phenomena. Criteria based purely on error estimation can be

overly complex or lack direct physical interpretability for general CFD use. Furthermore, the

computational overhead and processor load imbalance resulting from dynamic mesh adaptation

are important and often overlooked practical hurdles.

Based on these gaps and challenges, the central hypothesis of this research can be formu-

lated: an effective and physically grounded adaptive mesh refinement criterion can be defined,

specifically tailored for large eddy simulations and based on the size and dynamics of resolved

vortices.

14

To confirm this hypothesis, the following primary research goals have been defined:

• Implement a set of tools within OpenFOAM 10 [29], supporting initially refined meshes,

two-dimensional cases, multi-criteria refinement, and dynamic load balancing.

• Evaluate computational performance, focusing on load balancing efficiency and parallel

scalability during dynamic mesh adaptation on local and distributed systems.

• Define and validate an AMR criterion for LES, based on vortex characteristics.

• Apply the approach to problems from environmental engineering and aerodynamics, val-

idating results against available experimental data.

1.3 Scientific Contribution

This thesis aims to define a robust and interpretable AMR criterion and address the limitations

of the considered OpenFOAM implementation by developing a set of tools that seamlessly

integrate with it. The goal is to create a more flexible and efficient high-performance computing

environment for AMR-based simulations.

The main efforts in this work include designing and developing classes capable of handling

both two-dimensional and three-dimensional problems, as well as enabling multi-criteria re-

finement and load balancing. The resulting toolset will be rigorously tested for performance,

scalability, and efficiency and compared to conventional, non-AMR approaches, ensuring prac-

tical usability.

In addition to the software development, a key scientific contribution of this research is the

assessment of the synergy between AMR and large eddy simulations. Given that LES is highly

sensitive to numerical errors and dissipation and that AMR can introduce instabilities, this thesis

aims to define a complex and well-structured AMR criterion capable of accurately capturing

the underlying physical phenomena while avoiding numerical issues. This criterion will be

presented and calibrated with careful consideration of computational cost and the frequency of

iterative mesh modifications. The impact of the proposed criterion will be tested across different

LES models and test scenarios. This is an important step towards making high-fidelity AMR

simulations more dependable.

15

1.4 Thesis Structure

This thesis is organised into seven chapters with corresponding subchapters. The introductory

chapter presents a literature review on adaptive mesh refinement, the main research objectives

and the hypothesis.

The second chapter details the numerical modelling framework used in this thesis. It covers

the governing equations, the finite volume method, and a range of turbulence models. The

chapter concludes with the introduction and validation of test cases used later in the thesis.

The third chapter evaluates OpenFOAM’s native adaptive mesh refinement capabilities. It

starts with an overview of the existing framework, followed by the implementation of a two-

dimensional refinement class. The newly implemented two-dimensional and existing three-

dimensional refinement classes are then validated using the previously defined test cases.

The fourth chapter introduces a multi-criteria refinement algorithm. This algorithm allows

simultaneous use of multiple independent refinement criteria, including geometric constraints,

and is validated on two-dimensional and three-dimensional test cases.

The fifth chapter investigates strategies for dynamic load balancing in simulations using

adaptive mesh refinement. Two approaches are proposed, and their impact on computational

efficiency is assessed on a select test case.

The sixth chapter introduces a composite refinement criterion designed for large eddy sim-

ulation. Existing criteria are reviewed, and a new composite formulation is proposed. The

criterion is validated on three distinct test cases introduced in Chapter 2.

The final chapter summarises the main findings of the research and reflects on the scientific

contributions. The limitations of the current approach are discussed, and suggestions for future

research directions are outlined.

16

2 NUMERICAL MODELLING AND
VALIDATION CASES

The motion of fluids, from large-scale weather systems to blood flow in the human body, is gov-

erned by physical laws. These laws are described mathematically by complex, non-linear partial

differential equations. For most scenarios encountered in science and engineering, finding ex-

act solutions to these equations is often too difficult or even impossible. Consequently, the field

of computational fluid dynamics emerged, centred around transforming governing differential

equations into a solvable system of algebraic equations.

2.1 Governing Equations of Fluid Flow

Fluid motion is mathematically described by the fundamental physical conservation laws of

mass, momentum, and energy. These conservation laws can be written as partial differential

equations and form the cornerstone of fluid dynamics [3, 27].

Before deriving the governing equations, it is necessary to introduce a fundamental mod-

elling assumption known as the continuum hypothesis, which asserts that fluids can be treated

as continuous media, ignoring their discrete molecular nature [27, 92]. Physical properties such

as density ρ , velocity u, pressure p, temperature T , and viscosity µ are treated as smoothly

varying field variables defined at every point within the domain. The continuum hypothesis is

valid when the characteristic length scale of the flow is much larger than the mean free path of

particles in the fluid [92]. For most engineering applications addressed by CFD, including those

in which AMR is beneficial, this assumption holds true [27, 92].

To formulate these laws, we adopt the Eulerian perspective. Rather than following indi-

vidual fluid particles, as in the Lagrangian approach, the Eulerian viewpoint focuses on fixed

locations in space and observes how fluid properties change as the fluid passes through them

[27]. Central to the Eulerian formulation is the concept of a control volume (CV). The control

volume is a finite region of space over which the conservation laws are applied [27]. The gen-

eral conservation principle for a quantity φ within a control volume V bounded by surface S can

17

be written in integral form as:

∂

∂ t

∫
V

ρφ dV +
∫

S
ρφ(u ·n)dS =

∫
S

Γφ (∇φ ·n)dS+
∫

V
Sφ dV (2.1)

where ρ is density, u is velocity, t is time, n is surface normal vector, Γφ is diffusion coefficient

and Sφ represents a source (or a sink).

2.1.1 Conservation of Mass

Mass conservation implies that the mass inside a CV can only change if there is a net flow of

mass entering or leaving the CV through its boundaries. For a fixed control volume V with

boundary S, the integral form of the mass conservation equation can be derived from the ex-

pression for a control volume (Eq. 2.1) by setting the property φ = 1, with diffusion coefficient

Γφ = 0 and no source terms Sφ = 0:

∂

∂ t

∫
V

ρ dV +
∫

S
ρ(u ·n)dS = 0. (2.2)

The choice of φ = 1, Γφ = 0 and Sφ = 0 isolates pure convective mass transport by eliminating

diffusive and source terms. The term ρ(u · n) represents the mass flux through the control

volume boundary. By utilising the divergence theorem on the surface integral, the differential

form of the mass conservation equation can be derived:

∂ρ

∂ t
+∇ · (ρu) = 0. (2.3)

This equation holds true for compressible and incompressible flows. In the case of incompress-

ible flow, where the material derivative of density ρ is zero, the continuity equation simplifies

to:

∇ ·u = 0. (2.4)

The finite volume method is particularly well-suited for ensuring mass conservation in numer-

ical simulations, as its formulation is based on applying the integral form of the conservation

laws to each discrete control volume within the computational grid [27]. Mass is conserved

exactly in a discrete sense, provided the fluxes are computed consistently across shared faces.

18

2.1.2 Conservation of Momentum

The momentum conservation law is a generalisation of Newton’s second law applied to fluids

[3, 27]. This law states that the rate at which a fluid particle’s momentum changes is equal

to the net force applied to it. Acting forces can be classified into surface forces (pressure and

viscous) and body forces (e.g. gravity) [3, 27]. By defining φ = u in the general control

volume equation [27], analogously to mass conservation, the integral form of the momentum

conservation equation can be derived:

d
dt

∫
V

ρudV +
∫

S
ρu(u ·n)dS =

∫
S

σ ·ndS+
∫

V
ρgdV +

∫
V

fdV (2.5)

where σ is the stress tensor, g represents gravitational acceleration, and f represents other body

forces acting per unit volume. The left side of the equation represents the rate of change and

convective transport of momentum, whereas the right side includes the surface and body forces

acting on the fluid. The differential form can be obtained by applying the divergence theorem

and assuming sufficient smoothness. The resulting vector equation is commonly known as the

Navier-Stokes equation [3]:

∂ (ρu)
∂ t

+∇ · (ρuu) =−∇p+∇ · τ +ρg+ f (2.6)

where ρu is the momentum density, ρuu represents the convective flux of momentum, p is

the static pressure, τ is the viscous stress tensor, ρg represents gravitational body forces, and f

represents other body forces acting per unit volume.

For an incompressible Newtonian fluid with constant dynamic viscosity µ , the viscous stress

tensor can be simplified:

τ = µ
(
∇u+(∇u)T) . (2.7)

Finally, the Navier-Stokes equation can be reduced to:

ρ

(
∂u
∂ t

+u ·∇u
)
=−∇p+µ∇

2u+ρg+ f . (2.8)

The Navier-Stokes equation is challenging to solve primarily due to the non-linear convective

term u ·∇u, which implies interactions between the velocity components and is responsible for

the emergence of complex flow phenomena [92].

19

2.1.3 Conservation of Energy

The energy conservation equation for a fluid can be derived from the first law of thermodynam-

ics. It includes the effects of convection, heat conduction, work done by surface forces (pressure

and viscous stresses), and heat addition from body forces or internal sources. By substituting

φ = E in the general control volume equation, analogously to mass conservation, and including

appropriate source terms for work and heat sources, the integral form of the energy conservation

equation can be derived:

d
dt

∫
V

ρE dV +
∫

S
ρEu ·ndS = −

∫
S

pu ·ndS+
∫

S
(τ ·u) ·ndS

−
∫

S
q ·ndS+

∫
V

ρ(g ·u)dV +
∫

V
Q̇dV

(2.9)

where E is the total energy per unit mass, E = e+ 1
2 |u|

2, with e being internal energy, q is the

heat flux vector, and Q̇ accounts for internal heat sources. By applying the divergence theorem

to the surface integrals, the differential form of the energy equation can be obtained:

∂ (ρE)
∂ t

+∇ · (ρEu) =−∇ · (pu)+∇ · (τ ·u)−∇ ·q+ρ(g ·u)+ Q̇ . (2.10)

The energy equation is particularly important for problems involving compressible flows, where

density changes are coupled with temperature and pressure variations via an equation of state,

or for flows with significant heat transfer [27]. For isothermal, incompressible flows, the energy

equation can be simplified and decoupled [27].

2.2 Principles of the Finite Volume Method

Numerical discretisation implies an approximation of continuous derivatives and integrals in

the governing equations at a finite number of points or over a finite number of volumes within

the computational domain [27, 92]. The governing partial differential equations in computa-

tional fluid dynamics are typically discretised using the finite volume method. The widespread

adoption of FVM in CFD stems from its integral-based formulation of conservation laws [27].

In the finite volume method, the computational domain is partitioned into a finite number

of non-overlapping control volumes or cells [27]. The integral form of the conservation laws is

applied directly to each cell. Surface integrals in the governing equations are approximated as

20

sums of fluxes across the faces of each cell, with fluxes evaluated using interpolated face values

based on neighbouring cell centres. Volume integrals are typically approximated by assuming

that the integrand is constant within each cell and using its value at the cell centre [27].

Discretisation converts the integral conservation law into an algebraic equation linking a

cell to its neighbours. The resulting discrete equation for a quantity φ takes the general form:

aPφ
n+1
P = ∑

N
aNφ

n+1
N +b (2.11)

where φ
n+1
P is the value of φ at the centre of the current cell P, φ

n+1
N are the values at neigh-

bouring cells N, aP and aN are coefficients determined by the discretisation of the fluxes and

source terms and b accounts for contributions from source terms and boundary conditions.

An important characteristic of FVM is that flux conservation is enforced at the level of

each face: the flux leaving one control volume through a shared face is exactly equal (but

opposite in sign) to the flux entering the adjacent volume. As a result, conservation of mass,

momentum, and energy is guaranteed both locally (at the cell level) and globally (across the

entire computational domain) [27]. This property holds true regardless of the mesh size, making

FVM robustly conservative even on coarse grids.

2.3 Turbulence Modelling

Turbulence is a complex and inherently chaotic fluid motion fundamental to natural and engi-

neered systems. It is characterised by irregular fluctuations in velocity and pressure [27]. This

regime contrasts with laminar flow, which is smooth and orderly and typically occurs at low

Reynolds numbers (depending on the problem and conditions). In turbulent flow, inertial forces

dominate over viscous forces [27, 92].

Turbulent flows are inherently unsteady, three-dimensional, and rotational and feature un-

predictable fluctuations across a wide range of time and length scales [27]. These flows are

statistically described rather than deterministically predicted, as the instantaneous state of the

flow cannot be precisely determined [92]. Turbulence is characterised by swirling, vortical

structures known as eddies, ranging from large scales that extract energy from the mean flow

down to very small scales.

21

Turbulent flows are dissipative. Kinetic energy is transferred from large, energy-containing

eddies to progressively smaller eddies through a process called the energy cascade [27, 83]. This

energy transfer primarily occurs within the inertial subrange, where energy cascades from large

to small eddies with minimal viscous dissipation at intermediate scales. The energy dissipation

becomes significant at the smallest scales, the Kolmogorov microscales, where viscous forces

dominate and dissipate the kinetic energy into internal energy [83, 92]. These microscales corre-

spond to the smallest turbulent eddies in the flow. Maintaining turbulence requires a continuous

energy supply to counteract dissipation [92].

The transition from a laminar to a turbulent flow regime occurs near a critical Reynolds num-

ber and is characterised by turbulence intermittently developing within the otherwise laminar

flow [27]. The onset of turbulence is sensitive to initial conditions such as surface roughness,

free-stream turbulence, pressure gradients, and geometric features, which can induce flow in-

stabilities.

Given the wide range of scales involved, turbulent flows are difficult to resolve numeri-

cally. Direct numerical simulation (DNS) is the most accurate simulation approach because

it resolves all turbulence scales, but it is computationally prohibitive for practical applications

due to the exponential growth in computational effort. Consequently, turbulence models, which

model unresolved turbulent motions, are commonly used. The most widely employed models

are Reynolds-averaged Navier-Stokes (RANS) and large eddy simulation. RANS offers a com-

putationally efficient approach by time-averaging the effects of turbulence at the cost of reduced

physical fidelity, while LES resolves larger eddies and models smaller ones, providing a better

balance between accuracy and computational cost [27, 92].

2.3.1 Reynolds-Averaged Navier-Stokes Equations

The core idea of the Reynolds-averaged Navier-Stokes approach is to focus on the mean be-

haviour of turbulent flows rather than directly resolving all the instantaneous fluctuations. To

derive the RANS equations, the Reynolds decomposition must first be applied to the instanta-

neous Navier-Stokes equations, followed by the application of an averaging operator [27, 92].

In Reynolds decomposition, any instantaneous flow variable φ(x, t) is split into a mean and a

fluctuating part [27, 92]:

φ(x, t) = φ(x)+φ
′(x, t) (2.12)

22

where φ is the mean (time-averaged or ensemble-averaged) quantity and φ ′ is the turbulent

fluctuation about the mean. Different types of averaging are employed depending on the nature

of the flow. Time averaging is used when the flow is statistically steady in time [27]:

φ(x) = lim
T→∞

1
T

∫ T

0
φ(x, t)dt (2.13)

where T is a sufficiently long time over which fluctuations average out. Ensemble averaging is

used for statistically non-stationary flows and is defined as [27]:

φ(x, t) = lim
N→∞

1
N

N

∑
n=1

φ
(n)(x, t) (2.14)

where the average is taken across many independent realizations of the flow at the same instant

in time. A key property of the Reynolds operator is that the average of a fluctuating quantity

equals [92]:

φ ′ = 0 . (2.15)

Assuming incompressible flow with constant fluid properties, the conservation equations reduce

to:

∇ ·u = 0, (2.16)

ρ

(
∂u
∂ t

+(u ·∇)u
)
=−∇p+µ∇

2u−ρ∇ ·u′u′ (2.17)

where u is the mean velocity vector, p is the mean pressure, u′u′ represents the normalised

Reynolds stress and µ is the dynamic viscosity.

The Reynolds stress tensor τR =−ρu′u′ captures the momentum transport caused by turbu-

lent velocity fluctuations. Physically, these stresses act like additional turbulence-induced stress

on the mean flow field, analogous to molecular viscous stresses, but arising from turbulent eddy

motion instead [38]. The introduction of the Reynolds stress tensor results in more unknowns

than available equations, creating the so-called closure problem. This prevents direct analytical

solution of the RANS equations, hence turbulence models are introduced to approximate the

unknown stresses and close the system.

To address the closure problem, most RANS turbulence models rely on the Boussinesq

hypothesis, which draws an analogy between turbulent eddy-induced momentum transport and

molecular viscosity. It assumes that the Reynolds stresses are proportional to the mean rate

23

of strain tensor, much like viscous stresses are in a Newtonian fluid [94]. For incompressible

flows, the Boussinesq approximation can be used to define the Reynolds stress tensor:

−ρu′u′ = 2µtS− 2
3

ρkI (2.18)

where S = 1
2

(
∇u+(∇u)T) is the mean strain rate tensor, k = 1

2 tr
(
u′u′

)
is the turbulent ki-

netic energy, µt is the turbulent viscosity, and I is the identity tensor. Using the Boussinesq

hypothesis, the RANS momentum equation can be rewritten to include the turbulent viscosity:

ρ

(
∂u
∂ t

+(u ·∇)u
)
=−∇

(
p+

2
3

ρk
)
+∇ ·

[
(µ +µt)

(
∇u+(∇u)T)] . (2.19)

The turbulent viscosity is not a physical property of the fluid but a property of the turbulent

state of the flow and needs to be modelled [92]. Typical approaches involve solving additional

transport equations for turbulence quantities (N-equation turbulence models).

A fundamental limitation of the Boussinesq hypothesis is the assumption that turbulent fluc-

tuations are isotropic. This assumption often breaks down in complex flows featuring strong

streamline curvature, swirl, rotation, stagnation regions, or significant separation [92]. In such

cases, advanced (typically non-linear) RANS turbulence models are necessary for accurate pre-

dictions [94].

2.3.2 Large Eddy Simulation

Large eddy simulation is a turbulence modelling strategy that aims to provide higher fidelity

than RANS by directly resolving a portion of the turbulent scales while modelling the remain-

der, balancing accuracy and computational cost [92]. The objective is to capture detailed in-

formation about turbulent flow structures and their unsteadiness without incurring the compu-

tational cost of DNS.

The underlying concept of LES is rooted in Kolmogorov’s theories, which describe a wide

range of eddy sizes in turbulent flows [83, 92]. The largest eddies are anisotropic, contain most

of the turbulent kinetic energy and dominate momentum transport [83, 92]. In contrast, the

smallest eddies are more isotropic, universal, and primarily responsible for energy dissipation

[27, 92]. LES leverages this scale separation by dedicating computational resources to directly

resolve the large, energy-containing eddies while modelling the influence of smaller, unresolved

24

scales, i.e. subgrid scales (SGS) [38, 92]. A well-resolved LES aims to capture approximately

80 % or more of the turbulent kinetic energy [83].

Mathematically, LES achieves scale separation by applying a spatial low-pass filter with a

filter width ∆ to the governing Navier-Stokes equations [27, 83]. This is formally noted as a

convolution integral [92]:

φ̃(x, t) =
∫

V
G(x−x′,∆)φ(x′, t)dV ′ (2.20)

where G is the filter kernel. Filtering averages the flow field, attenuating fluctuations smaller

than ∆ while retaining larger structures. Any instantaneous variable φ can thus be decomposed

into a resolved (filtered) component φ̃ , and a sub-filter component φ ′ = φ − φ̃ [27, 83].

In many practical implementations, filtering is implicit, i.e. the computational grid acts

as the filter. Here, ∆ is typically related to the local grid size, and discretisation introduces

additional implicit filtering effects [92]. Consequently, the quality of an LES is directly linked

to the grid resolution, with finer grids resolving more turbulent scales.

The filtered Navier-Stokes equations, governing the resolved velocity ũ and pressure p̃

fields, can be derived by applying filtering to the Navier-Stokes equations. Assuming incom-

pressible flow and the absence of external body forces, the filtered Navier-Stokes equations

reduce to:

∇ · ũ = 0, (2.21)

∂ (ρũ)
∂ t

+∇ · (ρũu) =−∇p̃+∇ · (2µS̃) (2.22)

where S̃ = 1
2

(
∇ũ+(∇ũ)T) is the resolved strain-rate tensor.

Filtering the non-linear convective term leads to a closure problem since the filtered product

of velocity components is not equal to the product of filtered velocities [27, 83]. The difference

between these values is the subgrid-scale stress tensor:

τ
SGS = ρ (ũu− ũ ũ) . (2.23)

Incorporating τSGS into the filtered momentum equation yields:

∂ (ρũ)
∂ t

+∇ · (ρũũ) =−∇p̃+∇ ·
(

2µS̃− τ
SGS

)
. (2.24)

25

The SGS stress tensor τSGS is an additional divergence term in the filtered momentum equation

[83, 92]. Physically, it models the effect of unresolved scales on the resolved flow, accounting

for momentum transfer, the energy cascade, and subgrid-scale dissipation. To approximate τSGS

in terms of resolved quantities, a subgrid scale model must be used.

2.4 Numerical Modelling in OpenFOAM

OpenFOAM (Open Field Operation and Manipulation) [111] is an open-source collection of

C++ libraries and applications designed to solve systems of partial differential equations, with

a focus on problems in continuum mechanics. The primary numerical method employed is

the FVM. Although extensively used in computational fluid dynamics, OpenFOAM’s flexible

architecture supports a wide range of PDE-driven applications, including solid mechanics, elec-

tromagnetics, and chemical processes.

OpenFOAM is provided as free and open-source software under the GNU General Public

License. This has led to the development of several major forks. The three most prominent are:

• OpenFOAM maintained by the OpenFOAM Foundation [29],

• OpenFOAM maintained by ESI-OpenCFD [26],

• foam-extend, a community-driven fork [85].

Even though these forks originated from the same codebase, their development paths have di-

verged. Consequently, they have different syntax variations, offer different feature sets, and are

not always cross-compatible.

OpenFOAM uses a modular, object-oriented architecture with core functionality organised

into libraries, which handle tasks such as mesh manipulation, discretisation, linear algebra,

turbulence modelling, and input/output. On top of these core libraries sits the application layer,

which is divided into solvers and utilities:

• Solvers are executable applications designed to address specific classes of physical prob-

lems (e.g., simpleFoam for steady-state incompressible turbulent flow, pisoFoam for

transient incompressible flow, and interFoam for multiphase flows using the volume

of fluid (VOF) method).

26

• Utilities are supplementary applications designed for preprocessing, postprocessing, and

case manipulation.

A typical OpenFOAM case follows a specific directory structure with three primary subdirec-

tories (this can vary significantly):

• constant contains data that typically remains unchanged throughout the simulation:

◦ Mesh data stored in the polyMesh subdirectory.

◦ Dictionaries that define material properties, such as physicalProperties, momen-

tumTransport, and thermophysicalProperties.

◦ Dictionaries that control specific simulation aspects, such as dynamicMeshDict for

dynamic mesh operations.

• system contains configuration files that control the numerical and algorithmic execution

of the simulation. Essential files include:

◦ controlDict dictionary, which governs the overall simulation execution.

◦ fvSchemes dictionary, which defines the numerical discretisation schemes for dif-

ferent terms in the governing equations.

◦ fvSolution dictionary, which specifies the algorithms used to solve the discretised

equations, linear solvers, preconditioners, tolerances, and relaxation factors.

◦ Additional dictionaries such as those for parallel execution, function objects, or

other specialised settings.

• time directories named according to the simulation specifics. These directories store the

field data (physical quantities). Initial and boundary conditions for all relevant fields are

specified in the starting time directory (typically 0).

A standard case workflow typically begins with the definition of the computational mesh,

either by using built-in utilities such as blockMesh or snappyHexMesh or by importing a mesh

from an external source. Physical properties and case-specifics are subsequently specified in

the constant directory. The initial conditions, including relevant boundary conditions and field

values, are set in the 0 directory. Finally, numerical settings, solver controls, and runtime pa-

rameters are configured in the system directory. Once the setup is complete, the appropriate

27

solver (application) is executed. Simple problems are typically solved in serial mode. For

parallel execution, the mesh must first be decomposed, after which the solver is run using the

Message Passing Interface (MPI) wrapper. During runtime, the solver outputs field data (and

other results) to time-stamped directories that track the simulation’s evolution. In parallel runs,

reconstruction is needed for postprocessing.

2.5 Validation of Laminar and RANS Benchmark Cases

This section introduces a set of benchmark problems solved using either a laminar flow assump-

tion or RANS turbulence models. Three well-established test cases are considered: flow around

a circular cylinder, bubble dynamics in a rising gas-liquid system, and a dam-break problem.

Each case is simulated using conventional (non-adaptive) grid generation on three mesh res-

olutions. The simulation setups are described in detail, and the results are compared against

experimental or high-fidelity numerical reference data.

2.5.1 Flow Around a Cylinder

Two distinct test cases of flow around a cylinder are considered: a two-dimensional test case and

a three-dimensional test case. Both cases are based on the benchmark configuration proposed by

Schäfer and Turek [93]. The working fluid is incompressible, with constant density ρ = 1 kg/m3

and kinematic viscosity ν = 1 ·10−3 m2/s. Due to the low Reynolds number, the flow is laminar.

Two-Dimensional Case

The two-dimensional test case is defined in a rectangular domain 2.2 m × 0.41 m in size. The

top and bottom boundaries of the domain are treated as no-slip walls. A stationary cylinder

is located 0.15 m downstream from the inlet and 0.15 m above the bottom wall. The inflow

velocity varies in time and follows the parabolic profile defined in benchmark case 2D-3 [93],

with a mean velocity Um = 1.5 m/s:

u(y, t) =
4Umy(H − y)

H2 sin
(

πt
8

)
(2.25)

where u is the streamwise velocity component, H = 0.41 m is the domain height, y is the vertical

coordinate, and t is time. The simulation is inherently unsteady and is run over a period of 8 s.

28

The Reynolds number varies in time, spanning the range 0 ≤ Re ≤ 100. Figure 2.1 provides an

overview of the computational domain.

Figure 2.1: Computational domain for two-dimensional flow around a
cylinder.

The simulation is conducted using the unsteady, incompressible solver pimpleFoam. An

adaptive time-stepping strategy is employed to maintain a maximum Courant number of Comax =

0.05. This ensures that the local time step is automatically adjusted according to the local mesh

resolution and flow velocity, thereby satisfying the Courant-Friedrichs-Lewy (CFL) stability

criterion:

CFL =
ux∆t
∆x

+
uy∆t
∆y

+
uz∆t
∆z

(2.26)

where ux, uy, and uz are the velocity components in the x-, y-, and z-directions, respectively, and

∆x, ∆y, and ∆z are the corresponding local grid spacings.

Second-order accurate numerical schemes are employed throughout. Time integration is

performed using an implicit, unbounded, second-order accurate scheme. Spatial derivatives,

including the gradient, Laplacian, and surface-normal gradient, are discretised using second-

order accurate schemes, with corrections applied for the Laplacian and surface-normal gradient.

For the convective terms, limitedLinear scheme is used.

The forces acting on the cylinder are continuously monitored. Based on calculated forces,

the non-dimensional drag and lift coefficients, CD and CL, are derived to quantify the aerody-

namic behaviour of the cylinder under unsteady flow conditions:

CD =
2Fw

ρU2DH
, CL =

2Fa

ρU2DH
(2.27)

29

where Fw and Fa are the force components in the x- and y-directions, respectively, ρ is the fluid

density, U is the mean velocity, and D is the diameter of the cylinder.

Two-Dimensional Flow Results

Three simulations were conducted for the two-dimensional case using progressively finer grids,

with r = 1.5 scaling factor between each level. Drag and lift coefficient results are shown in

Figure 2.2. Several key observations can be made.

(a) (b)

Figure 2.2: Resulting drag and lift coefficients for the two-dimensional
cylinder case: (a) drag coefficient, (b) lift coefficient.

First, concerning the drag coefficient, CD, the overall trend is well captured by all grids

throughout the simulation. Minor differences appear around t ≈ 4 s, where the coarser grids tend

to overpredict drag. As the mesh is refined, the results, particularly on the fine grid, converge

towards the reference data of Schäfer and Turek [93].

In contrast, the lift coefficient, CL, is more sensitive to grid resolution. Due to its lower mag-

nitude and oscillatory behaviour, discrepancies are more pronounced. Although all grids ini-

tially capture the general oscillatory behaviour, error accumulation over time leads to degraded

accuracy for coarser meshes. This is especially evident in the final second of the simulation,

where coarse grids fail to resolve the oscillations accurately. The finest grid produces results

that align well with expectations and show good agreement with the reference data.

Three-Dimensional Case

The three-dimensional test case is defined on a rectangular domain measuring 2.5 m × 0.41 m

× 0.41 m in the streamwise x, vertical y, and spanwise z directions. A stationary cylinder is

30

located 0.45 m downstream from the inlet, 0.15 m above the bottom wall, and spans the entire

width of the domain. All boundaries, including the top, bottom, and side walls, are treated as

no-slip walls.

The inflow velocity for the three-dimensional 3D-3Z [93] test case follows a new time-

dependent profile with a mean velocity of Um = 2.25 m/s:

u(y,z, t) =
16Umyz(H − y)(H − z)

H4 sin
(

πt
8

)
(2.28)

where y and z are the vertical and spanwise coordinates, respectively, and H = 0.41 m is the

domain height (and width in the spanwise direction). The flow is unsteady and laminar, with

the simulation executed for 8 s.

The numerical setup, including solver, temporal and spatial discretisation, fluid properties,

and force monitoring, is identical to that used in the two-dimensional case. Throughout the

simulation, drag and lift coefficients, CD and CL, are continuously monitored to determine the

aerodynamic behaviour of the cylinder under unsteady flow conditions. An overview of the

computational domain is shown in Figure 2.3.

Figure 2.3: Computational domain for three-dimensional flow around a
cylinder.

Three-Dimensional Flow Results

Analogously to the two-dimensional case, results for the three-dimensional case were assessed

on three progressively finer grids with r = 1.5. Drag and lift coefficient results are shown in

Figure 2.4.

31

(a) (b)

Figure 2.4: Resulting drag and lift coefficients for the three-dimensional
cylinder case: (a) drag coefficient, (b) lift coefficient.

The findings for the drag coefficient are similar. Compared to the two-dimensional case,

the errors are smaller but extend over a longer time interval. All grid types show acceptable

agreement with the reference data from Schäfer and Turek [93].

In contrast, the lift coefficient results are significantly worse on the coarser grids. Between

t ≈ 2 s and t ≈ 6 s, errors can reach up to 15 % on the coarser meshes, although they tend to de-

crease near the bounds of this interval. Conversely, the finest grid shows acceptable agreement

with the reference data [93], with only minor discrepancies around t = 4 s.

2.5.2 Rising Bubble Dynamics

The two considered test cases are based on the works of Hysing et al. [45] and Adelsberger

et al. [1]. Both involve isothermal, incompressible flow of immiscible fluids and simulate the

unsteady rise of a bubble in a water column. The Reynolds number is 35 in both cases, i.e. the

flow is laminar. The fluid properties for both test cases are summarised in Table 2.1. Given the

nature of the problem, the VOF solver interFoam is used.

Table 2.1: Fluid properties employed in the bubble dynamics test cases.

ρ1 ρ2 µ1 µ2 g σ

1000 kg/m3 100 kg/m3 10 Pa·s 1 Pa·s 0.98 m/s2 24.5 N/m

The volume of fluid method is a numerical technique designed to simulate the flow of two or

more immiscible fluids. Introduced by Nichols and Hirt [43, 75], VOF belongs to the family of

32

interface-capturing methods. Unlike interface-tracking methods, which explicitly follow the ge-

ometric interface between fluids, VOF represents the interface implicitly using a scalar variable

known as the volume fraction α , which defines the proportion of a control volume occupied by

a given phase [43].

The evolution of the fluid interface is governed by a conservative transport equation for the

volume fraction [17]:
∂α

∂ t
+∇ · (uα) = Sα (2.29)

where u is the velocity field and Sα is a source or a sink, and is typically zero, Sα = 0 [17]. A

fundamental constraint of the VOF method is that the sum of volume fractions for all phases in

any control volume equals:
n

∑
i=1

αi = 1 (2.30)

where αi is the volume fraction of phase i, and n is the total number of fluid phases. In systems

containing two fluids, it is therefore sufficient to solve for the volume fraction of one phase,

with the other inferred from the constraint [19].

The VOF method employs a mixture approach, solving a single set of momentum equations

for the entire fluid mixture [19]. Mixture properties like density and viscosity are calculated as

volume-fraction-weighted averages of the individual phases:

ρ =
n

∑
i=1

αiρi, µ =
n

∑
i=1

αiµi . (2.31)

Two-Dimensional Case

The computational domain for the two-dimensional case is a simple rectangle measuring 1.0 m

× 2.0 m in the x- and y-directions, respectively. A cylinder with a radius of 0.5 m is placed at

the centre of the domain in the x direction and 0.5 m above the bottom boundary. The mantle

of the cylinder defines a sharp interface between two fluids: the fluid with density ρ1 occupies

the region outside, while the fluid with density ρ2 is inside. The top and bottom boundaries

are treated as no-slip walls, while the left and right boundaries are modelled as slip walls. The

computational domain is shown in Figure 2.5a.

The simulation runtime is t = 3 s. Adaptive time-stepping is employed, and the maximum

Courant number is limited to Comax = 0.05. Second-order accurate numerical schemes are used

throughout. Time integration is performed with an implicit, bounded, second-order accurate

33

(a) (b)

Figure 2.5: Computational domain for the rising bubble test case: (a) 2D
domain, (b) 3D domain.

scheme. Spatial derivatives, including the gradient, Laplacian, and surface-normal gradient,

are discretised using second-order accurate schemes. Convective terms are discretised using

the limitedLinear scheme for velocity and the Gauss interfaceCompression vanLeer 1

scheme for the volume fraction field. During runtime, bubble dynamics are monitored, specifi-

cally the centre of mass, rise velocity, and sphericity.

Two-Dimensional Flow Results

Three successively refined grids were used for the two-dimensional case. The refinement factor

between levels was r = 1.333. The results obtained on each grid, along with the reference data

from [45], are shown in Figure 2.6, for both the rise velocity, Uy, and the sphericity, ψ .

The data obtained from all three grids are similar for the rise velocity, with no significant

differences observed between the grid types. Compared to the reference data, the maximum

error does not exceed 5 %. The values are slightly underpredicted. Sphericity values follow

a similarly consistent trend. The finest grid exhibits the smallest overall deviation. The errors

remain low across all grid types, suggesting that the employed VOF method can accurately

capture the bubble dynamics in the two-dimensional scenario.

34

(a) (b)

Figure 2.6: Results for the two-dimensional bubble dynamics case: (a) rise
velocity, (b) sphericity.

Three-Dimensional Case

The three-dimensional case is analogous to the previously defined two-dimensional case, with

the only difference being the addition of the third dimension. The computational domain now

measures 1.0 m × 2.0 m × 1.0 m in the x-, y-, and z-directions, respectively. The spherical

bubble is centred in the x–z plane and placed 0.5 m above the bottom boundary. This added

dimensionality implies new boundary conditions. In the three-dimensional case, all boundaries

are treated as no-slip walls. All remaining parameters and numerical settings are retained from

the two-dimensional setup and are described in the previous subsection.

In addition to the quantities already monitored during runtime, namely the centre of mass,

rise velocity, and sphericity, the bubble diameters are now also computed. The three-dimensional

computational domain is shown in Figure 2.5b.

Three-Dimensional Flow Results

Analogously to the two-dimensional case, progressively finer grids with a refinement factor of

r = 1.333 were used for the three-dimensional case. Based on the results shown in Figure 2.7,

the rise velocity values are in excellent agreement with the reference data [1]. The spheric-

ity, however, shows a measurable underprediction starting at approximately t ≈ 1 s. Although

present, this deviation is effectively small, consistent across all grids, and is in line with results

from literature [1].

35

(a) (b)

Figure 2.7: Results for the three-dimensional bubble dynamics case: (a)
rise velocity, (b) sphericity.

The computed position of the centre of mass, CoMy, and the bubble diameter (measured

along the x and z axes) also show excellent agreement with the reference data. Apart from a

slight initial deviation in diameter observed on the coarse grid, all three grids - coarse, medium,

and fine - closely match the reference data. These results are presented in Figure 2.8.

(a) (b)

Figure 2.8: Additional monitored metrics in the three-dimensional bubble
dynamics case: (a) centre of mass, (b) bubble diameter along the x axis.

2.5.3 Breaking of a Dam

The following case replicates the experiment by Kleefsman et al. [54], which models the impact

of a water wave on a container positioned on a ship’s deck [54]. The computational domain

is a rectangular tank measuring 3.22 m × 1.00 m × 1.00 m. All boundaries are treated as

36

no-slip walls except for the top. The top boundary uses a Neumann condition for velocity

during outflow and a Dirichlet condition during inflow. A water column measuring 0.55 m

in height and 1.228 m in length is initialised on the right side of the domain. The release is

instantaneous at t = 0 s. A cuboid obstacle measuring 0.403 m × 0.161 m × 0.161 m is placed

centrally, 0.6635 m from the left boundary. An overview of the domain configuration is shown

in Figure 2.9.

Figure 2.9: Computational domain for the dam break test case.

The problem is inherently multiphase. VOF solver interFoam is employed. Fluid proper-

ties are defined according to the original paper [54]. The SST k-ω turbulence model is used.

Wall functions are applied at the boundaries, specifically kqRWallFunction, nutkWallFun-

ction, and omegaWallFunction for turbulent kinetic energy, kinematic viscosity, and specific

dissipation rate, respectively.

The SST model is a two-equation RANS model that solves transport equations for the tur-

bulent kinetic energy, k, and the specific dissipation rate, ω [67]. The transport equation for k

is:
∂ (ρk)

∂ t
+∇ · (ρuk) = ∇ ·

[(
µ +

µt

σk

)
∇k

]
+Pk −β

∗
ρkω +Sk (2.32)

where Pk is the production term (often defined as P̃k = min(Pk,Cρkω), where C is a constant

that limits the production of k), β ∗ is the model constant for the destruction of k, and Sk is a

source term. The transport equation for ω is:

∂ (ρω)

∂ t
+∇ · (ρuω) = ∇ ·

[(
µ +

µt

σω

)
∇ω

]
+Pω −βρω

2 +Dω +Sω (2.33)

37

where Pω is the production term, σω is the turbulent Prandtl number for ω , Dω is the cross-

diffusion term and Sω a source term. The turbulent eddy viscosity is given by:

µt =
ρa1k

max(a1ω,SF2)
(2.34)

where a1 is a model constant, S is the magnitude of the strain rate tensor, and F2 is a second

blending function.

Time integration is performed with an implicit, bounded, second-order accurate scheme.

Spatial derivatives, including the gradient, Laplacian, and surface-normal gradient, are discre-

tised using second-order accurate schemes. Convective terms are discretised using first-order

accurate schemes, except for the volume fraction, which uses Gauss interfaceCompression

vanLeer 1 scheme. Adaptive time-stepping is employed with a maximum Courant number

limited to Comax = 0.5. The total simulation time is set to t = 7 s.

(a) Pressure at point P1. (b) Pressure at point P3.

(c) Water height at point H2. (d) Water height at point H4.

Figure 2.10: Selected results for the dam break test case using conventional
(non-adaptive) grids.

38

Three distinct grids are considered - coarse, medium and fine. Grids are progressively finer

with a refinement factor r = 1.333. A total of eight pressure probe locations and four water level

monitoring locations are defined [54]. The water surface level is determined using the built-

in interfaceHeight utility. Results are evaluated at four selected measurement locations.

Selected results for water level and pressure are presented in Figure 2.10.

Pressure results show a slight overprediction and delayed response at point P1. However,

the subsequent pressure wave aligns well with experimental data, with notable deviations only

appearing after t = 4 s. At point P3, an initial underprediction is observed. The results agree

well with experimental data up to t = 4 s. This holds true for all grids.

The water level is reasonably well captured at locations H2 and H4 up to t ≈ 1.5 s. At

H2, a plateau can be observed. While the general trend is well captured, it remains offset after

t ≈ 2.5 s and is not fully aligned with the experimental data. Similar behaviour is seen at H4,

with a general underprediction of the water height. All grids exhibit similar trends, suggesting

that discrepancies may also stem from limitations in the measurement utility.

2.6 Validation of LES Benchmark Cases

This section introduces a set of benchmark problems simulated using LES. Selected cases rep-

resent canonical turbulent flow scenarios: turbulent channel flow, flow around a square cylinder

and turbulent mixing of a jet in crossflow. Each case is simulated using conventional (non-

adaptive) grid generation, with numerical setups described in detail. Simulation results are

compared against experimental measurements or high-fidelity numerical reference data. These

benchmarks establish a baseline performance reference for evaluating the impact of adaptive

mesh refinement on LES, as explored in later sections.

2.6.1 Turbulent Channel Flow

Turbulent channel flow is modelled for a friction Reynolds number Reτ ≈ 395, where Reτ =

δUτ/ν , with Uτ =
√

τw/ρ . Here, δ denotes the channel half-height. The computational domain

is rectangular, measuring 20π m × 2 m × π m in the x-, y-, and z-directions, respectively. The

top and bottom boundaries are no-slip walls. The remaining walls are treated as periodics

(cyclic). An overview of the computational domain is given in Figure 2.11.

39

Figure 2.11: Computational domain for the turbulent channel test case.

The fluid properties and general case setup follow the DNS configuration by Moser et al.

[70]. Flow perturbations were introduced using the perturbU utility [104]. As the utility was

originally developed for an older version of OpenFOAM, it was ported to OpenFOAM 10 for

use in this thesis. Starting from t = 0 s, the simulation was allowed to develop for 10 flow-

through times, after which time-averaging was conducted over a period of 50 flow-through

times. The simulation was conducted with a fixed time step of ∆t = 0.001 s.

The computational mesh consists of 502 × 64 × 100 cells, with grid grading applied in the

wall-normal direction y. The corresponding dimensionless cell sizes are ∆x+ ≈ 49, ∆y+ ≈ 1.8

near the wall, increasing to ∆y+ ≈ 18 in the channel core, and ∆z+ ≈ 12. These values are gen-

erally consistent with the grid resolution reported in [104]. The unsteady incompressible solver

pimpleFoam was used, with second-order accurate schemes applied to all terms, including time

and convective terms.

Turbulence was modelled using the Smagorinsky subgrid-scale model [98] with van Driest

damping to improve near-wall behaviour. Additionally, a test case was conducted using the

dynamic Smagorinsky model proposed by Lilly [63]. The model implementation for Open-

FOAM, originally developed by Passalacqua [2], was ported to OpenFOAM 10 for use in this

thesis. The subgrid filter width was defined as the cube root of the local cell volume.

The Smagorinsky model [98] employs the eddy-viscosity hypothesis to close the filtered

Navier–Stokes equations. It assumes a linear relationship between the deviatoric part of the

subgrid-scale stress tensor and the rate of strain tensor of the resolved velocity field:

τ
SGS = τ − 1

3
tr(τ)I =−2νSS (2.35)

40

where tr is the trace of the stress tensor, I is the identity tensor, νS is the eddy viscosity, and S is

the resolved rate of strain tensor. The Smagorinsky eddy viscosity νS is given by:

νS = (Cs∆)
2 ∣∣S∣∣ (2.36)

where Cs is the Smagorinsky constant, ∆ is the filter width, and
∣∣S∣∣ is the magnitude of S.

The dynamic Smagorinsky model [63] calculates the Smagorinsky coefficient, Cs, dynam-

ically rather than using a fixed value, in order to minimise the error in the modelled Germano

identity. The dynamic coefficient Cs is calculated by applying averaging as follows:

C2
s =

⟨Ld : M ⟩
⟨M : M ⟩

(2.37)

where ⟨· : ·⟩ denotes an averaging operator applied to the double contraction of the tensors, Ld

is the deviatoric part of the filtered rate of strain tensor L, and M represents the difference

between the modelled and exact subgrid-scale stresses.

The results obtained for both models are generally similar, though some notable discrepan-

cies exist. Since the underlying grid and overall setup are consistent, these differences can be

attributed to the models. For u′u′/U2
τ , a sharp spike is observed for the dynamic model, which

quickly diminishes, after which the results align with the trend of the Smagorinsky model. The

values for u′v′/U2
τ remain largely consistent, though the dynamic model’s results show a better

agreement with the DNS data. Figure 2.12 illustrates noted differences.

(a) (b)

Figure 2.12: Results for the channel flow case using a conventional (non-
adaptive) grid: (a) normalised streamwise Reynolds normal stress u′u′/U2

τ ,
(b) normalised Reynolds shear stress u′v′/U2

τ .

41

The results for v′v′/U2
τ and w′w′/U2

τ exhibit larger discrepancies when compared to the DNS

data, with notable underpredictions in both the spanwise and wall-normal directions. These

discrepancies can be partially attributed to the models themselves, as well as the refinement

of the underlying mesh. The errors are more pronounced in the spanwise direction, although

the general trend is captured. The dynamic model tends to follow the DNS data more closely.

The overall behaviour is expected and consistent with observations in the literature [104]. The

results are shown in Figure 2.13.

(a) (b)

Figure 2.13: Results for the channel flow case using a conventional
(non-adaptive) grid: (a) normalised wall-normal Reynolds normal stress

v′v′/U2
τ , (b) normalised spanwise Reynolds normal stress w′w′/U2

τ .

2.6.2 Flow Around a Square Cylinder

Flow around a bluff body, a square cylinder, at a Reynolds number Re = 21400 was modelled

using LES. The configuration is based on the work by Lyn et al. [65]. The square cylinder (a

prism) is placed within a rectangular domain measuring 20.5D × 2D × 14D, where D = 0.04 m

is the edge length of the square. The cylinder is located 4.5D downstream from the inlet and

6.5D from the bottom boundary. The only no-slip wall in the domain is the cylinder surface,

which uses appropriate wall functions. An overview of the computational domain is shown in

Figure 2.14.

The LES relies on a RANS precursor case, which uses the SST k-ω model. The overall

setup and flow properties are maintained across both simulations to ensure consistency and data

transfer. Unlike the LES, the RANS case employs symmetry boundary conditions for the outer

domain. The working fluid is water, with kinematic viscosity ν = 1 ·10−6 m2/s. In both cases,

42

Figure 2.14: Computational domain for the square cylinder test case.

the pimpleFoam solver is employed. The computational mesh for the RANS case consists of

approximately 184 × 36 × 126 cells, while the LES mesh uses approximately 410 × 40 ×

280 cells, with additional refinement near the cylinder. The first grid point in the wall-normal

direction for LES corresponds to ∆z/D= 0.0015, while the spanwise resolution is ∆y/D= 0.05,

which is finer than in similar studies [69]. ∆x/D is equivalent to the wall-normal spacing.

For the RANS simulation, adaptive time-stepping is used with a maximum Courant number

Comax = 0.9. A blended second-order/first-order accurate scheme is used for time. Spatial

derivatives, including gradients, Laplacians, and surface-normal gradients, are discretised using

second-order accurate schemes. The convective term for velocity uses limitedLinear scheme,

with remaining terms using first-order accurate schemes.

The LES uses a fixed time step ∆t = 5 · 10−5 s. The simulation was allowed to develop

for 10 flow-through times, after which time-averaging was conducted over a period of 20 flow-

through times. A second-order accurate, unbounded, implicit scheme is used for time. All

spatial terms are discretised using second-order accurate schemes. The convective term for

velocity is discretised using the filteredLinear3V scheme. The employed LES model is

WALE [76], with the subgrid filter width defined as the cube root of the local cell volume.

43

The wall-adapting local eddy-viscosity (WALE) model was introduced by Nicoud and Du-

cros [76]. WALE is a zero-equation subgrid-scale turbulence model. It adapts to near-wall

conditions and models unresolved stresses via an effective turbulent viscosity. The subgrid-

scale eddy viscosity, νSGS, is calculated as follows:

νSGS = (Cw∆)2

(
Sd : Sd)3/2(

S : S
)5/2

+
(
Sd : Sd

)5/4
(2.38)

where (· : ·) denotes the double contraction of the tensors, Cw = 0.325 is a model constant, and

∆ is the filter width. The tensors S and Sd are defined as:

S =
1
2
(
∇u+(∇u)T) , (2.39)

Sd =
1
2
(
G2 +(G2)T)− 1

3
I tr(G2) (2.40)

where G = ∇u is the velocity gradient tensor.

In addition to the aforementioned LES case, an additional case using the wall-modelled large

eddy simulation (WMLES) approach is defined. Due to the lack of an available implementation,

the libWallModelledLES library [71] was ported to OpenFOAM 10, with the LES model and

setup remaining consistent across both cases.

WMLES divides the boundary layer into two regions: the outer region, where large eddies

are resolved using LES and standard subgrid-scale models, and the inner region, where small

eddies are modelled due to their resolution [81]. In the inner region, a wall-stress model esti-

mates the wall shear stress, τw, typically based on the velocity field in a sampling layer within

the logarithmic region:

τw = µ

(
∂u
∂n

)
model

≈ τmodel(u,ys,ν) . (2.41)

This stress is then imposed as a boundary condition for LES, linking the inner and outer regions.

Based on the Figure 2.15, results for u′/U agree well with the available experimental data.

The profiles match closely across most cross-sections, with only minor deviations. The WM-

LES case shows slightly better agreement with the reference data.

44

Figure 2.15: Profiles u′/U at various cross-sections for the square cylinder
test case using a conventional (non-adaptive) grid.

For v′/U , as shown in Figure 2.16, at cross-sections x/D = 0, x/D = 1.0, and x/D = 1.5,

irregular trends appear below y/D ≈ 1 and y/D ≈ 0.5 for the latter two. However, the results

converge towards the reference data as y/D increases. These discrepancies are primarily due to

limitations in near-wall resolution and modelling. Overall, the results remain in good agreement

with the measurements.

45

Figure 2.16: Profiles v′/U at various cross-sections for the square cylinder
test case using a conventional (non-adaptive) grid.

2.6.3 Turbulent Mixing of Jet in Crossflow

The present test case investigates turbulent mixing induced by the discharge of a jet into a

crossflow. The setup is based on the work of Galeazzo et al. [36, 37]. The computational domain

is comprised of a circular jet inflow tube with a diameter D = 0.008 m and a length of 0.15 m,

which is connected centrally to the main channel at a distance of 0.1 m downstream from the

crossflow inlet. The main channel is rectangular, measuring 0.3 m in the streamwise direction

and 0.108 m in both the vertical and spanwise directions. The domain includes two inlets - one

for the jet and one for the crossflow - and a single outlet. All remaining boundaries are treated

46

as no-slip walls with appropriate wall-function modelling. A passive scalar, representing the

effluent, is introduced through the jet inlet. The bulk velocity at the crossflow inlet is 9.08 m/s,

while the jet inlet velocity is 37.72 m/s. These conditions correspond to Reynolds numbers of

6.24 ·104 and 1.92 ·104 for the crossflow and the jet, respectively, based on the fluid’s kinematic

viscosity ν = 1.57 ·10−5 m2/s. An overview of the computational domain is provided in Figure

2.17.

Figure 2.17: Computational domain for the turbulent mixing test case.

Following the methodology presented for the square cylinder test case, two LES cases were

prepared, one using a conventional LES approach and the other employing a WMLES strategy.

A precursor RANS simulation was performed using the SST k-ω turbulence model. All simu-

lations were conducted using a custom solver, scalarPimpleFoam, based on pimpleFoam and

extended to solve the scalar transport equation.

For the RANS simulation, a turbulent Schmidt number of 0.9 was employed. Adaptive

time-stepping was used with Comax = 0.8. A blended second-order/first-order accurate scheme

was used for time. Convective terms for velocity and scalar transport were discretised using the

limitedLinear scheme, while the remaining convective terms employed first-order schemes.

Second-order accurate schemes were applied to all remaining terms.

In the LES simulations, the turbulent Schmidt number was set to 1.0. A mapping procedure

was used to introduce turbulent fluctuations at both inlets. The LES computational mesh within

the main channel consisted of 292 × 108 × 108 cells in the x-, y-, and z-directions, respectively.

The jet tube was discretised using a mesh with 24 × 150 cells in radial and axial directions. The

47

WALE model was used, with the filter width defined as the cube root of the local cell volume.

A fixed time step ∆t = 3 · 10−6 s was employed. Second-order accurate schemes were used

throughout. For velocity, LUST scheme was used, whereas for scalar transport linearUpwind

scheme. Simulation execution time was t = 1 s, with averaging conducted over the final 0.5 s.

Figure 2.18: Results for the normalised velocity at different cross-sections
for the turbulent mixing test case using a conventional (non-adaptive) grid.

Velocity results for the LES simulations are presented in Figure 2.18. Velocity data are

normalised using the crossflow bulk velocity Ucross = 9.43 m/s. As shown, both the conven-

tional LES and the WMLES approaches yield comparable results and show good agreement

with the reference LES data reported by Galeazzo et al. [37]. With regards to the scalar concen-

tration shown in Figure 2.19, several observations can be made. At lower z/D cross-sections,

specifically z/D = 1.5 and z/D = 3.0, the results deviate from the reference numerical data.

Such deviations are expected and have been documented in previous studies [97]. Interestingly,

while the results at z/D = 1.5 diverge from the numerical reference data, they align better with

48

the experimental measurements [36]. In the case of z/D = 3.0, the observed discrepancies are

consistent with findings in the literature and are strongly influenced by the numerical setup, par-

ticularly the discretisation schemes and turbulent Schmidt number. At z/D = 4.5, the computed

scalar values align well with the reference numerical data.

Figure 2.19: Results for the scalar concentration at different cross-sections
for the turbulent mixing test case using a conventional (non-adaptive) grid.

49

3 ADAPTIVE MESH REFINEMENT IN
OPENFOAM

Adaptive mesh refinement in OpenFOAM has evolved through community contributions and

in-distribution developments, with core capabilities available via the fvMeshTopoChangers

class. As of OpenFOAM 10, the framework supports isotropic refinement for hexahedral cells,

leveraging hexRef8 mesh cutter. While the OpenFOAM 10 implementation remains limited,

various extensions and additions targeting different OpenFOAM variants and versions have

been proposed. Karlsson [52] implemented anisotropic AMR in OpenFOAM by replacing the

standard hexRef8 mesh cutter with a directionally-aware alternative. Joshi [48] extended AMR

to support arbitrary polyhedral cells through tetrahedral decomposition. A paper by Rettenmaier

et al. [90] introduced several improvements to the AMR framework, including support for both

2D and 3D problems, extensions for refinement criteria, and a dynamic load balancing class.

Lapointe et al. [58] extended the refinement mechanism to allow multiple criteria to govern

mesh adaptation independently. Other studies, such as those by Kuo and Trujillo [57] and

Sikirica et al. [97], focused on the overall performance of AMR, identifying computational

bottlenecks and evaluating efficiency improvements.

3.1 Native Implementation

Historically, OpenFOAM managed dynamic mesh capabilities, including mesh motion and

topological changes, through specialised subclasses derived from the dynamicFvMesh base

class. One such subclass is dynamicRefineFvMesh, which was used in earlier versions of

OpenFOAM and provided AMR functionality. However, as of OpenFOAM 10, this hierarchy

has changed. Two distinct base classes were directly integrated into the standard fvMesh class:

• fvMeshMover which handles geometric changes, such as the movement of mesh points.

• fvMeshTopoChanger which manages topological changes, including adding or removing

cells and faces.

50

This change in architecture eliminated the need for the dynamicFvMesh class, which was sub-

sequently removed.

The AMR functionality is available through the Foam::fvMeshTopoChangers::refiner

class. This class inherits from fvMeshTopoChanger and provides the logic for dynamic mesh

refinement and unrefinement based on user-specified volScalarField values. To use AMR

in a simulation, it is necessary to select this refiner within the topoChanger sub-dictionary of

the dynamicMeshDict dictionary. The refiner class leverages the hexRef8 class to perform

uniform refinement of hexahedral mesh cells. A flowchart of the cell selection process using

the refiner class is given in Figure 3.1.

Figure 3.1: Refinement candidate selection flowchart for refiner class.

Since the native refiner class in OpenFOAM supports isotropic refinement of hexahedral

(three-dimensional) grids, this chapter will focus on extending its capabilities to handle two-

dimensional and three-dimensional problems. The applicability of AMR for these problems

will be evaluated, along with its computational efficiency.

51

3.2 Extension for Two-Dimensional Problems

The two-dimensional AMR implementation is built upon the original three-dimensional AMR

framework. Given that OpenFOAM computes 2D problems using a single-cell-thick 3D mesh,

the code was modified to support the planar subdivision of hexahedral cells into four smaller

hexahedra, thus preserving the geometrical and numerical characteristics of a two-dimensional

configuration. These functional changes are implemented in the newly defined hexRef4 and

refiner2D classes.

3.2.1 Implementation Details

The newly defined hexRef4 class is introduced alongside the original hexRef8 mesh cutter.

The primary distinction lies in the subdivision strategy: while hexRef8 subdivides a cell into

eight by introducing a central cell midpoint, hexRef4 performs a four-way split using only

edge and face midpoints (Figure 3.2). Consequently, the cell midpoint is omitted, and the

refinement logic in setRefinement is simplified to reflect the reduced geometric complexity.

The choice of mesh cutter is user-specified; for the purposes of this thesis, separate classes were

implemented to apply the appropriate cutter based on the refinement algorithm.

(a) (b)

Figure 3.2: Cell subdivision resulting from: (a) hexRef4, (b) hexRef8.

Face and edge handling routines are adapted to enforce 2D-specific constraints. hexRef4

introduces logic to prevent the refinement of non-quadrilateral faces and boundary edges us-

ing checks such as isDivisibleFace and isDivisibleEdge. Internal face creation is also

restructured; rather than connecting a central point to surrounding geometry, hexRef4 assem-

bles four internal faces by connecting face midpoints to edge midpoints only. Unrefinement

logic shifts from a point-based to an edge-based paradigm. Candidate edges are identified as

52

those shared by exactly four cells originating from the same refinement. Figure 3.3 provides a

simplified summary of the logic implemented in the hexRef4 class.

Figure 3.3: Simplified flowchart for the hexRef4 class.

The refiner2D class governs refinement and unrefinement based on field-based criteria. It

replaces the native refiner class, reusing much of the control logic, but adapted for the 2D

refinement context. A simplified threshold-based scheme is employed for refinement. Candi-

date cells are identified through direct comparison with user-specified upper and lower limits.

Unrefinement is handled by selectUnrefineEdges, which performs edge discovery, consis-

tency checks, and filtering based on proximity to active refinement regions. This streamlines the

overall code logic. The cell protection mechanism, used to prevent the refinement of degenerate

or incompatible elements, retains its original structure.

In addition to the noted changes, the core infrastructure for tracking cell refinement history

was redefined as refinementHistory4. This included modifying the underlying data structure

to reference four child cells instead of eight. Similarly, refinementHistoryConstraint4 and

hexRef4Data were updated to operate correctly with the 1-to-4 splitting logic inherent to 2D

refinement.

53

3.2.2 Validation for Two-Dimensional Problems

The implemented code is validated on a two-dimensional rising bubble test case. The over-

all setup, as described in Subsection 2.5.2, remains unchanged apart from the inclusion of the

dynamicMeshDict dictionary and the definition of a refinement criterion to control mesh adap-

tation. A simple scalar-based criterion using the alpha.water field is applied, with refinement

thresholds set to 0.01 and 0.99. Additionally, to preserve refinement history during parallel

execution, refinementHistory4 must be specified as a constraint in the decomposeParDict

dictionary.

The initial cell size was set to be three times larger than that of the coarse mesh used in the

conventional case. With two levels of refinement allowed, this theoretically enables AMR to

reach the same resolution as the medium mesh and thus achieve comparable accuracy. However,

this is not observed in practice. As shown in Figure 3.4, the AMR results exhibit noticeably

lower accuracy. Minor improvements can be obtained by adjusting the refinement range or

expanding the buffer zone. Several factors contribute to these results. First, the initially coarse

mesh introduces significant numerical errors during the early time steps. These errors persist

and are not corrected, even as the mesh refines dynamically. Second, the initial refinement

criterion is too limiting, failing to capture a sufficiently large region to offset the effects of the

coarse initial discretisation. As a result, the AMR solution does not reach the accuracy of the

medium-resolution conventional mesh. Still, the results confirm that the AMR implementation

is functionally correct and that the underlying two-dimensional refinement operates as intended.

(a) (b)

Figure 3.4: Results for the bubble dynamics case obtained using the
refiner2D class: (a) rise velocity, (b) sphericity.

54

3.3 Validation for Three-Dimensional Problems

OpenFOAM 10 natively supports three-dimensional adaptive mesh refinement through refiner

class. refiner allows refinement of the computational domain or specific regions based on

scalar field values. The class relies on the hexRef8 mesh cutter, which performs isotropic

refinement by subdividing each hexahedral cell into eight smaller hexahedra.

Three-dimensional functionality was assessed on a rising bubble test case analogously to

two-dimensional validation. The test setup mirrors that used for the conventional rising bubble

case. Refinement is governed by the alpha.water field, with refinement thresholds set to

0.01 and 0.99. The initial cell size is three times larger than that of the coarse mesh, with two

refinement levels allowed.

(a) (b)

(c) (d)

Figure 3.5: Results for the bubble dynamics case obtained using the
refiner class: (a) rise velocity, (b) sphericity, (c) centre of mass, (d) com-

putational mesh and the bubble.

55

The results for the three-dimensional case, shown in Figure 3.5, differ considerably from

those observed in the two-dimensional case. The values of the rise velocity, Uy, are compara-

ble to those obtained using the medium-resolution conventional grid. Concerning sphericity,

the AMR solution shows better agreement with the reference data, although some oscillatory

behaviour is observed. This can be attributed to the overly coarse initial mesh, which is subse-

quently sufficiently refined in the three-dimensional case, allowing the solution to align with the

reference data after approximately t ≈ 0.1 s. Overall, the results are satisfactory and achieved

using a notably coarser grid.

56

4 MULTI-CRITERIA ADAPTIVE MESH
REFINEMENT

The native adaptive mesh refinement implementation in OpenFOAM 10, specifically the re-

finer class, allows refinement based only on a single scalar field. This lack of flexibility limits

its applicability in complex simulations. To address this limitation, a multi-criteria adaptive

mesh refinement (mcAMR) algorithm has been proposed for both two-dimensional and three-

dimensional problems. This algorithm extends the functionality of the previously introduced

refiner2D and refiner classes.

4.1 Multi-Criteria Refinement Strategy

The newly introduced multiFieldRefiner classes rely on logical operators to combine multi-

ple scalar fields and geometric constraints. In the original refiner implementation, refinement

is driven by a single scalar field specified directly in the topoChanger dictionary using the

field keyword. Alternatively, the refinementRegions subdictionary could be used to define

criteria within spatially distinct regions. However, the logic applied to these regions is indepen-

dent, and the framework lacks an explicit mechanism to logically combine refinement criteria

across different fields or regions.

4.1.1 Mathematical Formulation

Let φi denote the ith scalar field defined over the computational domain Ω, and associate with

each defined field:

• a lower threshold δi,

• an upper threshold εi,

• and a logical operation Oi ∈ {∪,∩,\}.

Refinement is triggered for cells c where the field value lies within the specified threshold

interval (δi, εi), while unrefinement occurs when the value lies outside this interval.

57

The refinement process starts on a default field φ0, which is used to define the initial candi-

date set:

R0 = {c ∈ Ω | δ0 < φ0(c)< ε0} . (4.1)

For each subsequent field φi, where i = 1, . . . ,N, a temporary set is constructed:

Ti = {c ∈ Ω | δi < φi(c)< εi} . (4.2)

The refinement candidate state is updated according to the following:

Ri = Ri−1 Oi Ti . (4.3)

The final refinement set is RN and contains all the cells to be refined.

Unrefinement follows a similar logic but identifies cells outside the refinement interval. The

initial unrefinement set is:

U0 = {c ∈ Ω | φ0(c)≤ δ0 ∪ φ0(c)≥ ε0} (4.4)

with subsequent fields evaluated as:

Vi = {c ∈ Ω | φi(c)≤ δi ∪ φi(c)≥ εi} , (4.5)

Ui = Ui−1 Oi Vi . (4.6)

The final unrefinement set is UN and contains all the cells eligible for coarsening.

4.1.2 Implementation Details

The multiFieldRefiner2D and multiFieldRefiner3D classes introduce a new dictionary

structure called refinementFields, where each entry corresponds to a refinement criterion

associated with a scalar field or a geometric region. For scalar fields, each block contains the

field name along with refinement thresholds lowerRefineLevel and upperRefineLevel. The

class includes a dedicated function, processFieldRefinement, which evaluates each scalar

field independently and identifies cells that meet the corresponding refinement conditions. This

58

subsequently allows multiple volScalarFields, such as alpha.water or p_rgh, to be con-

sidered jointly.

A key addition is the support for logical operators that combine refinement criteria from

multiple blocks. Each block in the refinementFields dictionary includes an operation

keyword. One block must be designated as the default, or one is assumed, establishing the

initial set of candidate cells. The remaining blocks modify this set using logical operators. This

logic is implemented in the selectRefineCandidates function, which processes each block

in sequence and updates the candidate list accordingly.

In addition to scalar field-based refinement, the multiFieldRefiner classes support geo-

metry-based criteria. Within the same refinementFields dictionary, a block of type geometry

can be defined. This block enables the use of an external surface file, an STL file, and spec-

ifies whether refinement should occur inside or outside the surface. An optional buffer

distance can also be applied to extend or shrink the effective geometry boundary. The func-

tion geometryRefineCandidates evaluates these criteria and determines which cell centres

fall within the specified geometric region. The resulting cell set can then be logically com-

bined with other criteria through the same operation mechanism. An example of the criteria

definition block is included in Code 4.1.

Code 4.1: Segment of the dynamicMeshDict configuration file defining

refinement criteria.

1 refinementFields
2 {
3 alpha.water
4 {
5 lowerRefineLevel : 0.001
6 upperRefineLevel : 0.999
7 operation : default
8 }
9

10 p_rgh
11 {
12 lowerRefineLevel : 1e4
13 upperRefineLevel : 1e5
14 operation : AND
15 }
16

17 geometry
18 {
19 type : geometry
20 surface : "surface.stl"
21 mode : inside
22 buffer : 0.1
23 operation : AND
24 }
25 }

59

The decision-making process for identifying refinement candidates in the multiField-

Refiner classes is substantially more sophisticated than the original implementation. An

overview of the cell selection process is provided in Figure 4.1. The implemented solution

addresses the limitations of single-field or region-based approaches and supports complex re-

finement strategies. This makes it particularly well suited for cases where refinement must

respond to spatial features not easily captured by single scalar field thresholds alone.

Figure 4.1: Flowchart of the mcAMR cell selection process.

4.2 Application of mcAMR to Two-Dimensional Problems

In a previous chapter, the rising bubble dynamics test case was used to validate the two-

dimensional implementation of the refiner2D class. While the test case demonstrated the

basic functionality, the numerical results were unsatisfactory. This chapter will re-evaluate the

same case using the newly implemented multiFieldRefiner2D class. Furthermore, the flow

around a cylinder test case will be used to assess the new implementation, providing a broader

validation context of the multiFieldRefiner2D class.

60

4.2.1 Criteria and Validation for 2D Rising Bubble Dynamics

The refinement criteria are calculated during runtime using a coded function object in Open-

FOAM. These calculations are performed just before the refinement process is executed. The

smoothField function (S) is used to apply spatial smoothing to selected scalar fields by av-

eraging the value in each cell with those of its neighbouring cells. The averaging is weighted

based on the distance between the cells, with closer neighbours having a greater influence. The

weight for each neighbour is determined using a Gaussian function:

wi = exp
(
− d2

i
2σ2

)
(4.7)

where di is the distance between the centres of the neighbouring cells, and σ is a smoothing

parameter calculated as:

σ = f ·
(

∑V
ncells

) 1
3

. (4.8)

Here, ∑V represents the sum of the volumes of all cells in the mesh, and ncells is the total

number of cells. The constant f = 4.0 is user-defined and controls the smoothing scale. Finally,

the smoothing is computed as:

S(φ) =
φi +∑ j∈Ni wi jφ j

1+∑ j∈Ni wi j
(4.9)

where Ni denotes the set of neighbouring cells of cell i. The smoothing function is used to

calculate the normalised smoothed gradient of the alpha field, which serves as a refinement

criterion:

φ0 =
S (|∇α|)

max(S (|∇α|))
. (4.10)

Similarly, the normalised rise velocity is used as a refinement criterion:

φ1 =
S (|Uy|)

max(S (|Uy|))
. (4.11)

Refinement thresholds are set to 0.25 and 1.0 for both criteria, with refinement performed every

16 time steps. The overall computational setup is identical to the setup described in Subsection

3.2.2.

The results obtained using the mcAMR approach are presented in Figure 4.2. These results

will henceforth be referred to simply as AMR results in all subsequent figures. They are now

61

compared to the results on the fine grid despite theoretically only being able to achieve the ac-

curacy of the medium grid. The mcAMR approach provides significant improvements over the

initial results using the refiner2D. The rise velocity is well captured, surpassing the accuracy

of the fine grid and closely matching the reference data. While sphericity initially exhibited

some oscillations, it quickly stabilised. Similarly, the centre of mass behaves in accordance

with the reference data, outperforming the fine grid results in terms of accuracy.

(a) (b)

(c) (d)

Figure 4.2: Results for the bubble dynamics case obtained using the
multiFieldRefiner2D class: (a) rise velocity, (b) sphericity, (c) centre

of mass, (d) bubble evolution.

4.2.2 Criteria and Validation for 2D Flow Around a Cylinder

The flow around a cylinder test case follows the same general pattern as the previously described

case. The overall setup is identical to that outlined in Subsection 2.5.1, except for the inclusion

of the dynamicMeshDict and coded functions that calculate the refinement criteria. The default

62

criterion is geometric, restricting refinement to a specified inner region of the domain. The

smoothing factor is f = 5.0. Two additional criteria are considered - the normalised vorticity,

defined as:

φ1 =
S(ω)

max(S(ω))
(4.12)

where ω = ∥∇×u∥, and the normalised velocity gradient, given by:

φ2 =
S(∇u)

max(S(∇u))
. (4.13)

Two distinct scenarios are evaluated, differing only in their refinement thresholds. The base

scenario (denoted base) uses thresholds 0.3 to 1.0 for φ1 and φ2. In the second scenario, denoted

alternate, the minimum value is lowered to 0.2. Refinement is performed every 512 time steps.

The initial mesh is slightly coarser than the conventional coarse mesh (refinement ratio r = 1.2).

AMR is permitted to perform up to two levels of refinement.

(a) (b)

Figure 4.3: Drag and lift coefficients for the two-dimensional AMR cylin-
der case: (a) drag coefficient, (b) lift coefficient.

Based on the results shown in Figure 4.3, it can be concluded that, for the drag coefficient,

both the conventional approach and the mcAMR method yield comparable results that align

well with the available reference data. No significant deviations are observed. In contrast,

several observations can be made regarding the lift coefficient. First, the base AMR case and

the results obtained using a fine mesh are in good agreement. Although the AMR results show

a slight delay, the difference is minimal. Compared to the base case, the alternate case better

captures the overall trend of the reference data. However, between approximately t = 3.5 s

and t = 6 s, the alternate case tends to overpredict the lift coefficient, as evident from the peak

63

values. Beyond this interval, it settles and aligns with the reference data. As the only practical

difference between the cases lies in the mesh resolution, it is the primary reason for the observed

differences.

4.3 Application of mcAMR to Three-Dimensional Problems

The application of mcAMR to three-dimensional problems follows the same principles as in the

two-dimensional framework. Although the underlying refinement strategy remains the same,

the increased complexity of three-dimensional flows introduces additional challenges, such as

resolution requirements and computational cost. To assess the effectiveness and robustness of

the mcAMR approach in this context, two test cases are considered: flow around a cylinder and

breaking of a dam.

4.3.1 Criteria and Validation for 3D Flow Around a Cylinder

The three-dimensional flow around a cylinder case using mcAMR is largely analogous to the

two-dimensional case. The thresholds for the refinement criteria are set to 0.3 for the lower

and 1.0 for the upper limit. A default geometric constraint is applied and combined with the

normalised vorticity and the normalised velocity gradient:

φ1 =
S(ω)

max(S(ω))
, φ2 =

S(∇u)
max(S(∇u))

. (4.14)

A smoothing factor f = 2.0 is used. Refinement is performed every 512 time steps. As in the

two-dimensional case, the initial mesh is slightly coarser than the conventional coarse mesh

(r = 1.2). AMR is permitted to perform up to two levels of refinement.

Based on the results presented in Figure 4.4, the conclusion is straightforward. The con-

ventional grid-based approach and the mcAMR-driven strategy provide comparable results that

align well with the reference data, with no notable discrepancies. While one might argue that

the conventional approach is preferable due to its simplicity, it is important to note that the

mcAMR case completed the simulation in approximately 18 % less computational time. This

efficiency gain can be further improved by adjusting the refinement frequency. Moreover, re-

sults with slightly reduced accuracy but requiring only around 50 % of the computational time

can be achieved by relaxing the refinement criteria, effectively trading accuracy for efficiency.

64

Nonetheless, the core concept holds: it is possible to obtain similarly accurate results with a

reduced computational cost.

(a) (b)

Figure 4.4: Drag and lift coefficients for the three-dimensional AMR cylin-
der case: (a) drag coefficient, (b) lift coefficient.

4.3.2 Criteria and Validation for 3D Breaking of a Dam

The conventional dam break test case employs subtle mesh grading, making direct grid com-

parison difficult. Nevertheless, on average, the initial cell size in the mcAMR case is approx-

imately 2.7 times larger than that of the coarse mesh. Due to numerical instabilities, the se-

tups across test cases were not identical. The mcAMR case used a first-order accurate tempo-

ral discretisation scheme and the MPLIC scheme for the volume fraction. The built-in utility

interfaceHeight, used to measure water level, produced oscillatory or discontinuous results

under AMR, which did not reflect the actual interface. To address this, a coded function was

implemented to compute the interface height based on local and neighbouring cell values.

Mesh adaptation was performed every four time steps. Two refinement criteria were used:

the value of the scalar field alpha.water and the normalised gradient of the alpha.water

field:

φ0 = α, φ1 =
S (|∇α|)

max(S (|∇α|))
(4.15)

with smoothing factor f = 5.0. The cells were marked for refinement if φ0 was within the range

of 0.001 to 0.999 or if φ1 exceeded 0.1. Two levels of refinement were allowed.

Since there are 12 measurement locations for the experimental data, this discussion will

focus on two representative locations for pressure and two for interface height. Figure 4.5

65

displays these results. At point P1, the mcAMR case shows a sharp pressure spike similar to

the conventional approach. The values then decrease and, after approximately t = 1.5 s, closely

match those from the fine grid. Around t ≈ 0.75 s, a noticeable deviation appears between

the two approaches. The mcAMR case slightly overestimates the experimental data, while

the conventional approach first underestimates and then overestimates. The results at point

P2 follow a similar trend, with the main difference also occurring near t ≈ 0.75 s, where the

mcAMR case underestimates. This deviation may be related to inaccuracies in probing on a

dynamically changing grid. For interface height at point H2, the mcAMR case underestimates

the fine grid result from t = 1.5 s onwards, though the values remain close. At point H4, both

approaches give unsatisfactory results, but the AMR case performs slightly better in capturing

the transition around t ≈ 2.75 s.

(a) Pressure at point P1. (b) Pressure at point P3.

(c) Water height at point H2. (d) Water height at point H4.

Figure 4.5: Selected results for the dam break test case using the AMR
approach.

66

Importantly, the mcAMR case is 77 % faster than the simulation on the fine grid and 24 %

faster than the medium grid case. Furthermore, a comparison using the dynamic time warping

(DTW) algorithm across all 12 measurement points shows that the mcAMR approach is, on

average, only 2.23 % less accurate. This includes both pressure and interface height data. In

fact, the AMR solution performs slightly better for pressure, with a 0.5 % improvement in

accuracy on average.

67

5 LOAD-AWARE DYNAMIC LOAD
BALANCING

One of the major challenges associated with adaptive mesh refinement is maintaining efficiency

on massively parallel systems. As AMR refines the mesh, certain subdomains of the decom-

posed problem inevitably experience a significant increase in computational load. This is pri-

marily due to the growing number of cells, which increases the computational cost of solving

the associated linear systems. As a result, dynamic load balancing has become essential for

maintaining consistent performance across all MPI ranks. OpenFOAM 10 includes a basic load

balancing mechanism through the distribution class, which calculates the number of cells

per rank and governs redistribution accordingly. In this work, two new classes are introduced,

distributorMPI and distributorRollingMPI, which assess MPI rank loads directly to de-

termine imbalance and manage redistribution.

5.1 MPI-Based Load Redistribution

The native load balancing implementation, distributor, employs a simple geometric strat-

egy. Its objective is to distribute the computational load evenly across processors by ensuring

that each MPI rank handles approximately the same number of cells. At each interval, the total

number of cells is divided by the number of processors to compute the ideal cell count per rank.

The number of cells per rank is then compared to this ideal value, and the imbalance is quan-

tified as the maximum relative deviation across ranks. If this imbalance exceeds a predefined

threshold, maxImbalance, a redistribution is triggered using a decomposition method specified

in the decomposeParDict. While straightforward and efficient, this method assumes a uniform

computational cost per cell and homogeneity in compute performance.

The proposed implementation introduces a performance-aware load balancing strategy to

address the limitations of the cell-based method. Instead of assuming uniform computational

68

loads for all cells and identical behaviour across ranks, this approach uses direct runtime mea-

surements to assess the workload and memory footprint of each MPI rank. The new implemen-

tation, distributorMPI, relies on modifications to the communication layer in UPstream.C.

Redistribution is triggered based on two criteria: CPU load imbalance and memory usage im-

balance. A simplified flowchart of distributorMPI is shown in Figure 5.1.

Figure 5.1: Simplified flowchart of the distributorMPI class logic.

The UPstream.C file was extended with a new function, getMPIStats(), to measure two

runtime metrics for each MPI rank. The first metric, CPU load, is estimated by measur-

ing the time spent waiting in blocking MPI communication calls, such as MPI_Allreduce,

MPI_Alltoall, and MPI_Waitall. Each call is timed to compute the total waiting duration,

and the CPU load is inferred as the proportion of time spent actively computing (i.e. not wait-

ing) relative to the total elapsed time. The second metric is memory usage, which provides the

69

current memory consumption of the MPI rank. The getMPIStats() function collects these

metrics locally and aggregates them across all ranks, returning a scalarList containing the

CPU and memory loads for the entire domain.

The returned metrics are used within the update method of the distributorMPI class.

After collecting the data, the average CPU and memory loads across all ranks are computed.

The imbalance is then evaluated as the maximum relative deviation of each rank’s CPU and

memory load from the corresponding average, calculated as:

CPU =

∣∣∣∣∣Ti − 1
N ∑

N
i=1 Ti

1
N ∑

N
i=1 Ti

∣∣∣∣∣ , MEM =

∣∣∣∣∣Mi − 1
N ∑

N
i=1 Mi

1
N ∑

N
i=1 Mi

∣∣∣∣∣ (5.1)

where Ti is the effective compute time and Mi is the memory load for rank i. A redistribution

is triggered if these imbalances exceed their respective thresholds, maxImbalance for CPU and

maxMemImbalance for memory.

The distributor call and imbalance criteria are defined in the dynamicMeshDict. Further-

more, the distribution algorithm for the distributor must be specified in the decomposeParDict.

An example of the configuration definition is shown in Code 5.1.

Code 5.1: Segment of the dynamicMeshDict configuration file defining

distributor parameters.

1 distributor
2 {
3 type distributorMPI;
4 libs (" libfvMeshDistributorsMPI.so");
5 redistributionInterval 1;
6 maxImbalance 0.1;
7 maxMemImbalance 0.1;
8 }

5.2 Archive-Based Load Redistribution

The distributorRollingMPI class extends distributorMPI by introducing temporal filter-

ing to suppress reactions to transient imbalances. It maintains rolling histories of CPU and

memory imbalance using circular buffers sized according to redistributionInterval. In-

stead of acting on a single measurement, it tracks imbalance values over multiple update steps

and evaluates their persistence.

70

A new parameter, maxImbalancedStates, specifies the minimum number of historical en-

tries that must exceed the defined thresholds to trigger redistribution. Redistribution is initiated

only when the buffer is full and this condition is met. This approach reduces the sensitivity to

short-lived fluctuations and helps avoid unnecessary redistributions. Table 5.1 summarises the

key implementation differences between distributorMPI and distributorRollingMPI.

Table 5.1: Implementation differences between distributorMPI and
distributorRollingMPI.

Feature distributorMPI distributorRollingMPI

Decision basis Instantaneous imbalance Rolling history of imbalances
Reaction time Immediate Delayed for robustness
MPI sensitivity High Resistant to transient behaviour
Historical data None Circular buffer

Key parameters maxImbalance, maxMemImbalance maxImbalance, maxMemImbalance,
maxImbalancedStates

5.3 Computational Efficiency

The computational efficiency of the implemented load balancing classes, along with the na-

tive distributor, is evaluated using the dam break test case (Subsection 2.5.3). The overall

adaptive mesh refinement configuration follows the mcAMR setup outlined in Subsection 4.3.2.

While the selected scenario does not address the full range of possible flow regimes or prob-

lem types, it provides a controlled and representative baseline for comparing the performance

characteristics of the available distribution strategies.

The initial assessment was conducted using the Score-P 8.4 profiling infrastructure [55].

The simulations were run in a distributed environment across two computational nodes. Each

node was equipped with two Intel Xeon E5-2690 v3 processors with hyperthreading disabled,

resulting in 48 cores. One MPI rank was assigned per core, yielding 48 MPI ranks in total.

The nodes were connected via an InfiniBand FDR interconnect with a maximum throughput

of 6.31 GB/s. The Intel MPI Library 2021.5 was used as the underlying MPI runtime. Unless

otherwise stated, the distributor parameters were configured as follows: refineInterval = 1,

redistributionInterval = 16, maxImbalance = 0.25 and maxImbalancedStates = 5. An

overview of the performance results is given in Table 5.2.

71

Table 5.2: Performance statistics obtained using Score-P 8.4 for different
distribution strategies.

Metric distributor distributorMPI distributorRollingMPI

Parallel efficiency 0.546 0.556 0.556
Load balance efficiency 0.795 0.792 0.776
Communication efficiency 0.687 0.702 0.716
Simulation time [ms] 41299 40738 41153
Total distribute [ms] 24932 59008 61584
Total time, n ·CPU [ms] 1982453 1955717 1979775

Based on the results, all three distributors provide comparable parallel efficiency, with

distributorMPI showing a marginal advantage. Communication efficiency is highest for

distributorRollingMPI, indicating improved resilience to communication overhead. Both

MPI-based strategies incur a longer time in the distribute phase, especially distributor-

RollingMPI, due to their more complex decision logic and more frequent redistributions. De-

spite these differences, the overall runtime remains similar.

Further assessment was conducted on the same hardware platform, using Intel MPI Library

2021.5 and OpenMPI 4.1.1. All three distributor classes were tested across a range of parameter

combinations, specifically imbalance thresholds {0.10, 0.25, 0.50, 0.75} and redistribution

intervals {4, 16, 64, 256}. The corresponding results are presented in Figure 5.2 and 5.3.

Figure 5.2: Impact of imbalance threshold and redistribution interval on
simulation time for different distributor classes using Intel MPI and Open-

MPI (continued on the next page).

72

Figure 5.3: Impact of imbalance threshold and redistribution interval on
simulation time for different distributor classes using Intel MPI and Open-

MPI (continued from previous page).

Several trends can be observed. First, except for the redistributionInterval = 256

case, simulations are typically completed faster with Intel MPI. Second, performance depends

on the imbalance threshold. As maxImbalance increases, distributorRollingMPI outper-

forms the others. Conversely, for lower thresholds, its performance drops relative to the simpler

strategies, suggesting it is less efficient when reacting to frequent, minor imbalances. The best

result was observed for distributorRollingMPI with redistributionInterval = 4 and

maxImbalance = 0.5, which led to the fastest overall simulation time.

To assess the impact of the network interconnect, additional tests were performed using

the same hardware, parameters, and OpenMPI 4.1.1. In addition to the InfiniBand FDR base-

line setup, a standard Ethernet connection with a throughput of approximately 0.12 GB/s was

considered. The results are shown in Figure 5.4.

As expected, simulations using Ethernet were significantly slower than those using In-

finiBand, though the difference was less pronounced than the bandwidth gap would suggest.

This indicates that overall communication demands are relatively low. Despite the noticeable

difference in computational times (computational times were approximately twice as long),

general trends remained similar, with a few exceptions. The best result was observed for

distributorRollingMPI, with redistributionInterval = 4 and maxImbalance = 0.5.

73

Figure 5.4: Impact of network interconnect on the performance of distribu-
tor classes across various imbalance thresholds and redistribution intervals.

Behaviour across different hardware environments was also evaluated by comparing the

results from the cluster against two unified, non-network-limited machines. The first, denoted

Intel, is a high-capacity computational node comprised of 16 Intel E7-8867 v3 CPUs, each

with 16 physical cores and 32 threads (hyperthreading disabled). The second, denoted AMD,

features 2 AMD Epyc 7662 CPUs, each with 64 physical cores and 128 threads (hyperthreading

disabled). All simulations were run using 48 physical cores mapped one-to-one to 48 MPI ranks

74

to ensure consistency. Both systems were provisioned with sufficient memory to avoid memory-

related bottlenecks.

The results from the cluster using Intel MPI, with redistributionInterval = 4 and

maxImbalance = 0.5, are used as a reference. As in previous assessments, the following pa-

rameter combinations were considered: imbalance thresholds {0.10, 0.25, 0.50, 0.75} and

redistribution intervals {4, 16, 64, 256}. The results are presented in Figure 5.5.

Figure 5.5: Performance of distributor classes across three hardware envi-
ronments for varying imbalance thresholds and redistribution intervals.

75

Several observations can be made based on the results shown in Figure 5.5. As antic-

ipated, newer hardware yields better performance, with the lowest computational times ob-

served on the most modern platform. More importantly, on the newer system, the newly im-

plemented classes, distributorMPI and distributorRollingMPI, consistently outperform

the native distributor, except in configurations where redistributionInterval = 4 and

maxImbalance < 0.5. A single outlier is detected at redistributionInterval = 64 and

maxImbalance = 0.1.

These results lead to the following conclusions. First, newly implemented classes generally

perform better when maxImbalance is set to higher values (e.g. 0.5). Second, their perfor-

mance improves significantly when the redistribution interval is less frequent. This is par-

ticularly relevant for realistic three-dimensional problems, where frequent redistributions are

typically avoided, as they tend to induce numerical instabilities and increase overhead, which

can significantly hinder overall computational efficiency.

The dam break test considered so far is relatively simple, with a moderate mesh size. On

average, the resulting mesh at t = 7 s contained approximately 3 · 105 cells. This number is

relatively low and is not representative of more demanding scenarios. Therefore, a new set

of test cases has been defined to address this, maintaining the same overall problem setup but

utilising more refined initial meshes.

The first case, denoted medium, begins with a significantly finer grid than the one used

in the baseline case. The initial cell size is reduced by a factor rm = 1.8. The second case,

denoted fine, starts with an even more refined grid, with the cell size further reduced by a factor

r f = 1.333 relative to the medium case. These changes affect the intermediate and final sizes of

the computational mesh and thus create more demanding scenarios for evaluation.

For both cases, the imbalance threshold was set to 0.5. Testing was performed for four

different redistribution intervals {4, 16, 64, 256}. The tests were conducted on the previously

described cluster, with five computational nodes and 24 cores (resulting in 120 MPI ranks) for

the medium case and ten computational nodes and 24 cores (resulting in 240 MPI ranks) for the

fine case. The resulting grid sizes were approximately 2.2 ·106 and 4.2 ·106 for the medium and

fine cases, respectively. The simulation times for these cases are presented in Figure 5.6.

76

(a) (b)

Figure 5.6: Distributor performance for scaled dam break test cases: (a)
medium case, (b) fine case.

The measured computational times for the more complex test cases reveal a distinct trend.

For the medium case, the newly implemented classes, distributorMPI and distributor-

RollingMPI, show significant performance improvements despite the more frequent redistri-

butions. The optimal performance is achieved for a redistribution interval of 16. Similarly, the

behaviour follows the same pattern for the fine case, with the same optimal redistribution inter-

val observed. Interestingly, distribution across multiple nodes and the resulting network traffic

do not appear to affect the scaling behaviour significantly.

77

6 REFINEMENT CRITERION FOR LARGE
EDDY SIMULATION

Large eddy simulation provides notably higher fidelity than conventional RANS approaches

by resolving the large, energy-containing turbulent structures. However, the high spatial and

temporal resolution requirements, combined with its sensitivity to numerical artefacts, make

LES particularly challenging to implement on dynamically evolving computational grids.

Adaptive mesh refinement introduces frequent grid changes, which can affect the turbulence

content in sensitive regions, compromising the accuracy and stability of the simulation. To ef-

fectively integrate LES with AMR, the refinement process must be minimally intrusive. Grid

changes should occur gradually, with sufficient temporal and spatial buffering, to prevent artifi-

cial damping or elimination of turbulent structures. This implies a more conservative refinement

strategy compared to typical AMR applications.

6.1 Composite Refinement Criterion

A critical component of any AMR strategy is the refinement criterion used to determine which

regions of the domain require increased or reduced resolution. In the context of LES, these

criteria are often based on physically meaningful flow features such as vorticity, strain rate, or

turbulent kinetic energy.

A single refinement criterion can fail to capture the complexity of turbulent flows, partic-

ularly in dynamically evolving domains. Since different flow features describe distinct phe-

nomena, focusing on one feature risks neglecting other aspects. Despite this, many individual

criteria are commonly employed, and therefore, a brief overview of the most widely used ones

is provided.

6.1.1 Established Refinement Criteria

The pressure gradient ∇p can be used to determine the direction and magnitude of the maximum

rate of spatial pressure variation. It drives flow and is particularly significant in boundary layers,

78

flow separation regions, and near shock waves, where large pressure gradients often coincide

with significant changes in flow behaviour.

Vorticity captures the local rotational motion of fluid and is commonly used to detect vor-

tices and regions of high shear:

ω = ∇×u (6.1)

where u is the velocity field. High vorticity typically implies coherent structures or instabilities.

The strain rate tensor describes the rate at which the fluid deforms due to velocity gradients.

Regions with high strain are typically associated with shear layers and near-wall turbulence.

The strain rate tensor is symmetric and defined as:

S =
1
2
(
∇u+(∇u)T) . (6.2)

Turbulent kinetic energy quantifies the kinetic energy contained in velocity fluctuations and

thus reflects the local turbulence intensity, that is, it can be used to determine regions of the flow

where turbulence is most intense:

k =
1
2
⟨u′ ·u′⟩ (6.3)

where ⟨u′ · u′⟩ represents the average of the dot product and u′ = u− ⟨u⟩ is the fluctuating

component of the velocity.

The dissipation rate indicates how quickly turbulent kinetic energy is converted into internal

energy by viscous action and can thus be considered an indicator of fine-scale turbulence. It can

be defined in terms of the strain rate tensor:

ε = 2ν⟨S′ : S′⟩ ≈ 2ν⟨S : S⟩ (6.4)

where ν is the kinematic viscosity, S′ is the strain rate tensor of the fluctuating velocity field,

and S : S is the second invariant of the resolved strain rate tensor.

Wall shear stress is important for near-wall turbulence, i.e. in boundary layers. It quantifies

the tangential frictional force exerted by the fluid on the wall, which directly influences the

momentum transfer and the intensity of the turbulence near the surface. The magnitude of wall

shear stress is given by:

τw = µ

(
∂uτ

∂y

)
y=0

(6.5)

79

where uτ is the velocity component tangential to the wall, y is the wall-normal coordinate, and

µ is the dynamic viscosity.

A derived quantity, Q criterion, identifies vortical regions by measuring the balance between

rotational and strain components in the flow:

Q =
1
2
(
|Ω|2 −|S|2

)
(6.6)

where Ω is the rotation rate tensor, defined as:

Ω =
1
2
(
∇u− (∇u)T) . (6.7)

Regions where Q > 0 are identified as vortex dominated. The Q criterion is widely used for

vortex detection, but may detect false positives in regions with high shear strain.

The λ2 criterion is a more selective indicator of vortical structures. It is defined based on

the eigenvalues of the symmetric tensor S2 +Ω
2. A region is considered part of a vortex core if

the second-largest eigenvalue, λ2, of this tensor satisfies:

λ2 = eig2
(
S2 +Ω

2)< 0 . (6.8)

The λ2 criterion is more robust in detecting true vortices, especially in shear-dominated flows.

6.1.2 Practical Considerations

While each noted criterion effectively identifies specific aspects of the flow, turbulent phenom-

ena rarely occur in isolation. Given the complexity and variability of turbulent flows, a single

metric cannot, therefore, capture the full range of relevant features. To ensure that adaptive

mesh refinement modifies the grid appropriately while balancing computational cost, a com-

posite approach is proposed.

The composite approach offers several advantages: it increases robustness by reducing de-

pendence on any single flow metric, improves adaptability across different flow regimes, and

allows for user control or automatic tuning based on problem-specific requirements.

An effective starting point is the λ2 criterion, which identifies coherent vortical structures by

isolating regions where rotation dominates over strain. A particularly effective pairing is the λ2

criterion and the magnitude of the strain rate tensor
√

S : S. This enables the detection of both

80

rotational features and regions of intense shear, such as boundary layers and free shear layers.

Alternatively, the turbulent kinetic energy k can be used. While λ2 captures coherent vortices,

the turbulent kinetic energy provides a broader measure of turbulence intensity. Combining λ2

with the vorticity is also feasible, however, the strong correlation between these quantities can

lead to redundancy.

A practical AMR refinement criterion should also consider additional factors. Using multi-

ple refinement criteria can improve accuracy, but it also adds computational overhead, both from

evaluating the criteria and handling the refined mesh. Furthermore, refinement based solely on

flow features may be insufficient if the mesh resolution is inadequate i.e. does not meet the nu-

merical requirements for the simulation. It is, therefore, essential to incorporate a mesh-based

criterion. A mesh-based criterion could be used to evaluate the local cell size ∆ against a target

resolution, with refinement triggered when ∆ > ∆target.

Based on these considerations, a baseline multi-criteria refinement strategy can be formu-

lated. It combines the λ2 criterion with a mesh-based filter ∆. This pairing balances compu-

tational efficiency with effective refinement. Additional flow-based criteria, such as the strain

rate magnitude, may be included if greater sensitivity is required, although this must be weighed

against the increased computational cost. While mesh-based criterion alone may be sufficient

in some cases, combining it with targeted flow criterion improves robustness and adaptability.

6.1.3 Formulation of the Criterion

The proposed formulation combines two scalar fields: a binary field φ0 := Φλ2 , which indicates

the presence of coherent vortical structures, and a normalised measure of the local mesh resolu-

tion relative to turbulent scales, φ1 := Φ∆. Each field is associated with a threshold and a logical

operation that determines how its contribution is combined with the current set of candidate

cells. Importantly, the logic is applied sequentially.

Fields are computed on the fly using runtime functions, from the instantaneous velocity field

u, viscosity fields, and mesh geometry. To limit computational overhead, the fields are updated

periodically but infrequently, typically just before mesh refinement events.

In order to calculate the λ2 criterion, velocity gradient tensor ∇u must be decomposed into

symmetric S and antisymmetric Ω parts:

S =
1
2
(
∇u+(∇u)T) , Ω =

1
2
(
∇u− (∇u)T) . (6.9)

81

The tensor M is calculated by summing the matrix products S2 and Ω
2:

M = S2 +Ω
2 . (6.10)

The eigenvalues of the symmetric tensor M are computed by solving the characteristic polyno-

mial of the 3 × 3 matrix:

det(M−λ I) =−λ
3 + I1λ

2 − I2λ + I3 = 0 (6.11)

where λ denotes an eigenvalue, I is the identity matrix, and I1, I2, and I3 are the principal

invariants of M, defined as:

I1 = tr(M), (6.12)

I2 =
1
2

[
(tr(M))2 − tr(M2)

]
, (6.13)

I3 = det(M) . (6.14)

Solving this cubic polynomial yields the three eigenvalues of M, from which the second-largest

eigenvalue λ2 is extracted. The smoothed version of −λ2 is computed using the smoothing

operator S:

λ̃2 = S (−λ2) . (6.15)

Subsequently, an isosurface of λ̃2 is constructed for a user-specified threshold (e.g. λ̃2iso = 1.0).

Let Ωiso denote the set of all cells c in the computational domain Ω intersected by this isosurface.

Cells in Ωiso are marked with a binary flag, and the field Φλ2 is derived as follows:

Φλ2(c) =

1, if c ∈ Ωiso

0, if c /∈ Ωiso

. (6.16)

The quantity Φ∆ characterises how well the local grid resolves the relevant turbulent struc-

tures by comparing the local cell size ∆ to the Taylor microscale λT , a characteristic turbulence

length scale. High values of Φ∆ indicate that the local mesh is too coarse relative to the turbu-

lence length scales. The cell size is approximated by the cube root of the cell volume:

∆ =V 1/3 . (6.17)

82

The Taylor microscale is estimated as:

λT =

√
15(ν +νSGS)k

ε
(6.18)

where ν is the molecular viscosity, νSGS is the subgrid-scale viscosity, and k is turbulent kinetic

energy. The dissipation rate ε is approximated by:

ε = 2(ν +νSGS)(S : S) (6.19)

with S denoting the rate-of-strain tensor. The normalised cell size field is obtained by computing

the ratio ∆/λT and applying a spatial smoothing operator S to reduce numerical noise:

Φ∆ = S
(

∆

λT

)
. (6.20)

Finally, the derived fields Φλ2 and Φ∆ can be combined to formulate a multi-criteria refine-

ment condition:

Rλ2 =
{

c ∈ Ω
∣∣ Φλ2(c) = 1

}
, (6.21)

R∆ = {c ∈ Ω | Φ∆(c)≥ δ∆} , (6.22)

Uλ2 =
{

c ∈ Ω
∣∣ Φλ2(c)< 1

}
, (6.23)

U∆ = {c ∈ Ω | Φ∆(c)< δ∆} . (6.24)

The final refinement and unrefinement sets are obtained by taking the union of the respective

field-based criteria:

R = Rλ2 ∪R∆, U = Uλ2 ∪U∆ . (6.25)

6.2 Application of mcAMR to LES

The criterion presented in the previous section was applied to three LES-based test cases using

multiFieldRefiner3D. The results of these test cases will be discussed in the following sub-

sections. Each test case has distinct characteristics. The general setup, including results, using

the conventional grid generation approach, has been presented in Section 2.6.

83

6.2.1 Assessment for Turbulent Channel Flow

The effectiveness of multi-criteria adaptive mesh refinement was evaluated for a turbulent chan-

nel flow at a friction Reynolds number of Reτ ≈ 395. The simulation was initialised on a coarse

hexahedral mesh of approximately 4 ·105 cells. The initial grid resolution in dimensionless cell

units was ∆x+ ≈ 98 in the streamwise direction, ∆y+ ≈ 3.6 near the wall and increasing up

to ∆y+ ≈ 75 in the channel core, and ∆z+ ≈ 25 in the spanwise direction. These spacings are

coarser than those employed for conventional LES cases, particularly in the near-wall region.

Two subgrid-scale models were considered: the standard Smagorinsky model and the dy-

namic Smagorinsky model. Mesh refinement was driven by a composite criterion based on

normalised Φλ2 and Φ∆. For Φλ2 , an isovalue threshold of λ̃2iso = 10.0 was considered. The

lower bound for Φ∆ was set to 2.0. To avoid numerical artefacts, a smoothing function S with a

smoothing factor f = 2.0 was applied.

The adaptation strategy allowed up to two levels of refinement, with a two-cell buffer around

the refined regions to ensure smooth transitions. A global limit of 3 ·106 cells was imposed to

maintain comparability with the LES cases on the conventional grid. Mesh refinement was trig-

gered every 128 time steps, which corresponds to a physical interval of 0.128 s per refinement

cycle, given the constant time step size of ∆t = 0.001 s. Over the course of the simulation, this

has led to approximately 1900 adaptation steps.

With the Smagorinsky model, the mesh evolved to the specified upper limit of 3 ·106 cells.

The highest resolution was achieved in the near-wall regions. The lowest dimensionless cell

spacings were ∆x+ ≈ 49, ∆y+ ≈ 1.8, and ∆z+ ≈ 12. In the case of the dynamic Smagorinsky

model, the refinement pattern exhibited slight variations due to local differences in the computed

eddy viscosity, which enters the refinement criterion via the Taylor microscale. This resulted in

a final mesh that contained approximately 3.2 ·106 cells, with similar minimum cell spacings.

A comparative assessment of the results obtained using the AMR approach and conven-

tional LES is provided in Figure 6.1, Figure 6.2 and Figure 6.3. Results are reported for both

Smagorinsky and dynamic Smagorinsky models using conventional and adaptive meshes.

The results for the non-dimensional mean streamwise velocity profile, U/Ub, are consis-

tent across all models and grid generation approaches (Figure 6.1). No notable differences

are observed between the conventional and AMR-based simulations, and the results agree well

with the reference data. This indicates that the coarse initial mesh, combined with the targeted

refinement strategy, is sufficient to accurately capture the mean velocity field.

84

Figure 6.1: Results for the non-dimensional mean streamwise velocity pro-
file U/Ub for the channel flow case using AMR.

For the normalised streamwise Reynolds normal stress, u′u′/U2
τ (Figure 6.2a), the trends

observed on the adaptive meshes closely follow those obtained on the conventional grids.

(a)

(b)

Figure 6.2: Results for the channel flow case using AMR: (a) normalised
streamwise Reynolds normal stress u′u′/U2

τ , (b) normalised Reynolds
shear stress u′v′/U2

τ .

85

The dynamic Smagorinsky model tends to overpredict the peak near y/δ ≈ 0.05, followed

by a drop that aligns well with the reference data throughout the remainder of the profile.

Notably, unlike the conventional grid results, which tend to underpredict the fluctuations be-

yond y/δ ≈ 0.3 slightly, the AMR-based results maintain good agreement in this region. The

Smagorinsky model exhibits similar behaviour; the peak observed in the reference data is cap-

tured, although it appears slightly broader. After y/δ ≈ 0.3, the results align well with the

dynamic model and the reference data.

Good agreement with reference data is observed for u′v′/U2
τ (Figure 6.2b). The results of the

dynamic Smagorinsky model match the reference profile closely and outperform those from the

conventional grid. For the Smagorinsky model, the peak is slightly delayed and underpredicted,

but the overall trend remains consistent with the reference profile and shows better alignment

than the corresponding conventional results.

(a) (b)

Figure 6.3: Results for the channel flow case using AMR: (a) normalised
wall-normal Reynolds normal stress v′v′/U2

τ , (b) normalised spanwise
Reynolds normal stress w′w′/U2

τ .

The results for the normalised wall-normal Reynolds normal stress and spanwise Reynolds

normal stress shown in Figure 6.3 remain unsatisfactory. The conventional and AMR-based

simulations show notable discrepancies when compared with reference data, suggesting that the

error may stem from a more fundamental limitation, such as insufficient resolution and mod-

elling constraints. For v′v′/U2
τ , both AMR cases initially perform better than their conventional

counterparts, approaching the peak, though delayed. However, beyond y/δ ≈ 0.4, both AMR

cases show a sharp decline in accuracy and consistently underperform relative to the conven-

tional grid results. A similar trend is observed for w′w′/U2
τ , where the peak is well captured by

86

the dynamic Smagorinsky model and slightly underpredicted by the Smagorinsky model, both

outperforming the conventional approach in the near-wall region. However, beyond y/δ ≈ 0.4,

the results deteriorate and fall below those obtained on the conventional grid.

The drop in accuracy in the outer region may be attributed to the reduced refinement in these

areas, as the imposed cell count limit constrained the AMR process. This leads to a spatial

imbalance in grid density, which likely contributed to the underprediction of wall-normal and

spanwise stresses at larger wall distances.

The energy spectra presented in Figure 6.4 illustrate the distribution of turbulent kinetic

energy as a function of wavenumber. Graphs show the characteristic three-region structure

of turbulent flows: the energy-containing range at low wavenumbers, the inertial subrange at

intermediate wavenumbers, and the dissipation range at high wavenumbers. In the energy-

containing range, the energy levels increase with wavenumber from the lowest resolved modes,

reaching a peak around k ≈ 2. This peak indicates the dominant eddy scale that carries most of

the turbulent kinetic energy.

(a) (b)

Figure 6.4: Energy spectra for the channel flow case using AMR: (a)
Smagorinsky model, (b) dynamic Smagorinsky model.

Beyond the peak, the spectra transition into the inertial subrange, where E(k) declines

gradually and approximately follows the Kolmogorov k−5/3 scaling. At higher wavenumbers

(k > 100), a steeper drop is observed, signalling the onset of the dissipation range, where vis-

cous effects become significant. The raw simulation data extend well into this high-wavenumber

region, demonstrating the fine-scale resolution captured by AMR. Both spectra display compa-

rable shapes and magnitudes, capturing a physically consistent energy cascade.

87

The cross-sectional views of the domain are given in Figure 6.5 and show elongated streaks

at y/δ = 0.05, indicative of alternating high-speed and low-speed fluid regions moving in the

streamwise direction, which are characteristic of wall-bounded turbulent flows. Both figures

show quasi-periodic streaks in the spanwise direction, perpendicular to the main flow, and the

wall-normal direction. Upon closer inspection, the results for the dynamic Smagorinsky model

appear more defined, exhibiting a wider range of velocity fluctuations compared to the standard

Smagorinsky model. This suggests that the dynamic model resolves the finer details of the flow.

Based on the lower and upper limits, it can be concluded that the dynamic Smagorinsky model

predicts more intense and higher peak streamwise velocity fluctuations than the Smagorinsky

model at this near-wall location and Reynolds number.

(a)

(b)

Figure 6.5: Fluctuating streamwise velocity u′u′ at y/δ = 0.05 for the
channel flow case using AMR: (a) Smagorinsky model, (b) dynamic

Smagorinsky model.

A sectional cut of the computational mesh, given in Figure 6.6, shows the refinements in-

troduced during the simulation and corresponds to the mesh at the final time step. The mesh

is visibly refined near the channel walls, where steep velocity gradients and intense vortical

activity demand higher resolution.

88

Figure 6.6: Sample of the computational mesh for the channel flow case
using AMR.

A three-dimensional visualisation of coherent vortical structures identified using an isosur-

face Q = 50 s−2 is presented in Figure 6.7. The Q criterion highlights regions where rotational

effects dominate over strain, thereby isolating the cores of vortical motion. The isosurface is

coloured by the magnitude of local instantaneous velocity, revealing a strong correlation be-

tween high-speed regions and vortical activity. The vortices appear as elongated, tube-like,

and fragmented structures, densely concentrated near the channel walls, which is characteris-

tic of wall-bounded turbulence. The colour variation along these structures indicates signifi-

cant velocity gradients, reflecting dynamic interactions between slower and faster fluid regions.

Notably, many high-velocity zones are embedded within or closely aligned with Q-identified

vortices. In contrast, the central region of the channel contains relatively few such structures,

consistent with the expected turbulence distribution in a fully developed channel flow.

Figure 6.7: Isosurface Q = 50 coloured by velocity for the channel flow
case using Smagorinsky model and AMR.

89

6.2.2 Assessment for Flow Around a Square Cylinder

A simulation was performed using adaptive mesh refinement for the flow around a square cylin-

der at Re= 21400. The simulation was initiated on a coarse base mesh of approximately 7.5 ·104

hexahedral cells. The initial grid featured a characteristic wall-normal resolution near the cylin-

der of ∆z/D ≈ 0.01 and a spanwise resolution of ∆y/D ≈ 0.2. These spacings are coarser than

for the conventional LES, relying on AMR to achieve the targeted resolution.

Mesh refinement was driven by a composite criterion. The isovalue threshold for Φλ2 was

set to 1.0, and the maximum filter width Φ∆ was capped at 5.0 to avoid excessive refinement

caused by transient or isolated flow features. Following the approach used in the channel flow

test case, a smoothing filter S with a smoothing factor f = 2.0 was applied to suppress numerical

noise in the criterion field.

Refinement was performed every 512 time steps. With a fixed time step of ∆t = 5 ·10−5 s,

this corresponds to a physical time interval of 0.0256 s between refinement cycles. Over the

course of the simulation, approximately 1800 refinement steps were completed. The total cell

count was limited to 3 · 106 to control the computational cost. A maximum of two refinement

levels beyond the initial mesh was allowed, with a single-cell buffer surrounding the refined

regions to ensure a gradual transition in cell size.

Turbulence was modelled using the WALE subgrid-scale model, consistent with the conven-

tional LES setup. As discussed in Subsection 2.6.2, the conventional simulations also included

a WMLES case. However, the current WMLES implementation is incompatible with dynam-

ically adapting meshes, as it depends on a fixed wall-layer sampling region. This constraint

is a significant limitation. As a result, the WMLES case was excluded from the AMR valida-

tion. Other than the adaptive refinement mechanism, all other numerical settings, including the

solver, working fluid, and temporal and spatial discretisation schemes, remained consistent with

the conventional LES configuration.

As the simulation progressed, the mesh reached a final resolution ∆z/D= 0.002 and ∆y/D=

0.03 in the most refined regions. While the wall-normal resolution remained slightly coarser

than in the conventional LES, the spanwise resolution was finer. Notably, the peak cell count

was modest, approximately 1.7 ·106, which is roughly one-third of the total cell count used in

conventional LES.

The results shown in Figure 6.8 are time-averaged streamwise velocity profiles at several

cross-sections, normalised by the freestream velocity. Upstream of the cylinder (x/D = −0.5

90

and x/D = 0.0), all profiles align closely and match the reference data well. At x/D = 0.5,

a slight deviation appears, with the AMR results showing a marginally higher velocity. How-

ever, the difference remains within an acceptable range and is comparable to the conventional

case. Due to the absence of measurement data below y/D ≈ 0.75, it is difficult to conclusively

say which approach performs worse in that region. Further downstream, up to x/D = 4.0, the

profiles from both cases largely overlap and remain consistent with the reference data. A mod-

est deviation from the reference is observed at x/D = 1.5, though both numerical approaches

behave similarly.

Figure 6.8: Results for the square cylinder test case using AMR showing
U/U profiles at various cross-sections.

91

Profiles of normalised streamwise velocity fluctuations, u′/U , at various cross-sections are

shown in Figure 6.9. At x/D = 0.0, a distinct peak emerges near y/D ≈ 0.75, associated with

turbulence in the separated shear layers. The AMR simulation captures both the magnitude and

position of this peak with good accuracy, while the conventional approach yields a broader and

slightly overestimated response. At x/D = 0.5 and x/D = 1.0, the peak structure persists and

Figure 6.9: Results for the square cylinder test case using AMR showing
u′/U profiles at various cross-sections.

begins to widen, reflecting the development of the wake. The AMR results remain in agreement

with the reference data. In contrast, the conventional simulation, although following the general

trend, shows more pronounced deviations. Further downstream, turbulence levels gradually de-

crease, and the profiles broaden. The AMR solution continues to align well with reference data

92

across all cross-sections, while the conventional approach consistently underperforms despite

employing a larger mesh.

The profiles of the normalised time-averaged transverse velocity are presented in Figure

6.10. Overall, the trends for both cases align well with the reference data. In the near-wake re-

gion, inward-directed flow can be observed. At x/D = 0.5 and x/D = 1.0, the AMR simulation

closely follows this behaviour, while the conventional simulation exhibits notable discrepan-

cies. Further downstream, the transverse velocity profiles flatten, with both cases following the

reference data.

Figure 6.10: Results for the square cylinder test case using AMR showing
V/U profiles at various cross-sections.

93

Figure 6.11 shows the normalised transverse velocity fluctuations, v′/U , at various cross-

sections. As with the mean transverse velocity, V/U , the largest deviations are observed be-

tween x/D = 0.5 and x/D = 1.5. The AMR simulation closely matches the reference data, cap-

turing the shape and magnitude of the v′/U peak. At x/D = 1.0, the peak remains prominent in

the reference data, and the AMR results follow this trend. In contrast, conventional simulation

performs poorly across this range, with particularly pronounced discrepancies at x/D = 1.0.

Further downstream, the profiles flatten and broaden. Beyond x/D = 1.5, the results from both

simulations begin to converge and largely follow the reference data.

Figure 6.11: Results for the square cylinder test case using AMR showing
v′/U profiles at various cross-sections.

94

A three-dimensional visualisation of the turbulent wake behind a square cylinder is given in

Figure 6.12. The isosurface shown corresponds to Q = 10 s−2 and is coloured by the magnitude

of the instantaneous velocity. Immediately downstream of the cylinder, large coherent vortices

can be observed shedding alternately from the top and bottom shear layers. These structures, ini-

tially aligned with the spanwise direction, exhibit strong three-dimensional instabilities as they

evolve downstream. Spanwise distortions, braids, and rib-like connections between vortices in-

dicate the onset of turbulence and the breakdown of coherent rollers into smaller-scale eddies.

Further into the wake, the vortices lose coherence, and the flow field becomes increasingly dis-

ordered, marking the transition to a fully developed turbulent regime. The spatial variation in

colour across the isosurfaces reflects intense mixing and momentum transfer. High velocities

are often seen on the peripheries of the vortices or in interstitial regions, while low-velocity

zones cluster around vortex cores or near recirculation zones.

Figure 6.12: Isosurface Q= 10 coloured by velocity for the square cylinder
test case using AMR.

Figure 6.13 illustrates the spatial distribution of mesh refinement criteria in the square cylin-

der test case at the final time step. The blue regions represent areas refined according to the Φλ2

criterion, while the red regions correspond to areas governed by the Φ∆ criterion.

The blue regions dominate the wake and shear layers downstream of the cylinder, effectively

capturing the unsteady flow structures associated with vortex shedding. In contrast, the red

regions appear as more localised patches, typically near the cylinder. It is important to note that

since the mesh has already been refined, the influence of the Φ∆ criterion in the wake region has

95

Figure 6.13: Regions of influence for refinement criteria in the square
cylinder test case with AMR at the final time step. Blue indicates Φλ2 ,

red indicates Φ∆.

already been addressed. Consequently, no further refinement is necessary in this zone, which

now also falls under the influence of the Φλ2 criterion.

6.2.3 Assessment for Turbulent Mixing of Jet in Crossflow

Turbulent mixing of a jet in crossflow is investigated as a representative case involving scalar

transport and complex turbulence dynamics. The overall setup follows the previously described

configuration, with the exception of the WMLES case, which was omitted due to incompati-

bility between the WMLES library and the AMR framework. An additional test case using the

Spalart-Allmaras improved delayed detached eddy simulation (IDDES) was introduced. The

general setup is unchanged, except for the use of the LUST scheme for discretising the modelled

turbulence viscosity. IDDES is an improvement over the traditional detached eddy simulation

(DES) and combines features of RANS near the walls and LES in the free stream.

For the initial mesh, the number of cells in the cylindrical section of the jet inlet and its

associated O-grid was halved. This coarser discretisation was uniformly applied across the

entire domain. The main channel was meshed with 150 × 54 × 54 cells in the streamwise x,

vertical y, and spanwise z directions, respectively. The jet cylinder was discretised with 12 cells

in the radial direction and 75 cells in the axial direction.

The refinement strategy followed a multi-criteria AMR approach. The Φλ2 criterion used

an isovalue threshold of 3.0, with the mesh-based Φ∆ criterion lower limit set to δΦ∆
= 10.0.

A smoothing operator S with a smoothing factor of f = 2.0 was used to suppress numerical

96

noise. Additionally, a scalar-based refinement criterion was introduced to capture the transport

of the passive scalar c. Refinement was triggered in regions where the scalar concentration c

was between the lower limit δc = 0.05 and the upper limit εc = 1.0.

As in the square cylinder case, a maximum of two additional refinement levels was allowed,

with a single-cell buffer layer around refined regions. The total cell count was limited to 3 ·106.

Refinement was conducted every 256 time steps, which corresponds to a physical time interval

of 0.000768 s, given the fixed time step size of ∆t = 3 · 10−6 s. Consequently, 1300 refinement

steps were performed over the course of the simulation.

Figure 6.14: Normalised velocity at different cross-sections for the turbu-
lent mixing test case using AMR.

Figure 6.14 compares results from three different simulations: conventional, AMR with

WALE, and AMR with IDDES, against reference LES data. The resulting velocity profiles are

similar across all cross-sectional slices (z/D = 1.5, 3.0, and 4.5). At z/D = 1.5, all simulations

slightly overpredict the velocity between x/D ≈ 0.4 and x/D ≈ 1.0. At z/D = 3.0, the AMR

97

case using the WALE model shows the best agreement with the reference data, while IDDES-

based AMR performs slightly worse, but still outperforms the simulation on the conventional

grid. All models show similar velocity values for x/D ≤ 0.4 and x/D ≥ 2.0. The differences

become minimal for z/D = 4.5, with minor discrepancies around 1.0 ≤ x/D ≤ 1.8. Elsewhere,

the deviations from the reference data are negligible.

Figure 6.15: Scalar concentration at different cross-sections for the turbu-
lent mixing test case using AMR.

For scalar transport, shown in Figure 6.15, greater variation in the data is observed across

all three cases. At z/D = 1.5, conventional results underpredict the peak scalar concentration.

Both AMR simulations match the reference data closely, although they slightly overpredict

the concentration between 0.4 ≤ x/D ≤ 0.8. For z/D = 3.0, the conventional results again

underpredict the scalar concentration. The AMR cases are in reasonable agreement but slightly

overpredict downstream of x/D ≈ 0.8. By z/D = 4.5, all models align well with the reference,

98

with the AMR simulations slightly overpredicting the scalar concentration and the conventional

simulation underpredicting it.

The isosurface c = 0.1 given in Figure 6.16 shows the extent of the scalar plume. The

plume originates from a cylindrical source at the bottom of the domain, with the scalar being

continuously released and spreading outward (and downstream) as it rises. The irregular shape

of the isosurface stems from the turbulent nature of the flow, with eddies causing the scalar to

spread and mix as it flows through the domain. As the plume moves downstream, it widens

and becomes more fragmented due to the entrainment of ambient fluid, which dilutes the scalar

concentration.

Figure 6.16: Isosurface c = 0.1 for the turbulent mixing test case using
AMR.

Fine-scale vortical structures are visualised in Figure 6.17 using isosurface Q = 25000 s−2,

coloured by the magnitude of the instantaneous velocity. Filament-like structures originate

above the cylindrical source and follow the evolving plume. Their fragmented, thread-like ap-

pearance reflects the intermittent and anisotropic nature of turbulence at these scales. Spatial

variations in velocity along the isosurface reveal regions of strong momentum transport embed-

ded within the flow.

99

Figure 6.17: Isosurface Q = 25000 s−2 coloured by velocity for the turbu-
lent mixing test case using AMR.

Results presented in Figure 6.18 show the instantaneous velocity field U and the time-

averaged scalar concentration c at t = 1 s. In the vertical midplane, y/D = 0, a narrow, high-

velocity jet emerges from the lower boundary. The jet core is enveloped by irregular structures,

which is indicative of turbulent mixing. Peak velocities reach approximately 55 m/s. The devel-

opment of shear layers between the jet and the ambient fluid is visible and is the primary mecha-

nism for turbulence generation. In the horizontal cross-section, at z/D = 1.5, a crescent-shaped

region of elevated velocity can be seen, which suggests the presence of large-scale vortical

motion.

The time-averaged scalar field in the vertical plane y/D = 0 shows a smoother distribution.

The averaging process suppresses instantaneous fluctuations, revealing a statistically steady

plume shape. The scalar field gradually widens with height. Concentration is highest within

the jet core and decreases outward and downstream, reflecting the combined effects of advec-

tion and turbulent diffusion. In the horizontal plane, at z/D = 1.5, the scalar concentration

also shows a crescent-like shape, similar in form to the velocity field, but smoother and more

regular. The distribution is largely symmetric, with the internal structure less detailed than the

instantaneous velocity field.

100

(a) (b)

(c) (d)

Figure 6.18: Velocity U and scalar c at t = 1 s, shown at different cross-
sections: (a) U at y/D = 0, (b) U at z/D = 1.5, (c) c at y/D = 0, (d) c at

z/D = 1.5.

6.3 Computational Cost and Accuracy

The results for all described LES cases, including conventional and AMR-based simulations,

are compared with available reference data. Dynamic time warping was used to quantify the

differences between the reference and obtained results. The resulting DTW values were then

used to calculate average relative differences across all measurement locations for each case.

These results are shown in Table 6.1.

The results suggest that, in nearly all cases, AMR simulations outperform their conven-

tional counterparts. The only exception is the turbulent mixing test case, where the WMLES

simulation outperformed the baseline AMR case by less than 1 % on average. Similarly, the

IDDES model performed about 2.11 % worse than the WMLES baseline. In all other instances,

AMR-based simulations showed notable improvements.

101

Table 6.1: DTW-based difference between conventional and AMR cases.

Test case Comparison Turbulence model DTW difference [%]

Channel flow
Conventional / AMR Smagorinsky -2.61
Conventional / AMR Dynamic Smagorinsky -1.51

Square cylinder
Conventional / AMR WALE -6.11
WMLES / AMR WALE -10.38

Turbulent mixing

Conventional / AMR WALE -6.41
WMLES / AMR WALE 0.74
Conventional / AMR WALE / IDDES -3.78
WMLES / AMR WALE / IDDES 2.11

In addition, computational times were recorded for all cases. The simulations were executed

on a cluster (described in Chapter 5) using 120 CPUs. For AMR cases, measurements were

obtained without and with load balancing, using the distributorMPI load balancer with a

maximum imbalance of 0.2. The redistribution interval was set to half the refinement interval.

These results are shown in Table 6.2.

Table 6.2: Computational times for conventional and AMR cases.

Test case Turbulence model
Computational time [s]

Conventional AMR AMR with LB

Channel flow
Smagorinsky 66837 200491 80899
Dynamic Smagorinsky 72378 260446 85080

Square cylinder
WALE 353386 304333 103148
WALE (WMLES) 357756 - -

Turbulent mixing
WALE 85058 368924 84030
IDDES 91251 357242 89101
WALE (WMLES) 89450 - -

As can be seen, even though AMR simulations provide more accurate results, their compu-

tational cost is considerably higher. Without an appropriate load balancer, the AMR approach

is inefficient for the problems presented. With load balancing, computational times are reduced

significantly. However, the computational times for the channel flow case are still up to 21 %

slower, which is expected, since approximately 1900 adaptation steps were performed. By in-

creasing the refinement frequency (every 160 time steps), the computational time for the channel

flow case becomes 3.71 % lower than that of the conventional approach. This highlights the im-

portance of an effective load balancing strategy, as well as a well-designed refinement approach,

to ensure both numerical accuracy and computational efficiency.

102

7 CONCLUSION

This thesis addresses the computational feasibility of adaptive mesh refinement for high-fidelity

simulations within the OpenFOAM 10 framework. The proposed additions extend the Open-

FOAM’s functionality. They introduce refinement logic for two-dimensional problems, enable

multi-criteria refinement and load balancing for large-scale transient simulations.

The newly introduced class refiner2D is a 2D-specific variant of the native refiner class.

It relies on edge data and enables consistent hexahedral refinement and unrefinement following

a 1-to-4 pattern. This functionality is enabled by the newly implemented mesh cutter hexRef4

and dedicated data hierarchy.

Building on this foundation, two new classes, multiFieldRefiner2D and multiField-

Refiner3D, were introduced. These classes extend the functionality of the native refiner

class by allowing refinement based on multiple scalar fields combined using logical operators.

Additionally, geometric constraints are supported, providing the ability to restrict refinement to

specific regions.

To ensure parallel efficiency, two additional classes for dynamic load balancing were in-

troduced: distributorMPI and distributorRollingMPI. These classes utilise the custom

instrumentation of the MPI communication layer to track real-time processor loads and mem-

ory usage. The latter leverages a rolling history mechanism to smooth short-lived fluctuations

caused by transient instabilities or hardware-related noise.

In addition to the AMR-specific developments, several complementary code modifications

were made to streamline simulation workflows. These include:

• Port of the perturbU utility, which is used to initialise velocity field in channel flow

simulations, thus eliminating the need for a precursor run.

• Port of the dynamicSmagorinsky turbulence model, which improves upon the classical

Smagorinsky model by dynamically adjusting the model constant.

• Port of the libWallModelledLES library. This methodology allows for a cheaper LES

by not resolving the inner region of the turbulent boundary layer.

103

All introduced code modifications were implemented to validate the effectiveness of adap-

tive mesh refinement. Test cases using laminar and RANS turbulence models were employed

to assess the overall functionality. The impact of load balancing was evaluated on a selected

benchmark case. Finally, a multi-criteria AMR approach was proposed and assessed for se-

lected LES test cases. Based on the results, the following conclusions can be drawn:

• The proposed multi-criteria refinement strategy that combines the λ2 criterion with a

mesh-based criterion, ∆, is effective. This hybrid approach integrates a flow-detecting

criterion and a mesh quality detector to determine whether refinement is necessary. The

proposed criterion is straightforward to implement, easy to interpret, and can be extended

with supplementary criteria.

• AMR can be effectively deployed with LES, as demonstrated by the results. However,

frequent and extensive adaptations can impact accuracy. Therefore, the adaptation process

should be gradual and controlled, to avoid instabilities and numerical issues. The WALE

and dynamic Smagorinsky models perform adequately, while WMLES is incompatible.

• Load balancing is critical to ensure computational efficiency. It can reduce computational

time by several orders of magnitude, making AMR more efficient than conventional LES

approaches. Since refinement and load balancing frequencies are user-defined, they must

be chosen carefully.

Due to the changing nature of the underlying grid, several obstacles were encountered while us-

ing AMR. In addition to the WMLES library, issues were observed with the interfaceHeight

utility and postprocessing tools. For example, when decomposing or reconstructing a case, ap-

propriate utilities are required to preserve the refinement history. This challenge is particularly

relevant for the newly developed two-dimensional AMR classes. When using load balancing,

the distribution process must include a decomposition constraint, and if periodic patches are in-

volved, these patches must remain on the same processor to avoid distribution-induced crashes.

Based on the observations, general AMR behaviour, and results, several distinct avenues for

future research are identified:

• Interplay between AMR parameters and flow physics.

• Numerical limitations and stability concerns.

• Implementation of anisotropic refinement.

104

• Extension of the framework to accommodate polyhedral mesh topologies.

The developments in multi-criteria AMR presented in this work represent a significant step

toward more efficient and accurate simulations of complex, transient fluid dynamics problems.

Observed computational savings are particularly promising for resource-intensive methods such

as LES, supporting their broader adoption in research and industrial applications.

105

BIBLIOGRAPHY

[1] J. Adelsberger, P. Esser, M. Griebel, S. Groß, M. Klitz, and A. Rüttgers, “3d incom-

pressible two-phase flow benchmark computations for rising droplets,” Institut für Nu-

merische Simulation (INS), Tech. Rep., 2014.

[2] P. Alberto, Dynamic smagorinsky model, https://doi.org/10.5281/zenodo.

4697995, Accessed: 2025-05-01, 2021.

[3] J. D. Anderson and J. Wendt, Computational Fluid Dynamics. Springer, 1995, vol. 206.

[4] O. Antepara, O. Lehmkuhl, R. Borrell, J. Chiva, and A. Oliva, “Parallel adaptive mesh

refinement for large-eddy simulations of turbulent flows,” Computers & Fluids, vol. 110,

pp. 48–61, 2015.

[5] D. Apte, M. Ge, and O. Coutier-Delgosha, “Investigation of cloud cavitating flow in

a venturi using adaptive mesh refinement,” Journal of Hydrodynamics, vol. 36, no. 5,

pp. 898–913, 2024.

[6] D. Arney, “An adaptive method with mesh moving and mesh refinement for solving

the euler equations,” in Proceedings of the 1st National Fluid Dynamics Conference,

AIAA, 1988, p. 3567.

[7] I. Babuška and W. C. Rheinboldt, “Adaptive approaches and reliability estimations in

finite element analysis,” Computer Methods in Applied Mechanics and Engineering,

vol. 17, pp. 519–540, 1979.

[8] I. Babuška, “The selfadaptive approach in the finite element method,” in The Mathe-

matics of Finite Elements and Applications II (MAFELAP), New York: Academic Press,

1975, pp. 125–142.

[9] I. Babuška and W. C. Rheinboldt, “Error estimates for adaptive finite element computa-

tions,” SIAM Journal on Numerical Analysis, vol. 15, no. 4, pp. 736–754, 1978.

[10] J. Baiges and C. Bayona, “Refficientlib: An efficient load-rebalanced adaptive mesh re-

finement algorithm for high-performance computational physics meshes,” SIAM Jour-

nal on Scientific Computing, vol. 39, no. 2, pp. C65–C95, 2017.

106

https://doi.org/10.5281/zenodo.4697995
https://doi.org/10.5281/zenodo.4697995

[11] R. E. Bank and R. K. Smith, “Mesh smoothing using a posteriori error estimates,” SIAM

Journal on Numerical Analysis, vol. 34, no. 3, pp. 979–997, 1997.

[12] J. Behrens and M. Bader, “Efficiency considerations in triangular adaptive mesh refine-

ment,” Philosophical Transactions of the Royal Society A: Mathematical, Physical and

Engineering Sciences, vol. 367, no. 1907, pp. 4577–4589, 2009.

[13] M. J. Berger and P. Colella, “Local adaptive mesh refinement for shock hydrodynam-

ics,” Journal of Computational Physics, vol. 82, no. 1, pp. 64–84, 1989.

[14] M. J. Berger and J. Oliger, “Adaptive mesh refinement for hyperbolic partial differential

equations,” Journal of Computational Physics, vol. 53, no. 3, pp. 484–512, 1984.

[15] E. Blayo and L. Debreu, “Adaptive mesh refinement for finite-difference ocean models:

First experiments,” Journal of Physical Oceanography, vol. 29, no. 6, pp. 1239–1250,

1999.

[16] L. Botti, M. Piccinelli, B. Ene-Iordache, A. Remuzzi, and L. Antiga, “An adaptive mesh

refinement solver for large-scale simulation of biological flows,” International Journal

for Numerical Methods in Biomedical Engineering, vol. 26, no. 1, pp. 86–100, 2010.

[17] P. Brambilla and A. Guardone, “Assessment of dynamic adaptive grids in volume-of-

fluid simulations of oblique drop impacts onto liquid films,” Journal of Computational

and Applied Mathematics, vol. 281, pp. 277–283, 2015.

[18] R. S. Cant et al., “An unstructured adaptive mesh refinement approach for computa-

tional fluid dynamics of reacting flows,” Journal of Computational Physics, vol. 468,

p. 111 480, 2022.

[19] J. J. Cooke, L. M. Armstrong, K. H. Luo, and S. Gu, “Adaptive mesh refinement of

gas–liquid flow on an inclined plane,” Computers & Chemical Engineering, vol. 60,

pp. 297–306, 2014.

[20] P. Dechaumphai, “Evaluation of an adaptive unstructured remeshing technique for inte-

grated fluid-thermal-structural analysis,” Journal of Thermophysics and Heat Transfer,

vol. 5, no. 4, pp. 599–606, 1991.

107

[21] L. Demkowicz, J. T. Oden, W. Rachowicz, and O. Hardy, “Toward a universal hp adap-

tive finite element strategy, part 1. constrained approximation and data structure,” Com-

puter Methods in Applied Mechanics and Engineering, vol. 77, no. 1–2, pp. 79–112,

1989.

[22] L. F. Diachin, R. Hornung, P. Plassmann, and A. Wissink, “Parallel adaptive mesh re-

finement,” in Parallel Processing for Scientific Computing, SIAM, 2006, pp. 143–162.

[23] V. Dobrev, P. Knupp, T. Kolev, K. Mittal, and V. Tomov, “Hr-adaptivity for noncon-

forming high-order meshes with the target matrix optimization paradigm,” Engineering

with Computers, vol. 38, no. 4, pp. 3721–3737, 2022.

[24] A. Dubey et al., “A survey of high level frameworks in block-structured adaptive mesh

refinement packages,” Journal of Parallel and Distributed Computing, vol. 74, no. 12,

pp. 3217–3227, 2014.

[25] C. M. Ertl, “A decentral framework with dynamic partitioning for numerical com-

putations on massively parallel systems,” Ph.D. dissertation, Technische Universität

München, 2022.

[26] ESI-OpenCFD, Openfoam, https://www.openfoam.com, Accessed: 2025-04-29,

Apr. 2025.

[27] J. H. Ferziger and M. Perić, Computational methods for fluid dynamics. Springer, 2002.

[28] C. Foucart, A. Charous, and P. F. J. Lermusiaux, “Deep reinforcement learning for adap-

tive mesh refinement,” Journal of Computational Physics, vol. 491, p. 112 381, 2023.

[29] T. O. Foundation, Openfoam v10, https://www.openfoam.org/version/10, Re-

lease date: 2022-07-12, Jul. 2022.

[30] A. Fournier, G. Beylkin, and V. Cheruvu, “Multiresolution adaptive space refinement in

geophysical fluid dynamics simulation,” in Adaptive Mesh Refinement–Theory and Ap-

plications: Proceedings of the Chicago Workshop on Adaptive Mesh Refinement Meth-

ods, Sept. 3–5, 2003, Springer, 2005, pp. 161–170.

[31] D. Franke, “Investigation of mechanical contact problems with high-order finite element

methods,” Ph.D. dissertation, Technische Universität München, 2011.

108

https://www.openfoam.com
https://www.openfoam.org/version/10

[32] E. Frederix, J. A. Hopman, T. Karageorgiou, and E. M. J. Komen, “Towards direct nu-

merical simulation of turbulent co-current taylor bubble flow,” arXiv preprint arXiv:2010.03866,

2020.

[33] N. Freymuth, P. Dahlinger, T. Würth, S. Reisch, L. Kärger, and G. Neumann, “Swarm

reinforcement learning for adaptive mesh refinement,” Advances in Neural Information

Processing Systems, vol. 36, pp. 73 312–73 347, 2023.

[34] B. Fryxell et al., “Flash: An adaptive mesh hydrodynamics code for modeling astrophys-

ical thermonuclear flashes,” The Astrophysical Journal Supplement Series, vol. 131,

no. 1, p. 273, 2000.

[35] J. P. de Gago, D. W. Kelly, O. C. Zienkiewicz, and I. Babuška, “A posteriori error anal-

ysis and adaptive processes in the finite element method: Part ii—adaptive mesh refine-

ment,” International Journal for Numerical Methods in Engineering, vol. 19, no. 11,

pp. 1621–1656, 1983.

[36] F. C. C. Galeazzo, G. Donnert, P. Habisreuther, N. Zarzalis, R. J. Valdes, and W. Krebs,

“Measurement and simulation of turbulent mixing in a jet in crossflow,” Journal of

Engineering for Gas Turbines and Power, vol. 133, no. 6, 2011.

[37] F. C. C. Galeazzo et al., “Computational modeling of turbulent mixing in a jet in cross-

flow,” International Journal of Heat and Fluid Flow, vol. 41, pp. 55–65, 2013.

[38] J. Geese, J. Kimmerl, M. Nadler, and M. Abdel-Maksoud, “Adaptive mesh refinement

for trailing vortices generated by propellers in interaction with slipstream obstacles,”

Journal of Marine Science and Engineering, vol. 11, no. 11, p. 2148, 2023.

[39] J. Gou, X. Su, and X. Yuan, “Adaptive mesh refinement method-based large eddy sim-

ulation for the flow over circular cylinder at re d= 3900,” International Journal of Com-

putational Fluid Dynamics, vol. 32, no. 1, pp. 1–18, 2018.

[40] J. A. Gutiérrez Suárez, C. H. Galeano Urueña, and A. Gómez Mejía, “Adaptive mesh

refinement strategies for cost-effective eddy-resolving transient simulations of spray

dryers,” ChemEngineering, vol. 7, no. 5, p. 100, 2023.

[41] J.-F. Hétu and D. H. Pelletier, “Fast, adaptive finite element scheme for viscous incom-

pressible flows,” AIAA Journal, vol. 30, no. 11, pp. 2677–2682, 1992.

109

[42] G. Hindi, E. E. Paladino, and A. A. M. de Oliviera Jr, “Effect of mesh refinement and

model parameters on les simulation of diesel sprays,” International Journal of Heat and

Fluid Flow, vol. 71, pp. 246–259, 2018.

[43] C. W. Hirt and B. D. Nichols, “Volume of fluid (vof) method for the dynamics of free

boundaries,” Journal of Computational Physics, vol. 39, no. 1, pp. 201–225, 1981.

[44] J. Holke, “Scalable algorithms for parallel tree-based adaptive mesh refinement with

general element types,” arXiv preprint arXiv:1803.04970, 2018.

[45] S. Hysing et al., “Quantitative benchmark computations of two-dimensional bubble

dynamics,” International Journal for Numerical Methods in Fluids, vol. 60, no. 11,

pp. 1259–1288, 2009.

[46] H. Jasak and A. D. Gosman, “Automatic resolution control for the finite-volume method,

part 2: Adaptive mesh refinement and coarsening,” Numerical Heat Transfer, Part B:

Fundamentals, vol. 38, no. 3, pp. 257–271, 2000.

[47] M. T. Jones and P. E. Plassmann, “Parallel algorithms for adaptive mesh refinement,”

SIAM Journal on Scientific Computing, vol. 18, no. 3, pp. 686–708, 1997.

[48] S. V. Joshi, “Adaptive mesh refinement in openfoam with quantified error bounds and

support for arbitrary cell-types,” Thesis, Technical University of Munich, Germany,

2016.

[49] Y. Kallinderis, “A 3-d finite-volume method for the navier-stokes equations with adap-

tive hybrid grids,” Applied Numerical Mathematics, vol. 20, no. 4, pp. 387–406, 1996.

[50] Y. Kallinderis and A. Vidwans, “Generic parallel adaptive-grid navier–stokes algo-

rithm,” AIAA Journal, vol. 32, no. 1, pp. 54–61, 1994.

[51] Y. Kallinderis and P. Vijayan, “Adaptive refinement-coarsening scheme for three-dimensional

unstructured meshes,” AIAA Journal, vol. 31, no. 8, pp. 1440–1447, 1993.

[52] J. Karlsson, “Implementing anisotropic adaptive mesh refinement in openfoam,” Thesis,

Chalmers University of Technology, Sweden, 2012.

[53] M. Khosravi and M. Javan, “Three-dimensional features of the lateral thermal plume

discharge in the deep cross-flow using dynamic adaptive mesh refinement,” Theoretical

and Computational Fluid Dynamics, vol. 36, no. 3, pp. 405–422, 2022.

110

[54] K. M. T. Kleefsman, G. Fekken, A. E. P. Veldman, B. Iwanowski, and B. Buchner,

“A volume-of-fluid based simulation method for wave impact problems,” Journal of

Computational Physics, vol. 206, no. 1, pp. 363–393, 2005.

[55] A. Knüpfer et al., “Score-p: A joint performance measurement run-time infrastructure

for periscope, scalasca, tau, and vampir,” in Tools for High Performance Computing

2011: Proceedings of the 5th International Workshop on Parallel Tools for High Perfor-

mance Computing, September 2011, ZIH, Dresden, Springer, 2012, pp. 79–91.

[56] G. Kumar and A. G. Nair, “Dominant balance-based adaptive mesh refinement for in-

compressible fluid flows,” arXiv preprint arXiv:2411.02677, 2024.

[57] C.-W. Kuo and M. F. Trujillo, “An analysis of the performance enhancement with adap-

tive mesh refinement for spray problems,” International Journal of Multiphase Flow,

vol. 140, p. 103 615, 2021.

[58] C. Lapointe et al., “Efficient simulation of turbulent diffusion flames in openfoam using

adaptive mesh refinement,” Fire Safety Journal, vol. 111, p. 102 934, 2020.

[59] K. D. Lee, J. M. Loellbach, and M. S. Kim, “Adaptive control of grid quality for com-

putational fluid dynamics,” Journal of Aircraft, vol. 28, no. 10, pp. 664–669, 1991.

[60] L.-m. Li et al., “Large eddy simulation of cavitating flows with dynamic adaptive mesh

refinement using openfoam,” Journal of Hydrodynamics, vol. 32, pp. 398–409, 2020.

[61] S. Li, “Comparison of refinement criteria for structured adaptive mesh refinement,”

Journal of Computational and Applied Mathematics, vol. 233, no. 12, pp. 3139–3147,

2010.

[62] A. Liapi et al., “Adaptive grid refinement for high-order finite volume simulations of

unsteady compressible and turbulent flows,” International Journal of Computational

Fluid Dynamics, vol. 38, no. 2-3, pp. 155–178, 2024.

[63] D. K. Lilly, “A proposed modification of the germano subgrid-scale closure method,”

Physics of Fluids A: Fluid Dynamics, vol. 4, pp. 633–635, 1992.

[64] R. Löhner, K. Morgan, and O. C. Zienkiewicz, “Adaptive grid refinement for the eu-

ler and compressible navier-stokes equations,” NASA STI/Recon Technical Report A,

vol. 85, p. 16 108, 1984.

111

[65] D. A. Lyn, S. Einav, W. Rodi, and J.-H. Park, “A laser-doppler velocimetry study of

ensemble-averaged characteristics of the turbulent near wake of a square cylinder,”

Journal of Fluid Mechanics, vol. 304, pp. 285–319, 1995.

[66] G. Maragkos, E. Funk, and B. Merci, “Analysis of adaptive mesh refinement in a tur-

bulent buoyant helium plume,” International Journal for Numerical Methods in Fluids,

vol. 94, no. 9, pp. 1398–1415, 2022.

[67] F. R. Menter, “Two-equation eddy-viscosity turbulence models for engineering applica-

tions,” AIAA Journal, vol. 32, no. 8, pp. 1598–1605, 1994.

[68] T. Miller, P. Aref, M. Ghoreyshi, A. Jirasek, and R. Greenwood, “Adaptive mesh re-

finement for computing unsteady ship air wakes,” in AIAA Aviation 2019 Forum, 2019,

p. 3031.

[69] M. Minguez, C. Brun, R. Pasquetti, and E. Serre, “Experimental and high-order les

analysis of the flow in the near-wall region of a square cylinder,” International Journal

of Heat and Fluid Flow, vol. 32, no. 3, pp. 558–566, 2011.

[70] R. D. Moser, J. Kim, and N. N. Mansour, “Direct numerical simulation of turbulent

channel flow up to re = 590,” Physics of Fluids, vol. 11, no. 4, pp. 943–945, 1999.

[71] T. Mukha, S. Rezaeiravesh, and M. Liefvendahl, “A library for wall-modelled large-

eddy simulation based on openfoam technology,” Computer Physics Communications,

vol. 239, pp. 204–224, 2019.

[72] J.-D. Müller and M. Giles, “Solution adaptive mesh refinement using adjoint error anal-

ysis,” in 15th AIAA Computational Fluid Dynamics Conference, AIAA, 2001, p. 2550.

[73] S. Muzaferija and D. Gosman, “Finite-volume cfd procedure and adaptive error control

strategy for grids of arbitrary topology,” Journal of Computational Physics, vol. 138,

no. 2, pp. 766–787, 1997.

[74] M. Nemec, M. Aftosmis, and M. Wintzer, “Adjoint-based adaptive mesh refinement

for complex geometries,” in 46th AIAA Aerospace Sciences Meeting and Exhibit, 2008,

p. 725.

112

[75] B. D. Nichols and C. W. Hirt, “Methods for calculating multidimensional, transient free

surface flows past bodies,” in Proceedings of the 1st International Conference on Ship

Hydrodynamics, Naval Ship Research and Development Center, Bethesda, MD, 1975,

pp. 253–277.

[76] F. Nicoud and F. Ducros, “Subgrid-scale stress modelling based on the square of the

velocity gradient tensor,” Flow, Turbulence and Combustion, vol. 62, no. 3, pp. 183–

200, 1999.

[77] M. L. Norman, “The impact of AMR in numerical astrophysics and cosmology,” in

Adaptive Mesh Refinement–Theory and Applications: Proceedings of the Chicago Work-

shop on Adaptive Mesh Refinement Methods, Sept. 3–5, 2003, Springer, 2005, pp. 413–

430.

[78] O. Obiols-Sales, A. Vishnu, N. Malaya, and A. Chandramowlishwaran, “Adarnet: Deep

learning predicts adaptive mesh refinement,” in Proceedings of the 52nd International

Conference on Parallel Processing, 2023, pp. 524–534.

[79] S. S. Ochs and R. G. Rajagopalan, “An adaptively refined quadtree grid method for

incompressible flows,” Numerical Heat Transfer, Part B: Fundamentals, vol. 34, no. 4,

pp. 379–400, 1998.

[80] A. A. Patel and M. Safdari, “Smart adaptive mesh refinement with nemosys,” in AIAA

Scitech 2021 Forum, American Institute of Aeronautics and Astronautics, 2021.

[81] U. Piomelli and E. Balaras, “Wall-layer models for large-eddy simulations,” Annual

Review of Fluid Mechanics, vol. 34, no. 1, pp. 349–374, 2002.

[82] T. Plewa, T. J. Linde, and V. G. Weirs, Eds., Adaptive Mesh Refinement–Theory and Ap-

plications: Proceedings of the Chicago Workshop on Adaptive Mesh Refinement Meth-

ods, Sept. 3–5, 2003. Springer, 2005.

[83] S. B. Pope, “Turbulent flows,” Measurement Science and Technology, vol. 12, no. 11,

pp. 2020–2021, 2001.

[84] S. Prakash, “Adaptive mesh refinement for finite element flow modeling in complex

geometries,” Ph.D. dissertation, University of Toronto, 1999.

[85] T. foam-extend Project, Foam-extend, https://sourceforge.net/projects/foam-

extend/, Accessed: 2025-04-29, Apr. 2025.

113

https://sourceforge.net/projects/foam-extend/
https://sourceforge.net/projects/foam-extend/

[86] X. Qi, Y. Yang, L. Tian, Z. Wang, and N. Zhao, “A parallel methodology of adaptive

cartesian grid for compressible flow simulations,” Advances in Aerodynamics, vol. 4,

no. 1, p. 21, 2022.

[87] J. J. Quirk, “An adaptive grid algorithm for computational shock hydrodynamics,”

Ph.D. dissertation, Cranfield Institute of Technology, United Kingdom, 1991.

[88] J. J. Quirk and U. R. Hanebutte, “A parallel adaptive mesh refinement algorithm,” Los

Alamos National Laboratory, Tech. Rep., 1993, Technical Report.

[89] C. A. Rendleman, V. E. Beckner, M. Lijewski, W. Crutchfield, and J. B. Bell, “Paral-

lelization of structured, hierarchical adaptive mesh refinement algorithms,” Computing

and Visualization in Science, vol. 3, pp. 147–157, 2000.

[90] D. Rettenmaier et al., “Load-balanced 2d and 3d adaptive mesh refinement in open-

foam,” SoftwareX, vol. 10, p. 100 317, 2019.

[91] R. Rossi, J. Cotela, N. M. Lafontaine, P. Dadvand, and S. R. Idelsohn, “Parallel adap-

tive mesh refinement for incompressible flow problems,” Computers & Fluids, vol. 80,

pp. 342–355, 2013.

[92] P. Sagaut, Large Eddy Simulation for Incompressible Flows: An Introduction. Springer

Science & Business Media, 2005.

[93] M. Schäfer, S. Turek, F. Durst, E. Krause, and R. Rannacher, Benchmark Computations

of Laminar Flow Around a Cylinder. Springer, 1996.

[94] F. G. Schmitt, “About boussinesq’s turbulent viscosity hypothesis: Historical remarks

and a direct evaluation of its validity,” Comptes Rendus Mécanique, vol. 335, no. 9–10,

pp. 617–627, 2007.

[95] A. M. Schwing, “Parallel adaptive mesh refinement for high-order finite-volume schemes

in computational fluid dynamics,” Ph.D. dissertation, University of Minnesota, 2015.

[96] S. Sezen and M. Atlar, “An alternative vorticity based adaptive mesh refinement (v-

amr) technique for tip vortex cavitation modelling of propellers using cfd methods,”

Ship Technology Research, vol. 69, no. 1, pp. 1–21, 2022.

[97] A. Sikirica, L. Grbčić, M. Alvir, and L. Kranjčević, “Computational efficiency assess-

ment of adaptive mesh refinement for turbulent jets in crossflow,” Mathematics, vol. 10,

no. 4, p. 620, 2022.

114

[98] J. Smagorinsky, “General circulation experiments with the primitive equations: I. the

basic experiment,” Monthly Weather Review, vol. 91, no. 3, pp. 99–164, 1963.

[99] R. Teyssier, “Cosmological hydrodynamics with adaptive mesh refinement – a new high

resolution code called ramses,” Astronomy & Astrophysics, vol. 385, no. 1, pp. 337–364,

2002.

[100] C. T. Traxler, “An algorithm for adaptive mesh refinement in n dimensions,” Comput-

ing, vol. 59, pp. 115–137, 1997.

[101] T.-H. Un and S. Navarro-Martinez, “Stochastic fields with adaptive mesh refinement for

high-speed turbulent combustion,” Combustion and Flame, vol. 272, p. 113 897, 2025.

[102] B. Vanbersel et al., “A systematic adaptive mesh refinement method for large eddy

simulation of turbulent flame propagation,” Flow, Turbulence and Combustion, vol. 112,

no. 4, pp. 1127–1160, 2024.

[103] D. A. Venditti and D. L. Darmofal, “Adjoint error estimation and grid adaptation for

functional outputs: Application to quasi-one-dimensional flow,” Journal of Computa-

tional Physics, vol. 164, no. 1, pp. 204–227, 2000.

[104] E. D. Villiers, “The potential of large eddy simulation for the modeling of wall-bounded

flows,” Ph.D. dissertation, Imperial College of Science, Technology and Medicine, 2006.

[105] R. Vilsmeier and D. Hänel, “Adaptive methods on unstructured grids for euler and

navier-stokes equations,” Computers & Fluids, vol. 22, no. 4–5, pp. 485–499, 1993.

[106] J. Wackers, “Adaptivity for complex flows,” Ph.D. dissertation, Université de Nantes,

2019.

[107] J. Wackers et al., “Adaptive grid refinement for ship resistance computations,” Ocean

Engineering, vol. 250, p. 110 969, 2022.

[108] F. Wang et al., “Cpu ray tracing of tree-based adaptive mesh refinement data,” in Com-

puter Graphics Forum, Wiley Online Library, vol. 39, 2020, pp. 1–12.

[109] Y. Wang and W. Ge, “Simulation of fluid-structure interaction using the boundary data

immersion method with adaptive mesh refinement,” International Journal for Numeri-

cal Methods in Fluids, vol. 96, no. 7, pp. 1156–1169, 2024.

115

[110] Z. Wang, L. Li, H. Cheng, and B. Ji, “Numerical investigation of unsteady cloud cavitat-

ing flow around the clark-y hydrofoil with adaptive mesh refinement using openfoam,”

Ocean Engineering, vol. 206, p. 107 349, 2020.

[111] H. G. Weller, G. Tabor, H. Jasak, and C. Fureby, “A tensorial approach to computational

continuum mechanics using object-oriented techniques,” Computers in Physics, vol. 12,

no. 6, pp. 620–631, 1998.

[112] W. Ying and C. S. Henriquez, “Adaptive mesh refinement and adaptive time integration

for electrical wave propagation on the purkinje system,” BioMed Research Interna-

tional, vol. 2015, no. 1, p. 137 482, 2015.

[113] N. Zander, T. Bog, M. Elhaddad, F. Frischmann, S. Kollmannsberger, and E. Rank, “The

multi-level hp-method for three-dimensional problems: Dynamically changing high-

order mesh refinement with arbitrary hanging nodes,” Computer Methods in Applied

Mechanics and Engineering, vol. 310, pp. 252–277, 2016.

[114] O. C. Zienkiewicz, R. L. Taylor, and J. Z. Zhu, The Finite Element Method: Its Basis

and Fundamentals. Elsevier, 2005.

[115] D. Zuzio and J. L. Estivalezes, “An efficient block parallel amr method for two phase

interfacial flow simulations,” Computers & Fluids, vol. 44, no. 1, pp. 339–357, 2011.

116

LIST OF FIGURES

1.1 Main refinement methods: (a) cell-based, (b) patch-based, (c) block-based. . . . 7

1.2 Main adaptation strategies: (a) initial grid, (b) h-refinement, (c) p-refinement,

(d) r-refinement. 8

2.1 Computational domain for two-dimensional flow around a cylinder. 29

2.2 Resulting drag and lift coefficients for the two-dimensional cylinder case: (a)

drag coefficient, (b) lift coefficient. 30

2.3 Computational domain for three-dimensional flow around a cylinder. 31

2.4 Resulting drag and lift coefficients for the three-dimensional cylinder case: (a)

drag coefficient, (b) lift coefficient. 32

2.5 Computational domain for the rising bubble test case: (a) 2D domain, (b) 3D

domain. 34

2.6 Results for the two-dimensional bubble dynamics case: (a) rise velocity, (b)

sphericity. 35

2.7 Results for the three-dimensional bubble dynamics case: (a) rise velocity, (b)

sphericity. 36

2.8 Additional monitored metrics in the three-dimensional bubble dynamics case:

(a) centre of mass, (b) bubble diameter along the x axis. 36

2.9 Computational domain for the dam break test case. 37

2.10 Selected results for the dam break test case using conventional (non-adaptive)

grids. 38

2.11 Computational domain for the turbulent channel test case. 40

2.12 Results for the channel flow case using a conventional (non-adaptive) grid: (a)

normalised streamwise Reynolds normal stress u′u′/U2
τ , (b) normalised Reynolds

shear stress u′v′/U2
τ . 41

117

2.13 Results for the channel flow case using a conventional (non-adaptive) grid: (a)

normalised wall-normal Reynolds normal stress v′v′/U2
τ , (b) normalised span-

wise Reynolds normal stress w′w′/U2
τ . 42

2.14 Computational domain for the square cylinder test case. 43

2.15 Profiles u′/U at various cross-sections for the square cylinder test case using a

conventional (non-adaptive) grid. 45

2.16 Profiles v′/U at various cross-sections for the square cylinder test case using a

conventional (non-adaptive) grid. 46

2.17 Computational domain for the turbulent mixing test case. 47

2.18 Results for the normalised velocity at different cross-sections for the turbulent

mixing test case using a conventional (non-adaptive) grid. 48

2.19 Results for the scalar concentration at different cross-sections for the turbulent

mixing test case using a conventional (non-adaptive) grid. 49

3.1 Refinement candidate selection flowchart for refiner class. 51

3.2 Cell subdivision resulting from: (a) hexRef4, (b) hexRef8. 52

3.3 Simplified flowchart for the hexRef4 class. 53

3.4 Results for the bubble dynamics case obtained using the refiner2D class: (a)

rise velocity, (b) sphericity. 54

3.5 Results for the bubble dynamics case obtained using the refiner class: (a) rise

velocity, (b) sphericity, (c) centre of mass, (d) computational mesh and the

bubble. 55

4.1 Flowchart of the mcAMR cell selection process. 60

4.2 Results for the bubble dynamics case obtained using the multiFieldRefiner2D

class: (a) rise velocity, (b) sphericity, (c) centre of mass, (d) bubble

evolution. 62

4.3 Drag and lift coefficients for the two-dimensional AMR cylinder case: (a) drag

coefficient, (b) lift coefficient. 63

4.4 Drag and lift coefficients for the three-dimensional AMR cylinder case: (a) drag

coefficient, (b) lift coefficient. 65

4.5 Selected results for the dam break test case using the AMR approach. 66

5.1 Simplified flowchart of the distributorMPI class logic. 69

118

5.2 Impact of imbalance threshold and redistribution interval on simulation time

for different distributor classes using Intel MPI and OpenMPI (continued on

the next page). 72

5.3 Impact of imbalance threshold and redistribution interval on simulation time

for different distributor classes using Intel MPI and OpenMPI (continued from

previous page). 73

5.4 Impact of network interconnect on the performance of distributor classes across

various imbalance thresholds and redistribution intervals. 74

5.5 Performance of distributor classes across three hardware environments for

varying imbalance thresholds and redistribution intervals. 75

5.6 Distributor performance for scaled dam break test cases: (a) medium case, (b)

fine case. 77

6.1 Results for the non-dimensional mean streamwise velocity profile U/Ub for the

channel flow case using AMR. 85

6.2 Results for the channel flow case using AMR: (a) normalised streamwise Reynolds

normal stress u′u′/U2
τ , (b) normalised Reynolds shear stress u′v′/U2

τ 85

6.3 Results for the channel flow case using AMR: (a) normalised wall-normal

Reynolds normal stress v′v′/U2
τ , (b) normalised spanwise Reynolds normal stress

w′w′/U2
τ . 86

6.4 Energy spectra for the channel flow case using AMR: (a) Smagorinsky model,

(b) dynamic Smagorinsky model. 87

6.5 Fluctuating streamwise velocity u′u′ at y/δ = 0.05 for the channel flow case

using AMR: (a) Smagorinsky model, (b) dynamic Smagorinsky model. 88

6.6 Sample of the computational mesh for the channel flow case using AMR. . . . 89

6.7 Isosurface Q= 50 coloured by velocity for the channel flow case using Smagorin-

sky model and AMR. 89

6.8 Results for the square cylinder test case using AMR showing U/U profiles at

various cross-sections. 91

6.9 Results for the square cylinder test case using AMR showing u′/U profiles at

various cross-sections. 92

6.10 Results for the square cylinder test case using AMR showing V/U profiles at

various cross-sections. 93

119

6.11 Results for the square cylinder test case using AMR showing v′/U profiles at

various cross-sections. 94

6.12 Isosurface Q = 10 coloured by velocity for the square cylinder test case using

AMR. 95

6.13 Regions of influence for refinement criteria in the square cylinder test case with

AMR at the final time step. Blue indicates Φλ2 , red indicates Φ∆. 96

6.14 Normalised velocity at different cross-sections for the turbulent mixing test case

using AMR. 97

6.15 Scalar concentration at different cross-sections for the turbulent mixing test case

using AMR. 98

6.16 Isosurface c = 0.1 for the turbulent mixing test case using AMR. 99

6.17 Isosurface Q = 25000 s−2 coloured by velocity for the turbulent mixing test

case using AMR. 100

6.18 Velocity U and scalar c at t = 1 s, shown at different cross-sections: (a) U at

y/D = 0, (b) U at z/D = 1.5, (c) c at y/D = 0, (d) c at z/D = 1.5. 101

120

LIST OF TABLES

1.1 Selected milestones in the development of AMR. 5

1.2 Comparative overview of SAMR and UAMR [22]. 6

1.3 Use of AMR for high-fidelity CFD simulations. 13

2.1 Fluid properties employed in the bubble dynamics test cases. 32

5.1 Implementation differences between distributorMPI and

distributorRollingMPI. 71

5.2 Performance statistics obtained using Score-P 8.4 for different distribution

strategies. 72

6.1 DTW-based difference between conventional and AMR cases. 102

6.2 Computational times for conventional and AMR cases. 102

121

CURRICULUM VITAE

Ante Sikirica was born on 20 October 1991 in Rijeka, Croatia. He obtained his Master’s de-

gree in Mechanical Engineering from the Faculty of Engineering, University of Rijeka, in 2018.

Since 2019, he has been a PhD candidate in Fundamental Technical Sciences at the same in-

stitution. That same year, he briefly served as an assistant at the Faculty of Engineering before

joining the Centre for Advanced Computing and Modelling at the University of Rijeka, where

he has held the position of assistant since. He also contributes in his capacity as an external asso-

ciate at the Faculty of Engineering. His research focuses on the application of high-performance

computing, with an emphasis on computational fluid dynamics, machine learning, and optimi-

sation methods. He has contributed to numerous national and European research projects and

is the author or co-author of over 20 scientific publications, 16 of which were published in

journals ranked in the top quartile (Q1) by Web of Science. Mr Sikirica has received several

honours for his work, including the University of Rijeka Rector’s Award for Excellence (2024),

two awards from the University of Rijeka Foundation (2023) for scientific achievement and

knowledge transfer, and four Dean’s Awards from the Faculty of Engineering.

122

LIST OF PUBLICATIONS

Scientific papers in peer-reviewed journals:

1. Jakac, K., Lanča, L., Sikirica, A., and Ivić, S. 2024. Approximation of sea surface ve-

locity field by fitting surrogate two-dimensional flow to scattered measurements. Applied

ocean research, 153, 104246.

2. Sikirica, A., Lučin, I., Alvir, M., Kranjčević, L., and Čarija, Z. 2024. Computationally ef-

ficient optimisation of elbow-type draft tube using neural network surrogates. Alexandria

Engineering Journal, 90, 129-152.

3. Alvir, M., Grbčić, L., Sikirica, A., and Kranjčević, L. 2023. Reconstruction and analysis

of negatively buoyant jets with interpretable machine learning. Marine pollution bulletin,

190, 114881.

4. Rak, A., Grbčić, L., Sikirica, A., and Kranjčević, L. 2023. Experimental and LBM anal-

ysis of medium-Reynolds number fluid flow around NACA0012 airfoil. International

journal of numerical methods for heat & fluid flow, 33(5), 1955-1980.

5. Sikirica, A., Grbčić, L., and Kranjčević, L. 2023. Machine learning based surrogate mod-

els for microchannel heat sink optimization. Applied thermal engineering, 222, 119917.

6. Alvir, M., Grbčić, L., Sikirica, A., and Kranjčević, L. 2022. OpenFOAM-ROMS nested

model for coastal flow and outfall assessment. Ocean engineering, 264, 112535.

7. Grbčić, L., Družeta, S., Mauša, G., Lipić, T., Vukić Lušić, D., Alvir, M., Lučin, I., Sikir-

ica, A., Davidović, D., Travaš, V., Kalafatović, D., Pikelj, K., Fajković, H., Holjević,

T. and Kranjčević, L. 2022. Coastal water quality prediction based on machine learn-

ing with feature interpretation and spatio-temporal analysis. Environmental Modelling &

Software, 155, 105458.

8. Ivić, S., Sikirica, A., and Crnković, B. 2022. Constrained multi-agent ergodic area sur-

veying control based on finite element approximation of the potential field. Engineering

applications of artificial intelligence, 116, 105441.

123

9. Lučin, I., Družeta, S., Mauša, G., Alvir, M., Grbčić, L., Vukić Lušić, D., Sikirica, A., and

Kranjčević, L. 2022. Predictive modeling of microbiological seawater quality in karst

region using cascade model. Science of the total environment, 851, 158009.

10. Lučin, I., Sikirica, A., Šiško Kuliš, M., and Čarija, Z. 2022. Investigation of efficient op-

timization approach to the modernization of Francis turbine draft tube geometry. Mathe-

matics, 10(21), p.4050.

11. Sikirica, A., Grbčić, L., Alvir, M., and Kranjčević, L. 2022. Computational Efficiency

Assessment of Adaptive Mesh Refinement for Turbulent Jets in Crossflow. Mathematics,

10(4), p.620.

12. Bukmir, R. P., Paljevic, E., Braut, A., Sikirica, A., Carija, Z., Brekalo Prso, I., and Anic,

I. 2021. Influence of operator experience on vertical force during instrumentation using

Neoniti rotary files. Giornale italiano di endodonzia, 35(1).

13. Grbčić, L., Kranjčević, L., Lučin, I., and Sikirica, A. 2021. Large Eddy Simulation of

turbulent fluid mixing in double-tee junctions. Ain Shams Engineering Journal, 12(1),

789-797.

14. Lučin, I., Lučin, B., Čarija, Z., and Sikirica, A. 2021. Data-driven leak localization in ur-

ban water distribution networks using big data for random forest classifier. Mathematics,

9(6), p.672.

15. Travaš, V., Kranjčević, L., Družeta, S., Holjević, T., Lučin, I., Alvir, M., Grbčić, L., and

Sikirica, A. 2021. Model gibanja čestica mikroplastike u nehomogenom i laminarnom

polju brzine. Hrvatske vode, 29(117), 201-213.

16. Čarija, Z., Ledić, F., Sikirica, A., and Niceno, B. 2020. CFD study of the PTS experiment

in ROCOM test facility. Nuclear Engineering and Technology, 52(12), 2803-2811.

17. Sikirica, A., Čarija, Z., Lučin, I., Grbčić, L., and Kranjčević, L. 2020. Cavitation model

calibration using machine learning assisted workflow. Mathematics, 8(12), p.2107.

18. Sikirica, A., Čarija, Z., Kranjčević, L., and Lučin, I. 2019. Grid type and turbulence

model influence on propeller characteristics prediction. Journal of marine science and

engineering, 7(10), 374.

Conference papers:

1. Lučin, I., Alvir, M., Sikirica, A., Družeta, S., Travaš, V., and Kranjčević, L. 2023. Remote

Sensing Localization of Submerged Groundwater Discharges in Bathing Areas. 40th

IAHR World Congress, 1260-1267.

124

2. Alvir, M., Grbčić, L., Sikirica, A., and Kranjčević, L. 2022. Numerical Modeling of

Inclined Buoyant Jets for Different Flow Conditions. Pomorski zbornik, (4), 77-86.

3. Janeš, G., Sikirica, A., Grbčić, L., and Kranjčević, L. 2022. MPI associated scalability of

open-source CFD codes for oil spill assessment. Pomorski zbornik, (4), 67-75.

4. Sikirica, A., Lučin, I., Čarija, Z., and Lučin, B. 2020. CFD Analysis of Marine Propeller

Configurations in Cavitating Conditions. Pomorski zbornik, (3), 251-264.

125

	Introduction
	Theoretical Foundations and State of the Art
	The Importance of Adaptive Mesh Refinement
	Early Developments
	Adaptive Mesh Refinement Paradigms
	Methods and Data Structure
	Adaptation Strategies
	h-refinement
	p-refinement
	r-refinement
	Hybrid Strategies

	Refinement Criteria
	Impact and Current Research Trends

	Hypothesis and Research Goals
	Scientific Contribution
	Thesis Structure

	Numerical Modelling and Validation Cases
	Governing Equations of Fluid Flow
	Conservation of Mass
	Conservation of Momentum
	Conservation of Energy

	Principles of the Finite Volume Method
	Turbulence Modelling
	Reynolds-Averaged Navier-Stokes Equations
	Large Eddy Simulation

	Numerical Modelling in OpenFOAM
	Validation of Laminar and RANS Benchmark Cases
	Flow Around a Cylinder
	Rising Bubble Dynamics
	Breaking of a Dam

	Validation of LES Benchmark Cases
	Turbulent Channel Flow
	Flow Around a Square Cylinder
	Turbulent Mixing of Jet in Crossflow

	Adaptive Mesh Refinement in OpenFOAM
	Native Implementation
	Extension for Two-Dimensional Problems
	Implementation Details
	Validation for Two-Dimensional Problems

	Validation for Three-Dimensional Problems

	Multi-Criteria Adaptive Mesh Refinement
	Multi-Criteria Refinement Strategy
	Mathematical Formulation
	Implementation Details

	Application of mcAMR to Two-Dimensional Problems
	Criteria and Validation for 2D Rising Bubble Dynamics
	Criteria and Validation for 2D Flow Around a Cylinder

	Application of mcAMR to Three-Dimensional Problems
	Criteria and Validation for 3D Flow Around a Cylinder
	Criteria and Validation for 3D Breaking of a Dam

	Load-Aware Dynamic Load Balancing
	MPI-Based Load Redistribution
	Archive-Based Load Redistribution
	Computational Efficiency

	Refinement Criterion for Large Eddy Simulation
	Composite Refinement Criterion
	Established Refinement Criteria
	Practical Considerations
	Formulation of the Criterion

	Application of mcAMR to LES
	Assessment for Turbulent Channel Flow
	Assessment for Flow Around a Square Cylinder
	Assessment for Turbulent Mixing of Jet in Crossflow

	Computational Cost and Accuracy

	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Curriculum Vitae
	List of Publications

