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Abstract

This thesis advances anthropomorphic soft robotic devices for hand rehabilitation in
patients with neurological disorders, such as stroke and multiple sclerosis, focusing
on restoring grasping capabilities needed for activities of daily living. The research
integrates three complementary methodological approaches.

First, it establishes a real-time system for estimating and predicting grip force using
surface electromyography. Using only one sensing position with optimized spectral
masking and Koopman Operator Theory, the method achieves ∼5.5% error for grip
force estimation and ∼17.9% for short-term predictions, with processing times of just
30ms, making it suitable for real-time adaptive assistance based on patient volition.

Second, it develops simplified hand kinematic models by analyzing data from 77

participants performing 23 functional grasps. The approach identifies 116 highly
correlated joint relationships, models them using regularized generalized linear and
mixed-effects models, and clusters into 30 similar model groups. This reduces the
degrees of freedom during grasping to 5 to 15 while maintaining high accuracy, offering
a practical basis for designing rehabilitation devices with reduced complexity.

Third, it details the design and fabrication of a 3D-printed soft robotic rehabilitation
glove based on reduced hand kinematics. The innovative finger soft pneumatic actuator
combines cylindrical and ribbed geometries with a reinforcing element, creating an
asymmetric bellows actuator validated through finite element method simulations and
a modified pseudo-rigid-body model with positioning errors below 3.8mm.

These advances in EMG-based force feedback, sparse kinematic modeling, and soft
actuator design constitute a comprehensive framework for developing effective hand
rehabilitation devices.

Keywords: Rehabilitation Robotics, Hand Rehabilitation, Surface Electromyo-
graphy (sEMG), Grip Force Prediction, Simplified Hand Kinematic Models, Soft
Rehabilitation Glove Development





Prošireni sažetak

Ova disertacija doprinosi razvoju antropomorfnih mekih robotskih uređaja za rehabili-
taciju šake kod pacijenata s neurološkim poremećajima, uključujući moždani udar i
multiplu sklerozu, s ciljem učinkovitijeg obnavljanja sposobnosti hvatanja potrebne za
svakodnevne aktivnosti (ADL). Rad integrira tri metodološka pristupa: predviđanje sile
za povratnu vezu, reducirano kinematičko modeliranje i inovativni razvoj aktuatora.

Prvi dio disertacije predstavlja novu metodu u stvarnom vremenu za procjenu i
predviđanje sile stiska tijekom cilindričnog hvata korištenjem površinske elektromi-
ografije (sEMG). Robotska rehabilitacija temeljena na EMG-u pokazala je poboljšanu
funkcionalnu obnovu u usporedbi s konvencionalnim metodama terapije prisilno induci-
ranog pokreta i tradicionalne fizikalne terapije. Metodologija omogućuje izravan pristup
kontrolnoj varijabli—sili stiska—što omogućuje robotsku asistenciju koja se adaptivno
prilagođava voljnom djelovanju pacijenta. Dok suvremene metode zahtijevaju više
sEMG mjernih pozicija za točna predviđanja, predstavljena metoda postiže usporedive
rezultate koristeći samo jednu mjernu poziciju kroz optimiziranu spektralnu masku
tijekom obrade signala i pristup temeljen na teoriji Koopmanovog operatora (KOT).
Korištenjem naprednih tehnika transformacije podataka sa statičkim Koopmanovim
operatorom omogućuje se procjena trenutne sile stiska šake iz obrađenih EMG signala,
dok se dinamički Koopmanov operator primjenjuje za kratkoročno predviđanje sile
stiska na temelju tih procjena. Eksperimentalna validacija s 13 sudionika pokazala je
robusnu izvedbu na dvije sEMG mjerne pozicije na podlaktici, bez značajne osjetljivosti
na položaj elektroda. Metoda postiže ponderiranu srednju apsolutnu postotnu pogrešku
(wMAPE) od približno 5.5% za procjenu sile stiska i 17.9% za kratkoročna predviđanja
tijekom horizonta od 0.5 s. Značajno je da algoritam obrađuje, procjenjuje i predviđa
silu stiska unutar vremenskog prozora od 0.5 s sEMG podataka u samo 30ms, što ga
čini pogodnim za implementaciju u stvarnom vremenu u rehabilitacijskim uređajima.

U drugom dijelu disertacije razvijaju se interpretabilni reducirani kinematički
modeli hvatova šakom za rješavanje izazova prevelike složenosti prilikom konstrukcije



vi

rehabilitacijskih uređaja. Analizom najvećeg dostupnog skupa podataka o kinematici
šake, s podacima od 77 sudionika koji izvode 23 funkcionalna hvata vezana uz ADL,
ovo istraživanje uvodi novi pristup za modeliranje međuzglobnih ovisnosti unutar
prsta tijekom fleksije/ekstenzije (FE). Predložena metoda pojednostavljuje modeliranje
uspostavljanjem izravnih zavisnosti između parova zglobova, identificirajući 116 visoko
koreliranih odnosa koji su modelirani pomoću regulariziranih generaliziranih linearnih
modela (GLM) u kombinaciji s ponderiranim linearnim modelima miješanih učinaka
(LME). Hijerarhijsko grupiranje dodatno konsolidira ove odnose u 30 različitih klastera
uz zadržavanje visoke točnosti. Ovaj sustavni pristup značajno smanjuje stupnjeve
slobode (DOF) potrebne za modeliranje FE tijekom hvatanja na 5–15, nudeći praktičnu
osnovu za razvoj protetičkih i rehabilitacijskih uređaja sa značajnim smanjenjem
mehaničke i upravljačke složenosti.

Treći dio disertacije predstavlja sveobuhvatan proces za konstruiranje, simulaciju i
izradu 3D-tiskane meke robotske rehabilitacijske rukavice. Inovativni meki pneumatski
aktuator za prst (SPA) razvijen je koristeći kinematička svojstva i radni prostor ana-
tomskih prstiju kao konstrukcijsku osnovu. Aktuator integrira cilindričnu geometriju s
rebrima i ojačavajućim elementom—debljom, manje rastezljivom strukturom—na do-
njoj strani, što rezultira asimetričnim cilindričnim aktuatorom s mjehovima pogonjenim
pozitivnim tlakom. Dobiveni segmentirani kinematički modeli krutog tijela za aktuatore
kažiprsta i malog prsta omogućuju precizno upravljanje pokretima. Simulacije metodom
konačnih elemenata (FEM) pri različitim tlakovima između 0 to (numerical range) 3 bar
potvrdile su performanse aktuatora i njegovu usklađenost s putanjama ljudskog prsta.
Za pojednostavljenje iterativnog procesa konstruiranja, uveden je modificirani model
pseudo-krutog tijela (PRB), značajno smanjujući računalnu složenost uz zadržavanje
odstupanja u pozicioniranju ispod 3.8mm u usporedbi s FEM simulacijama. Aktuatori
su uspješno izrađeni korištenjem termoplastičnog poliuretana (TPU), a ergonomsko
testiranje meke rukavice pokazalo je njenu funkcionalnost.

Ova disertacija uvodi nove metode obrade EMG signala za povratnu vezu o sili,
reducirane kinematičke modele hvatova i okvir za razvoj mekih robotskih aktuatora.
Integracija ovih pristupa unaprjeđuje razvoj personaliziranih rehabilitacijskih uređaja
za širok raspon funkcionalnih hvatova ključnih za svakodnevne aktivnosti.

Ključne riječi: rehabilitacijska robotika, rehabilitacija šake, površinska elektromi-
ografija (sEMG), predviđanje sile hvata, reducirani kinematički modeli šake, razvoj
meke rehabilitacijske rukavice
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Chapter 1

Introduction

Hand function impairments pose a significant global health challenge, impacting ac-
tivities of daily living (ADLs) and imposing substantial societal burden (O’Sullivan
et al., 2019). These impairments primarily result from neurological disorders like stroke
and multiple sclerosis, and musculoskeletal conditions such as arthritis. Stroke affects
over 12 million individuals annually worldwide, with approximately one in four adults
over age 25 experiencing it in their lifetime (Feigin et al., 2025). Despite declining
age-adjusted rates, absolute case numbers continue rising due to aging populations and
lifestyle factors such as hypertension and obesity (Cheng et al., 2024).

The impact on hand function post-stroke is both severe and persistent. Welmer
et al. (2008) found that 70% of stroke patients have limited fine hand use in the first
week, improving to 41% at three months, but plateauing with 45% still exhibiting
limitations at 18 months. This chronic impairment underscores the need for effective
rehabilitation strategies.

Low- and middle-income countries bear the most significant stroke burden while
lacking adequate rehabilitation infrastructure (Feigin et al., 2025; Kayola et al., 2023).
Even high-income countries face challenges through workforce shortages and therapist
burnout, compromising rehabilitation quality (Patel and Bartholomew, 2021). The
combination of increasing stroke incidence, rehabilitation specialist shortages, and
rising healthcare costs necessitates innovative, scalable solutions capable of delivering
intensive therapy necessary for optimal recovery (Lang et al., 2015). Addressing these
challenges requires evidence-based strategies that operate within resource constraints
while maximizing functional recovery.
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Neuro-rehabilitation following stroke employs a multidisciplinary approach to restore
neurological function by harnessing brain neuroplasticity—the capacity to reorganize
neural circuitry in response to experience. Effective rehabilitation centers on structured,
repetitive, task-specific training that stimulates adaptive neural reorganization (Dobkin,
2004).

Evidence-based interventions include constraint-induced movement therapy (CIMT,
which restrains the unaffected limb while promoting intensive practice with the affected
side), functional electrical stimulation (FES, which applies electrical impulses to nerves
causing paralyzed muscles to contract), virtual reality (VR) environments (immer-
sive, interactive simulations that increase patient engagement and motivation through
customized scenarios), and robotic-assisted therapy systems (devices that automate
repetitive exercises while providing precise assistance, detailed progress tracking, and
consistent high-intensity training). These approaches facilitate neural rewiring by en-
gaging patients in goal-directed activities that mirror daily tasks, reinforcing functional
neural pathways through context-specific practice (Maier et al., 2019).

Optimal timing and intensity are critical parameters in rehabilitation protocols.
Current guidelines recommend initiating therapy within days post-stroke to lever-
age heightened neuroplasticity, though the exact therapeutic window remains under
investigation. Substantial evidence demonstrates that higher-intensity interventions
consistently yield superior motor recovery outcomes (Lang et al., 2015; Maier et al.,
2019). This dose-response relationship highlights the need for rehabilitation strategies
that deliver sufficient therapeutic intensity within existing healthcare constraints.

Rehabilitation robotics emerges as a promising frontier at the intersection of robotics,
neuroscience, and biomedical engineering, offering sophisticated solutions to the chal-
lenges of stroke rehabilitation (Colombo and Sanguineti, 2018). This interdisciplinary
field has developed specialized devices that deliver precisely controlled, repetitive,
task-specific elements for stimulating the neural reorganization necessary for functional
recovery. For stroke survivors experiencing hemiparesis or spasticity, these robotic
systems provide significant advantages, including the ability to deliver consistent,
high-intensity therapy that far exceeds the repetition counts possible in conventional
treatment. Additionally, integrated sensor systems enable continuous, quantitative
assessment of movement parameters such as range of motion, force production, and
movement quality. This allows for objective tracking of recovery trajectories and
data-driven therapy adjustments.
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Despite these advantages, traditional rehabilitation robots employing rigid exoskele-
tal designs present significant limitations when applied to the biomechanically complex
hand. The mechanical constraints of rigid structures frequently fail to accommodate
the hand’s intricate articular geometry and natural movement patterns, resulting in
kinematic misalignment during therapy. This misalignment often manifests as compen-
satory movements—maladaptive motor strategies that can reinforce non-physiological
movement patterns and potentially impede functional recovery. Furthermore, unnatural
movement constraints of rigid systems can diminish patient engagement and motiva-
tion, critical factors for optimal therapeutic outcomes (Peng and Huang, 2019). These
limitations have driven the exploration of alternative approaches that better align
with the hand’s natural biomechanics while maintaining the quantitative advantages of
robotic rehabilitation.

Soft robotics has emerged as a solution, characterized by its compliant, adaptable
actuators that fundamentally reimagine how robotic systems interact with the human
body (Chu and Patterson, 2018). This rapidly evolving field represents a significant
departure from conventional rigid robotic systems through its biomimetic approach
to design and actuation. Unlike their rigid counterparts, soft robotic gloves utilize
materials and mechanisms that emulate the viscoelastic properties of biological muscle-
tendon complexes, thereby facilitating physiologically appropriate force transmission
patterns, superior conformity to complex joint kinematics, and inherent mechanical
compliance that adapts to individual anatomical variations (Polygerinos et al., 2015).

The biomechanical advantages of soft robotic systems are particularly significant in
hand rehabilitation contexts with extraordinarily complex articular geometry and fine
motor control requirements. By employing flexible materials and distributed actuation
mechanisms, these systems can facilitate functional grasp patterns without imposing
constrained movement trajectories that might otherwise promote compensatory strate-
gies (Chu and Patterson, 2018). This capacity for accommodating natural movement
variability while simultaneously providing targeted assistance represents a critical
advancement for rehabilitation of neurological conditions such as stroke and multiple
sclerosis, where restoration of hand functionality directly impacts independence in
ADLs (Proulx et al., 2020).

Preliminary clinical investigations into soft robotic glove interventions have yielded
promising indicators regarding user experience and engagement metrics. Participants
generally report high satisfaction levels and demonstrate increased participation in
therapeutic activities when utilizing these devices. However, translating these positive
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experiential outcomes into standardized clinical practice requires substantial additional
validation (Proulx et al., 2020).

Hand rehabilitation devices must align with the hand’s natural biomechanics while
addressing its inherent complexity. The human hand, with its 27 bones, 21 intrinsic
muscles, and more than 20 degrees of freedom excluding the wrist, represents one of
nature’s most intricate mechanical systems (Sobinov and Bensmaia, 2021). Attempting
to replicate this complexity entirely through multi-joint linkages and actuators inevitably
results in rehabilitation devices that are excessively bulky, heavy, and prohibitively
expensive to manufacture.

Reducing this complexity is, therefore, essential for developing clinically viable,
patient-friendly rehabilitation gloves with improved compliance, scalability, and modu-
larity. Since hand biomechanical models form the foundation of rehabilitation device
design, overly detailed models unnecessarily complicate development without propor-
tional functional benefits. Instead, simplified yet interpretable kinematic models that
accurately represent essential hand movements provide a more effective development
pathway. By strategically prioritizing grasp patterns critical for activities of daily living,
these models enable the creation of lightweight, cost-effective devices that achieve their
intended therapeutic functionality without extraneous complexity.

Adaptive assistance—a fundamental principle in rehabilitation robotics—utilizes
real-time biosignals like EMG to dynamically adjust support based on patient effort,
amplifying rather than replacing natural motor commands. These systems integrate
sensor data with machine learning algorithms to provide precisely calibrated assistance
as needed, detecting motor intent while minimizing the “slacking“ phenomenon often
observed in passive robotic therapy. Research by Arantes et al. (2023) demonstrates
that EMG-based adaptive controllers effectively reduce slacking in stroke patients by
necessitating active muscle engagement during task performance. Another approach
deliberately emulates skilled therapist techniques, incorporating principles of task
variability and active participation that drive neuroplasticity (Hasson et al., 2023). By
maintaining the patient’s volition in rehabilitation, adaptive assistance promotes im-
proved motor outcomes and enhanced neural reorganization—key factors in meaningful
functional recovery.

Despite significant advances in soft robotics, critical barriers remain in translating
research prototypes into clinically viable devices, including regulatory challenges,
integration within healthcare workflows, and cost-effectiveness concerns.
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Building on these insights, this research establishes a structured framework for
developing soft robotic rehabilitation devices through three complementary approaches:

EMG-based adaptive assistance: Real-time grip force estimation from sEMG
signals that accurately represents voluntary effort, enabling dynamic support
adjustment based on patient capabilities.

Simplified kinematic modeling: Interpretable reduced-order models based on
hand synergies that maintain essential biomechanical properties while minimizing
actuation complexity.

Grasp-oriented design: Optimized soft actuators prioritizing ADL-related
functional grasps through iterative simulation and fabrication processes.

By integrating EMG-driven force estimation with biomechanically-informed kine-
matic models and purpose-designed soft actuators, this framework enables the develop-
ment of rehabilitation devices that simultaneously address effectiveness and practical
implementation challenges. These complementary innovations advance soft robotic
rehabilitation toward scalable solutions, providing personalized therapy adaptive to
patient capabilities while maintaining the affordability and usability.

Research Aims and Hypotheses

According to the above considerations, the aims of this research are threefold. First, it
seeks to develop a framework based on Koopman operator theory for real-time signal
processing and modeling to assess and short-term predict hand grip strength. Second,
it aims to devise applicable grasp-oriented, kinematically reduced hand models by
introducing intra-finger joint dependencies to simplify and enhance the accuracy of
rehabilitation-oriented hand modeling. Finally, the research focuses on developing a
prototype of a hand rehabilitation device using a soft robotic approach.

The research hypotheses of this thesis are as follows:

Hand grip, measured on one sensing position via sEMG, is highly correlated with
forearm muscle activity. Grip force can be assessed and predicted in real time
using a data-driven approach.

Complex hand kinematics during grasping can be significantly simplified and
generalized by introducing 1-to-1 dependencies.
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Simplified hand kinematic models, combined with soft-actuator modeling tech-
niques, can be leveraged to design and fabricate 3D-printed soft robotic devices
tailored for rehabilitation purposes.

1.1 Contributions of the Dissertation

The main contributions of this work are as follows:

1. Signal processing and grip force prediction: We optimized EMG signal
processing methods, achieving high peak cross-correlations between EMG and
grip force signals using a single sensing position on the forearm, enhancing the
accuracy of grip force estimation.

2. Real-time execution and adaptive assistance: We developed a Koopman-
based data-driven approach for real-time grip force estimation and short-term
prediction. This approach enables adaptive assistance by dynamically supple-
menting patients’ voluntary efforts with only the necessary force, advancing
predictive intent recognition for improved rehabilitation outcomes.

3. Intra-finger dependency modeling: We established motion patterns for intra-
finger dependencies across subjects, generating simplified yet accurate models
that significantly reduce the degrees of freedom (DOFs) involved in grasping.
Additionally, we identified clusters of similar dependencies across different grasps,
streamlining human hand modeling while preserving precision.

4. Soft robotics design: We devised an iterative methodology for designing,
modeling, and fabricating 3D-printed soft actuators tailored for a rehabilitation
glove. An initial prototype was developed and tested to validate functionality
and usability in rehabilitation applications.

1.2 Structure of the Dissertation

This thesis is structured into five chapters, complemented by appendices, offering a
systematic and detailed presentation of the research conducted. The graphical abstract
given as Figure 1.1 provides a visual overview of the thesis structure and the key
methodology used to achieve the research objectives. The elements depicted in the
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abstract correspond to specific chapters in the thesis, which explore these topics in
depth.

Chapter 1 outlines the scientific motivation underlying the study, details the
research aims and hypotheses, and highlights the research contributions.

Chapter 2 explores time-series data on muscle activity using sEMG alongside grip
force measurements with a dynamometer. Advanced signal processing techniques were
applied to extract features strongly correlated with grip force, and offline optimization
enhanced model accuracy. Finally, Koopman operator theory was used to estimate
grip force during medium wrap using a single sEMG sensor pair.

Chapter 3 uncovers intra-finger dependencies during finger flexion and extension
by analyzing trajectories from 23 functional movements—grasps–involving 77 test
subjects. The process includes data cleaning, correlation analysis to identify 116
dependency-movement relationships, and the use of regularized linear models to select
uncorrelated predictors. A linear mixed-effect model and agglomerative clustering are
then applied to balance accuracy and reduction, enabling grasp modeling with just
5–15 degrees of freedom.

Chapter 4 details the design, simulation, and development of a rehabilitation glove
prototype powered by soft pneumatic actuators. A geometric model of the index finger
and kinematic analysis informed the design of an asymmetric bellow actuator optimized
for ADL workspace requirements. FEM simulations validated its performance, while a
simplified pseudo-rigid-body (PRB) model streamlined the design process. Fabricated
with TPU for durability, the actuators were assembled into a prototype glove, which
ergonomic testing confirmed as suitable for rehabilitation applications.

Chapter 5 summarizes the key findings of the research and outlines the necessary
next steps to integrate the presented components into a functional rehabilitation device.
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Chapter 2

EMG-based Forecasting of Hand Grip
Force Using Koopman Framework

T his chapter introduces a novel method for accurately estimating grip force
during medium wrap using a single surface electromyography (sEMG) sensor

pair, addressing the challenge of increasing sensor demands for precise predictions1.
EMG-based robotic rehabilitation surpasses traditional physical therapy methods by
enhancing motor recovery, reducing spasticity, and boosting patient engagement.

We conducted sEMG measurements on 13 participants at two forearm positions,
with validation performed using a hand dynamometer.

The methodology employs flexible signal-processing steps that achieve high peak
cross-correlations between the processed sEMG signal (reflecting meaningful muscle
activity) and grip force. Sensitivity analysis identified influential parameters.

Using a data-driven Koopman operator theory-based approach and problem-tailored
data-lifting techniques, a method was developed for estimating and short-term predicting
grip force from processed sEMG signals.

We achieved a weighted mean absolute percentage error (wMAPE) of ∼5.5% for
estimated grip force and ∼17.9% for predictions with a 0.5-second horizon. The
method demonstrated robustness to electrode positioning, as the sensing location
had no significant effect on error metrics. Additionally, the algorithm processes,
estimates, and predicts a 0.5-second sEMG signal batch in ∼30ms, enabling real-time
implementation.

1Bazina et al. (2024a)
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Chapter Contribution

The key contributions of this chapter can be summarized as:

Development and optimization of a composition of sEMG signal processing steps
that achieve high peak cross-correlations between sEMG and grip force signals.

Introduction of a novel Koopman-based, data-driven approach with problem-
specific observables for estimation and short-term prediction of grip force during
both transient and plateau phases.

Design of a fast-executing methodology suitable for real-time implementation,
utilizing a single forearm sensing position and a three-electrode system.

Ethical Considerations

Consent was obtained from all participants prior to their involvement in the study.
The research was conducted under the supervision of the University of Rijeka Faculty
of Engineering Ethics Committee, with reference number 2409.17340.

2.1 Hand Grip Force Forecasting: State-of-the-Art

Electromyography (EMG)-based robotic rehabilitation outperforms conventional meth-
ods, such as constraint-induced movement and physical therapy. This approach improves
motor recovery, reduces spasticity, and enhances patient engagement by maximizing
their voluntary action Huo et al. (2023). Estimating grip force from real-time EMG
signals enables direct access to the control variable—force—allowing robotic assistance
to supplement patients’ voluntary effort adaptively.

The idea of measuring grip force through muscle activity using non-invasive surface
electromyography (sEMG) relies on motor units (MU), groups of muscle fibers activated
by the brain motor neurons. The resulting EMG signal is an inference of firing signals
from each MU, referred to as motor unit action potentials (MUAPs). Various factors
affect the variability of the EMG signal, including electrode placement, size, and inter-
electrode distance, as well as tissue properties such as fat layers and skin conductivity,
the temporal and spectral features of firing patterns, and cross-talk from adjacent
muscles Stegeman et al. (2000).
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In Ma et al. (2020a), the authors predicted pinching force using a 6-channel sEMG
sleeve, focusing on the RMS feature of the signal. They applied a gene expression
programming algorithm and reported RMSE errors ranging from 7.5 to 8.5%, with
cross-correlation coefficients reaching up to 95%. The study analyzed four levels of
maximum voluntary contraction (MVC)—20, 40, 60 and 80%—but lacked forecasts
during the transient states between these levels. In Khan et al. (2024), the authors
utilized sEMG with four bipolar electrodes on the forearm along with finger force
signals to predict the grip force. They used five EMG signal features and eleven finger
force features, achieving a mean accuracy of ∼90% for grip force prediction during the
transient phase. The study identified that the optimal sensor configuration stabilized
at three sensing positions with 2 to 4 features.

Electrode positioning for grip force sensing on the forearm was also explored
in Barański and Kozupa (2014), where sensing near the brachioradialis muscle was
identified as optimal, based solely on EMG signal strength. In Siavashani et al. (2023),
EMG signals were collected using an eight-channel Myo armband. A Long Short-Term
Memory (LSTM) network predicted normalized pinching force 1, 3 and 5 s ahead
directly from the EMG data. Additionally, Zhang et al. (2021) used eight sEMG
sensors and 24 healthy subjects to demonstrate that extrinsic muscle coordination
was more reliable in predicting grip and pinch force levels. This was attributed to its
greater sensitivity to force changes compared to intrinsic muscles.

Additionally, in Martinez et al. (2020a), online predictions of gripping force were
obtained from 8 sEMG sensors placed on the forearms of 16 participants. The model
included ten features extracted from the EMG signal. Predictions were made 330 ms
ahead using the elastic net regression algorithm, resulting in errors of 2% of MVC.

Several studies, such as Martinez et al. (2020a,b), have explored predicting gripping
force during the transient phase of the EMG signal—the initial burst that occurs as the
muscle begins exerting force. In Martinez et al. (2020b), a high-density sEMG setup
with 192 acquisition channels was used on 12 subjects to forecast the grasp force. This
approach utilized a comprehensive set of ten signal features with a regularized linear
regression model. The method achieved highly accurate predictions, with absolute
errors as low as 2.5% of the MVC. Similarly, Martinez et al. (2020a) showcased a
technique for real-time gripping force predictions using eight sEMG sensors placed on
the forearms of 16 participants. The approach involved extracting ten distinct features
from the sEMG signals, which were then used as inputs to an elastic net regression
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model. This model predicted grip force for the subsequent 330-millisecond interval,
achieving high accuracy with an error of only 2% relative to MVC.

Based on the above analysis and the findings presented in Wu et al. (2021), it
is clear that although most research has demonstrated favorable accuracy outcomes,
it heavily depends on an ever-growing number of sEMG sensors to predict grasping
force accurately. Furthermore, many existing methods tend to neglect advanced signal
processing techniques, essential for isolating the meaningful components of the raw
EMG signal. This clean signal is critical for the causal modeling of the grip force, yet
it is frequently contaminated by noise. Additionally, forecasts during the transient
state are seldom considered in existing approaches. Our study is the first to introduce
an online modeling and signal-processing framework for estimating and short-term
forecasting grip force, utilizing Koopman operator theory (KOT) Mezić (2005) while
limiting the number of sEMG sensing positions to just one. We apply KOT to represent
nonlinear dynamics through linear operators, distinguishing between "dynamic" and
"static" types Mezić (2021). Instead of acting directly on the system’s state, these
operators operate on observables—functions that map the state to scalar or vector
values. The dynamic operator advances observables over time, making it ideal for
short-term grip force prediction, while the static operator maps observables across
different spaces, enabling real-time estimation of grip force from EMG signals.

An important step of this research is the signal processing, which is vital for making
proper inferences from EMG signals that are often heavily influenced by noise and
muscle cross-talk. Typically, the signals are processed using notch filtering at 50Hz
to remove ground noise Khan et al. (2024), bandpass filtering between 10 to 500Hz

to eliminate artifacts caused by wire movement (Martinez et al., 2020a,b; Wu et al.,
2021; Zhang et al., 2021), and bandpass filtering between 100 to 500Hz (Barański and
Kozupa, 2014). Additionally, bandpass filtering is applied to isolate power spectrum
peaks in the 20 to 60Hz range (Siavashani et al., 2023).

Unlike the typical filtering approaches, our focus was on signal processing designed to
extract only the meaningful features from the sEMG signal—specifically, those strongly
correlated with grip force. These difficult-to-identify signal components primarily
contribute to the measured grip force and align with the structural approach to sEMG
modeling outlined in Stegeman et al. (2000). It suggests that recruiting MUs is essential
for generating muscle force. As more MUs are recruited, the muscle generates greater
force, with the firing rate of each MU further increasing this force. Typically, the firing
rates of MUs rise almost linearly with the muscle’s force output. These firing patterns,
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along with the interference between active MUs, characterize the measured sEMG
signal. To isolate meaningful signal components from unwanted noise, we developed a
spectral mask that selectively targets specific spectral elements by utilizing Fast Fourier
Transformation (FFT) and sensitivity analysis (SA). These features can then be used
within the KOT framework for improved modeling and prediction.

2.2 Experimental Setup and Design

This section details the hardware setup and experimental methods for collecting
simultaneous EMG and grip force time-series data, including device selection, calibration
protocols, electrode placement, and the 2-factor randomized block design methodology.

2.2.1 Equipment and Measurement Setup

Two wireless devices connected via Bluetooth were used for simultaneous data collection:
the Shimmer3 EMG Unit2 for muscle activity detection and the Vernier Go Direct®
Hand Dynamometer3 for grip force measurement. The EMG unit records electrical
signals from the skin surface, reflecting muscle contractions. While it captures signals
from entire muscle groups, it is often susceptible to noise. It employs a three-electrode
system with two electrodes for the EMG signal and one for a neutral reference, utilizing
Common Mode Rejection (CMR). This technique cancels out common noise, such as
power line interference, while amplifying the local electrical signals from the muscles,
allowing for more accurate EMG readings. It operates at a sampling rate of 1 kHz
with a maximum gain of 12. The hand dynamometer operated at 200Hz, with a force
range of 0 to 550N, resolution of 0.05N, and 95% confidence interval uncertainty (1.96
standard deviations).

The reference dynamometer was calibrated in-house following the ASTM E74
standard (Standard Practices for Calibration and Verification for Force-Measuring In-
struments) using weights conforming to OIML classes F1, M1, and M3. The laboratory
environment was controlled at approximately 23 ◦C. Calibration forces were applied
incrementally in the following sequence: 0, 5, 20, 50, 100, 150, 200, 250, 300, 350, 400,
450, 500 and 550N, with preloading to account for hysteresis and three repetitions
to ensure reliability. We conducted a complete unloading of the instrument between

2https://shimmersensing.com/product/shimmer3-emg-unit/
3https://www.vernier.com/product/go-direct-hand-dynamometer/

https://shimmersensing.com/product/shimmer3-emg-unit/
https://www.vernier.com/product/go-direct-hand-dynamometer/
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each successive loading cycle. For forces above 50N, uncertainty was less than 4%,
while for forces below 50N, uncertainty reached up to 10%. The resulting calibration
equation, mapping the raw dynamometer signal graw to the reported grip force g, is:

ĝ = 1.0629graw − 2.5880× 10−4g2raw − 9.0028× 10−8g3raw + 7.6152× 10−10g4raw. (2.1)

While the dominant term in (2.1) is linear and close to one, a fourth-degree polynomial
was required to meet the strict specifications of the ASTM E74 standard. The integra-
tion of multiple devices and the acquisition of time-series data, including raw EMG
signals and calibrated dynamometer measurements, were carried out using the Robot
Operating System (ROS) and Python. This setup enabled seamless communication
between hardware components, ensuring efficient data acquisition and synchronization
across all experiments. The developed modules are publicly available in the GitHub
repositories tbazina/shimmer_ros (Bazina, 2021b) and tbazina/godirect_ros (Bazina,
2021a).

Our goal is to predict grip force with high accuracy using a three-electrode system,
where two electrodes are placed at a single sensing location, and a third neutral electrode
serves as a reference. This setup addresses the challenge of the EMG signal’s low
amplitude compared to environmental noise, such as interference from electrical sources.
The system employs CMR, using the fact that environmental noise affects all electrodes
in a similar manner. Shared noise is reduced by subtracting one signal from another,
allowing the local EMG signal—affected by electrode placement—to be preserved and
amplified. This method significantly enhances the signal quality, even in the presence
of substantial background noise.

2.2.2 Design of Experiment

In the experimental design phase, a 2-factor randomized block design (RBD) (Heckert
et al., 2012) was chosen as the most suitable approach. During the preliminary stage,
several electrode attachment positions were evaluated. Following a basic screening
experiment focused solely on signal strength, two forearm sensing locations near the
flexor carpi ulnaris muscle (shown in Figure 2.1) were selected for further analysis.
The electrode placement aligns with one of the configurations tested in prior studies
(Barański and Kozupa, 2014; Wu et al., 2021). During the design process, the variability
introduced by individual subjects was considered a nuisance, so the subject variable
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(a) (b)

Figure 2.1 Placement of sEMG electrodes near flexor carpi ulnaris muscle on the forearm:
(a) Position 1 (P1) and (b) Position 2 (P2).

was treated as a nuisance factor. To isolate the impact of measuring positions on
estimation and prediction errors, blocking was employed to control for the subject
variable. Randomization was applied within each block to ensure unbiased results.

Before the experiments, participants’ skin was prepared by removing hair near the
measurement areas and cleaning the skin with alcohol swabs. Each participant was
given several minutes to familiarize themselves with the setup and practice achieving
five target force levels. For all experiments, the first 5 s of recorded data were used to
zero the dynamometer signal in the measurement position. Transitions between grip
force levels were recorded to capture dynamic changes and ensure a comprehensive
analysis. The experiment, summarized in Table 2.1, involved 13 male participants
aged 22 to 24. Recordings of grip force measurements and raw EMG signals from
all experimental runs are available in Appendix A, providing a complete dataset for
verification and further analysis across different subjects and sensing positions.

Table 2.1 Summary of 2-factor RBD experiment.

Subject Levels Position
levels

Grip force
levels/%

Replica-
tions

Runs

ac, dp, ds, js, lb, lk, lm, ln, md,
mm, nk, pb, ss

1, 2 100, 75, 50, 25,
0

2 52
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2.3 Sensitivity Analysis and Procedural Parameter

Optimization

The optimization process is designed to maximize the peak cross-correlation between
the processed EMG signal and the synchronously recorded grip force. The process
began with identifying the most influential spectral components, which act as the
decision variables for optimization, through a multi-step SA. The subsequent step
involved narrowing the ranges of these decision variables, centering them around their
optimal values. This narrowing was achieved by examining scatterplot projections of
each decision variable, generated using Latin hypercube (LH) sampling, along with
smoothed trends and averages. By integrating optimization with SA, the method
ensures that cross-correlation values remain close to their optimal levels, even when
small variations are introduced. This approach enhances stability, avoids unstable
maxima, and ensures consistent and reliable performance.

The EMG data is processed in batches of ∼0.5 s (496 data points) at a sampling
rate of 992.97Hz. Each batch is converted to the frequency domain using FFT, with a
frequency resolution of 2.002Hz. A spectral mask, obtained through an optimization
procedure, is then applied to selectively enhance or attenuate specific frequency compo-
nents. After adjusting the amplitudes, an inverse FFT is applied to convert the signal
back to the time domain. The signal is subsequently rectified by taking its absolute
value, followed by smoothing with a windowed exponential moving average (MA).
The smoothing window is applied within each batch, except for the initial (window
size - 1) points, which are filled using data from the previous batch. In addition to
optimizing the spectral mask, the optimization procedure also focuses on identifying
the optimal window size and decay factor for the exponential MA. A flowchart outlin-
ing the full procedure for obtaining the optimized processed EMG signal is shown in
Figure 2.2. To maximize the average peak cross-correlation across all measurements, a
high-dimensional optimization problem was formulated. The optimization relied on a
decision vector comprising 250 variables, each representing a parameter in the signal
processing pipeline. The entries and initial bounds of the decision vector are defined
as follows:

A spectral mask consisting of 248 entries, each corresponding to a specific fre-
quency bin from the FFT—excluding the DC offset—with values ranging 0–5.

The window size for exponential smoothing is defined within 2 to 495.
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Figure 2.2 Signal processing steps for obtaining optimal processed EMG regarding cross-
correlation with measured grip strength.

The decay factor for exponential smoothing is constrained between 0 and 0.05.

The DC component, representing the zero-frequency spectral component, was set to zero.
After applying the inverse FFT, this adjustment eliminates any constant offset in the
time-domain signal, resulting in a processed EMG signal centered around zero and free
of baseline shifts. Consequently, optimizing the DC component was unnecessary. The
initial bounds for the spectral mask were set within the 0 to 5 range, allowing for either
complete attenuation or up to five times amplification of each spectral component’s
amplitude. This enables selective enhancement or suppression of specific frequency
components in the time-domain signal. Specifically, components with higher frequencies
or those contributing noise can be attenuated, while components that maximize peak
cross-correlation with grip force can be amplified, thereby improving the signal quality.
Wide bounds for the smoothing window size were set to enable fine-tuned adjustments
to the smoothing process. A smaller window size preserves sharp transitions but retains
more noise, while a larger one reduces noise at the expense of important fluctuations.
The optimal window size is determined through optimization, balancing noise reduction
with preserving key EMG signal features. The decay factor bounds were selected to
accommodate simple MA when set to 0 and exponential MA when set to a value
greater than 0. Along with the smoothing window size, the decay factor determines
the rate at which past values are diminished. A higher decay factor gives more weight
to recent values, increasing the signal’s responsiveness to changes. A lower decay factor
preserves more influence from past values, leading to smoother transitions and reduced
sensitivity to short-term fluctuations.

The objective function for optimization was formulated as the peak cross-correlation
between the processed EMG signal and the measured grip force. As the problem is set
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up for minimization, the function returns one minus the mean peak cross-correlation,
resulting in values close to zero for high cross-correlations and values near one for low
cross-correlations. Because of the differing sampling rates, with the EMG signal being
sampled approximately five times faster than the dynamometer, the grip force signal
was resampled according to the EMG timestamps. Intermediate values were estimated
through linear regression to ensure proper alignment of the signals for cross-correlation
calculation.

We hypothesize that not every FFT frequency bin—out of 248 total—substantially
affects the cross-correlation. To validate the hypothesis, we perform simultaneous multi-
step SA and optimization to narrow the problem scope, identify the most influential
spectral components, and find their corresponding near-optimal mask modifiers.

2.3.1 Preliminary Sensitivity Analysis

The initial step involves conducting a preliminary SA using grouped spectral mask
variables to obtain broader insights into how cross-correlation responds to smoothing
and filtering. Variance-based SA using the grouped Sobol method (Saltelli et al., 2010;
Sobol, 2001) was conducted independently for two dataset subsets, recorded on sensing
positions P1 and P2 (refer to the Figure 2.1). We generated 65 536 (216) samples
of the previously defined 250-dimensional decision vectors for each subset through
Saltelli’s sampling method. To tackle uncertainty, we utilized bootstrapping with
65 536 resamples, forming additional datasets by resampling the original subsets with
replacement. We calculated empirical distributions of the sensitivity indices (SIs),
using the mean values as approximations for the SIs and the 95% confidence intervals
to assess uncertainty. Figure 2.3 illustrates the resulting first-order and total-order
SIs, with narrow confidence intervals reflecting low levels of uncertainty. The SI
quantifies how much a specific variable contributes to the mean peak cross-correlation
variance, expressed as a percentage. First-order indices estimate the direct influence
of an individual variable on the output, while total-order indices account for the
variable’s complete contribution, factoring in interactions with other variables. Figure
2.3 shows that all three variables’ first-order and total-order indices are similar in value.
This indicates that each decision variable primarily contributes independently to the
output, with minimal influence from interactions with other variables. Furthermore,
the summed value of all three first-order and total-order indices is ∼1, suggesting they
can accurately assess the proportion of output variance attributed to each variable.
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Figure 2.3 First-order and total-order sensitivity indices from preliminary grouped Sobol
sensitivity analysis.

The preliminary SA found that the smoothing window size is the most influential factor,
representing 44 to 62% of the variance in mean peak cross-correlation for both sensing
locations. The rankings of contributions differ for the decay factor and the spectral
mask, depending on the sensing position. The decay factor accounts for about 17 to
21% of the variation. In contrast, the impact of the spectral mask fluctuates more
significantly–ranging from 14% at position P1 up to 37% at position P2.

An LH sampling of 10000 decision vector samples was performed within identical
bounds to assess the partial contributions of the smoothing parameters. LH is a
statistical sampling method (Iman et al., 1981) that generates samples to ensure
uniform input space coverage. It divides each variable’s range into equal intervals
and randomly selects one value from each, yielding unique samples. It requires fewer
samples than simple random sampling for similar coverage. Figure 2.4 shows the
computed mean peak cross-correlation (using sampled decision vectors) projections
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Figure 2.4 Projections of Latin hypercube sampling on smoothing decay factor and window
size for both sensing positions: insights from preliminary sensitivity analysis.

onto the smoothing decay factor and window size decision variables. We can observe
interesting dependency patterns from the visualized relationships. An increase in the
window size causes the mean peak cross-correlation to rise until it levels off. This
finding justifies limiting the window size to 200 to 495 for the upcoming SA steps.
Conversely, a rise in the decay factor leads to a downward trend in the mean peak
cross-correlation, which encourages us to restrict the range to 0 to 0.01.

Again, we conducted the grouped sensitivity analysis using these restricted parame-
ter limits and discovered that the spectral mask explained 88% of the variance in P1
and 95% in P2. This highlights the significance of separating the mask for a more
thorough investigation in the following steps.

2.3.2 Iterative Multi-Step Sensitivity Analysis and Optimiza-

tion

The iterative multi-step ungrouped SA aims to streamline the optimization problem
by decreasing the dimension of frequencies in the spectral mask and pinpointing those
that strongly impact the mean peak cross-correlation variance. In this scenario, we
employed an optimized Randomized Block Design Fourier Amplitude Sensitivity Test
(RBD-FAST) SA method (Tarantola et al., 2006), which is more efficient than the Sobol
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method. This method produces only first-order SIs using 65 536 decision vector samples,
followed by a bootstrapping resampling process that involved 8192 (213) samples for
the computation of 95% confidence intervals.

After each phase, we visualized scatterplot projections onto the most sensitive
spectral components or smoothing parameters using LH sampling with 10 000 samples
to adjust the decision variable bounds for the next step manually. The initial phase
indicated that the 2Hz spectral component was the most sensitive factor influencing
cross-correlation variance, with a SI ranging from 78 to 83%. The LH sample scatterplot
projection onto the 2Hz component illustrated that increasing its mask multiplier
resulted in a considerable decrease in the mean peak cross-correlation (see Figure
2.5). We restricted the 2 Hz multiplier bounds to 0 to 0.5. During the same SA
and optimization step, we projected the scatterplot of LH sampling onto the three
next highest-ranked variables (Figure 2.5) based on the sensitivity of the mean peak
cross-correlation. This analysis revealed trends similar to those observed with the 2Hz

component, specifically a decreasing trend associated with the amplification of spectral
components. We modified the limits to these specific ranges: 0 to 1 for 4Hz, 0 to 2 for
6Hz, and 0 to 3 for 50Hz.

An additional 18 iterative steps, 2 to 19, of SA and optimization were performed
comparably. Scatterplot projections of LH sampling that support the reasoning behind
the obtained limits can be found in the author’s GitHub repository (Bazina, 2022a).
The results from all stages of the iterative multi-step SA and optimization are presented
in Figure 2.6. This figure highlights the most sensitive spectral components along with
their refined limits. As the bounds for the more sensitive spectral components are
tightened around the optimum from the previous step, neighboring spectral components
become increasingly sensitive in the next step. Therefore, the iterative multi-step
SA and optimization figure should be interpreted from left to right. A thorough
step-by-step examination reveals a reverse funnel-like pattern (marked by the two red
arrows). This pattern originates from low-frequency components and another point
around 50 Hz, illustrating the shift from the most impactful spectral components to
less significant ones.

Following the 19th step of the SA and optimization, the total contribution of all SIs
associated with frequency mask at or above 204Hz represented less than 2% of the total
variance related to mean peak cross-correlation. Consequently, the highest spectral
component selected for further analysis is 202Hz. This observation is consistent with
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Figure 2.5 Projections of Latin hypercube sampling on spectral mask variables at 2, 4, 6
and 50Hz for both sensing positions: first sensitivity analysis and optimization step.

Konrad (2006), which indicates that most of the power spectrum in sEMG is focused
below 250 Hz.

We performed LH sampling within the newly established parameter ranges in the
last steps (steps 20 and 21, as shown in Figure 2.6). We visually analyzed the trends in
scatter plot projections for each of the 101 remaining spectral components (spanning
from 2 to 202Hz with a resolution of ∼2Hz) and fine-tuned the boundaries around
the optimal point. The optimal smoothing parameters exhibited significant trends—an
increase in the decay factor resulted in a reduction of peak cross-correlation. The ideal
decay factor values were close to zero—between 0 to 5× 10−4—signaling a need for
simple MA. We identified the optimal window size between 275 to 330.

Section 2.5 comprehensively describes the optimal spectral mask. With the optimal
set of signal-processing techniques and parameters now established, the next section
will describe the Koopman-driven methodology for estimating and predicting grip force
based on the processed EMG signals.
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2.4 Real-Time Forecasting of Hand Grip Force

We divided this section into three parts. The initial part presents a concise overview of
the KOT and its associated literature. The second and third parts explain its use in
estimating and forecasting grip force.

The framework starts with the subject performing a single calibration experiment
that lasts between 20 to 30 s. During this calibration, surface electromyography (sEMG)
sensors and a dynamometer are employed, with grip force levels corresponding to those
listed in Table 2.1. Once we finish the calibration, the sEMG signal is processed, and
we develop a model for estimation using the complete calibration dataset. Following
training, the estimation model is applied in batch processing to estimate grip force
from the processed EMG data, using only the data available within the same time
window. This estimated grip force is then fed to another model to forecast grip force
over a 0.5 s interval—the subsequent batch.

2.4.1 Koopman Operator Theory Introduction

Koopman operator theory is a mathematical framework that captures the dynamics
of nonlinear systems using an infinite-dimensional linear operator. This theory allows
the analysis of complex nonlinear systems within a more manageable linear framework,
maintaining the original dynamics of the system. By transforming the study of these
systems, Koopman operator theory enables the use of tools like spectral analysis to
better understand their behavior. Representing a dynamical system in state-space
form involves defining an n-dimensional manifold of state space, denoted as M . The
state vector x is an element of M and is a set of variables that fully describe the
system’s condition at a specific time step. The evolution of the system in discrete time
is expressed as follows:

xi+1 = F(xi), (2.2)

Instances of state variables include processed EMG signals and grip force. In this
context, F represents a possibly nonlinear state transition function, F : M → M ,
while xi+1 denotes the state at the next time step. Generally, modeling a system in
state space requires accounting for the nonlinearities essential for accurately describing
its dynamical behavior, which can often be complex or challenging. We adopt an
operator-theoretic approach to observable dynamics to address this challenge, as Mezić
(2005) described. As a result, the behavior of the nonlinear system represented in
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equation (2.2) is mapped onto the dynamics of observables of x, denoted as ϕ(x). Given
the nature of the system, this study focuses on real-valued observables only, ϕ :M → R.
The set of all potential observables typically creates an infinite dimensional vector
space. The Koopman operator K, which characterizes how observables evolve over
discrete periods ∆t, is defined as Schmid (2022):

ϕ(xi+1) = Kϕ(xi) = ϕ[F(xi)]. (2.3)

The Koopman operator retains its linearity even when the underlying system is nonlinear.
This characteristic holds regardless of the specific dynamics of the observables. However,
a significant challenge within the Koopman framework is carefully selecting observables.
Choosing the correct observables is crucial to ensure that the linearity of the operator
effectively captures the system’s dynamics.

2.4.2 Estimating Grip Force

The challenge of estimating grip force (gi) from the processed EMG signal (ei) is
approached using a different KOT method. Unlike dynamical systems, the Koopman
operator can also characterize “static“ nonlinear mappings between distinct spaces
M → N , as Mezić (2021) pointed out. By performing a lifting operation and selecting
appropriate observables, we can represent nonlinear mappings through observable space
using a linear mapping operator K :OM → ON .

To implement this theory for our specific problem, we lift the processed EMG signal
(ei) using the vector of functions ϕ and recorded grip force (gi) using a different vector
of functions ψ. As a result, the input E and output G matrices, which consist of N
realizations of the lifted variables (ei, gi), can be expressed as:

E = [ϕ (e1) , . . . , ϕ (eN)] , G = [ψ (g1) , . . . , ψ (gN)] . (2.4)

We obtained the estimate of the static Koopman operator K by minimizing the residuals
in the Frobenius norm, as detailed in Mezić (2021):

min
K

∥G−KE∥F → K = GE†. (2.5)

In this context, the symbol † denotes the Moore-Penrose pseudoinverse, which provides
a solution in the least squares sense. Consequently, we can view the “static“ Koopman
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operator as an estimation model that can be applied in the lifted space as follows:

G = KE. (2.6)

Batch processing was required to enable real-time estimations. While we utilized
the complete calibration dataset to approximate the Koopman operator for the final
estimations, we processed each batch sequentially, applying the operator K solely to the
data within each batch window. Each batch window spans ∼0.5 s (equaling 496 data
points). The processed EMG data (see the Appendix A for figures from all experiments)
was downsampled by a factor of eight before we estimated grip force, reducing the
frequency from 993 to 124Hz. This data was then normalized using min-max scaling
to the 0 to 1 range.

Subsequently, we applied Hankel lifting using time-delay embedding, a specific
instance of the previously generalized lifting in equation (2.4). We structured the Hankel
data matrix E with the state e0 as the top row, followed by time-delay embeddings
that include d time-delayed observables etd(1) to etd(d). We applied Hankel lifting to N
univariate processed EMG time series data points as follows:

E =



e0

etd(1)
...

etd(d−1)

etd(d)


=



e1 e2 · · · eN−d

e2 e3 · · · eN−d+1

...
... . . . ...

ed ed+1 · · · eN−1

ed+1 ed+2 · · · eN


. (2.7)

We developed a lifting process utilizing a time delay of d = 60 for both the downsampled
processed EMG and grip data to obtain the observable matrices E and G, respectively.
Additionally, we performed another nonlinear lifting of the EMG data to ensure
proper mapping between the EMG and grip plateaus, which fits perfectly within the
KOT framework. This process involves using gridded indicator observables, a type
of observable function. In this approach, we partition the state space into a discrete
grid, where each observable acts as an indicator function that activates (equals 1)
when the system state resides within a specific grid cell. The concrete implementation
includes partitioning a Cartesian plane using three selected time delays into irregular
rectangular grid subregions (refer to Figure 2.8). We encoded each subregion as a
distinct observable. For three chosen time-delayed data points—spaced τ1 and τ2

apart—we need to determine are the data points situated within a certain subregion,
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denoted as Sijk. We utilize an indicator function to assign a value of one to those
points that fall within the specified subregion and a value of zero to those that do not.
Let Sijk represent a subregion within [0, 1]3 defined by the grid bounds:

For etd(n)[1]: lower limit bi, upper limit bi+1.

For etd(n)[1 + τ1]: lower limit bj, upper limit bj+1.

For etd(n)[1 + τ2]: lower limit bk, upper limit bk+1.

The indicator function is defined in the following manner:

χSijk
(etd(n), τ1, τ2) =



1, if bi ≤ etd(n)[1] < bi+1

and bj ≤ etd(n)[1 + τ1] < bj+1

and bk ≤ etd(n)[1 + τ2] < bk+1,

0, otherwise.

(2.8)

The gridded indicator observable eI,Sijk,τ1,τ2 can be obtained by applying the formula
in (2.8):

eI,Sijk,τ1,τ2 [n] = χSijk

(
etd(n), τ1, τ2

)
, for n = 1, . . . , N − d. (2.9)

Using this lifting approach can produce a significant number of empty observables filled
with zeros and sparse observables that mainly consist of zeros. This situation may
result in overfitting within the estimation model. The sparsity of these observables
can lead to instability in estimating the Koopman operator since many offer limited
valuable insights into the actual dynamics of the system. When many observables
are predominantly zeros, their few nonzero values may cause the model to memorize
the training data rather than generalize to new, unseen states. We implemented
a sparsity constraint to address these issues to ensure we only retained observables
with a minimum density of 0.1% during the algorithm testing phase. The effect of
sparsity constraint on overfitting was examined visually and can be clearly seen during
estimating grip force in Figure 2.7. In the left side subfigure 2.7a, sparsity constraint
was not employed, and the model “chose“ extremely sparse observables. When fitted
to the entire data (top plot in the figure), it performed well, but when fitted only
to a subset of the data, divided by blue dashed lines (bottom plot), generalization
was unstable. On the other hand, sparsity constraint was employed in the right side
subfigure 2.7b. No overfitting occurred when we fitted the model to the entire data or
its subset, and the model generalized stable to the previously unseen data.



28 EMG-based Forecasting of Hand Grip Force Using Koopman Framework

(a) Overfitting—without sparsity constraint (b) No overfitting—with sparsity constraint

Figure 2.7 The effect of sparsity constraints during modeling using gridded indicator observ-
ables.

Through heuristic evaluation, we discovered that a grid (b) with 22 uneven sub-
regions and a power function with an exponent of 1.8 for adjusting spacing in each
dimension produced the best results (refer to Figure 2.8). This grid resolution helped
reduce the risk of overfitting by avoiding an overly fine grid and the increased compu-
tational burden of including too many gridded indicator observables. We identified
the exponent for the grid spacing by analyzing plateaus at 100, 75, 50, 25 and 0%

in both the processed EMG signals and the measured grip force. The gridding was
applied simultaneously to the 1st, 30th, and 60th time delay, with values of τ1 = 29

and τ2 = 59. This resulted in gridded identity observables represented as eI,Sijk,29,59.
The maximum possible number of gridded indicator observables, considering all grid
subregions Sijk and the three time delays, is 223 = 10648. However, we excluded most
of these due to their high sparsity, as shown in Figure 2.8.

To compute the static Koopman operator estimation model, we constructed the
final processed EMG data matrix E by vertically stacking row vectors of time-delayed
observables alongside row vectors of gridded indicator observables. For the grip force



2.4 Real-Time Forecasting of Hand Grip Force 29

Figure 2.8 Three-dimensional representation of gridded indicator observables eI,Sijk,29,59,
showcasing optimal grid divisions.

data matrix G, we stacked row vectors of time-delayed observables with rows of zeros:

E =



e0

etd(1)
...

etd(60)
...

eI,Sijk,29,59

...


, G =



g0

gtd(1)
...

gtd(60)
...
0
...


. (2.10)

We trained the estimation model using the equation (2.5) on all the calibration data,
completing this process in under 1.5 seconds. The model approximations of grip force
were limited to a minimum value of -1.

2.4.3 Forecasting Grip Force

We have developed a methodology to make short-term predictions of grip force within
a 0.5-second timeframe. This method builds on previously established grip estimates
and utilizes the Koopman operator for modeling dynamic systems. The Koopman
operator is particularly suitable for this task because it adapts to dynamically changing
environments (Mezić, 2021), such as those encountered during object grasping. We
aim to identify the Koopman operator for the dynamical system that describes the
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evolution of observables in the same space, as outlined in equation (2.2), and to utilize
it for forecasting. This approach allows for short training durations on batches of
data, enabling adjustments based on the most recent state of the system. Given that
the Koopman operator can be infinite-dimensional, we employ the Dynamic Mode
Decomposition (DMD) technique to estimate its spectral properties numerically in a
finite number of dimensions. These properties are represented in Ritz pairs, consisting
of λj (Ritz values) and zj (Ritz vectors):

KZ = ZΛ, where

Z =
[
z1 z2 . . . zr

]
,

Λ =


λ1 0 . . . 0

0 λ2 . . . 0
...

... . . . ...
0 0 . . . λr

 ,
Kzj = λjzj, j = 1, . . . , r.

(2.11)

In this context, r denotes the number of Koopman modes identified after applying DMD.
DMD provides a finite-dimensional representation of the Koopman operator by utilizing
a set of data snapshots in time. Since DMD relies on a limited collection of these
snapshots, the calculated eigenvalues and eigenvectors serve as approximations—known
as Ritz values and Ritz vectors—of the actual spectral characteristics of the Koopman
operator. These approximations occur due to the finite-rank nature of data-driven
decomposition techniques like DMD. The accuracy of these Ritz pairs is influenced by
factors such as the dataset’s richness and the observables’ selection.

An eigenvalue λj is a scalar that indicates how much the corresponding eigenvector
is stretched or compressed during a linear transformation. Eigenvalues can be real or
complex numbers and describe the properties of the Koopman operator, representing
a dynamic system model. The eigenvalues of the Koopman operator are linked to
the stability properties of observable evolution over time. The absolute value of an
eigenvalue |λj| signifies the rate of growth or decay:

If |λj| > 1: exponential growth,

If |λj| < 1: exponential decay,

If |λj| = 1: oscillatory behavior or constancy.

An eigenvector zj is a non-zero complex vector scaled by a constant factor when
applied linear transformation. Eigenvectors are essential for understanding the direction
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of this transformation, as they represent the modes or patterns of a system’s behavior
within observable space. Practically, an eigenvector characterizes an observable’s “shape“
or form as it evolves. The eigenvectors of the Koopman operator illustrate the spatial
distribution of Koopman modes, providing insights into underlying spatial patterns.
For a detailed explanation of DMD, refer to Schmid (2022).

To extract the spectral characteristics of the Koopman operator from the data
matrix, we utilized pyKMD suite4. We implemented the Hankel-DMD embedding
method introduced by Arbabi and Mezić (2017), along with the Refined Rayleigh-Ritz
Data-Driven Modal Decomposition (DDMD-RRR) technique and QR compression
methods, as described by Drmač et al. (2018). The DDMD-RRR technique refines Ritz
vectors and improves their accuracy by minimizing residuals, while QR compression
enables the efficient execution of algorithms in real time.

The time-delay embedding of the estimated grip force, as shown in equation (2.7) for
processed EMG, proved highly effective. The time-delayed model maintained linearity
while successfully capturing the non-linearities in grip force prediction. We kept the
number of time delays d between 4 to 10 for fine-tuning model.

Before starting the data preparation for forecasting, we applied Locally Weighted
Scatterplot Smoothing (LOWESS), as outlined by Cleveland (1979), to smooth the grip
force estimates. This helped reduce spikes and minimize prediction errors. We set the
window size, which we later referred to as the smoothing coefficient, between 1.1 to 1.9

times the batch size for model fine-tuning. Both the currently processed batch and the
previous batches were utilized in this smoothing process.

We conducted a heuristic evaluation and created a matrix of first-order interactions
based on the natural logarithm transformations of the Hankel-lifted observables to
further reduce prediction error. To ensure that all entries remained positive for the
logarithmic transformation, we added 10 to each entry. The interaction component
Ge,int of the input data matrix for forecasting grip force from estimates is as follows:

Ge,int =



ln ge1 ln ge2 ln ge2 ln ge3 · · · ln ge(N−d) ln ge(N−d+1)

ln ge1 ln ge3 ln ge2 ln ge4 · · · ln ge(N−d) ln ge(N−d+2)

...
... . . . ...

ln ge(d−1) ln ge(d+1) ln ged ln ge(d+2) · · · ln ge(N−2) ln geN

ln ged ln ge(d+1) ln ge(d+1) ln ge(d+2) · · · ln ge(N−1) ln geN


. (2.12)

4https://apps.aimdyn.com/

https://apps.aimdyn.com/
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We constructed the final lifted input data matrix by stacking (2.12) with the time-delay
embedding of the estimated grip data. The resulting matrix, Ge,lift, can be seen as a
sequence of snapshots, denoted as ge,lift(i), which include both interaction terms and
time delays.

Ge,lift =

Ge,int

Ge,td

 =
[
ge,lift(1) · · · ge,lift(N−d)

]
. (2.13)

We further thin the data matrix (2.13) before inputting it into the DMD by removing
certain snapshots through a specific thinning step. Thinning, as presented in Frame
and Towne (2023), eases the computational burden during forecasting and helps to
prevent unnecessary predictions of high-frequency noise within the data. By applying
a thinning step within a range of 3 to 8, we can achieve forecasts with frequencies
ranging from 16 to 41Hz, which is adequate for analyzing gripping dynamics.

After obtaining the spectral decomposition of the Koopman operator K, we compute
the Koopman amplitudes αj to reconstruct the input data matrix or predict the next
state. This can be formulated as a least squares minimization problem:

min
αj

N−d∑
i=1

∥∥∥∥∥ge,lift(i) −
ℓ∑

j=1

zjαjλ
i−1
j

∥∥∥∥∥
2

2

. (2.14)

Here, ℓ represents the number of retained Koopman modes after dimensionality reduc-
tion from r. We implemented the structured least squares solver from Drmač et al.
(2020) within the pyKMD framework. This solver automatically selects the appropriate
method based on the scaled condition number of the problem:

Well-conditioned systems—solved using normal equations,

Ill-conditioned systems—solved using QR factorization-based methods.

To ensure physically meaningful predictions, excessively high or low estimates are
thresholded within the minimum and maximum grip force values from the calibration
experiment. Future snapshots can be predicted over a time horizon τ as:

ge,lift(N−d+τ) ≈
ℓ∑

j=1

zjαjλ
N−d+τ−1
j , τ = 1, 2, . . . . (2.15)

For estimating and forecasting grip force, we selected the Weighted Mean Absolute
Percentage Error (wMAPE) as the error metric. This relative metric effectively handles
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near-zero values by scaling absolute errors against the total absolute sum of actual
values. This property makes wMAPE particularly suitable for comparing measurements
across both high and low grip magnitudes. wMAPE is computed as:

wMAPE =

∑N
i=1 |ĝi − gi|∑N

i=1 |gi|
, (2.16)

where ĝi represents the estimated or predicted grip force, while gi refers to the actual
measured grip force.

The final hyperparameter tuning for the prediction model was conducted using a
grid search involving five parameters: the number of Koopman modes after reduction ℓ,
the number of time delays d, the smoothing window modifier coefficient, the thinning
step, and the forecasting window modifier coefficient. Figure 2.9 shows the final
hyperparameter tuning results, excluding the runs with extremely high errors. We
can achieve the minimum wMAPE with four Koopman modes, between 7 to 10 time
delays, a smoothing window modifier coefficient ranging from 1.1 to 1.2, a thinning
step between 7 to 8, and a forecasting window modifier coefficient between 1.2 to
1.4. To improve robustness, we calculated both the mean and median wMAPE for
all measurements. The hyperparameters that resulted in the lowest sum of the mean
and median wMAPE were identified as the optimal hyperparameters for the prediction
algorithm. Optimal hyperparameters are detailed in Table 2.2, and the final error
metric, calculated using these parameters, is presented in Table 2.6.

Table 2.2 Optimal hyperparameters for the grip force forecasting model, obtained after
tuning the algorithm.

Forecasting
window modifier

coefficient

Smoothing
window modifier

coefficient

Thin-
ning
step

No.
time

delays

No.
Koopman

modes

1.3 1.1 7 8 4

2.5 Results and Experimental Validation

As illustrated in Figure 2.6, the funnel-shaped structure of the iterative multi-step
SA highlights the most sensitive frequency ranges. It is essential to first address the
lower frequency spectral components, specifically those at or below 14Hz and those
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Figure 2.9 Hyperparameter tuning of Koopman prediction algorithm. The wMAPE represents
the average of all forecasts across 52 experiments. A smooth red line connects the values of
runs with the minimum mean wMAPE.

within the 46 to 50Hz range. By doing this, we can significantly increase the peak
cross-correlations between the processed EMG signal and the measured grip strength.
Once we optimize these spectral components, the range of sensitive frequencies expands,
gradually bridging the gap between 14Hz and 46Hz and extending into higher frequency
components of up to 202Hz.

We typically perform additional parameter optimization after determining the
final decision vector bounds. We first gathered summary statistics on the mean peak
cross-correlations from LH sampling within these decision vector bounds, as shown
in Table 2.3. The minimal variability in standard deviation and the small range
between the lowest and highest mean peak cross-correlations indicate no need for
further optimization of these near-optimal values. The mean values between each
decision variable’s upper and lower bounds will be used as the optimal spectral mask
values, illustrated in Figure 2.10. The figure clearly shows five distinct mask sections
of the mask.

Table 2.3 Summary statistics of mean peak cross-correlations between processed EMG and
grip force signals obtained from LH sampling after the final SA step.

Position Mean SD Min. Max.

P1 0.956 413× 10−6 0.954 0.958
P2 0.960 535× 10−6 0.958 0.962

The first section of the mask corresponds with findings in the literature (Konrad,
2006), which relate to the attenuation or removal of lower-frequency components
associated with wire movements. The attenuation follows a nearly linear trend: the
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Figure 2.10 Optimized spectral mask for processing EMG signals at positions P1 and
P2, showing frequency-specific amplitude modifications that maximize correlation between
processed EMG and grip force.

DC component and 2Hz frequencies are completely filtered out, 10Hz frequencies are
reduced by 50%, and 18Hz frequencies remain unaltered.

For frequencies between 20Hz and 48Hz in the second part of the mask, the
amplification follows an inverted U-shaped curve, starting and ending at 25%, with a
peak amplification of 150% occurring between 32 to 42Hz.

In the third part of the mask, we observe how electrical ground noise affects the
recorded signal, causing the inverted U-shaped curve to transition into a sharp drop
at the 50Hz component. Processing the 50Hz spectral component poses a significant
challenge: retaining it at nominal amplitudes fails to produce adequate results while
eliminating it with a notch filter is equally ineffective. Our analysis demonstrates that
maintaining the 50Hz component at 37.5% of its amplitude optimally preserves signal
power for grip force modeling. This result aligns with the findings of Konrad (2006),
which show that the 50Hz frequency bin contains a substantial portion of the power
spectrum that should not be discarded.

The fourth section of the mask targets the mid-frequency range, specifically between
52Hz and 110Hz, where the majority of the signal’s power is concentrated. As the
amplitudes of the spectral components decline, the mask applies a linear amplification
strategy, gradually increasing from 50% at 52Hz to 450% at 110Hz. This need for mid-
frequency amplification can be explained by three physiological mechanisms associated
with the spatial low-pass filtering of EMG signals—MU structure, volume conduction,
and electrode placement (Stegeman et al., 2000):
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The structure of MUs introduces spatial smoothing at the signal source due to
the dispersed arrangement of muscle fibers within a single motor unit.

Volume conduction causes attenuation and distortion of the signal as it propagates
through biological tissues from the source to the skin surface, where it is recorded.

Electrode positioning contributes to low-pass filtering, as the electrodes average
the signal over the sensing area, reducing higher-frequency components.

In the final part of our mask, we observe that the amplification trend stabilizes
at approximately 425 to 450% near 110Hz, extending up to 202Hz. We performed
a stepwise ablation analysis on the spectral mask plateau to validate these findings.
Starting from the full range of 110 to 202Hz, we systematically disabled frequency
bands in 4Hz increments, progressively narrowing the range down to 198 to 202Hz.
At each step, the mean peak cross-correlation decreased, confirming the role of the
mask plateau in achieving our results.

We further performed a follow-up investigation on a previous conclusion that the
higher-frequency components in the range of 204 to 498Hz had a negligible impact.
We conducted an ablation study by varying the mask values from 0 to 5 across this
frequency range. Since no notable changes in the mean peak cross-correlation were
observed, we set the mask to 0 for frequencies between 204Hz and 498Hz. Discarding
frequency components in this band protects the system from potential noise. This
novel method for processing sEMG signals using a spectral mask offers unique insights
that deserve further exploration.

The optimal smoothing window size was 302. Combined with a decay factor of
0.25× 10−3, this indicates a simple MA smoothing technique. By applying the optimal
spectral mask and smoothing methods, as depicted in Figure 2.2, the processed EMG
signals (shown in red in Figure 2.11b) exhibit a strong cross-correlation with the
measured grip force. For processed sEMG data across all measurements, see Appendix
A.

Table 2.4 summarizes the peak cross-correlations and time lags obtained from within
measurements at both sensing positions after optimal signal processing. This summary
includes cross-correlations from all 52 measurements obtained using optimal processing
parameters. The results show a strong correlation between processed EMG signals
and grip force measured at both sensing positions, P1 and P2. Furthermore, the lag
analysis indicates that the peak cross-correlations occur when the EMG signals lag
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behind the grip force measurements by intervals ranging from 0 to 156ms, with higher
lags observed in P1.

Table 2.4 Summary statistics of peak cross-correlations and time lags between optimal
processed EMG signals and grip force measurements at sensing positions P1 and P2.

Min. 1st Qu. Median Mean 3rd Qu. Max.

Position P1
Peak cross-correlation 0.891 0.947 0.964 0.958 0.971 0.987

Peak time lag [ms] 0.0 0.0 43.8 54.0 96.4 156.1

Position P2
Peak cross-correlation 0.924 0.952 0.967 0.962 0.972 0.988

Peak time lag [ms] 0.0 0.0 16.1 25.0 42.8 78.5

The RBD experiment design employed in this study, as detailed in Subsection 2.2.2,
allows for the analysis of subject and sensing position effects on both estimation and
forecasting wMAPE. Using the methodology described in Section 2.4.2, the wMAPE
estimation error was computed for all 52 experimental runs, with results summarized
in Table 2.5. The overall mean estimation wMAPE from all 52 runs is approximately
5.5%, highlighting the effectiveness of this approach in accurately estimating grip
force using a single sensing position. Beyond error metrics for all 52 experimental
runs, we calculated means and effects across blocks grouped by subject or sensing
position. The effects were determined by calculating the difference between each block’s
mean and the overall mean estimation wMAPE. While the means and effects varied
substantially across subjects, ranging from −1.8 to 2.2%, the effect of sensing position
P1 on wMAPE was only 0.2%. In contrast, the effect of position P2 was −0.2%.

We employed an analogous methodology and procedure described in Subsection 2.4.3
to generate short-term grip force forecasts in 0.5 s batches with a 0.5 s forecasting
horizon. Using the optimal hyperparameters from Table 2.2, we computed the wMAPE
for all 52 measurement runs, with results presented in RBD format in Table 2.6. The
overall mean wMAPE for forecasting was approximately 17.9%. While the subject
effect on wMAPE varied significantly, ranging from −4.0 to 2.9%, the position effect
remained consistently narrow, within a range of ±0.1%.

To assess whether sensor positioning significantly impacts estimation or forecasting
wMAPE, we performed an analysis of variance (ANOVA) on the blocked data from
Tables 2.6 and 2.5, using a significance level of 5%.
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Table 2.5 wMAPE for estimating grip force from EMG across all subjects, two sensing
positions (P1 and P2), and two replications (R1 and R2), with means and effects calculated
per subject and position.

Subject Position

ac dp ds js lb lk lm ln md mm nk pb ss Mean Effect

Position P1
R1 4.4 6.4 10.0 4.5 7.7 6.6 4.5 8.4 4.3 5.1 2.7 6.1 3.8
R2 2.3 4.7 5.4 3.9 8.0 6.9 7.6 3.7 5.2 6.8 6.4 7.9 4.3 5.7 0.2

Position P2
R1 4.0 4.1 4.7 3.9 3.3 5.8 3.6 4.4 7.2 8.5 3.3 6.7 4.4
R2 3.8 4.3 4.4 5.1 4.9 6.2 4.4 4.6 9.2 9.9 3.2 10.1 3.3 5.3 -0.2

Subject mean and effect
Mean 3.6 4.9 6.1 4.4 6.0 6.4 5.1 5.3 6.5 7.6 3.9 7.7 4.0
Effect -1.8 -0.6 0.6 -1.1 0.5 0.9 -0.4 -0.2 1.0 2.1 -1.6 2.2 -1.5

Overall mean estimation wMAPE: 5.48%

Table 2.6 wMAPE for forecasting grip force from EMG across all subjects, two sensing
positions (P1 and P2), and two replications (R1 and R2), with means and effects calculated
per subject and position.

Subject Position

ac dp ds js lb lk lm ln md mm nk pb ss Mean Effect

Position P1
R1 24.7 15.0 25.0 18.7 21.4 21.1 13.1 22.7 12.5 15.4 19.4 18.8 13.4
R2 23.6 15.4 17.9 17.6 15.0 18.9 17.5 15.1 22.3 14.7 18.6 19.6 10.6 18.0 0.1

Position P2
R1 14.8 17.2 16.7 17.7 16.1 20.4 12.9 18.5 15.8 17.2 19.1 20.2 15.2
R2 16.8 16.1 17.6 22.3 14.2 22.9 12.3 17.2 20.9 25.2 19.0 20.5 16.7 17.8 -0.1

Subject mean and effect
Mean 20.0 15.9 19.3 19.1 16.7 20.9 13.9 18.4 17.9 18.2 19.0 19.8 14.0
Effect 2.1 -2.0 1.4 1.2 -1.3 2.9 -4.0 0.4 -0.0 0.2 1.1 1.8 -4.0

Overall forecasting mean wMAPE: 17.92%

The results, summarized in Table 2.7, show that while the subject effect on esti-
mation wMAPE was statistically significant with a p-value of 0.015, the positional
effect—after accounting for subject variability—was not significant with a p-value of
0.422.
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Table 2.7 Results of ANOVA conducted on the blocked RBD with estimation and forecasting
wMAPE, assessing the subject and position effects at a 5% significance level.

Estimation Forecasting

Df Sum Sq Mean Sq F value Pr(>F) Df Sum Sq Mean Sq F value Pr(>F)

Position 1 1.91 1.91 0.66 0.422 1 0.35 0.35 0.03 0.853
Subject 12 87.51 7.29 2.52 0.015 12 232.00 19.33 1.94 0.060
Resids 38 110.15 2.90 38 378.55 9.96

Similarly, for forecasting, the positional effect on forecast wMAPE was non-significant
with a p-value of 0.853. The subject effect in forecasting also approached non-
significance, with a p-value of 0.06.

These findings indicate that the placement of EMG electrodes on the flexor carpi
ulnaris muscle—whether at position P1 or P2—does not significantly affect estimation
or forecasting errors. This demonstrates the robustness of the method to variations in
electrode placement.

A systematic comparison of the methodology’s impact on signal examples is illus-
trated in Figure 2.11. This figure contrasts all described sEMG and grip signals, ranging
from raw and processed EMG to estimated and measured grip force, culminating in
smoothed estimates and short-term batch predictions.

The top panel, Figure 2.11a, displays the raw sEMG signals for three subjects,
highlighted in red. The middle panel, Figure 2.11b, presents three representative
examples of estimated grip force, with errors corresponding approximately to the first,
second, and third quartiles, marked in yellow. This panel also includes the optimally
processed sEMG signal (red) and the measured grip force (blue).

The bottom panel, Figure 2.11c, showcases forecast examples with error metric
values approximately corresponding to the first, second, and third quartiles, indicated by
red dots. The smoothed grip force estimation, which serves as the input for forecasting,
is depicted as a yellow line. Complete graphs for all experimental runs are available in
the author’s GitHub repository (Bazina, 2022a).

This research developed real-time procedures for sensing hand muscle activity using
non-invasive sEMG sensors and estimating exerted grip force with a calibrated dy-
namometer. By optimizing signal processing steps, we achieved a high cross-correlation
coefficient (∼0.96) between muscle activity and grip force. A Koopman-based methodol-
ogy enabled accurate force estimation (5.5% wMAPE error) and short-term prediction
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(a) Examples - measured raw EMG signal.

(b) Examples - processed and estimated EMG signal compared to measured grip force.

(c) Examples - predicted grip force from smoothed estimation.

Figure 2.11 Examples of all signals relevant for grip force modeling - raw and processed
EMG signals, estimates, smoothed estimates, forecasts, and measured grip force.

(17.9% wMAPE error), demonstrating robust performance across two sensing locations.
The framework proved ready for real-time implementation, requiring minimal calibra-
tion time (<30 s) and low-latency prediction generation (<30ms). This work lays the
foundation for developing force-adaptive rehabilitation devices based on EMG sensing.

The next chapter focuses on the development of simplified and interpretable models
for human hand movements, with an emphasis on grasp-oriented intra-finger dependen-
cies. Leveraging one of the largest publicly available multimodal databases for hand
and wrist movements, this research simplifies kinematic modeling for prosthetic and
rehabilitation device design.



Chapter 3

Grasp-oriented reduction of hand
kinematics in robotic rehabilitation

T his chapter presents a novel approach to simplifying hand kinematic mod-
els through grasp-oriented intra-finger dependencies1. Utilizing the NinaPro

database—the largest publicly available dataset on hand kinematics—comprising syn-
chronously collected hand joint angle values from 77 subjects performing 23 functional
movements related to activities of daily living (ADL), we developed sparse models
that maintain accuracy while reducing complexity. After rigorous data preprocessing
to ensure quality, including isolating only joint angle data within anatomical ranges
of motion (ROMs), and removing experiment runs with insufficient ROM for proper
inference and modeling, we analyzed 16 finger joints performing flexion/extension (FE)
movements, which cover most of the hand’s workspace due to hand anatomy. Through
this focused approach, we identified 116 highly to very highly correlated pairwise
intra-finger dependency-movement relationships across all grasps.

Through regularized generalized linear models (GLM), we selected uncorrelated
predictors for each relationship. We then applied weighted linear mixed-effects models
(LME) to account for both subject-specific random effects and dependency-specific
fixed effects. This approach produced interpretable models with absolute weighted
mean absolute error (wMAE) values ranging from 2.4 to 16◦ (median 7.5◦) and relative
double weighted mean absolute percentage error (wwMAPE) values from 11 to 56.1%

(median 27.9%). To streamline implementation, hierarchical clustering reduced these
116 dependencies to just 30 clustered models while maintaining prediction accuracy.

1This chapter is based on the findings presented in (Bazina et al., 2024c).
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Our methodology offers a significant advantage over previous approaches by pro-
viding reduced grasp-oriented models requiring 5 to 15 degrees of freedom (median 12

DOFs), compared to the hand’s full 16 flexion/extension DOFs, while providing directly
interpretable, one-to-one intra-finger joint relationships. This framework provides a
foundation for designing more efficient rehabilitation and assistive devices that balance
biomechanical accuracy with practical simplicity.

Contribution of this Chapter

The main contributions of this chapter can be summarized as follows:

Development of a systematic approach for curating hand kinematics data, includ-
ing preprocessing techniques that ensure anatomically valid joint movements.

Introduction of a framework for identifying and modeling intra-finger joint depen-
dencies, producing interpretable reduced hand kinematics models for grasping.

Synthesis of reduction models into clusters across all grasps, reducing implemen-
tation complexity while maintaining prediction accuracy.

Limitation of the Study

While the NinaPro dataset used in this study remains the largest publicly available
hand kinematic database (77 participants), it has notable demographic limitations,
being predominantly male and focused exclusively on young adults (22 to 35 years).
The recently released CeTI-Age dataset (Muschter et al., 2023), though 18% smaller
with 63 participants and containing 20 distinct grasp types versus NinaPro’s 23, offers
better demographic balance (33 female/30 male) and spans a much broader age range
(20 to 80 years), enabling more inclusive analysis of hand kinematics across the adult
lifespan.

3.1 Reducing Hand Kinematics: State-of-the-Art

The human hand, with more than 20 DOFs excluding the wrist (Engelhardt et al.,
2020), excels in precision and power grips, but replicating its full functionality in
devices is challenging due to kinematic complexity and spatial constraints. Effective
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rehabilitation devices must minimize DOFs while supporting essential ADL tasks like
opening bottles, cutting, or writing (Jarque-Bou et al., 2020a).

Developing reduced and representative kinematic models requires a thorough under-
standing of hand kinematics, achieved through studies based on experimentally recorded
hand movements (Li et al., 2022). For example, (Holzbaur et al., 2005) implemented
a musculoskeletal model of the 50th percentile male upper extremity, including the
wrist, index finger, and thumb, which was later expanded in (Ma et al., 2020b) to
include additional fingers using OpenSim (Delp et al., 2007). Similarly, (Engelhardt
et al., 2020) employed the AnyBody Modeling SystemTM to develop a comprehensive
hand model incorporating detailed anatomical structures with physiologically idealized
joint and muscle-tendon units, which enabled realistic simulation of complex hand
movements and force transmission mechanisms. These studies primarily focused on
detailed hand modeling for musculoskeletal research rather than reducing DOFs.

The human hand, with its 27 bones (8 carpal bones, five metacarpals, and 14

phalanges), 41 muscles (20 in the forearm and 21 within the hand itself), and numerous
joints, represents one of the most anatomically complex structures in the human
body (Sobinov and Bensmaia, 2021). This intricate architecture enables at least
21 actively articulated DOFs, excluding the wrist, with five corresponding to the
thumb (T) and four corresponding to each of the index (I), middle (M), ring (R),
and little (L) fingers. Each finger consists of phalanges that move relative to one
another, enabling finger flexion/extension (FE). The I, M, R, and L fingers each have
two joints between their phalanges (the distal interphalangeal (DIP) and proximal
interphalangeal (PIP) joints). In contrast, the thumb has only one interphalangeal
joint (IP). Additionally, each digit has a metacarpophalangeal (MCP) joint enabling
abduction/adduction (AA) movement with a slight rotation in addition to FE. At
the base of each digit are the carpometacarpal (CMC) joints, with those of the thumb
and little finger being highly mobile. The thumb’s CMC joint enables FE, AA, and
rotation, facilitating opposition, while the little finger’s CMC joint enables AA and
contributes to palmar arching. In contrast, the CMC joints of the index, middle, and
ring fingers primarily provide stability. The complexity extends beyond this skeletal
framework to the sophisticated neuromusculoskeletal system, where many muscles act
across multiple joints, creating complex relationships between muscle activation and
joint movement. This anatomical complexity is further compounded by significant
interpersonal variability. Understanding these intricacies is essential for developing
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effective hand rehabilitation strategies and simplified yet functionally accurate kinematic
models.

Efforts to create reduced kinematic models, such as (Cobos et al., 2010; Delp
et al., 2007), were limited by small sample sizes (fewer than 10 subjects) and overly
simplified grasp types (prismatic and circular division only). In (Zhang et al., 2022), a
pneumatically driven soft robotic hand was developed using a kinematic model based
on six subjects, establishing a linear relationship between PIP and DIP joints. Similarly,
(Kamper et al., 2003) analyzed fingertip trajectories during reach-and-grasp tasks with
ten subjects performing five grasps, revealing approximate linear relationships between
PIP, MCP, and DIP joint angles, albeit with varying slopes (e.g., PIP—DIP slopes of
0.3 in (Kamper et al., 2003) versus 2/3 in (Cobos et al., 2010; Zhang et al., 2022)).

Principal component analysis (PCA) has been widely used for kinematic reductions.
For instance, (Jarque-Bou et al., 2016) applied PCA on six subjects grasping cylindrical
shapes, while (Jarque-Bou et al., 2020b) analyzed 22 subjects performing 26 ADL-
related grasps, identifying five sparse hand synergies. In (Gracia-Ibáñez et al., 2020),
PCA with Varimax rotation on data from 24 subjects performing 24 ADL identified
two core synergies involving PIP and MCP joint flexions. More comprehensive analysis
by (Jarque-Bou et al., 2019) using the NinaPro dataset required 12 synergies to account
for only 80% of the variance. However, (Prevete et al., 2018) criticized PCA for
failing to produce sparse synergies, instead combining all available DOF, and suggested
alternative methods such as l1 regularization and sparse dictionary learning.

PCA approaches traditionally interpret low-variance components as merely rep-
resenting noise rather than meaningful control elements. However, research (Yan
et al., 2020) has disproven this assumption. Study shows that grasping objects can be
predicted from hand postures with accuracy >50% even after removing the first 20
synergies explaining >90% variance. This demonstrates that these supposedly "minor"
components contain subtle information still under volitional control.

Implementing all synergies for prosthetic or rehabilitation device design is complex,
as each synergy represents a linear combination of all available DOFs. Even simple
grasping behaviors would require more than 20 independent control parameters to
achieve human-equivalent precision. This highlights the practical challenges in imple-
menting PCA-based approaches in rehabilitation robotics. To address these challenges,
we propose a complementary approach by introducing simpler one-to-one joint de-
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pendency relations that provide a more implementable framework for rehabilitation
applications.

3.2 Data Cleaning, Exploration and Joint Depen-

dency Identification

Kinematic recordings from 77 healthy volunteers (average age: 28.8 years with standard
deviation 3.96; 57 males/20 females; 70 right-handed/7 left-handed) were analyzed using
the publicly accessible NinaPro multimodal database (Ninapro, 2020). This section
outlines the comprehensive data preparation workflow and intra-finger correlation
analysis to identify dependency-movement relationships for subsequent modeling.

3.2.1 Data Relabeling and Preprocessing

This subsection outlines the data preparation workflow that creates a reliable dataset for
hand kinematics modeling by relabeling data from multiple databases with inconsistent
schemas, filtering to isolate relevant movements, and removing outliers to ensure
anatomically plausible joint angles. The process eliminates experiment runs with
insufficient samples and those covering too little ROM. These preprocessing steps are
crucial for establishing valid intra-finger dependency relationships across the diverse
subject population.

Data Relabeling

The dataset was compiled from three multimodal databases (NinaPro DB1, DB2, and
DB5), each captured at different sampling rates: DB1 at 100Hz, DB2 at 2 kHz, and DB5
at 200Hz, comprising calibrated kinematic data from 27, 40 and 10 subjects, respectively
(Jarque-Bou et al., 2020a). Significant relabeling was necessary to harmonize the data
structure across databases. In the DB1 database, hand configurations and functional
movements required correction of movement indices (converting 2 to 1 and 3 to 2) due
to incorrect original numbering. Additionally, because multiple databases were merged,
subject identifiers in the combined dataset no longer aligned with those in DB9 dataset
index (Ninapro, 2020), requiring further relabeling. The compiled dataset contains 40
distinct hand movements plus a rest position, organized into two exercise groups from
(Jarque-Bou et al., 2020a): Exercise B (labeled as 1) featuring eight isometric and
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isotonic hand configurations with nine basic wrist movements, and Exercise C (labeled
as 2) comprising 23 grasping and functional movements with everyday objects.

In the original DB2 dataset (subjects 28 to 67), functional movements for Exercise
2 (labeled as restimulus in the source data) required renumbering to ensure consis-
tent movement indexing across databases. This standardization was accomplished by
subtracting 17 from each exercise ID. The resulting relabeled dataset—with consistent
movement indexing—was stored in Apache Parquet file format (see Table 3.1 for com-
plete identifiers). The Parquet format was selected for its columnar storage architecture,
which enables efficient data compression and the ability to process large-scale kinematic
data in manageable chunks, allowing subsequent analysis steps.

Table 3.1 Dataset identifiers for the relabeled hand kinematic dataset: subject demographics
and experimental conditions

Subject Hand
laterality

Gender Age Height Weight Exercise Movement Repetition

1–77 Right,
Left

Male,
Female

22–45 150–192 44–105 1, 2 1–23 1–6

The relabeled data is then concatenated by rows into a s1-77_e1-2.parquet file,
consisting of 183 773 343 observations of 22 joint angle features in degrees (a total of
4 043 013 546 data points). Each feature label is created by concatenating joint name,
finger number, and joint movement identifiers. Joint names are abbreviated as: CMC,
MCP, IP, PIP, DIP, and WRIST. Finger identifiers are numbers from 1 to 5, starting
from thumb. Joint movement is denoted with the small letter f for flexion/extension,
a for abduction/adduction, and d for WRIST deviation. For example, MCP5_f represents
the MCP joint of the fifth finger performing flexion/extension. Movement indicator
can be omitted if the joint supports only a single type of movement. Nine subject and
experiment identifiers from Table 3.1 were concatenated to each observation, expanding
the dataset to 31 total columns. This completed the data relabeling, producing a
comprehensive dataset with kinematic measurements and subject-specific metadata for
subsequent analyses.

Data Preprocessing

The dataset was analyzed using Apache Spark 3.1 with the tidyverse package (Wick-
ham et al., 2019) and its R interface, sparklyr (Luraschi et al., 2019). Rigorous
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data preprocessing was essential due to inherent experimental data acquisition errors
that produced anatomically impossible joint angles. Initial preprocessing identified all
missing values (NAs) in the dataset, revealing that the AA difference between index and
middle fingers (MCP2_a column) consisted entirely of NAs. This aligns with (Jarque-Bou
et al., 2020a), which noted that these measurements were excluded due to sensor
noise, removing this column from further analysis. Since the data was collected as
a continuous time series without timestamps, the dataset was filtered to retain only
distinct rows, eliminating potential duplicates representing identical hand postures.

In the second preprocessing step, we isolated only Exercise 2 (C), which contains the
23 grasping and functional movements shown in Figure 3.1. All AA movements were
excluded from analysis since they represent relative angle differences between adjacent
fingers rather than absolute deviations from a neutral position. The rest position
was removed as it does not represent functional grasping behavior. These filtering
operations reduced the dataset to 25 column features (joint angles and identifiers)
and 50 866 742 rows of observations, creating a focused dataset that contains only FE
movements and is tailored explicitly for analyzing hand kinematics during functional
grasping tasks.

The relabeled hand movement dataset was organized hierarchically according to
subject, movement type, and joint angle to facilitate further preprocessing. For each
hierarchical grouping, we generated comprehensive boxplot statistics to facilitate
summary-based inference:

Sample size,

Range boundaries (minimum and maximum values),

Central tendency measures (mean and median),

Distribution quartiles (Q1 and Q3).

The interquartile range (IQR = Q3 – Q1) is particularly informative, as it represents
the middle 50% of angular movement during functional tasks. To comprehensively
analyze joint behavior while accounting for individual differences, we structured the
data analysis in a two-level hierarchical framework:

1. Subject level: All repetitions for each subject were grouped to capture individual
movement patterns and variability.

2. Movement level: Subject-level statistics were aggregated to characterize joint
behaviors across the entire participant population.
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Figure 3.1 Graphical representation of 23 grasping and functional movements from Exercise
C, using everyday objects to simulate ADLs (Jarque-Bou et al., 2020a).
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This hierarchical approach, detailed in Table 3.2, ensured that each subject con-
tributed equally to the movement-level statistics, preventing subjects with more repeti-
tions or observations from dominating the analysis.

Table 3.2 Grouping data structure for boxplot and summary data on grasping.

Joint
Angles

Move-
ment

Sub-
ject

Subject level summary Movement level
summary

CMC1_f 1
1 Min, max, mean, median, Q1, Q3, IQR Median of medians,

mean IQR2 Min, max, mean, median, Q1, Q3, IQR
. . . . . .

MCP1_f 1
1 Min, max, mean, median, Q1, Q3, IQR Median of medians,

mean IQR2 Min, max, mean, median, Q1, Q3, IQR
. . . . . .

. . . . . . . . . . . . . . .

CMC1_f 2
1 Min, max, mean, median, Q1, Q3, IQR Median of medians,

mean IQR2 Min, max, mean, median, Q1, Q3, IQR
. . . . . .

Figures 3.2a and 3.2b illustrate the movement-level distribution of subject-level
joint angle medians for DIP3 and MCP2_f across all movements. The authors’ GitHub
repository (Bazina, 2022b) provides comprehensive boxplots for all joints. Comparing
the boxplots reveals significant differences in anatomical validity: most median subject-
level joint angle values for DIP3 (Figure 3.2a) fall outside the expected anatomical
range, while MCP2_f values (Figure 3.2b) predominantly remain within normal limits.
This discrepancy indicates that a negative sign convention was inadvertently used for
DIP3 flexion angle measurements in the original database—a pattern also observed
with CMC5, DIP4, and DIP5 joints. The database creators themselves acknowledged
measurement limitations in (Jarque-Bou et al., 2020a):

"DIP sensors provide reliable angles when a subject’s hand size is large (i.e.,
when the glove properly fits the hand). They may provide partial results
when the hand of the subject is small. Therefore, attention needs to be taken
when using the information."

This caveat is particularly relevant to our analysis. While most joint angles align
with anatomical expectations (as demonstrated by MCP2_f in Figure 3.2b), detailed
examination of PIP3 and PIP4 measurements reveals several values extending beyond
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(a) (b)

(c) (d)

(e) (f)

Figure 3.2 Example steps for joint angle data preprocessing: (a) DIP3 – calibrated data,
(b) MCP2_f – calibrated data, (c) DIP3 – filtered to anatomical ROM and small samples
removed, (d) MCP2_f – filtered to anatomical ROM and small samples removed, (e) DIP3 –
outliers removed using iterative 1.5 IQR rule, (f) MCP2_f – outliers removed using iterative
1.5 IQR rule.

anatomical limits. These anomalies likely stem from the combined effects of sensor
noise and anthropometric variations when the same data-collection glove was used
across subjects with different hand dimensions (Jarque-Bou et al., 2020a).
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The following preprocessing step involves implementing anatomical validation by
isolating only physiologically plausible joint angles. As illustrated in Figures 3.2c
and 3.2d, the sign for PIP3 joint angle data is inverted, and all measurements falling
outside established anatomical range constraints (see Table 3.3) were systematically
replaced with NA values rather than being removed entirely. This selective NA
replacement strategy ensures data preservation. Discarding entire observations due to
a single noisy sensor reading would result in unnecessary data loss, given that other
sensor readings in the same observation may still be valid.

Table 3.3 Anatomical ROM limits for digit joints during FE movement (Cobos et al., 2010;
Colombo and Sanguineti, 2018; Holzbaur et al., 2005).

Finger 1 (Thumb)/◦ Fingers 2 to 4/◦ Finger 5 (Little)/◦

CMC1_f MCP1 IP1 MCP_f PIP DIP CMC5 MCP5_f PIP5 DIP5

−15–50 −40–45 −5–75 −30–90 −5–120 −5–90 0–15 −30–90 −5–135 −5–90

Finally, to ensure high-quality data for modeling, we implemented a two-phase
filtering process that preserved only recordings with adequate statistical power and
functional relevance. In the first phase, we aggregated joint angle data by joint type
and movement to calculate the movement-level IQR—a robust metric representing the
middle 50% of angular motion during each grasp (Figure 3.2). Two filtering criteria
were applied:

Samples with fewer than 100 observations were replaced with NA values to ensure
statistical reliability.

Samples where the joint’s motion range was less than 50% of the typical range
for that movement (IQR share = subject IQR/movement-level IQR < 0.5) were replaced
with NA values, as they failed to capture sufficient functional motion.

While this initial filtering eliminated many outliers (Figures 3.2a–3.2d), subtler
anomalies remained. The second filtering phase applied an iterative 1.5 IQR rule
(Rousseeuw and Hubert, 2011) to each joint-movement combination. After recalculating
movement-level quartiles, subject medians outside Q1 − 1.5× IQR or Q3 + 1.5× IQR
were identified as outliers and removed. This process was iterated six times until
convergence, yielding a refined dataset containing only biomechanically plausible values
without outliers (Figures 3.2e–3.2f).
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3.2.2 Intra-Finger Correlation Analysis

The distribution of valid data across subjects, fingers, and movements was analyzed
through contingency tables to assess subject representation imbalances after preprocess-
ing. A contingency table is a matrix-format visualization that displays the frequency
distribution between categorical variables, allowing identification of patterns and po-
tential biases in data representation. Figure 3.3 visualizes this three-way relationship
in a matrix plot where each cell represents a subject-finger combination. The size of
each shape indicates the number of remaining movements (ranging from 1 to 23) for
that specific subject-finger pair following data preprocessing, while the color intensity
represents the average number of observations per movement. This visualization ef-
fectively highlights both the movement diversity captured per subject across different
fingers and the data concentration for each combination, providing critical context for
evaluating how specific subject groups might disproportionately influence subsequent
analyses and modeling results.

Figure 3.3 Contingency tables showing data distribution across subjects and fingers after
preprocessing. Each cell represents a subject-finger combination, with shape size indicating
the number of remaining valid movements (ranging from 1 to 23), and color intensity showing
the average number of observations per movement.

The contingency analysis reveals a substantial sampling imbalance across database
groups. Subjects 1 to 27 and 68 to 77 (from DB1 and DB5) typically contain fewer
than 3000 observations per movement (including all repetitions). In contrast, subjects
28 to 67 (from DB2) have an order-of-magnitude higher sampling density, ranging
from 20 000 to 60 000 observations per movement. This data distribution disparity
stems from different acquisition protocols and sampling rates (100Hz for DB1, 2 kHz
for DB2, and 200Hz for DB5). Without appropriate sampling strategies, such as
stratified sampling or weighted analyses, models trained on the combined dataset would
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disproportionately reflect the movement patterns of subjects from DB2, potentially
masking important kinematic variations present in the less densely sampled subjects.

For analysis and modeling, 18 potential intra-finger dependencies are identified using
16 finger joints performing FE (Table 3.4). These dependencies systematically combine
all joints within each finger, with the proximal joint of the kinematic chain selected as
the movement basis. All 18 possible relationships were defined and evaluated for each
of the 23 grasps, creating a comprehensive investigation framework of 414 potential
dependency-grasp combinations. The feasibility of modeling each specific relationship
will be determined through correlation analysis, as not all joint relationships exhibit
sufficient correlation to warrant modeling across all grasping patterns.

Table 3.4 18 pairwise intra-finger joint dependencies investigated for hand kinematic model
reduction across functional grasping movements.

Thumb Index Middle Ring Little

MCP1 – IP1 MCP2_f – PIP2 MCP3_f – DIP3 MCP4_f – DIP4 CMC5 – MCP5_f
CMC1_f – MCP1 MCP2_f – DIP2 MCP3_f – PIP3 MCP4_f – PIP4 CMC5 – DIP5
CMC1_f – IP1 PIP2 – DIP2 PIP3 – DIP3 PIP4 – DIP4 CMC5 – PIP5

MCP5_f – DIP5
MCP5_f – PIP5
PIP5 – DIP5

To systematically identify linear relationships between joint movements, data were
nested by finger, movement (restimulus), subject, and repetition, and correlation
matrices were generated for all FE joints within each nested group across the full range
of motions, following the procedure illustrated in Figure 3.4.

Figure 3.4 Hierarchical data nesting procedure for generating correlation matrices across
flexion/extension joints. Data is systematically nested by finger, movement (restimulus),
subject, and repetition to isolate meaningful relationships.

This analysis yielded 71 328 Pearson correlation coefficients r, each quantifying the
strength and direction of joint-pair relationships on a scale from −1 to 1. The number
of coefficients per movement joint dependency ranged from 56 to 358, with multiple
observations from each subject-repetition combination, providing robust statistical
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power for assessing potential kinematic couplings across diverse hand sizes and movement
patterns. Statistical significance was evaluated using a 5% significance level, ensuring
that only meaningful correlations were considered for subsequent modeling of intra-finger
dependencies.

Figure 3.5 presents boxplot summary statistics for correlation coefficients across
nine intra-finger dependencies, specifically for the third finger during movement 21

(Figure 3.5a) and the fifth finger during movement 2 (Figure 3.5b). Color highlighting
indicates the strength of each relationship, with the color map applied only to depen-
dencies exhibiting high or very high correlation (absolute median correlation coefficient
|r| ≥ 0.7) according to the classification system recommended by (Mukaka, 2012).

Despite the generally tight distribution of coefficients around the median for strongly
correlated dependencies, some boxplots revealed significant outliers that could poten-
tially distort modeling results. To address this issue, we applied an iterative 1.5 IQR
rule to systematically identify and remove statistical anomalies. This outlier removal
process eliminated 4037 values (5.7% of the total) while preserving 67 291 valid corre-
lation coefficients. The right panels in Figures 3.5a and 3.5b display the distributions
after outlier removal, demonstrating more consistent correlation patterns. Complete
visualization sets for all fingers, movements, and intra-joint dependencies are available
in the authors’ GitHub repository (Bazina, 2022b).

(a) (b)

Figure 3.5 Boxplot distributions of correlation coefficients for intra-finger joint dependencies
before (left) and after (right) iterative 1.5 IQR outlier removal: (a) middle finger (3rd)
dependencies during movement 21, and (b) little finger (5th) dependencies during movement
2. Color highlighting indicates strength of correlation.

Next, we focused exclusively on analyzing dependencies exhibiting an absolute
median correlation coefficient of |r| ≥ 0.7, which are categorized as highly or very
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highly correlated according to established thresholds in (Mukaka, 2012). Detailed
visual inspection of scatter plots revealed that some movement repetitions captured
only partial ROMs, potentially skewing correlation estimates. To ensure data quality
and representativeness, we repeated two additional, previously introduced, filtering
methods, but at the repetition level for each dependency:

Repetitions with insufficient ROMs were discarded using an IQR share threshold
of 0.5: IQR share = repetition IQR/median dependency-movement IQR < 0.5

Remaining outlier values were removed through an iterative application of the
1.5 IQR rule targeting correlation coefficient distributions.

This rigorous filtering process yielded 11 643 statistically reliable correlation coeffi-
cients suitable for subsequent modeling steps. Figure 3.6 visualizes these dependency-
movement relationships, where each point represents a median correlation coefficient
across all qualifying repetitions. The diagram reveals clear clustering patterns among
highly correlated intra-finger dependencies, providing insight into which joint relation-
ships consistently exhibit strong coupling across different grasping movements and
subject populations.

Analysis of the 18 defined intra-finger dependencies revealed that 16 demonstrate
high correlation in at least one of the 23 functional grasping movements. Notably,
two dependencies—PIP5 – DIP5 and PIP4 – DIP4—showed no significant kinematic
coupling during any of the examined grasps, suggesting greater independence in the
distal joints of the ring and little fingers. The highest number of simultaneous joint
dependencies occurred during small diameter grasp (movement 2) and fixed hook
grasp (movement 3), with 10 and 11 correlated joint pairs respectively, indicating more
constrained finger movements during these grasps. They are followed by 7 identified
dependencies during large diameter grasp, medium wrap, power sphere grasp, precision
sphere grasp and lateral grasp (movements 1, 5, 10, 12 and 17 respectively). In
contrast, the tip pinch (movement 15) exhibited only a single correlation (PIP2-DIP2),
demonstrating the highly selective joint control required for precision tasks.

Across different fingers, MCP FE demonstrated consistent coupling with PIP FE
for the middle, ring, and little fingers in 18 to 20 movements. Interestingly, this same
coupling appeared in only 7 movements for the index finger, highlighting its greater
kinematic independence—a finding consistent with its specialized role in precision
manipulation. The index finger’s PIP2 – DIP2 relationship, however, remained highly
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Figure 3.6 Comprehensive visualization of 116 highly and very highly correlated (|r| ≥ 0.7)
intra-finger joint dependencies across 23 functional grasping movements. Each point represents
a median correlation coefficient after outlier removal, with colors indicating the number of
movements in which the dependency is highly correlated. Horizontal movement sorting is
performed based on the number of coordinated joint relations, while vertical sorting indicates
frequently occurring dependency patterns across multiple movements. Note the sparse
representation of thumb dependencies at the bottom of the diagram, confirming the thumb’s
greater independence in functional grasping tasks compared to other fingers.

correlated across 19 movements, suggesting a fundamental mechanical coupling in the
distal segments.

Thumb intra-finger dependencies were notably sparse, with only 5 relationships
identified across 5 movements, confirming the thumb’s greater functional independence
in grasping activities. This finding aligns with previous biomechanical research by
(Kamper et al., 2003), which established the thumb’s unique kinematic behavior
compared to other digits due to its specialized anatomical structure and critical role
in opposition movements. The extensive correlation analysis across all fingers and
movements yielded a total of 116 dependency-movement relationships exhibiting high
or very high correlation, which were selected for more detailed mathematical modeling
and kinematic reduction in the following sections.
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To better understand representativeness and potential sampling biases within our
dataset, we conducted an in-depth analysis of the distribution of observations across
dependency-movement relationships. This analysis is essential for evaluating the
generalizability of our models and identifying potential limitations due to subject or
database imbalances.

Figure 3.7 presents stacked frequency histograms of observations for two contrasting
dependencies: a frequently occurring, highly correlated relationship (MCP3_f – PIP3),
and a less common relationship (CMC5 – MCP5_f) with a correlation coefficient of
r = 0.76. These visualizations reveal important differences in data composition that
could influence modeling outcomes.

For the MCP3_f – PIP3 relationship during movement 3 (Figure 3.7a), the dataset
includes 34 subjects contributing 155 repetitions and 634 050 total observations. This
relationship demonstrates relatively balanced representation, with subjects from DB1
(subjects 1 to 27) and DB2 (subjects 28 to 67) well-represented, and only 4 participants
from DB5 (subjects 68 to 77).

In contrast, the CMC5 – MCP5_f relationship during movement 1 (Figure 3.7b)
presents a more skewed distribution. This relationship includes 20 subjects performing
75 repetitions, yielding 485 267 observations. Unlike the first example, this dependency
is predominantly characterized by subjects from DB2, with notably fewer representations
from DB1 and DB5. Comprehensive distribution visualizations for all 116 dependency-
movement relationships are available in the authors’ GitHub repository (Bazina, 2022b).

(a) (b)

Figure 3.7 Stacked frequency histograms showing data distribution across subjects and
repetitions for two intra-finger dependencies: (a) MCP3_f – PIP3 during movement 3,
representing a frequently occurring relationship, (b) CMC5 – MCP5_f during movement 1, a
less common relationship.
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Figure 3.8 summarizes the remaining data per dependency-movement. The mini-
mum number of subjects per relationship is 9, with the middle 50% ranging from 19
to 33. The number of repetitions per dependency-movement spans 25 to 274, with a
midspread of 3 to 4.5 repetitions per subject.

Figure 3.8 presents a comprehensive statistical summary of the data distribution
across all 116 identified dependency-movement relationships. The analysis reveals
substantial variability in subject representation, with a minimum of 9 subjects per
relationship and an interquartile range (middle 50%) spanning from 19 to 33 subjects.
This robust subject representation enhances the generalizability of derived models across
different hand anthropometrics. The within-subject motion variability of the dataset
is evidenced by the wide range of repetitions captured per dependency-movement
relationship, from 25 to 274 total repetitions across all subjects. When normalized
to individual participants, this translates to a midspread of 3 to 4.5 repetitions per
subject—sufficient for capturing both consistent patterns and natural variability in
movement execution. These statistics confirm the dataset’s adequacy for developing
statistically sound models of intra-finger dependencies while accounting for individual
differences in grasp execution.

Figure 3.8 Data summary for all 116 dependency-movement relationships.
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3.3 Dependency-Movement Relationship Modeling

Traditional machine learning principles are applied to dependency-movement modeling,
with approximately 80% of repetitions allocated for training and the remaining 20%

reserved for testing. It is assumed that both the reaching and returning-to-rest phases
follow the same trajectory.

Due to dataset imbalances caused by varying sampling rates across the three
dataset parts (DB1, DB2, and DB3), the data is sampled per dependency-movement
relationship by setting aside entire repetitions. This ensures that repetitions in the
test set belong to different subjects, increasing model representativeness.

Customized Stratified Sampling Procedure

A customized version of stratified sampling is used to split the training data into k
folds for hyperparameter tuning through cross-validation. To determine the number
of folds, the minimum number of subjects (9) and repetitions (25) from Figure 3.8
is considered. At least 5 repetitions per stratum are deemed sufficient to maintain
variability. The data is then split into 5 folds, with one fold (20% of repetitions) used
as a test set and the remaining 4 folds used for cross-validation and hyperparameter
tuning.

The customized stratified sampling process is performed as follows:

1. A vector of fold IDs is generated, repeating sequences in the range of 1 to 5,
matching the number of repetitions in each relationship.

2. The vector of subjects is randomly shuffled, followed by random shuffling of
repetitions belonging to each subject, creating a randomized list of repetitions.

3. Randomized repetitions are assigned to folds sequentially.

This procedure ensures that more unique subjects are present in each fold, resulting
in more consistent 4-fold cross-validation compared to simple random repetition assign-
ments. Each fold contains an uneven number of observations but an approximately
equal number of repetitions, improving model reliability.

As illustrated in Figure 3.7, the dataset exhibits imbalances. Observation weighting
is introduced to ensure that each repetition contributes equally to the model without
increasing the dataset size further, in contrast to duplicating observations.

The weighting procedure involves:
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1. Counting the total number of observations and repetitions per dependency-
movement relationship.

2. Dividing these values to obtain a total weight coefficient for each repetition.

3. Dividing the total repetition weight by the number of observations within that
repetition to assign individual observation weights wi.

Three predicting variables are chosen for the modeling process: the dependee joint,
subject height, and subject weight. All variables are transformed using second-order
polynomial and exponential functions and fed into a model matrix containing first-order
interactions and an intercept term, totaling 46 terms. The model matrix is standardized
by subtracting the mean from each variable and dividing by its standard deviation.
The same standardization procedure is applied separately for each of the 116 modeled
dependencies, including the dependent variable before fitting.

Two different modeling approaches are employed, the first serving as a baseline and
a variable selection model, and the second as a main model for inferring about the
modeled dependencies.

Generalized Linear Model

For variable selection, a regularized generalized linear model (GLM) is employed using
the glmnet library (Tay et al., 2023). The GLM consists of:

A linear combination of predictors,

A probability distribution for the dependent variable (assumed normal),

A link function (identity function).

The standardized form of the GLM is expressed as:

E

(
y − y

σy

)
= βs0 +

n∑
i=1

βsi
xi − xi
σxi

, (3.1)

where E(·) denotes the expected value, y is the dependent joint, xi are predictors,
xi are variable means, σxi

are standard deviations, and βsi are standardized coefficients.

Lasso regression is used to promote sparsity by minimizing a loss function with a
regularization term:
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λ
n∑

i=0

|βsi|, (3.2)

where λ is a tuning parameter. Additionally, relaxation of coefficients is introduced
by combining regularized and OLS coefficients:

βrelax
s (λ, γ) = γβγ

s + (1− γ)βOLS
s , (3.3)

where γ is the mixing parameter, βγ
s is the regularized coefficient, and βOLS

s is the
Ordinary Least Squares (OLS) coefficient.

GLM models are selected based on sparsity and error metrics. The most regularized
model within one standard deviation of the minimum cross-validated error is chosen.
Observation weights are also applied to the GLM models.

Linear Mixed-Effect Model

The second modeling approach employed for inference is the linear mixed-effect model
(LME), implemented using the lme4 library (Bates et al., 2015). The LME model
accounts for random effects due to subject grouping, observed during visual inspection
(see Figure 3.11).

The LME model treats each subject as a random intercept, accounting for person-
specific variations in joint relationships. This approach acknowledges that different
individuals may have different baseline positions or angular offsets while maintaining
similar coordination patterns. The fixed slopes represent population-level effects—the
consistent biomechanical relationships between joints that apply across the entire
population regardless of individual differences. These fixed effects quantify how much
one joint’s movement predicts another joint’s movement, capturing the universal
patterns in hand kinematics during specific grasps. This separation of fixed and
random effects enables the identification of generalizable joint coordination patterns
while accounting for individual variability. The model is expressed as:

y − y

σy
= βs0j +

n∑
i=1

βsi
xi − xi
σxi

, j ∈ S, (3.4)

where βs0j is the intercept for subject j from set S, representing subject-to-subject
variability.
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Model reduction is performed by retaining predictors with medium to large effect
sizes (Cohen’s effect index “d “> 0.30) and high statistical significance (p < 0.001)
(Cohen, 2013; Nieminen, 2022). The final model is obtained through iterative reduction
based on predictor significance and effect size.

The intraclass correlation coefficient (ICC) is used to validate the modeling approach:

ICC =
σ2
s

σ2
s + σ2

r

, (3.5)

where σ2
s is the variance of random effects (subject intercepts) and σ2

r is the residual
variance.

According to (Koo and Li, 2016), ICC values indicate reliability as follows:

< 0.5: Poor reliability,

0.5− 0.75: Moderate reliability,

0.75− 0.9: Good reliability,

> 0.9: Excellent reliability.

The final LME model ensures robustness by accounting for subject-level variability,
promoting generalizability across unseen subjects.

3.3.1 Random and Fixed Effect Predictors

The summary statistics of the obtained ICC values and the variance of random effects
are presented in Figure 3.9. The median ICC value across all 116 models is 0.78,
indicating good reliability of the modeling approach. Four models have an ICC below
0.5 (poor reliability), 46 models fall within the range of 0.5–0.75 (moderate reliability),
51 models are in the range of 0.75–0.9 (good reliability), and 15 models have an ICC
above 0.9 (excellent reliability).

Although the inclusion of random effects in four models—23: MCP3_f–DIP3, 4:
MCP4_f–PIP4, 17: MCP4_f–DIP4, and 2: MCP2_f–PIP2—is questionable due to
ICC values below 0.5, the dependencies were selected based on mean correlations (see
Figure 3.6) and are therefore retained in the analysis.
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Figure 3.9 Intraclass correlation coefficients (ICC) and variance of random effects related
to linear mixed-effect models (LME). The figure presents summary statistics for ICC values
across all 116 models and the variance of subject intercepts.

The variance of random effects (subject intercepts) across all 116 LME models
ranges from 0.16 to 2.9, with an IQR between 0.6 and 1.13. Detailed variance values
and corresponding ICC statistics are available in Table S2 online2.

A summary of the selected predictors in the final LME models, both significant
and with medium to strong effect sizes, is provided in Figure 3.10. Four standardized
predictors were identified: linear (lin), polynomial (poly), and exponential (exp) trans-
formations of the dependee, as well as subject height. Additionally, five standardized
interactions (denoted with “:”) were identified:

Polynomial and exponential transformation of height (poly:height_exp),

Polynomial and exponential transformation of weight (poly:weight_exp),

Exponential and exponential transformation of height (exp:height_exp),

Linear and polynomial transformation of height (lin:height_poly),

Exponential and exponential transformation of weight (exp:weight_exp).

Including the random subject intercept, the average number of predictors per model
is 2.5. Out of the 116 provided models, 83 contain linear terms, 78 contain polynomial
terms, and 45 include both. Additionally, 11 models incorporate other predictors or
interactions beyond linear and polynomial terms. A comprehensive analysis of model
coefficients is presented in Appendix B (Figures B.1 and B.2).

After presenting the fixed-effect coefficients for each model, the random (subject)
effect is summarized by presenting the intercept means across all subjects used for

2https://docs.google.com/spreadsheets/d/1ZnvPCa8ToHPTjjELyRAl_qMwQY
0N3a84L_VyKS4ZvSs/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1ZnvPCa8ToHPTjjELyRAl_qMwQY0N3a84L_VyKS4ZvSs/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1ZnvPCa8ToHPTjjELyRAl_qMwQY0N3a84L_VyKS4ZvSs/edit?usp=sharing
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Figure 3.10 Summary statistics on selected predictors in the final LME models. The figure
highlights the frequency of linear, polynomial, exponential transformations, and interactions
used across 116 models.

modeling. These intercepts can be generalized and used as an unbiased estimator for
the entire population, as shown in Figure B.2.

In Figure 3.11, two distinct dependency-movement relationships are presented
across a subset of subjects and repetitions used for both training and testing data to
visually validate the LME modeling approach. One relationship has a higher correlation
coefficient (3: MCP3_f - PIP3), and the other has a lower one (12: MCP4_f - DIP4).
A clear natural grouping of the data based on subjects is evident. Scatter plots for all
modeled dependencies and subjects can be found in the authors’ GitHub repository
(Bazina, 2022b).

3.3.2 Model Error Metric Analysis

To validate the models, two error metrics are used, both weighted to balance the
dataset. Since the data contains outliers, the weighted mean absolute error (wMAE) is
selected as an absolute error metric for evaluating the models:

wMAE =
1∑n

i=1wi

n∑
i=1

wi |yi − ŷi| , (3.6)
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(a) (b)

Figure 3.11 Examples of LME model fitted to data (blue) with repetitions belonging to
train data (black) and test data (red). Numeration at the top represents the subject ID, and
numeration to the left the repetition ID: (a) MCP3_f - PIP3 dependency for movement 3
(fixed hook grasp), (b) MCP4 - DIP4 dependency for movement 12 (precision sphere grasp).

where n represents the length of the train or test dataset, wi the previously computed
observation weight, yi the observation of the dependent joint, and ŷi the predicted
dependent joint value.

A relative metric, called the double weighted mean absolute percentage error
(wwMAPE), is also used:

wwMAPE =

∑n
i=1wi |yi − ŷi|∑n

i=1wi |yi|
, (3.7)

with the same nomenclature as in Equation (3.6). wwMAPE is chosen because it
behaves well for small, large, and close-to-zero joint angle values.

A summary of the statistics on the error metrics is depicted in Figure 3.12. It is
evident that, compared to GLM models, the LME models fit the data with significantly
smaller absolute and relative errors. The absolute wMAE for the LME approach across
models ranges from 2.4◦ to 16◦ (median 7.5◦) on the test dataset, and from 1.8◦ to
15.2◦ (median 7.2◦) on the train dataset.
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Figure 3.12 Summary statistics on wMAE and wwMAPE error metrics. The figure shows
the comparison of absolute (wMAE) and relative (wwMAPE) errors on the train and test
datasets for both GLM and LME models.

The relative wwMAPE for the same approach ranges from 11% to 56.1% (median
27.9%) on the test dataset, and from 8.2% to 57.9% (median 28.7%) on the training
dataset.

Detailed graphical results of the error metric analyses are provided in Appendix B,
with Figures B.3 showing wMAE and Figures B.4 showing wwMAPE. For readers’
convenience, a detailed representation of these results is available as Table S1 online3.

3.3.3 Clustering Based on Model Coefficient Analysis

Agglomerative clustering was performed based on standardized coefficients to identify
similarities between dependencies across different motions. The clustering utilized both
fixed and random effects from the LME models, with missing coefficients replaced by
zeros. A pairwise distance matrix was computed for the 116 identified models using
Euclidean distance as the similarity metric between model coefficients.

Clustering was performed using the complete linkage method, where the distance
between two clusters is defined by the largest distance between any two dependencies
in each cluster. This approach, also known as “farthest neighbor clustering,” ensures

3https://docs.google.com/spreadsheets/d/1JkbfzyNAdGuZEg0mXhJGEHl9DEgz
nLNN34KvTpnEcuQ/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1JkbfzyNAdGuZEg0mXhJGEHl9DEgznLNN34KvTpnEcuQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1JkbfzyNAdGuZEg0mXhJGEHl9DEgznLNN34KvTpnEcuQ/edit?usp=sharing
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that clusters remain distinct and well-separated. The resulting dendrogram is shown
in Figure 3.13.

After inspecting the dendrogram, the authors determined that cutting the tree at
a distance of 0.52, resulting in 30 color-coded clusters, is an appropriate reduction
strategy. This threshold was selected to ensure that the average absolute difference
between standardized coefficients remained below 0.33, with each model containing an
average of 2.5 coefficients.

The clustering process reduces the number of models required to describe all
kinematic dependencies from 116 to 30 and decreases the number of models necessary
to characterize each grasp type (see Table 3.5). The analysis of finger flexion/extension
across all functional movements, initially involving 16 DOFs, can be reduced by up to
11 DOFs, with a median reduction of 4. The remaining flexion/extension grasp models
consist of between 5 and 15 independent DOFs, with a median of 12. The number of
reduced models per grasp ranges from 1 to 9, with a median of 4.

When the models are grouped into 30 clusters, the coefficients for each cluster
can be estimated as the mean values of the standardized coefficients (refer also to
Figures B.1 and B.2 in Appendix B) belonging to the clustered models, as depicted in
Figure 3.14. In the figure, the minimum and maximum coefficient values per cluster
are also presented, as are the singular clusters containing only one model.

The results of the LME modeling performed in this study show that the major factor
in explaining the variance during the kinematic modeling and the model reduction
of flexion/extension angles is the subject-to-subject variation, modeled as a random
effect. The median value of variance explained by this “per subject” grouping structure
is 78%.

This finding could potentially be attributed to the calibration protocol used for the
database, which involved a post-processing procedure performed according to (Gracia-
Ibáñez et al., 2016). The procedure utilized 10 subjects and 65 guided movements to
compute sensor gain values, as referenced in (Jarque-Bou et al., 2020a), which were
then applied to all subjects.

It is also noteworthy that the only selected coefficient for the “per subject” grouping
was the intercept, allowing a constant shift in the data. For each of the 116 developed
models in this research, all subjects used during the modeling process exhibited a
similar pattern during the grasping motion but shifted by a subject-specific constant.
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Figure 3.13 Agglomerative (hierarchical) clustering of models based on the similarity of
standardized coefficients. The dendrogram shows 30 color-coded clusters obtained by cutting
the tree at a distance of 0.52.
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Table 3.5 DOF reductions across 23 grasps (functional movements) through intra-finger
dependency modeling, showing remaining DOFs and model distribution across clusters.

Functional
movement

DOF
reductions

No. models
per cluster

No. reduction
models

DOFs
remaining

3 11 3/III 9 5
2 10 2/VII, 2/VIII 8 6
1 7 2/IV 6 9
5 7 3/III, 2/X 4 9

10 7 2/III 6 9
12 7 – 7 9
17 7 – 7 9
6 6 2/XIX 5 10
8 6 2/XII 5 10

11 5 2/VI 4 11
20 5 2/VI 4 11
9 4 – 4 12

13 4 2/V 3 12
16 4 – 4 12
19 4 – 4 12
21 4 2/III 3 12
14 3 – 3 13
23 3 – 3 13
18 3 – 3 13
4 3 – 3 13

22 3 – 3 13
7 2 – 2 14

15 1 – 1 15

This chapter developed reduced kinematic models of human hand movements by
analyzing grasp-oriented intra-finger dependencies using the largest publicly available
multimodal database for hand movements, comprising synchronized joint angle values
from 77 test subjects performing 23 ADL grasps. This methodology provides a
foundation for simplifying the design of anthropomorphic devices while retaining
functional accuracy.

Data preprocessing techniques were introduced to curate the dataset, isolating
finger flexion/extension movements, discarding data outside the anatomical range, and
excluding experiment runs with an insufficient ROM for proper inference and modeling.
Through correlation analysis, 116 highly to very highly correlated dependency-movement
relationships were identified across all grasps.
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Figure 3.14 Clustered models with mean, minimum, and maximum coefficient values. The
figure shows the estimated mean values of standardized coefficients for each cluster, along
with the minimum and maximum values per cluster. Singular clusters containing only one
model are also highlighted.

Using regularized GLM for uncorrelated predictor selection and weighted LME
modeling, joint dependencies were modeled with error metrics on the test dataset:
absolute wMAE values ranged from 2.4 to 16◦ (median 7.5◦), and relative wWMAPE
values ranged from 11 to 56.1% (median 27.9%). Clustering reduced 116 joint depen-
dencies to 30 clustered models, enabling simplified implementation. We achieved DOF
reductions during FE ranging from 1 to 11, with a median of 4.

While this study aimed to concisely present both the methodology and results
for reducing grasp-oriented hand kinematic models, certain complex grasps—such as
holding and cutting with a knife, turning a screwdriver, prismatic pinching, and parallel
extension grasp—posed challenges for reduction, achieving DOF reductions of only 1

to 3. These challenges may stem from joints remaining static during such grasps or
requiring alternative modeling approaches for further simplification.

Building on these kinematic reductions and methodologies, the next chapter tran-
sitions to the practical application of these findings in designing, simulating, and
developing a soft-pneumatic rehabilitation glove.



Chapter 4

Design and Development of a
Rehabilitation Glove: A Soft Robotics
Approach

T his chapter outlines the design, simulation, and development of a rehabilitation
glove prototype powered by soft pneumatic actuators (SPAs) tailored for finger

movement1. Before detailing the glove’s design, a geometric model of the finger is
developed, using the index finger as a representative example. A functional forward
kinematics model is introduced, along with both numerical and analytical approaches
for solving the inverse kinematics of four human fingers, excluding the thumb.

Subsequently, a comprehensive kinematic analysis and activities of daily living
(ADL) workspace study of anatomical fingers and their actuators informed the design
and development of an innovative SPA. The ADL workspace represents the functional
range of motion (ROM) required for performing everyday tasks such as grasping,
reaching, and manipulating objects. The proposed actuator design combines cylindrical
and ribbed geometries with a reinforcing element—a thicker, less extensible structure—
resulting in an asymmetric cylindrical bellow actuator driven by positive pressure.
The design process leverages a simplified model of human hand kinematics and its
reachable workspace, which serves as the foundation for characterizing the SPAs. This
characterization enabled the creation of a 3D-printed glove replicating the functional
ROMs of human fingers.

1This chapter builds upon the findings presented in Bazina et al. (2022) and further expands upon
Bazina et al. (2024b).
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The morphology of the SPA is derived from detailed analyses of human finger
anatomy and motion, followed by the development of a segmented rigid-body kine-
matics model. These models approximate the soft segments using rigid links, allowing
implementation within an open-source framework for robotic prototyping (ROS). The
performance of the SPA is validated through numerical simulations under varying
pressure levels using Finite Element Method (FEM) analysis, demonstrating strong
alignment with human finger trajectories. To streamline an iterative design during
the grasp-oriented development process, a modified pseudo-rigid-body (PRB) model is
introduced, reducing computational complexity while maintaining minimal error.

The SPAs are fabricated using additive manufacturing techniques with thermoplastic
polyurethane (TPU), which was selected for its flexibility and durability. The SPAs
were then assembled into a prototype rehabilitation glove, which underwent ergonomic
testing in interaction with a human hand. The evaluation confirmed the glove’s
suitability for practical rehabilitation applications, validating its design for supporting
natural finger movements during therapy.

Contribution of this Chapter

The primary contribution of this chapter is the development of a methodology for
designing functional, anatomically compatible, 3D-printed soft pneumatic actuators
(SPAs) to facilitate the movements required by a rehabilitation glove. The design
process begins with a comprehensive kinematic analysis of human hand motion during
prismatic and circular grasping. This analysis simplifies the kinematic model while
preserving the activities of daily living (ADL) workspace, which serves as the foundation
for characterizing the SPAs and constructing a 3D glove model tailored for finger
rehabilitation.

Additionally, a segmented rigid-body kinematic model is developed, effectively
adapting traditional “rigid“ robotics techniques to model soft robotic devices. Numerical
simulations using the Finite Element Method (FEM) and modified pseudo-rigid-body
(PRB) models are introduced to analyze and optimize actuator performance. The PRB
model, in particular, plays a critical role in future design iterations and control system
development due to its significantly lower computational complexity compared to FEM.
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Limitation of the Study

It should be noted that, while the final outcome of this study is a functional soft
rehabilitation glove, the kinematic analyses are focused solely on four human fingers,
excluding the thumb. With its significantly different anatomical structure and functional
role in grasping, the thumb requires a distinct modeling approach. As such, its inclusion
has been left for future work to ensure a comprehensive and accurate representation
of hand kinematics. Future research should aim to incorporate thumb kinematics to
enhance the model’s applicability for a wider range of rehabilitation scenarios and
grasp types.

4.1 Soft Rehabilitation Gloves Design: State-of-the-

Art

Robotic-assisted rehabilitation presents a promising solution by delivering effective
therapy with reduced reliance on healthcare professionals (Colombo and Sanguineti,
2018). Despite its potential, challenges in the design and implementation of these
systems remain and warrant further exploration. As discussed in Section 3, the
intricate anatomy of the human hand, which comprises up to 25 degrees of freedom
(DOF), enabling both power and precision grasping, underscores the need for advanced
rehabilitation methods (Bazina et al., 2024c; Colombo and Sanguineti, 2018).

Soft robotic rehabilitation devices have emerged as a compelling alternative to
traditional approaches, offering inherent safety, flexibility, and adaptability. Unlike
traditional rigid robots, soft robotics provide a more natural interaction with the human
hand, making them well-suited for personalized rehabilitation needs (Cappello et al.,
2018; Chu and Patterson, 2018; Haggerty et al., 2023; Majidi, 2014; Rus and Tolley,
2015).

The effectiveness of such devices has been demonstrated, with studies showing
significant benefits from using a soft robotic rehabilitation glove for patients with
spinal cord injuries (Cappello et al., 2018). A similar approach is demonstrated in
(Polygerinos et al., 2015), where a robotic glove was developed using SPAs made from
composite tubular structures with anisotropic fiber reinforcements embedded in an
elastomeric matrix. These actuators mimic finger movements through fluid pressur-
ization, generating significant force when active and exhibiting low impedance when
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inactive. Another example is a 3D-printed soft robotic hand exoskeleton with a fold-
based actuator design, offering guidelines for fabrication and proposing future revisions
to match better the ROMs of a healthy hand (Ang and Yeow, 2017). Similar studies
have introduced and validated 3D-printed SPAs for glove rehabilitation devices (Heung
et al., 2020; Mohammadi et al., 2018). A further research (Yi et al., 2017) developed a
soft robotic glove with a high power-to-weight ratio and enhanced ergonomics, utilizing
a bidirectional linear actuator and cable transmission for synchronized finger actuation.
Young et al. (2024) present a novel soft robotic extensor inspired by spider legs, tailored
for hand rehabilitation in stroke survivors. The device, which curves at rest and ex-
tends upon actuation, demonstrates significant potential for at-home rehabilitation by
3D-printed prototypes. While several designs—spanning cable-driven, pneumatic, and
hydraulic actuators—have been proposed (Chu and Patterson, 2018), advancements
in actuator design, safety, and implementation remain critical. Furthermore, while
numerous designs have been proposed, as noted above, little attention has been given
to leveraging the advantages of 3D printing technologies with soft materials. These
technologies can potentially enable faster, more comfortable, and highly personalized
production of rehabilitation devices.

This work aims to push the boundaries of 3D printing by integrating its capabilities
with the benefits of soft robotics, paving the way for more adaptable and customized
solutions.

4.2 Kinematics Characterization and Implementation

of the Hand Model

Before the design and development of the soft rehabilitation glove, a comprehensive
analysis of human hand kinematics is conducted. Traditional grasp classifications, as
outlined by Cutkosky (1989), categorize movements into power and precision grasps,
which can be further subdivided into circular and prismatic types (Jarque-Bou et al.,
2019). The GRASP taxonomy (Feix et al., 2016) consolidates all previously defined
grasp types from the literature, systematically organizing 33 distinct grasp types
based on opposition type, virtual finger assignments, grasp type (power, precision,
or intermediate), and thumb position. When focusing solely on hand configuration—
excluding object shape and size—these 33 grasp types can be generalized into 17
broader categories.
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In contrast to the methodology presented in Chapter 3, which includes 23 functional
movements, this study simplifies the analysis by focusing exclusively on circular and
prismatic grasps, specifically tailored for the development of a soft rehabilitation device.
Previous research (Cobos et al., 2010) highlights subtle differences between these
grasping types. To better capture these variations and improve modeling accuracy,
this study employs distinct dependency equations.

Key simplifications include expressing joint dependencies linearly, with the metacar-
pophalangeal (MCP) joint serving as the primary reference. This approach is justified
by the fact that the MCP joint, being the first joint in the kinematic chain with a large
ROM, has the most significant influence on the overall hand posture. The dependency
constraints are formulated as follows:

θdependent = K × θparent +B (4.1)

where θdependent/
◦ and θparent/

◦ represent the angular positions of the dependent
and parent joints, respectively, with K and B/◦ being the slope and intercept. In
most cases, the intercept is negligible, simplifying the dependency to a proportional
relationship.

For circular and prismatic grasping, joint motions—such as flexion-extension (FE)
and abduction-adduction (AA)—are modeled based on proportional dependencies,
with specific scaling factors applied to MCP joint motion. The AA motions exhibit
proportional relationships among fingers due to common tendons, while the palmar arc
is represented through coupled carpometacarpal (CMC) joint movements. In prismatic
grasps, slight modifications in joint flexion dependencies are required, particularly for
the index fingers. For rehabilitation applications, inter-finger constraints account for
involuntary flexion effects, where motion in one finger induces proportional movement
in adjacent fingers. These relationships are linearized within the MCP joint’s range
of motion. The simplified 9-DOF hand model effectively captures essential movement
constraints while ensuring generalization across various grasp types and rehabilitation
scenarios (Bazina et al., 2022; Cobos et al., 2010).

4.2.1 Geometric Model of Index Finger

Here, an example of the analysis of the kinematics of the I finger is introduced using
a simplified geometric model defined by eight finger-specific parameters. The same
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methodology can be extended to M, R, and L fingers, resulting in equivalent models
with distinct parameter values.

According to Holzbaur et al. (2005), the neutral position of the finger is defined
when the long axes of the phalangeal and metacarpal bones align. To fully capture
finger motion in 3D space, joint centers must be precisely positioned, making the
model highly complex. To simplify, approximation planes are introduced (Figure 4.1a),
assuming that projecting rotational centers onto the FE plane does not significantly
impact accuracy. The FE plane is defined by the CMC and fingertip (TIP) points,
with its normal aligning with FE joint axes, while the AA plane is perpendicular to
the FE plane.

The proposed kinematic model in Cobos et al. (2010) assumes complete straightness
of the finger in all views, simplifying implementation but neglecting natural angular
deviations. To address this, additional curvature is introduced by incorporating
inclination angles β1, β2, β3, and β4 in the FE plane, as illustrated in Figure 4.1b. The
segment lengths L1, L2, L3, and L4 represent distances between joint centers.

For clarity, the previously established notation for the five joint parameters omits
the index i for finger type. Finger curvature in the AA plane is considered negligible,
as small inclination angles only slightly affect the distal DIP and PIP positions. The
parameter values for the I finger, used for visual validation, are presented in Table 4.1.
To generalize the model across individuals, phalange-to-hand length ratios proposed in
Engelhardt et al. (2020) and Buryanov and Kotiuk (2010) are adopted, noting that
they refer to phalange lengths rather than joint-to-joint distances.

Table 4.1 Finger-specific parameters for the index finger measured from the 50th percentile
male model.

Finger parameters L1/cm L2/cm L3/cm L4/cm β1/◦ β2/◦ β3/◦ β4
◦

Measured value 6.34 4.26 2.51 1.80 2 0 7 −3

4.2.2 Forward Kinematics – Modified Denavit-Hartenberg Con-

vention

The forward kinematics solution calculates finger positions within the local coordi-
nate system using three rotations and three translations. This requires known joint
parameters: θCMC,FE, θMCP,FE, θMCP,AA, θPIP,FE, θDIP,FE. To simplify the model, joints
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(a) (b)

Figure 4.1 Index finger: (a) AA (left) and FE (right) approximation planes with their
normals (light blue), (b) kinematic description in FE and AA approximation planes.

are treated as revolute, forming a kinematic chain with a revolute joint for the CMC
FE, a universal joint for the MCP FE and AA, and two revolute joints for the PIP
and DIP FE. To maintain a single degree of DOF per joint, the MCP universal joint is
represented by two revolute joints, ensuring accurate kinematic representation.

Figure 4.2 illustrates the frames and parameters required to define the forward kine-
matics of the I, M, R, and L fingers. For clarity, the inclination angles βi are exaggerated.
The frames are assigned following the widely recognized modified Denavit-Hartenberg
(DH) notation (Craig, 2014). The forward kinematics procedure is structured into
three key steps:

1. Attaching coordinate frames to the finger links,

2. Determining the parameters of the four links, and

3. Deriving the homogeneous transformation matrix to represent the 6D position
and orientation of the fingertip relative to the base coordinate system.
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Figure 4.2 Modified DH forward kinematics convention for the I, M, R, and L fingers in the
FE plane.

Since no prismatic joints are present in this finger representation, the DH procedure
is explained based on an all-revolute configuration. The frames are assumed to be
rigidly attached to the assigned links, ensuring that joint rotations result in identical
shifts in the frame positions. The zi-axis of each frame aligns with the axis of revolution
of the i-th joint, following the attachment method described in Craig (2014):

1. Place the origin of the i-th frame at the intersection of two axes or where the
common perpendicular meets the i-th axis.

2. Align the zi axis along the i-th joint axis.

3. Point the xi axis along the common perpendicular, or, if the axes intersect, make
xi perpendicular to the plane containing both axes.

4. Align frame 0 with frame 1 when the first joint parameter is zero.

5. For the n-th frame origin, select xn arbitrarily to simplify joint parameters.

By attaching frames to the links, the modified DH parameters for the finger are
defined as follows:

αi−1: Angle from zi−1 to zi around xi−1,

ai−1: Distance from zi−1 to zi along xi−1,

di: Distance from xi−1 to xi along zi,
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θi: Angle from xi−1 to xi around zi.

The general form of the general transformation matrix T i−1
i , which consists of a

3×3 rotational matrix Ri−1
i and a 3×1 translation vector P i−1

i , is obtained through two
sequential transformations: translation along ai−1 and rotation about αi−1, followed by
translation along di and rotation about θi:

T i−1
i =

[
Ri−1

i P i−1
i

0 0 0 1

]
=


cθi −sθi 0 ai−1

sθicαi−1 cθicαi−1 −sαi−1 −disαi−1

sθisαi−1 cθisαi−1 cαi−1 dicαi−1

0 0 0 1

 (4.2)

where simplifying notation symbols are defined as follows:

cθi =⇒ cos θi, sθi =⇒ sin θi ∀i ∈ [1, 6],

cαi−1 =⇒ cosαi−1, sαi−1 =⇒ sinαi−1 ∀i ∈ [1, 6]. (4.3)

Finally, the homogeneous transformation matrices can be obtained by substituting
the modified DH parameters defined in Table 4.2 into the general transformation matrix
(4.2).

Table 4.2 Modified DH parameters for a human finger.

Link αi−1 ai−1 di θi

1 0 0 0 θCMC,FE − β1
2 0 L1 0 θMCP,FE − β2
3 π/2 0 0 θMCP,AA
4 −π/2 L2 0 θPIP,FE + β3
5 0 L3 0 θDIP,FE + β4
6 0 L4 0 0

Six resulting matrices (T 0
1 , T

1
2 , T

2
3 , T

3
4 , T

4
5 , T

5
6 ) describe the transformations between

neighboring frames according to Figure 4.2. The position and orientation of each frame
with respect to the base frame are obtained through matrix multiplications.

To minimize human errors, these multiplications are automated, and the results are
simplified using trigonometric relations with the symbolic mathematics library (Meurer
et al., 2017), implemented in Python.
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For the sake of simplicity, only the final homogeneous transformation matrix for
the fingertip is presented here:

T 0
6 = T 0

1 T
1
2 T

2
3 T

3
4 T

4
5 T

5
6

=


c12c3c45 − s12s45 −c12c3s45 − c45s12 −c12s3 a1c1 + a3c12c3 + a4(c12c3c4 − s12s4) + a5(c12c3c45 − s12s45)

c12s45 + c3c45s12 c12c45 − c3s12s45 −s12s3 a1s1 + a3c3s12 + a4(c12s4 + c3c4s12) + a5(c12s45 + c3c45s12)

c45s3 −s3s45 c3 s3(a3 + a4c4 + a5c45)

0 0 0 1


(4.4)

Please note that the rehabilitation problem involves not only controlling the trajectory
of the fingertip but also the motion of all joints. Therefore, the homogeneous transfor-
mation matrices for the MCP FE (T 0

2 ) and AA (T 0
3 ), as well as for the PIP (T 0

4 ) and
DIP (T 0

5 ), are of significant importance.

All these matrices are available in the authors’ GitHub repository2.

4.2.3 Joint Dependency Effects on ROMs and Anatomical Lim-

its

Incorporating joint dependency constraints into the human arm model affects ROMs,
necessitating further evaluation to ensure compliance with anatomical joint limits. The
ROM of each joint must remain within these limits during rehabilitation exercises, as
exceeding them could lead to strain injuries and patient discomfort, making safety a
top priority. The anatomical static joint ROMs used in this study are derived from
previous research (Holzbaur et al., 2005; Kapandji, 2007).

Since the MCP joint serves as the parent for most dependencies, implementing
MCP joint constraints indirectly determines the available ROMs for the proximal
interphalangeal (PIP), distal interphalangeal (DIP), trapeziometacarpal (TMC), and
interphalangeal (IP) joints. Consequently, the MCP ROMs must be restricted during
FE movements, as shown in Table 4.3. During circular and prismatic grasps involving
the index (I), middle (M), ring (R), and little (L) fingers, the MCP FE exhibits a lower
bound deficit (LBD) of 20° in hyperextension to prevent PIP and DIP overextension.
Full MCP flexion is permitted, resulting in an upper bound deficit (UBD) of 25° to 50°
in the PIP and DIP ROMs.

2https://github.com/tbazina/rehab/tree/master/kinematics/Hand9DOF/Index

https://github.com/tbazina/rehab/tree/master/kinematics/Hand9DOF/Index
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Table 4.3 Intra-joint FE dependency coefficients and ROMs.

Finger FE Joint K B/◦ LB/◦ UB/◦ LBD/◦ UBD/◦

Circular
I, M, R, L

MCP (parent) – – −10 90 −20 –
PIP (dependent) 0.75 0 −7.5 67.5 – 25
DIP (dependent) 0.5 0 −5 45 – 35

Prismatic
I, M

MCP (parent) – – −10 90 −20 –
PIP (dependent) 0.6 0 −6.6 60 −1 32.5
DIP (dependent) 0.3 0 −3.3 30 −1.5 50

A comparison of inter-finger joint dependencies during AA, presented in Table 4.4,
reveals significant reductions in ROMs, with lower and upper bound deficits of approx-
imately 15°. These constraints prevent finger overlapping and allow for slight finger
contact, which is typical during grasping. Finger overlapping can be further explored
in individual finger training modes.

Table 4.4 Inter-finger AA dependency coefficients ROMs

Finger AA K LB/◦ UB/◦ LBD/◦ UBD/◦

I – MCP (parent) – −15 15 −15 15
M – MCP (dependent) 0.2 −3 3 −17 17

L – MCP (parent) – −15 15 −10 10
R – MCP (dependent) 0.5 −7.5 7.5 −15 15

The ROMs covered by the L, R, M, and I fingers during the palm’s arch-like motion
are outlined in Table 4.5. During this motion, the little finger exhibits the largest ROM
in CMC FE.

Table 4.5 Palmar arc chained dependency (CMC FE) coefficients and ROMs.

CMC FE K LB/◦ UB/◦ LBD/◦ UBD/◦

L (parent) – 0 15 – –
R (dependent, parent: L) 0.6 0 10 – –
M (dependent, parent: R) 0.5 0 5 – –
I (dependent, parent: M) 1.0 0 5 – –
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4.2.4 Inverse Kinematics Solvers

In robotic systems, forward kinematics provides only a partial solution, as it determines
the position and orientation of the end-effector but not the required joint parameters.
To achieve precise control, inverse kinematics (IK) is essential for determining the joint
parameters θCMC,FE, θMCP,FE, θMCP,AA, θPIP,FE, θDIP,FE when the 6D position of the TIP
is known. Thus, the inverse kinematics solvers, that leverage numerical and analytical
approaches for accurate finger motion planning are introduced.

In both approaches, the process begins with the TIP position, which is represented
by the transformation matrix (Bazina et al., 2022):

T 0
6 =

[
R0

6 P 0
6

0 0 0 1

]
=


r11 r12 r13 px

r21 r22 r23 py

r31 r32 r33 pz

0 0 0 1

 (4.5)

Numerical Approach

To numerically solve the overdetermined nonlinear system with six equations and five
unknowns, a custom SymPy script and the SciPy least-squares solver (Virtanen et al.,
2020) are utilized. To simplify the problem and reduce the degrees of freedom (DOFs),
dependency equations are introduced to link the DIP and PIP flexions to the MCP
joint, incorporating the coefficients KPIP and KDIP into the transformation matrices.

The IK problem is tackled using the full transformation matrix and the position
vector alone. The position vector approach enhances computational efficiency by
reducing evaluations. Additionally, an analytical Jacobian matrix derived from the
position vector minimizes numerical approximations, further improving speed. Symbolic
differentiation of the position vector using DH parameters and dependency coefficients
yields the Jacobian columns:

∂P 0
6

∂θMCP,AA
,

∂P 0
6

∂θMCP,FE
,

∂P 0
6

∂θCMC,FE
(4.6)

Joint parameters are constrained by dependencies in Tables 4.3, 4.4 and 4.5, with an
initial guess of 0◦ and a termination tolerance of 10−5. The average execution time
for the full transformation matrix approach is approximately 21ms, while using the
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position vector and analytical Jacobian reduces the time to 13ms, achieving a 38%

speed improvement. These results align with literature benchmarks.

To validate the solvers, a grid of 40 × 40 × 40 parameter values (64 000 total) is
generated using θMCP,AA, θMCP,FE, and θCMC,FE with values constrained between the
upper and lower bounds specified in Tables 4.3, 4.4, and 4.5. Forward kinematics, as
defined by equation (4.4), is applied to the grid to compute the corresponding rotation
matrices and position vectors. The accuracy of the inverse kinematics solver is then
evaluated by testing its ability to reconstruct the correct input joint parameters θi
given either the full transformation matrix or the position vector alone.

When tested using the full transformation matrix, the solver accurately reconstructed
the input joint parameters in 100% of cases, covering all 64 000 simulations. When
tested using only the position vectors, the solver accurately reconstructed the input
joint parameters in 98% of cases. In the remaining 2% of simulations, while the
solver obtained valid θi values, they did not match the original input values used for
generating the simulations. These discrepancies occurred near the finger’s neutral
position, where multiple possible solutions exist. In such cases, the solver returned one
valid solution, even if it did not correspond to the original input parameters used for
simulation generation.

Overall, the numerical IK solver demonstrates reliable performance for the I, M, R,
and L fingers, confirming its validity and applicability in hand modeling.

Analytical Approach

In addition to the numerical approach described above, a closed-form set of equations
can be employed to improve the efficiency of motion planning algorithms. The details
of this approach are presented below. Initially, the overdetermined system, consisting of
six equations and five unknowns, was addressed using the Inverse Kinematics Behavior
Tree (IKBT) solver (Zhang and Hannaford, 2019); however, no solutions were obtained.
Subsequently, a semi-automatic process utilizing a custom SymPy script was attempted.

To reduce the problem complexity and the number of DOFs, general dependency
equations linking DIP and PIP FE to MCP FE are employed:

θPIP,FE = KPIP × θMCP,FE

θDIP,FE = KDIP × θMCP,FE

(4.7)
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By introducing (4.7) into the homogeneous matrix (4.4), the problem was redefined as an
overdetermined system, where three unknown joint parameters—θCMC,FE, θMCP,FE, and
θMCP,AA—are computed from six transformation matrix equations: three for rotation
and three for position (Bazina et al., 2022).

Due to the transcendental nature of the equations containing complex trigonometric
functions, a semi-automatic procedure is employed to introduce substitutions and
manually select the solving order. The arccos function, commonly appearing in IK
equations, returns values in the range 0 to 180◦. However, all joint parameters are
constrained to −10 to 90◦ per Table 4.3, Table 4.4 and Table 4.5. Thus, the following
equations utilize the ± arccos function to cover the range −180 to 180◦, exploiting the
even property of cosine.

The set of solutions for the θMCP,AA is trivially expressed as:

θMCP,AA = ± arccos(r33) (4.8)

To solve the remaining two joint parameters, it is necessary to introduce the following
simplifications and substitutions for composite angles:

uMCP,PIP = KPIPθMCP,FE + 2β3 (4.9)

uMCP,DIP,PIP = KDIPθMCP,FE + 2β4 + uMCP,PIP (4.10)

uCMC = β1 − θCMC,FE (4.11)

uCMC,MCP = β2 + θMCP,FE − uCMC (4.12)

rs = 1− r233 (4.13)

From the following two equations, θMCP,FE can be calculated:

r31 =
√

1− r233 cos (uMCP,DIP,PIP) (4.14)

pz = L4r31 +
√

1− r233 (L2 + L3 cos (uMCP,PIP)) (4.15)
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The algebraic solutions for θMCP,FE are:

θMCP,FE =
−2β3 ± arccos

(
−L2

√
rs−L4r31+pz
L3

√
rs

)
KPIP

(4.16)

θMCP,FE =
−2β4 ± arccos

(
r31√
rs

)
∓ arccos

(
−L2

√
rs−L4r31+pz
L3

√
rs

)
KDIP

(4.17)

θMCP,FE =
−2β3 − 2β4 ± arccos

(
r31√
rs

)
KDIP +KPIP

(4.18)

θCMC,FE is determined from the following equations:

r13 = −
√

1− r233 cos (uCMC,MCP) (4.19)

py =
−L1

√
1− r233 sin(uCMC)− L4r13

√
r231+r233−1

r233−1
+ pzr33

√
−r213−r233+1

1−r233√
1− r233

−
L3r13

√
−L2

2r
2
33+L2

2+2L2L4r31
√

1−r233−2L2pz
√

1−r233+L2
3(r

2
33−1)+L2

4r
2
31−2L4pzr31+p2z

L2
2(r

2
33−1)√

1− r233
(4.20)

Three solutions can be obtained for θCMC,FE using (4.19) and (4.20):

θCMC,FE = β1 + arcsin

L3r13

√
rs(L2

3−L2
2)+2L2

√
rs(pz−L4r31)−L2

4r
2
31+2L4pzr31−p2z

L2
3rs

L1
√
rs

+
L4r13

√
−r231+rs

rs

L1
√
rs

+
py
√
rs − pzr33

√
−r213+rs

rs

L1
√
rs


(4.21)

θCMC,FE = β1 − β2 − θMCP,FE ± arccos

(
−r13√
rs

)
(4.22)

Structured computation of multiple IK solutions:

1. Calculate both values of θMCP,AA via (4.8), and continue with the solutions in
the range −15 to 15◦; if none exist, return no solution.
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2. Calculate all eight possible solutions for θMCP,FE from (4.16)–(4.18) and consider
those in range −10 to 90◦; if none exist, return no solution.

3. Compute three solutions for θCMC,FE from (4.21)–(4.22) and proceed based on
the range in Table 4.5 for L, R, M, or I fingers; if none exist, return no solution.

4. Evaluate the TIP transformation matrix (4.4) for all valid combinations of θCMC,FE,
θMCP,FE, and θMCP,AA, and compare it with the initial matrix to validate the finger
pose.

With a comprehensive analysis of human hand kinematics completed and its forward and
inverse kinematics formulated, a strong foundation for understanding hand motion is
established. Building on this groundwork, the kinematic characterization, morphology,
and modeling of SPAs are performed to ensure that the actuator design aligns seamlessly
with the natural movement of the human hand.

4.3 Kinematic Characterization, Morphology, and

Modeling of SPAs

In this section, the kinematic characterization of a SPA is presented using a segmented
rigid model approach–essentially a pseudo-rigid model with a rigid-link approximation
of the soft structure for kinematic analysis. This characterization is performed using
a modified Denavit-Hartenberg (DH) approach, as described in Section 4.2.2. The
morphology and dimensioning of the finger actuators are then analyzed. These actuators
are subsequently evaluated numerically using the Finite Element Method (FEM) to
assess the workspace of the dimensioned fingers and deformations based on the input
pressure. Finally, a pseudo-rigid body modeling (PRBM) approach is applied, which
provides the key advantage of simplifying the complex, nonlinear deformations of SPAs
into an equivalent system of rigid-body segments with localized compliance, enabling
efficient analytical modeling while preserving essential deformation characteristics.

4.3.1 Kinematic Characterization Using Segmented Rigid Model

Approach

The kinematic modeling of SPAs is performed based on Section 4.2, which provides
a detailed kinematic analysis of an anthropometric hand model, incorporating inter-
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and intra-joint constraints, and the implementation of this model in an open-source
environment. The I, M, R, and L fingers are modeled as a single kinematic tree,
each with unique parameters and constraints (see Figure 4.2). Joint parameters are
determined using a modified DH approach, and a reachability analysis of the fingers’
workspace is conducted. Figure 4.3a illustrates the kinematic trajectories of the
anatomical joints of the index finger—CMC, MCP, PIP, DIP, and TIP—in the FE
plane.

(a) (b)

Figure 4.3 Kinematic analysis: (a) Workspace of the index finger in the FE plane, showing
joint trajectories (MCP, PIP, DIP, TIP) during circular grasping as described in (Bazina et al.,
2022); (b) Kinematic chain of the SPA using a modified DH approach. The diagram highlights
revolute and prismatic joints along the actuator’s segments, with symbols representing points
of rotation (POP), revolute joints, and prismatic joints. Each joint is annotated with its
corresponding DH parameters, including joint angle (θi) and elongation (∆di).

Based on the above-described analysis of human finger reachability, a segmented
rigid model was devised to represent the kinematics of a compatible SPA (Armanini
et al., 2023). In this approach, soft structures are modeled using rigid links connected
by joints, where each joint provides one DOF to allow relative motion. This analysis
incorporated revolute joints to represent rotational motion and prismatic joints to
account for linear offsets.



88 Design and Development of a Rehabilitation Glove: A Soft Robotics Approach

The kinematics of the soft structures include three revolute joints, corresponding
to the MCP, PIP, and DIP anatomical finger joints, and four additional prismatic
joints to compensate for misalignments between the finger and actuator trajectories.
Thus, each SPA consists of 7 DOFs. Using the modified DH convention described in
Section 4.2.2, eight frames (0–7) were assigned to the links, spanning from the base to
the SPA tip. Frames are rigidly attached to the links, and transformations between
frames describe relative translations and rotations. The kinematic chain of the SPA is
schematically shown in Figure 4.3b, with the yi-axes omitted for brevity.

For revolute joints, the joint axis was defined as the axis of rotation, while for
prismatic joints, it was the axis of translation. Joint parameters were represented as
joint angles (θi) for revolute joints and link offsets (di) for prismatic joints. Frames
were assigned to links for each axis pair (i, i + 1) following the steps presented in
Section 4.2.2. The four DH parameters for the SPA are defined in Table 4.6.

Table 4.6 Modified DH parameters for SPA.

Link i αi−1 ai−1 di θi

1 0 0 L1 +∆d1 0
2 π/2 0 0 θ2
3 −π/2 0 L2 +∆d3 0
4 π/2 0 0 θ4
5 −π/2 0 L3 +∆d5 0
6 π/2 0 0 θ6
7 −π/2 0 L4 +∆d7 0

As a last step in forward kinematics, homogeneous transformation matrices are used
to describe the position and orientation of the actuator joints relative to the base frame
(Frame 0). To fully define the 3D position and 3D orientation, a 6D transformation is
employed. The general form of the transformation matrix between the (i− 1)-th and
i-th frame is given by Equation (4.2).

Using the DH parameters from Table 4.6, transformation matrices between each pair
of neighboring frames (T 0

1 , T
1
2 , T

2
3 , T

3
4 , T

4
5 , T

5
6 , T

6
7 ) are calculated. The transformation

matrix for the tip of the SPA, defining its position and orientation relative to the base
frame (Frame 0), is obtained by multiplying all transformation matrices along the
kinematic chain:
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T 0
7 = T 0

1 T
1
2 T

2
3 T

3
4 T

4
5 T

5
6 T

6
7 =


cθ246 0 −sθ246 −d3sθ2 − d5sθ24 − d7sθ246

0 1 0 0

sθ246 0 cθ246 cθ2d3 + cθ24d5 + cθ246d7 + d1

0 0 0 1

 , (4.23)

where simplifying notation symbols are defined as follows:

cθ24 = cos(θ2 + θ4), cθ246 = cos(θ2 + θ4 + θ6),

sθ24 = sin(θ2 + θ4), sθ246 = sin(θ2 + θ4 + θ6). (4.24)

4.3.2 Finger SPA Specifications

After a detailed kinematic analysis of a SPA, based on the human hand’s reachable
workspace, the focus shifted to the design, dimensioning, and material selection of
SPAs, utilizing pneumatic principles and 3D printing technology.

Dimensioning

The actuator design combines cylindrical and ribbed bellow geometries with intentionally
introduced asymmetry through a reinforced structure to induce and control bending.
The actuator features three ribbed bellow segments, corresponding to the MCP, PIP,
and DIP joints of the finger. Pressurized air is delivered to each segment through three
integrated cylindrical channels, each independently actuated to achieve precise motion
control. To ensure ergonomic contact with the human hand, rounded grooves were
incorporated on the contact surface between the actuator and the finger. Additionally,
supporting elements were designed to secure the actuators in place, conform to the
natural shape of the hand, and guide pneumatic tubing for seamless integration. The
cross-sectional design and dimensions of the SPA are illustrated in Figure 4.4, while
detailed measurements are provided in Table 4.7.

Material Selection

TPU (Thermoplastic Polyurethane) was selected for its exceptional flexibility and
versatility. It is a widely used polymer in 3D printing, valued for its elasticity, shock
absorption, and resistance to oil, grease, and abrasion. A key characteristic of TPU is its
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Figure 4.4 Cross-sectional design and dimensions of the SPA. The diagram illustrates key
parameters: bellow lengths, connecting segment lengths (b, c), width, and overall actuator
length (a).

Table 4.7 Dimensions of SPAs for different fingers.

Finger Dimensions/mm Number of ribs

a b c MCP PIP DIP

Index 147 22 15 7 5 5
Middle 151 24 17 7 5 5
Ring 149 22 17 7 5 5
Little 135 19 13 7 5 4

ability to bend and stretch without breaking, exhibiting a stretchability of 300 to 600%,
meaning it can extend three to six times its original length before failure (Arifvianto
et al., 2021). This makes TPU highly suitable for applications requiring a combination
of durability and flexibility.

The Shore hardness of TPU (measured on the A scale) typically ranges from
60A (soft and silicone-like) to 95A (firm and nylon-like), providing a wide spectrum of
mechanical properties. Its modulus of elasticity generally spans from 10 to 98MPa (Ang
and Yeow, 2017, 2020; Bhat et al., 2023), depending on its specific composition and
structure (Bardin et al., 2020). For this study, TPU with a Shore hardness of 85A (AM,
2022) was selected for all subsequent analyses and prototype fabrication. This grade
offers an optimal balance between flexibility, mechanical strength, and printability,
making it ideal for the intended application (Curkovic and Cubric, 2021).

4.3.3 Finite Element Modeling

A simulation analysis was conducted under different pressure levels using the proposed
SPA morphology. As an example, detailed studies of the index and little fingers were



4.3 Kinematic Characterization, Morphology, and Modeling of SPAs 91

performed, with simulations for the other fingers being analogous. The analyses were
carried out using Abaqus Standard 2020 (Assistance, 2020) to model the mechanical
behavior of the SPA using the finite element method (FEM). This assessment aimed
at validating its functionality and determine the achievable bending angles.

The material properties of the structure were defined by specifying Young’s modulus
of 27 MPa (AM, 2022), corresponding to TPU 85A produced via the FDM method, and
a Poisson’s ratio of 0.36 (Haid et al., 2022). Based on the experimental observations
in (Zhang et al., 2023), the TPU material demonstrates approximately linear elasticity
for strains up to 20%. Beyond this limit, the material transitions into a nonlinear
deformation phase characterized by a reduction in elastic modulus. Since the expected
strain range for the SPA is within 20%, the material is modeled as linear elastic.

The dynamic implicit solver was utilized to capture the large deformations, incor-
porating geometric nonlinear effects accurately. The boundary conditions applied to
the SPA are depicted in Figure 4.5.

Figure 4.5 Boundary conditions applied to the SPA. The diagram illustrates key constraints
and applied forces, defining the interaction between the actuator and its environment.

In the FEM model, the immovable starting section of the SPA, where the tubing
connects, was removed. The zero point of the coordinate system was placed at the
center axis of the first ribbed bellow, marking its starting point. The SPA was
coupled to an analytical rigid surface using a tie constraint. All six degrees of freedom
(three translational and three rotational) of the analytical rigid surface were fixed at
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its reference point (denoted as RP in Figure 4.5). The tie constraint establishes a
connection between the SPA and the analytical rigid surface, ensuring displacement
compatibility between their surfaces. This effectively transfers motion and forces
between the connected components, enabling them to behave as a unified structure.
The analytical rigid surface was introduced to simplify the initial immobilized geometry
of the SPA while providing a stable and consistent boundary condition for the attached
actuator. This approach reduces computational complexity while maintaining accuracy
in simulating interactions.

The pressure was applied to the inner surfaces of the bellows (highlighted as red
ribbed bellows in Figure 4.5) and gradually increased in equal increments up to a
maximum value of 0.3MPa (3 bar), using a linear ramp function. The solver’s initial
increment was set to 0.001, with a minimum of 10−5 and a maximum of 0.01. This
approach ensured a minimum of 100 simulation steps, linearly increasing the pressure.

Z-axis symmetry was applied to reduce computational time by utilizing the actuator’s
longitudinal symmetry plane (as shown in Figure 4.5). This approach allowed modeling
only half of the actuator while applying symmetry boundary conditions. As a result,
displacements perpendicular to the symmetry plane were constrained to zero, and
rotations about axes within the plane (representing twisting and bending in the finger’s
AA direction) were also set to zero.

A hard contact condition, a constraint imposed to prevent penetration between two
contacting surfaces, was applied in the direction normal to the outer surfaces of the
ribbed bellows (highlighted in red in Figure 4.5). This condition ensures that the ribbed
surfaces interact only when they come into contact, enabling forces to be transmitted
in the direction normal to the contacting surfaces while preventing material overlap.
Applying this constraint is crucial for accurately capturing the mechanical response
during bellow inflation.

During inflation, internal pressure acts on the bellows, causing them to expand
outward. This expansion results in contact between adjacent ribs, which subsequently
induces bending in the SPA. The hard contact condition plays a vital role in modeling
these interactions realistically by ensuring proper force transmission and deformation
behavior. Additionally, the same contact condition was applied between the rigid
analytical surface and the first rib of the bellow to simulate stable attachment and
realistic boundary conditions.
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The SPA was discretized using second-order tetrahedral elements (C3D10), which
consist of 10 nodes (4 at the vertices and 6 at the midpoints of the edges) and employ
quadratic interpolation of displacement. The additional mid-edge nodes enable these
elements to capture complex deformation patterns more effectively. Combined with
their quadratic shape functions, C3D10 elements can accurately represent curved
surfaces, making them particularly useful for modeling bending in large deformation
analyses. Compared to first-order tetrahedral elements (C3D4), second-order elements
provide a more accurate approximation of stiffness by better capturing deformations.
Additionally, computational efficiency can be improved because fewer second-order
elements are required to achieve a similar level of accuracy. For instance, Pasvanti et al.
(2019) demonstrated that second-order elements require 15 to 38 times fewer elements
than first-order elements to achieve comparable results.

A global mesh seed of 0.8mm was applied, while local seeds of 1.5mm were used
in the solid regions to reduce computational time. This approach provided a finer
mesh around the bellows, where deformations are more prominent while maintaining a
slightly coarser mesh in the solid regions (across the connecting rods), which experience
minimal deformation, as illustrated in Figure 4.6. As a result, the final mesh consisted
of 127 218 elements and 214 890 nodes.

Figure 4.6 Discretized SPA with C3D10 elements and a mesh detail.
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Displacements along the x- and y-axes were recorded at 10 specific points on the
actuator: the start, middle, and end points of each bellow (corresponding to the
MCP, PIP, and DIP joints) and the tip of the actuator (TIP point). As illustrated in
Figure 4.7, these displacements were tracked at pressure increments of 0.01MPa.

Figure 4.7 MCP, DIP, PIP, and TIP location points. The figure illustrates the measurement
points along the SPA, including key joint locations used for displacement tracking.

Using the proposed FEM model, the functionality of the SPA was validated through
simulations by analyzing angular movements under varying pressure levels. Images
were recorded to evaluate the performance of the actuators for both the I and L fingers.
Figure 4.8a illustrates the FEM analysis results for the bending motion of the index
finger actuator at pressure levels ranging from 0 to 3 bar. Similarly, Figure 4.8b presents
the corresponding results for the little finger actuator over the same pressure range.

The simulations reveal that the bending motion of the finger actuators occurs
predominantly in the ribbed bellows, closely mimicking the smooth and controlled
natural bending motion of a human finger. Additionally, while the bellows exhibit
consistent bending behavior, the connecting rods play a critical role in maintaining
and defining the inter-joint distances.

The planar angular motion of ribbed bellow SPA for the I and L fingers in the flexion-
extension (FE) plane under varying pressure levels is illustrated in Figures 4.9a and 4.9b,
respectively. The simulations demonstrate the actuator’s bending behavior, explicitly
highlighting the MCP, PIP, and DIP bellows and the TIP position. The starting point,
midpoint, and endpoint deflections for each segment are represented by the respective
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(a) (b)

Figure 4.8 FEM analyses demonstrating angular motion of SPAs under varying pressure
levels (0, 0.6, 1.2, 1.8 and 3 bar): (a) SPA for the index finger and (b) SPA for the little finger.

(x, y) coordinates. The bending of each bellow is approximated by using a three-point
circular arc defined by these points, while the connecting rods are modeled as straight
lines. This visualization provides an accurate geometric representation of the actuator’s
motion, highlighting smooth transitions between bellow segments and connecting rods.
By visually comparing the position diagrams of the SPA (Figure 4.9a) and the human
finger model workspace (Figure 4.3a), it can be observed that both exhibit a similar
form during bending. This similarity highlights the actuator’s potential effectiveness
in rehabilitation applications, as it closely replicates the natural bending behavior of
the finger, enabling functional support during therapy. This geometric representation
will also be utilized in Subsection 4.3.4 to extract the necessary dimensions for further
analyses.
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(a) (b)

Figure 4.9 FEM simulation of a ribbed bellow SPA bending from 0 to 3 bar. The flexion-
extension plane is shown with the (x, y) coordinates of each bellow segment’s start, mid, and
endpoints. All three bellows—MCP, PIP, and DIP—are shown, along with the TIP. Each
bellow’s bending is approximated using a 3-point circular arc: (a) SPA for the index finger
and (b) SPA for the little finger.

Connecting Rod Compression Analysis

The compression of the rods connecting neighboring bellows (see Figure 4.4) was also
analyzed. The inter-joint distances are at their maximum length at the start of bending.
Due to forces acting on both ends (MCP—PIP and PIP—DIP connecting rods) or on
one end (DIP—TIP connecting rod), these distances experience slight compression
during actuation. To quantify compressive deformations, the inter-joint lengths were
recorded at their maximum (initial) and minimum values (at 3 bar). The length range
(maximum minus minimum) and the range-to-maximum compression ratio, expressed
as a percentage, were calculated and are reported in Table 4.8. The range-to-maximum
compression ratios for the I and L fingers are similar and remain below 1.77% for
MCP—PIP and PIP—DIP and below 0.63% for DIP—TIP connecting rods. Results
indicate negligible compressive deformation, so the initial maximum values will be used
in the modeling approach described in subsection 4.3.4. These values correspond to
straight connecting rods at an initial pressure of 0 bar, as shown in Figure 4.9.
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Table 4.8 Compression of inter-joint distances for the index and little fingers.

Finger Joints Max/mm Min/mm Range/mm Range_ratio/%

Index
MCP—PIP 23.27 22.86 0.41 1.741
PIP—DIP 16.60 16.32 0.28 1.675
DIP—TIP 17.05 16.95 0.10 0.569

Little
MCP—PIP 19.57 19.31 0.26 1.34
PIP—DIP 13.61 13.37 0.24 1.77
DIP—TIP 15.42 15.32 0.10 0.63

Regression Analysis

From the FEM experimental data, the bending end angles ϑi and segment elongations
∆Ltotal,i were obtained for each of the MCP, PIP, and DIP ribbed bellow segments. The
elongations of each segment were calculated along a fitted 3-point arc (see Figure 4.9). A
regression analysis was conducted to evaluate the relationship between the bending end
angles ϑi, link elongations ∆Ltotal,i, and pressure pseg across all three bellow actuator
segments for both the index and little fingers. Figures 4.10a and 4.10b display the data
alongside the corresponding regression lines for the index finger (red line) and the little
finger (blue line). The relationships appear functionally similar, so the same model
will be applied to both cases. A certain degree of nonlinearity is evident; therefore, in
addition to the linear pressure term, a quadratic pressure term (without an intercept)
was included to obtain a more accurate model:

ϑi =Kϑ1,i × pseg +Kϑ2,i × p2seg ∀i ∈ {MCP, PIP, DIP}, (4.25)

∆Ltotal,i =KL1,i × pseg +KL2,i × p2seg ∀i ∈ {MCP, PIP, DIP}. (4.26)

The coefficients from angle-pressure (4.25) and elongation-pressure (4.26) regression
equations for the I and L fingers, along with their goodness-of-fit indicators, are
presented in Table 4.9. The coefficients of determination indicate a strong positive
relationship (adjusted R2 ≈ 1 in all cases) between pressure and bending angle as well
as between pressure and joint elongation, consistent with guidelines for interpreting
correlation coefficients (Mukaka, 2012). The minimal residual errors, ranging from
0.147 to 0.225◦ for bending angles and 0.0258 to 0.0709mm for elongation, indicate
that the model effectively captures the compliant behavior of the SPAs. It can also
be observed that the linear term exceeds the quadratic term during the bending and
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(a)

(b)

Figure 4.10 FEM obtained linear regression of joint constraints for the index and little fingers
depending on pressure: (a) beam end angle vs. pressure, and (b) link offset vs. pressure.

elongation of both the PIP and DIP joints. However, this is not the case for the MCP
joint, where the quadratic term becomes more significant, indicating more substantial
nonlinearities.

In the following section, the potential of utilizing and adapting the pseudo-rigid
body (PRB) model (Howell, 2001; Howell et al., 2013) is explored to approximate the
motion trajectories of the entire SPA.

The geometric nonlinearities outlined above (see Table 4.9) and the significant
elongations observed during bending indicate that modifications to the PRB model are
required, as presented in the following Subsection 4.3.4.
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Table 4.9 Linear regression coefficients for joint angles (ϑ) and link elongations (∆Ltotal) for
the index and little fingers.

Finger Coefficient \Joint ϑMCP ϑPIP ϑDIP ∆Ltotal,MCP ∆Ltotal,PIP ∆Ltotal,DIP

Index

Kϑ1,i/◦ bar−1 −4.14 22.05 33.09 – – –
Kϑ2,i/◦ bar−2 6.53 −1.18 −2.33 – – –
KL1,i/mmbar−1 – – – −0.097 2.644 3.697

KL2,i/mmbar−2 – – – 0.701 −0.114 −0.228
Adjusted R2 0.9999 1 1 0.9999 0.9999 0.9998
Residual SE/◦ or mm 0.160 0.147 0.207 0.0258 0.0367 0.0709

Little

Kϑ1,i/
◦ bar−1 6.10 25.27 27.43 – – –

Kϑ2,i/◦ bar−2 4.36 −1.61 −2.04 – – –
KL1,i/mmbar−1 – – – 0.920 2.918 3.051

KL2,i/mmbar−2 – – – 0.477 −0.157 −0.184
Adjusted R2 0.9999 1 1 0.9999 0.9999 0.9999
Residual SE/◦ or mm 0.225 0.150 0.200 0.0308 0.0327 0.0468

4.3.4 Pseudo Rigid Body Modeling Approach

Building on the previous conclusion, the bending behavior of the bellows can be
effectively analyzed using three-point arc approximations, enabling the possibility of
modeling the entire motion analytically. To achieve this, the pseudo-rigid-body (PRB)
modeling approach was modified to approximate the bending of each individual bellow
segment. The PRB model is an approximation technique that represents compliant
structures as a system of rigid bodies connected by joints with spring elements, effectively
translating complex deformation behavior into simpler rigid-body kinematics. The
results from these segment-level models were subsequently integrated to represent the
overall behavior of the entire system. Before presenting the PRB formulation, it is
essential to approximate the moments and forces acting on each ribbed bellow segment
to ensure successful implementation. These approximations enable the PRB model
to represent the system’s kinematics accurately and allow for realistic deformation
modeling under actuation.

Analytical Approximation of the Moment

First, the moment Mseg/Nm acting on a ribbed segment is determined, caused by an
internal pressure pseg/Pa with nr,seg ribs (Figure 4.11a). Each rib is approximated as
a 180-degree semi-annulus with an outer radius Rseg/m and an inner radius rseg/m
(Figure 4.11b). The reference point for measuring Rseg and rseg is positioned at the
top surface of the reinforcing element. Although the approximation (red line) appears
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(a) (b)

Figure 4.11 (a) Forces (Fseg) and moments (Mseg) acting on individual segments due to the
pressurization of bellows in a SPA. (b) Approximation of the projected surface of a single
bellow segment rib Arib for computing forces and moments. The inner (rseg) and outer (Rseg)
diameters define the geometry. The black dashed line denotes the exact curved surface, while
the red line represents the approximation.

visually distinct from the exact profile (black dashed line), the difference in the enclosed
areas is small, as confirmed by measuring the surface from the actual model. This
validates the approximation for practical purposes, such as force and moment calculation.
To compute Mseg, the following procedure is applied:

1. Determine the differential moment : The moment due to pressure on a differential
area element of the rib is calculated by integrating the pressure over the area,
multiplied by the distance from the point of application to the axis (diameter of
the semicircle). Using polar coordinates, the differential area element dArib of a
single rib is:

dArib = r dθ dr (4.27)

The pressure pseg acts normal to the surface and produces differential acting force
dFrib:

dFrib = pseg dArib = pseg r dθ dr (4.28)

The moment arm for each point is the distance r sin θ, resulting in the differential
moment dMseg:

dMseg = dFsegr sin θ = pseg dArib r sin θ = p · r2 sin θ dθ dr (4.29)

2. Integrate over the semicircular annulus : Integrate over the angle θ from 0 to π:∫ π

0

sin θ dθ = 2 (4.30)
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Integrate over the radius r from rseg to Rseg:∫ Rseg

rseg

r2 dr =
R3

seg − r3seg
3

(4.31)

3. Compute the moment per rib:

Mrib = pseg · 2 ·
R3

seg − r3seg
3

=
2

3
pseg (R

3
seg − r3seg) (4.32)

4. Finally, the total moment is given by multiplying Equation 4.32 by the number
of ribs:

Mseg =
2

3
nr,seg p (R

3
seg − r3seg) (4.33)

Each ribbed structure experiences a localized moment Mseg, while the radial expansion
of the bellows is neglected. The net moment would be zero for a full circular bellow
(360°) due to radial symmetry, and the bellow would only expand axially under pressure.
However, for a semicircular bellow, the non-symmetric pressure distribution generates
a moment. The formula for the moment scales linearly with the number of ribs nr,seg,
under the assumption that all ribs are identical and subjected to uniform internal
pressure.

Analytical Approximation of the Tension Force

In this step, the tension force Fseg/N in a hollow 180-degree semi-annular structure with
nr,seg ribs, subjected to an internal pressure pseg, is approximated (see Figure 4.11a).
The derivation follows the procedure:

1. Projected area of a single rib:

The projected area of a single rib, modeled as a 180-degree semi-annulus (see
Figure 4.11b), is:

Arib =
π

2

(
R2

seg − r2seg
)

(4.34)

2. Sum of projected areas across ribs for a segment :

For nr,seg identical ribs, the total area is:

Aseg = nr,seg · Arib = nr,seg ·
π

2

(
R2

seg − r2seg
)

(4.35)



102 Design and Development of a Rehabilitation Glove: A Soft Robotics Approach

3. Total segment tension force:

The tension force is the product of the internal pressure pseg and the total projected
area:

Fseg = pseg · Aseg =
π

2
nr,seg pseg

(
R2

seg − r2seg
)

(4.36)

A few key assumptions are considered:

The formula assumes that each rib is subjected to uniform internal pressure pseg.

The area of each rib is calculated based on the geometry of a 180-degree semi-
annulus.

The total tension force scales linearly with the number of ribs (nr,seg).

This tension force acts axially along the symmetry axis of the bellows structure.

Bending Stiffness of a Bellow Structure

The relationship between the applied moment, material properties, and geometry is
examined to approximate the bending stiffness Kseg/Nmrad−1 of each bellow structure
using the derived moment Mseg, as given by (4.33). The bending stiffness is expressed
as:

Kseg =
EItotal

Lseg
, (4.37)

where E/Pa is Young’s modulus, Itotal/m
4 is the total second moment of area of the

cross-section, and Lseg/m is the length of the bellow (see Figure 4.4).

For the calculation of the moment Mseg, the projected area of the semi-annulus
subjected to pressure is considered (Figure 4.11b). In contrast, the calculation of the
second moment of area Itotal requires accounting for the entire cross-section, including
the reinforcement in the form of a rectangular base (Figure 4.12). Due to the ribbed
surface of the bellows, the cross-section varies along its length, with the outer diameter
ranging between rb and Rb. To address this variation, a radius mixing parameter
λ is introduced to compute an equivalent radius Rb,eq for approximating the second
moment of area. The value of this parameter will be determined through a subsequent
optimization procedure. The outer radius, Rb, and inner radius, rb, differ from Rseg

and rseg in that they represent half of the actual outer and inner diameters of the
bellow. Conversely, Rseg and rseg are measured from the top surface of the reinforcing
structure to provide a more accurate approximation of the projected surface.

The process is composed of the following steps:
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Figure 4.12 Approximation of the rib cross-section relevant for the second moment of
area Itotal computation. The cross-sectional area consists of a hollow semi-annulus and a
rectangular thickening element. The hollow semi-annulus is defined by the inner radius rb
and the outer equivalent radius Rb,eq, which compensates for the ribbed bellow shape. The
thickening element is a rectangle with sides Rb,eq and tb. The axes for computing the total
second moment of area are indicated, along with the second moments of area of the individual
components: Isemi for the semi-annulus and Irect for the rectangular element.

1. Equivalent radius calculation: The equivalent outer radius Rb,eq is calculated
using the blending parameter λ:

Rb,eq = λRb + (1− λ)rb (4.38)

where Rb is the outer radius and rb is the inner radius (see Figure 4.12).

2. Second moment of area calculation: The cross-section consists of two components:
1. Hollow Semicircular Annulus; and 2. Rectangular Base.

Component 1: hollow semicircular annulus (outer radius Rb,eq, inner radius
rb).

The area Asemi of the hollow semicircular annulus is given by:

Asemi =
π

2

(
R2

b,eq − r2b
)
, (4.39)

while the second moment of area about the base (neutral axis) is given as:

Isemi =
π

8

(
R4

b,eq − r4b
)

(4.40)

Component 2: Rectangular base (width 2Rb,eq, rectangular support (base)
thickness tb).
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Second moment of area about its own centroid is calculated as:

Irect,centroid =
1

12
(2Rb,eq)t

3
b =

Rb,eqt
3
b

6
(4.41)

The Parallel Axis Theorem is now applied to shift to the neutral axis:

Irect = Irect,centroid + Arect

(
tb
2

)2

, (4.42)

where
Arect = 2Rb,eq · tb (4.43)

represents the area of the rectangle, and tb
2

denotes the distance from the centroid
to the neutral axis.

Final adjusted second moment of area is given by:

Irect =
Rb, eq t

3
b

6
+ (2Rb, eq tb)

(
tb
2

)2

=
2Rb,eq t

3
b

3
(4.44)

3. Total second moment of area calculation:

Itotal =
π

8

(
R4

b,eq − r4b
)︸ ︷︷ ︸

Semicircular annulus

+
2Rb,eqt

3
b

3︸ ︷︷ ︸
Rectangular base

(4.45)

4. Bending stiffness calculation: Using the relationship between stiffness, Young’s
modulus E, and geometry:

Kseg =
EItotal

Lseg
(4.46)

Substituting Itotal:

Kseg =
E

Lseg

(
π

8

(
R4

b,eq − r4b
)
+

2Rb,eqt
3
b

3

)
. (4.47)

This approximation of the bending stiffness will serve as a critical component in
the following PRB formulation, enabling the accurate modeling of a ribbed bellow
segment’s resistance to bending.
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PRB Model Formulation

The pseudo-rigid-body (PRB) model simplifies the analysis of compliant mechanisms
by approximating a flexible beam as a rigid link with a torsional spring at its base.
This modeling technique represents compliant structures as a system of rigid bodies
connected by joints with spring elements, effectively translating complex deformation
behavior into simpler rigid-body kinematics. Compared to FEM analysis, the PRB
model significantly reduces computational complexity while maintaining accuracy in
capturing large deflections and nonlinear behavior. This approach enables the analysis
of compliant systems using methods traditionally applied to rigid-body mechanisms
(Howell et al., 2013).

By applying the PRB model to the bellow segments, the kinematics can be defined
using rigid-body transformations, while spring elements mimic the material’s elastic
properties. This combination provides an efficient and accurate framework for modeling
the bending behavior of individual bellow segments under actuation. The following
analysis applies the proposed methodology to a bellow segment of a finger SPA, with
its pseudo-rigid-body moment-motion approximation illustrated in Figure 4.13.

(a) (b)

Figure 4.13 Pseudo-rigid-body moment-motion approximation of a ribbed elastic segment:
(a) Cantilever beam under end-moment loading, illustrating deflections in the horizontal
(δx) and vertical (δy) directions. (b) Simplified pseudo-rigid-body model using an equivalent
torsional spring (KΘ) and rigid links to approximate the bending behavior, with characteristic
pivot and radius γ identified.
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In the first step, the horizontal (δx/m) and vertical (δy/m) deflections of the beam
tip are calculated. These are given as (Howell et al., 2013):

δx = (1− γ)Lseg + γLseg cosΘ (4.48)

δy = γLseg sinΘ (4.49)

where γ is the characteristic radius factor, typically γ = 0.7346 for end-moment loading;
Lseg/m is the total length of the beam; and Θrad is the pseudo-rigid-body angle, which
approximates the deformation of the beam (see Figure 4.13). The Equation (4.48)
consists of:

(1 − γ)Lseg: the rigid portion of the beam length that does not contribute to
bending.

γLseg cosΘ: the horizontal projection of the curved portion of the beam.

Equation (4.49) provides the vertical deflection δy, which is entirely due to the curved
portion of the beam, represented by γLseg sinΘ. The beam end angle ϑ/rad is now
calculated in relation to the pseudo-rigid-body angle Θ. These two are related as:

ϑ = cΘ ·Θ (4.50)

where cΘ = 1.5164 is the parametric angle coefficient for end-moment loading, while
the equation accounts for the scaling between the pseudo-rigid-body angle Θ and the
actual beam end angle ϑ. The stiffness of the equivalent torsional spring is given by:

KΘ = cΘ
EItotal

Lseg
= cΘKseg (4.51)

The applied moment Mseg is related to the pseudo-rigid-body angle Θ as:

Mseg = KΘ ·Θ (4.52)

By substituting for KΘ, the following is obtained:

Mseg = cΘ · EItotal

Lseg
·Θ (4.53)
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Alternatively, using Θ = ϑ/cΘ, Mseg can be expressed in terms of ϑ as:

Mseg =
EItotal

Lseg
· ϑ (4.54)

The horizontal and vertical deflections are now determined based on the beam end
angle. By substituting Θ = ϑ/cΘ equations (4.48) and (4.49) are rewritten in terms of
ϑ:

δx = (1− γ)Lseg + γLseg cos

(
ϑ

cΘ

)
(4.55)

δy = γLseg sin

(
ϑ

cΘ

)
(4.56)

For end-moment loading, the characteristic radius factor is γ = 0.7346, and the
parametric angle coefficient is cΘ = 1.5164. These parameters are derived from
experimental and theoretical studies to ensure accurate modeling (Howell et al., 2013).

According to the results presented in Section 4.3.3, the proposed PRB model
requires minor modifications to accurately capture the small geometric nonlinearities
during bending. To improve its precision, an additional quadratic term, βEI , has been
incorporated into (4.54). The updated equation explicitly defines the bending angle ϑ
as a function of the moment Mseg.

ϑ =
MsegLseg

EItotal

(
1 + βEI

MsegLseg

EItotal

)
(4.57)

The introduced PRB parameters γ, cΘ and βEI will be subject to a subsequent model
optimization process.

Axial and Bending Elongation of the Bellow Structure

To account for the elongation of the SPA bellow during bending, the previously
introduced PRB model is extended by incorporating axial and bending effects to
calculate the total elongation of the bellow structure.

1. Axial Elongation: the axial elongation caused by the axial force Fseg from (4.36),
acting on the bellows, is given by:

∆Laxial =
FLseg

EAeq,seg
(4.58)
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where Lseg/m is the length of the bellows, EPa is the Young’s modulus of the
material, and Aeq,seg/m

2 is the equivalent cross-sectional area of the bellows,
computed using (4.39) and (4.43) as Aeq,seg = Asemi + Arect.

2. Bending Elongation: suppose the segment radius of curvature caused by bending
(see Figure 4.9) is unavailable. In that case, bending elongation can be expressed
as a parametric function of measurable parameters such as the bending angle ϑ
and the number of ribs nr,seg. Using a fitted model, the bending elongation can
be written as:

∆Lbending = f(ϑ, nr,seg) (4.59)

For example, if experimental data suggests a quadratic dependence on ϑ and a
linear dependence on nr,seg, the bending elongation could be modeled as:

∆Lbending = βϑ ϑ
2 + βn nr,seg (4.60)

where βϑ and βn are fitted coefficients based on experimental or simulation data,
while ϑ is the bending angle.

3. Total Elongation: the total elongation is the sum of the axial and bending
contributions:

∆Ltotal = ∆Laxial +∆Lbending (4.61)

Substituting the expressions for axial and bending elongations:

∆Ltotal =
FsegLseg

EAeq,seg
+ f(ϑ, nr,seg) (4.62)

or, using a specific bending model:

∆Ltotal =
FsegLseg

EAeq,seg
+ βϑ ϑ

2 + βn nr,seg (4.63)

This formulation accounts for both the axial and bending effects in calculating
the total elongation of a bellows structure. The introduced elongation parameters, βϑ
(representing elongation due to bending) and βn (elongation due to the number of ribs),
will be subject to a subsequent model optimization process.
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Integrating Individual PRB Models in the Entire Model of the Actuator

By modeling individual ribbed bellow segments using the PRB formulation, individual
deflections in the x and y axis directions can be estimated using equations (4.55) and
(4.56). Additionally, the total elongation of a single segment can be estimated using
equation (4.63). In the SPA, all ribbed segments are connected with rods, dictating
inter-joint distances. These distances were kept constant, as analyzed in table 4.8.
They will be denoted as Li,i+1, where i denotes the joint before the connecting rod,
and i+ 1 the joint after the rod. Possible inter-joint distances are:

LMCP,PIP between the MCP and PIP joints,

LPIP,DIP between the PIP and DIP joints,

LDIP,TIP between the DIP joint and the TIP of the finger.

To express the final pose of the finger in the fixed reference frame originating at
the MCP joint, a set of kinematic transformations along the kinematic tree must be
properly constructed, starting from the MCP joint and extending to the TIP. Since
every deflection and elongation is expressed in its own local coordinate system, a
rotational transformation is applied to the deflected coordinates using the rotation
angles:

Deflections due to the elongation of the end of the i-th bellow segment are
computed using the i-th cumulative angle ϑi

Deflections due to the bending of the end of the i-th bellow segment are computed
using the (i− 1)-th cumulative angle ϑi−1

The kinematic transformations for the start and end position of the MCP joint
bellow segment are, therefore, the following:

xstart,MCP = 0

ystart,MCP = 0

xend,MCP = xstart,MCP + δx,MCP cos 0︸︷︷︸
1

−δy,MCP sin 0︸︷︷︸
0

+∆Ltotal,MCP cosϑMCP

yend,MCP = ystart,MCP + δx,MCP sin 0︸︷︷︸
0

+δy,MCP cos 0︸︷︷︸
1

+∆Ltotal,MCP sinϑMCP

(4.64)
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The kinematic transformations for the start and end positions of the PIP joint
bellow segment are, in turn, the following:

xstart,PIP = xend,MCP + LMCP,PIP cosϑMCP

ystart,PIP = yend,MCP + LMCP,PIP sinϑMCP

xend,PIP = xstart,PIP + δx,PIP cosϑMCP − δy,PIP sinϑMCP

+∆Ltotal,PIP cos (ϑMCP + ϑPIP)

yend,PIP = ystart,PIP + δx,PIP sinϑMCP + δy,PIP cosϑMCP

+∆Ltotal,PIP sin (ϑMCP + ϑPIP)

(4.65)

The kinematic transformations for the start and end position of the DIP joint bellow
segment are following:

xstart,DIP = xend,PIP + LPIP,DIP cos (ϑMCP + ϑPIP)

ystart,DIP = yend,PIP + LPIP,DIP sin (ϑMCP + ϑPIP)

xend,DIP = xstart,DIP + δx,DIP cos (ϑMCP + ϑPIP)− δy,DIP sin (ϑMCP + ϑPIP)

+ ∆Ltotal,DIP cos (ϑMCP + ϑPIP + ϑPIP)

yend,DIP = ystart,DIP + δx,DIP sin (ϑMCP + ϑPIP) + δy,DIP cos (ϑMCP + ϑPIP)

+ ∆Ltotal,DIP sin (ϑMCP + ϑPIP + ϑPIP)

(4.66)

Experimental Validation of the PRB Model

In this section, the PRB parameters are optimized and validated experimentally. The
optimization was performed using the scipy.optimize.basinhopping algorithm. This
global optimization method combines stochastic sampling to escape local minima and
identify the optimal solution (Olson et al., 2012; Wales and Doye, 1997). The algorithm
is initialized with a predefined decision vector, randomly perturbed by small steps to
explore potentially better solutions. Even if a slightly worse solution is found, it may
be accepted as a new starting point for subsequent perturbations (or hops) with a
certain probability, promoting exploration of the solution space. The following material
properties and measured dimensions, obtained from the device prototype, are used as
input values for the model optimization:

Young’s modulus for TPU 85A: E = 27MPa

Outer radius for projected surface: Rseg = 14.7mm



4.3 Kinematic Characterization, Morphology, and Modeling of SPAs 111

Inner radius for projected surface: rseg = 8.425mm

Outer bellow radius: Rb = 11mm

Inner bellow radius: rb = 3mm

Thickness of reinforcing layer: tb = 2.5mm

Number of ribs per segment for I finger: nr,seg = 7, 5 and 5

Number of ribs per segment for L finger: nr,seg = 7, 5 and 4

During each iteration, a random step was sampled within the ± step size range. The
initial step size was set to 0.01 and dynamically adjusted throughout the optimization
process to improve convergence. Additionally, a variable-specific multiplication factor
was applied to the step size to account for differences in magnitude across parameters,
as shown in Table 4.10.

Table 4.10 Variable specific step size multiplication factors in BH optimization.

Parameter λ γ cΘ βEI βϑ βn

Multiplication Factor 2 2 6 10 10 1

The 6-dimensional optimization process was conducted over 1 × 106 iterations
with 4 repetitions, each using a different sampled initial decision vector within the
bounds specified in Table 4.11. A temperature parameter 0.2 controlled the acceptance
probability of slightly worse solutions, allowing for greater exploration at higher values.
A custom adaptive step size was implemented, adjusting every 100 iterations. After
each adjustment, the step size was scaled by a factor of 0.9 through multiplication
or division, ensuring that approximately 60% of all steps were accepted during the
optimization.

The 6-dimensional optimization process was conducted over 1× 106 iterations with
4 repetitions, each using a different sampled initial decision vector within the bounds
specified in Table 4.11. A temperature parameter 0.2 controlled the acceptance proba-
bility of slightly worse solutions, allowing for greater exploration at higher values. In the
context of the basin-hopping (BH) algorithm, the temperature serves as a parameter in
the Metropolis acceptance criterion (Virtanen et al., 2020). It determines the likelihood
of accepting solutions with higher function values, facilitating exploration of the search
space and enabling jumps between basins of attraction. Higher temperatures increase
the probability of accepting worse solutions, promoting global optimization by escaping
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local minima. A custom adaptive step size was implemented, adjusting every 100
iterations. After each adjustment, the step size was scaled by a factor of 0.9 through
multiplication or division, ensuring that approximately 60% of all steps were accepted
during the optimization.

Table 4.11 provides the upper and lower bounds used to constrain the optimization
problem and the calculated optimal parameters for each segment of the index and little
fingers. Additionally, the table includes the mean and maximum L2 norms (i.e., mean
and maximum Euclidean distance errors) for both fingers. These errors represent the
positioning error of the modified PRB model with respect to FEM results, taking into
account all joints and input pressures within the range of 0 to 3 bar. Notably, the
maximum error in both cases remains below 3.8mm, while the mean error is below
1.3mm, demonstrating the effectiveness and accuracy of the extended PRB model.

Table 4.11 PRB model optimization limits and optimal parameters.

Parameter Optimization limits Index Little

Lower Upper MCP PIP DIP MCP PIP DIP

λ 0.4 1.5 1.489 1.15 0.509 1.429 0.515 0.404
γ 0 1 0.267 0.684 0.99 0.854 0.719 0.906
cΘ 1 8 1.252 3.154 1.553 3.136 1.661 5.336
βEI −1 20 10.254 17.464 −0.380 11.728 −0.267 −0.053
βϑ 0 15 9.976 6.781 9.505 7.338 6.397 2.836
βn 0 0.2 0.0551 0.0074 0.1704 0.0815 0.163 0.122

Mean L2 norm/mm: 1.279 0.703
Max L2 norm/mm: 3.799 3.657

Figure 4.14 presents a comparison between the results obtained from FEM analyses,
described in Section 4.3.3, and the PRB-modeled angular motion of the I and L
SPAs in the FE plane under varying pressure levels. Both FEM (triangles) and
PRB (circles) exhibit similar motion trajectories, demonstrating that the PRB model
closely approximates the FEM solution. The color gradient represents the L2 norm
difference between the two methods, with higher deviations (yellow regions) indicating
points where the PRB model diverges from the FEM results. Overall, the agreement
between the two models is strong, particularly for the L finger at lower pressures,
where deviations remain minimal. However, slight divergences are observed at higher
pressures and larger displacements for both the L and I fingers. Despite these localized
differences, the PRB model provides a close approximation to FEM results.
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Incorporating material properties into the PRB model offers several advantages over
FEM approach, including greater computational efficiency and simplicity. These benefits
enable faster design iterations and kinematic computations, making the approach
suitable for real-time control applications. This method allows for the adjustment of
design dimensions and input pressures to achieve the desired motion profile for a final
actuator design compatible with the human hand. The PRB model enables optimizing
the actuator’s performance for more specific grasp-oriented tasks, as discussed in
Chapter 3, by evaluating various parameter combinations quickly. This approach
streamlines the design process and minimizes the need for time-intensive physical
prototyping.

(a) (b)

Figure 4.14 Comparison of pressurized bending of SPAs in the FE plane using finite element
method (FEM) analyses (triangles) and pseudo-rigid body (PRB) modeling (circles). The L2
norm represents the point-by-point error metric between the two methods. SPAs: (a) Index
finger, (b) Little finger.

4.4 Soft Rehabilitation Glove Prototyping and Exper-

imental Validation

In this section, the fabrication process of the soft glove prototype is briefly outlined,
employing advanced 3D printing techniques following the SPA specifications provided
in Section 4.3.2.
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Fabrication of Structural Components

The structural components of the rehabilitation glove were fabricated using a Prusa
i3 MK3S 3D printer (Prusa Research, 2023). The print settings were optimized for
TPU flexibility and performance. A bed temperature of 50 ◦C was used to improve the
adhesion of the first layer, which was set at 0.25mm to establish a strong base, while
subsequent layers were printed at 0.2mm. The printing speed was reduced to 10mms−1

to enhance control and precision with the flexible material, and the transition speed
between extrusion moves was set at 30mms−1 to minimize oozing and transition time.
Filament retraction was disabled to prevent air bubbles and extrusion issues. An infill
density of 35% was selected to balance material efficiency with structural integrity.
The cooling fan was turned off to ensure proper layer adhesion, and the extrusion rate
was increased to 105%, with the first layer set at 110% to guarantee complete material
coverage, eliminating gaps and weak points. The optimal wall thickness for the SPA
bellow segments was set to 0.8mm, balancing flexibility and stiffness.

After the SPAs were fabricated, the mounting frame was 3D-printed using TPU.
The frame was designed to wrap around the user’s hand, conforming to its shape to
ensure a flexible, ergonomic fit, while properly aligning the SPAs. Additional polylactic
acid (PLA) rings were utilized to securely attach the actuators to the fingers, while
hook-and-loop straps provided easy adjustments and customization based on individual
user preferences. Once all components were prepared, the glove was assembled.

Assembly of the Soft Glove

The thumb, index, middle, ring, and little finger actuators were attached to the
mounting frame using a sliding dovetail joint (see detail in Figure 4.15a), providing
both stability and modularity. This design facilitated easy assembly, disassembly, and
adaptability.

The final glove assembly (Figure 4.15b) is connected to FESTO pneumatic tubing
catalog number PUN-H 2x0.4 (Festo Corporation, 2024), featuring a 1.2mm inner
diameter. This diameter was chosen to align with the actuators’ dimensions, facilitating
seamless integration with the glove’s support structure. Additionally, the selected tubing
provides sufficient airflow for the SPAs, which do not require high-speed operation,
ensuring efficient performance.



4.4 Soft Rehabilitation Glove Prototyping and Experimental Validation 115

(a) (b)

Figure 4.15 Assembling the rehabilitation glove: (a) 3D model of the rehabilitation glove
assembly with sliding dovetail joint detail. (b) 3D printed glove prototype with compressed
air supply tubes attached and glued for secure connection (Kladarić, 2024).

Functional Testing

Final tests were conducted to evaluate the functionality of the rehabilitation glove
prototype. A healthy adult participant voluntarily participated in the experiment
and wore the glove. After fitting the glove, the participant assessed its ability to
support natural finger movement by applying muscle force. A controlled experiment
was performed to simulate real-world usage by gradually increasing the actuator
pressure while ensuring the participant’s hand remained fully relaxed and without
muscle engagement. Figure 4.16a shows the fully assembled soft robotic device in its
reference position, while Figure 4.16b illustrates its actuated state.

(a) (b)

Figure 4.16 Soft-robotic glove fitted to the user’s hand: (a) all SPAs in the initial position
and (b) all SPAs activated.

The glove’s initial prototype demonstrated basic functionality and an ergonomic
design, with the participant reporting ease of use and no discomfort or fatigue after
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10 minutes of wear. While further refinements and improvements in the 3D printing
process are necessary to enhance durability, this prototype demonstrates the feasibility
of 3D printing a functional, flexible, single-body structure for finger rehabilitation.

This chapter presented a comprehensive methodology for designing and developing
a grasp-oriented rehabilitation glove. The approach begins with modeling the human
finger through kinematic reductions and analysis of range-of-motion limits in relation
to anatomical constraints. This finger model serves as the foundation for deriving
the kinematic tree and defining the morphology of the SPA used for finger actuation.
Material properties were incorporated into the SPA design through FEM modeling to
achieve accurate bending deflection estimation. A modified PRB approach was intro-
duced to reduce computational complexity while maintaining accuracy, approximating
the FEM-obtained positioning results for efficient design iterations. This approach
integrates SPA-specific approximations of moments, forces, and elongations coupled
with an optimization procedure.

The rehabilitation glove’s functionality can be enhanced by independently controlling
the input pressure for each bellow segment. This fine-grained pressure control enables
the device to perform various grasp types by modifying the relative bending angle
profile between segments, effectively changing intra-joint dependencies through pressure
regulation. This capability aligns with the kinematic analysis presented in Chapter 3,
which identified such dependencies across 23 different grasps. The 116 intra-finger
dependency-movement relationships, categorized into 30 clusters, complement this
methodology and establish a pathway toward more refined hand rehabilitation for
activities of daily living. By incorporating these kinematic reductions in both the
design phase and control system, the glove can support rehabilitation across a broader
spectrum of functional grasps.

Future development of the device control system could incorporate intent-driven
assistive control based on the Koopman framework for grip force forecasting using sEMG,
as detailed in Chapter 2. This integration would further enhance the rehabilitation
glove’s adaptability, responsiveness to user intentions, and rehabilitation potential.



Chapter 5

Conclusion

This dissertation has explored the intersection of rehabilitation science, biomechanics,
and soft robotics to address the significant global challenge of rehabilitating hand
function impairments. Three primary aims drove the research: developing a framework
for electromyography (EMG)-based real-time grip force estimation and prediction,
creating simplified yet accurate kinematic hand models, and designing a framework
for prototyping a biomechatronic soft robotic hand rehabilitation device. Through
a systematic approach across multiple domains, this work has yielded significant
contributions to the field of rehabilitation robotics.

Hypotheses Validation

The first hypothesis proposed that hand grip force could be accurately assessed and
predicted in real-time using sEMG signals from a single sensing position. The results
from Chapter 2 strongly support this hypothesis, demonstrating:

Development of optimized signal processing methods that achieved high peak
cross-correlations between EMG and grip force signals (median between 0.958

and 0.962) using a single forearm sensing position.

A weighted mean absolute percentage error (wMAPE) of approximately 5.5% for
estimated grip force and approximately 17.9% for predictions with a 0.5-second
horizon.

The algorithm’s ability to process, estimate, and predict a 0.5-second sEMG
signal batch in approximately 30ms, enabling practical real-time implementation.
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The results also demonstrated robustness to electrode positioning variations. A
2-factor randomized block design experiment involving 13 participants was conducted to
evaluate two sensing positions near the flexor carpi ulnaris muscle while controlling for
subject variability as a blocking factor. ANOVA confirmed no statistically significant
effect of sensor placement on estimation or prediction errors (p-values of 0.422 and
0.853, respectively), indicating resilience to minor variations in electrode positioning—a
critical feature for rehabilitation applications where precise sensor placement cannot
always be guaranteed.

The second hypothesis suggested that introducing one-to-one joint dependencies
could significantly simplify complex hand kinematics during grasping and generalize it.
Chapter 3 verified this hypothesis through:

Analysis of the largest known database of human hand movements (NinaPro),
providing strong evidence for generalization across a demographically diverse
sample of 77 subjects and 23 different functional grasps relevant to daily activities.

Demonstration of significant kinematic reduction, showing that grasp modeling
during flexion/extension movements can be achieved with just 5 to 15 degrees of
freedom (median 12 DOFs) instead of the hand’s full 16 DOFs for finger joints.

Through correlation analysis, 116 highly correlated dependency-movement relation-
ships were identified across all investigated grasps. Each relationship was modeled
using regularized GLM for predictor selection and weighted LME models accounting
for subject-specific random and dependency-specific fixed effects. This produced mod-
els with absolute wMAE values ranging from 2.4 to 16◦ (median 7.5◦) and relative
wwMAPE values from 11 to 56.1% (median 27.9%). Hierarchical clustering further
reduced the number of models from 116 to 30 while maintaining prediction accuracy.

The third hypothesis proposed that simplified hand kinematic models, combined
with soft-actuator modeling techniques, could be leveraged to design and fabricate
3D-printed soft robotic rehabilitation devices. Chapter 4 supported this through:

A biomechanically-informed reduced kinematic model of the index finger, including
50th percentile male anthropometry, that served as a basis for designing an
asymmetric bellow soft pneumatic actuator (SPA), demonstrating how simplified
hand kinematic models can directly inform the workspace requirements and
motion constraints for effective rehabilitation devices.
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Development of complementary soft actuator modeling techniques that balanced
computational complexity with design accuracy: detailed FEM simulations vali-
dated the performance characteristics and mechanical behavior of the actuators,
while simplified pseudo-rigid-body models enabled rapid design iterations.

Successful fabrication of functional soft pneumatic actuators using 3D-printed
thermoplastic polyurethane (TPU) as a single-body structure, demonstrating the
feasibility of translating simplified kinematic models into physical soft robotic
rehabilitation devices through additive manufacturing techniques.

Key Contributions and Implications

Developing a Koopman-based data-driven approach for grip force estimation and pre-
diction represents a significant advancement for rehabilitation robotics. This approach
can serve as a basis for adaptive assistance by dynamically supplementing patients’
voluntary efforts with only the necessary force. The ability to predict grip force from
a single sensor position with high accuracy reduces system complexity and promotes
affordability while maintaining effectiveness. The novel spectral mask technique devel-
oped for signal processing offers unique insights for EMG analysis beyond rehabilitation
applications. This approach could benefit various human-machine interface designs
where reliable muscle activity detection is critical by selectively enhancing or attenuating
specific frequency components that maximize correlation with grip force.

The reduced kinematic hand modeling approach, through intra-finger dependencies,
establishes motion patterns across subjects that significantly reduce the degrees of free-
dom required for accurate hand modeling. Unlike previous synergy-based approaches
that need substantial synergies to account for only ∼80% of variance, our simplified
models maintain precision while reducing implementation complexity by providing
direct one-to-one intra-finger dependencies. This contribution addresses a fundamental
challenge in rehabilitation robotics: creating devices that balance biomechanical accu-
racy with practical simplicity. This research streamlines human hand modeling while
preserving the precision needed for effective therapy by identifying clusters of similar
dependencies across different grasps.

The iterative methodology for designing, modeling, and fabricating 3D-printed
soft actuators, based on finger kinematics models, represents a structured approach
to developing rehabilitation devices that adapt to individual patient needs. The
dual modeling approach—combining detailed FEM simulations with simplified PRB
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models for iterative design—provides both accuracy and computational efficiency. The
prototype development demonstrated that soft pneumatic actuators can effectively
support hand movements while maintaining the compliance necessary for safe human-
robot interaction. This approach offers a promising alternative to rigid exoskeletal
designs, often imposing unnatural movement constraints.

Practical Applications

Integrating these three complementary approaches—EMG-driven adaptive control,
simplified kinematic models, and optimized soft actuators—establishes a comprehensive
framework for developing the next generation of rehabilitation devices. This framework
addresses several critical challenges:

Personalization: The EMG-based estimation enables therapy that adapts to
individual patient capabilities.

Simplicity: The reduced kinematic models make implementation feasible with
fewer actuators.

Affordability: Soft 3D-printed actuators provide a cost-effective alternative to
complex rigid systems.

Accessibility: The reduced sensor requirements and computational efficiency
make the technology more widely deployable.

Such rehabilitation systems could significantly impact recovery trajectories for
stroke patients, who currently face limitations in therapy intensity due to healthcare
constraints. These technologies could help bridge the gap between optimal and actual
therapy delivery by providing consistent, high-intensity, adaptive assistance.

Limitations and Future Directions

Despite the promising results, several key limitations warrant consideration. First,
the EMG-based grip force estimation approach was validated for medium wrap grasp
only, and future work must extend this methodology to multiple functional grasp types
required for comprehensive ADL support.

Second, while significantly simplified, the kinematic models require further vali-
dation in clinical populations with neurological impairments where spasticity, muscle
tone abnormalities, and compensatory movement patterns might alter the identified
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joint dependencies. Additionally, these models focused only on flexion/extension move-
ments while excluding finger abduction/adduction, which should be incorporated in
future iterations to capture the full range of hand motion. This validation should
include diverse age groups and varying degrees of motor impairment to ensure broad
applicability.

The rehabilitation glove prototype requires further development to increase its
technological readiness level (TRL) through iterative refinement and standardized
testing protocols. Future work should examine alternative hyperelastic materials and
extend the kinematic framework to include thumb articulation, critical for enabling
functional opposition movements in precision grasping patterns.
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Roman Symbols

a SPA overall length

Aeq,seg Equivalent cross-sectional area of bellows segment

ai−1 Distance from local frame zi−1 to zi along xi−1

αj Koopman amplitude

Arect Area of rectangular base

Asemi Area of hollow semicircular annulus

B Intercept of the linear relationship

b SPA connecting segment 1 length

bi, bi+1 Lower and upper limits defining a subregion

bj, bj+1 Lower and upper limits for the first time delay shift

bk, bk+1 Lower and upper limits for the second time delay shift

βn Fitted coefficient for linear dependence on number of ribs

βϑ Fitted coefficient for quadratic dependence on bending angle

c SPA connecting segment 2 length

cΘ Parametric angle coefficient for end-moment loading

cϑ Coefficient relating beam end angle to pseudo-rigid-body angle

di Link offsets

dArib Differential area element of a rib

∆t Discrete time step



132 Nomenclature

dFrib Differential force due to pressure on a rib

∆LTotal,i Total elongation of MCP, PIP, and DIP bellow segments

dMseg Differential moment acting on a rib

LDIP,TIP Distance between DIP joint and fingertip

E Matrix containing the lifted realizations of ei

E Young’s modulus of the material

E(·) Expected value operator

e0 Initial state of the EMG signal

ei Processed EMG signal

eI,Sijk,τ1,τ2 [n] Gridded indicator observable

etd(j) Time-delayed observable at step j

etd(n)[1 + τ1] Time-delayed observable at step 1 + τ1

etd(n)[1 + τ2] Time-delayed observable at step 1 + τ2

F State transition function

G Matrix containing the lifted realizations of gi

g Reported grip force

Ge,int Interaction component of the input data matrix

Ge,lift Koopman-lifted interaction data matrix

ge,lift(i) Snapshot of lifted interaction terms

ĝ Estimated grip force

graw Raw dynamometer signal

i, j Indices

Irect,centroid Second moment of area about centroid of rectangular base

Irect Adjusted second moment of area of rectangular base

Isemi Second moment of area of hollow semicircular annulus

Itotal Total second moment of area combining annulus and base
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K Slope of linear relationship between parent and dependent joint
angles

k − folds Number of folds in cross-validation

Kϑ1,i, Kϑ2,i Coefficients for pressure terms in bending angle model

KL1,i, KL2,i Coefficients for pressure terms in elongation model

KDIP Coefficient linking DIP flexion to MCP joint

KPIP Coefficient linking PIP flexion to MCP joint

Kseg Bending stiffness coefficient of ribbed bellow segment

KΘ Equivalent torsional spring stiffness

ℓ Number of retained Koopman modes

Li Segment lengths representing distances between joint centers

∆Laxial Axial elongation due to internal pressure

∆Lbending Bending elongation caused by deformation

Li, Li+1 Inter-joint distances between two consecutive joints

Lseg Length of ribbed bellow segment

∆Ltotal Total elongation combining axial and bending contributions

M,N Distinct spaces in the mapping

Mbsg Moment acting on a ribbed segment

LMCP,PIP Distance between MCP and PIP joints

Mrib Moment per rib due to internal pressure

Mseg Total moment acting on ribbed segment

n General count variable (e.g., sample size, dataset length, number
of origins, state space dimension)

nr,bsg Number of ribs in a ribbed segment

nr,seg Number of ribs per segment

p-value probability of observing the data under the null hypothesis

P i−1
i Translation vector



134 Nomenclature

pseg Internal pressure applied to bellow actuator segments

LPIP,DIP Distance between PIP and DIP joints

py Position coordinate in the y-direction

pz Position coordinate in the z-direction

r-correlation Correlation coefficient

Ri−1
i Rotational matrix

Rb Outer radius of hollow semicircular annulus

rb Inner radius of hollow semicircular annulus

Rb,eq Equivalent outer radius of hollow semicircular annulus

rij Rotation matrix element related to MCP joint motion

Rseg Outer radius of projected surface

rs Simplified rotational parameter for transformation equations

rseg Inner radius of projected surface

Sijk Subregion in a discretized grid

T i−1
i General transformation matrix

τ Time horizon for future predictions

tb Thickness of reinforcing layer

ϑi Cumulative bending angle at end of i-th bellow segment

ϑi−1 Cumulative bending angle at end of (i− 1)-th bellow segment

δx Horizontal deflection of beam tip

δy Vertical deflection of beam tip

ϑ Beam end angle as function of applied moment

w Observation weight

x State vector

x̄i Mean of variable xi

xi Axis along common perpendicular or perpendicular to plane con-
taining both axes
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y Dependent variable

ŷi Predicted dependent joint value

yi Observation of the dependent joint

Z Matrix containing Ritz vectors

zi Axis of revolution for the i-th joint

Greek Symbols

αi−1 General rotation angle between coordinate axes

βEI Quadratic correction term in bending angle model

βi Inclination angles in the FE plane

βγ
s Regularized coefficient

βOLS
s OLS (Ordinary Least Squares) coefficient

βs0j Intercept for subject j from set S, representing subject-to-subject
variability

βsi Standardized coefficient

χSijk
(etd(n), τ1, τ2) Indicator function for determining grid membership

∆di Link elongation for segment i

γ Mixing parameter for regularization; characteristic radius factor in
PRB

K Koopman operator

K̄ Estimate of the static Koopman operator

Λ Diagonal matrix of Ritz values

λ Tuning parameter

λj Ritz value (eigenvalue) of the Koopman operator

OM ,ON Observable spaces corresponding to M and N

ϕ Vector of functions used to lift ei

ψ Vector of functions used to lift gi

σ2
r Residual variance
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σ2
s Variance of random effects (subject intercepts)

σxi
Standard deviation of variable xi

τ1, τ2 Time delays between chosen data points

Θ Pseudo-rigid-body angle approximating beam deformation

θi Joint angles

θCMC,FE Flexion/Extension angle of the CMC joint

θdependent Angular position of the dependent joint

θDIP,FE Flexion/Extension angle of the DIP joint

θMCP,AA Abduction/Adduction angle of the MCP joint

θMCP,FE Flexion/Extension angle of the MCP joint

θparent Angular position of the parent joint

θPIP,FE Flexion/Extension angle of the PIP joint

ϑi Bending end angle for MCP, PIP, and DIP bellow segments

ujoint Composite angle for joint motion

zj Ritz vector (eigenvector) of the Koopman operator

Acronyms / Abbreviations

AA Abduction/Adduction

ADL Activities of Daily Living

ASTM American Society for Testing and Materials

BH Basin Hopping

CMC Carpometacarpal Joint

CMR Common Mode Rejection

DC Direct Current offset

DH Denavit-Hartenberg

DIP Distal Interphalangeal Joint

DOF Degree of Freedom
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EMG Electromyography

FDM Fused Deposition Modeling

FE Flexion/Extension

FEM Finite Element Method

FFT Fast Fourier Transform

GLM Generalized Linear Model

ICC Intraclass Correlation Coefficient

I Index Finger

IKBT Inverse Kinematics Behavior Tree

IK Inverse Kinematic

IP Interphalangeal Joint

IQR Interquartile Range

KOT Koopman Operator Theory

LBD Lower Bound Deficit

LH Latin Hypercube

L Little Finger

LME Linear Mixed-Effects Model

LSTM Long Short-Term Memory

MA Moving Average

MCP Metacarpophalangeal Joint

M Middle Finger

MUAP Motor Unit Action Potentials

MU Motor Units

MVC Maximum Voluntary Contraction

NA Missing Values (Not Available)

OIML International Organization of Legal Metrology
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OLS Ordinary Least Squares

PCA Principal Components Analysis

PIP Proximal Interphalangeal Joint

PLA Polylactic Acid

POP Points of Rotation

PRB Pseudo Rigid Body

Q1 First Quartile

Q3 Third Quartile

RBD Randomized Block Design

RMSE Root Mean Square Error

RMS Root Mean Square

ROM Range of Motion

ROS Robot Operating System

RP Reference Point

R Ring Finger

SA Sensitivity Analysis

sEMG Surface Electromyography

SI Sensitivity Indices

SPA Soft Pneumatic Actuator

TIP Fingertip

TMC Trapeziometacarpal Joint

TPU Thermoplastic Polyurethane

TRL Technology Readiness Level

T Thumb Finger

UBD Upper Bound Deficit

wMAE Weighted Mean Absolute Error

wwMAPE Double Weighted Mean Absolute Percentage Error
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Appendix A

Raw sEMG Measurements, Grip Force
and Processed EMG Data

This appendix is related to Section 2.2 and Subsection 2.4.2 of Chapter 2. Recordings of
grip force measurements and raw EMG signals from all experimental runs are available
in this appendix, providing a complete dataset for verification and further analysis
across different subjects and sensing positions.

The appendix contains panel plots displaying all recorded data from the 2-factor
randomized block design experiment involving 13 male participants (subjects ac, dp,
ds, js, lb, lk, lm, ln, md, mm, nk, pb, ss) aged 22 to 24 years. For each subject,
measurements were taken at two distinct forearm sensing positions (P1 and P2) near
the flexor carpi ulnaris muscle, with two replications per position, resulting in a total
of 52 experimental runs.

Figure A.1 presents data collected from position P1, while Figure A.2 shows data
from position P2. Each panel displays three synchronized signals: raw sEMG data
(labeled emg), simultaneously collected grip force measurements (labeled grip), and
processed EMG signals (labeled proc). Above each panel is an experiment identifier
consisting of subject abbreviation, position, replication number, and signal type.

These visualizations allow direct comparison of signal characteristics across different
subjects, with varying grip levels (100, 75, 50, 25 and 0% of maximum voluntary
contraction). The data illustrate the transient phases during grip force changes and
the steady-state plateaus.
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Appendix B

LME Model Coefficients’ Detailed
Analysis and Model Error Metric
Analyses

This Appendix is related to Section 3.3 of the Chapter 3.

Figures B.1 and B.2 present the standardized coefficients obtained from the LME
models across all 116 dependency-movement relationships. When combined, these
figures provide a complete overview of the modeled coefficients.

Figure B.2 focuses on linear (lin) and polynomial (poly) coefficients, including the
mean subject intercept as a random effect for all models. In contrast, Figure B.1 also
includes up to seven additional model coefficients beyond lin and poly. The following
predictors were found to be both significant and have medium-to-high effect sizes:

Subject height, or its transformed interaction with other predictors, in 9 out of
116 models,

Transformed subject weight in interaction with other predictors, in 4 out of 116
models.

For users intending to apply these model coefficients, it is recommended to stan-
dardize the variables before use. The scaling and centering of the dependent variable y
should be back-transformed using either self-acquired means and standard deviations
or the values provided in Table S3 online1.

1https://docs.google.com/spreadsheets/d/122Wf7zkGHr6pxZarTTlsNggakPIXNv
EhUHNhUbMZEPA/edit?usp=sharing

https://docs.google.com/spreadsheets/d/122Wf7zkGHr6pxZarTTlsNggakPIXNvEhUHNhUbMZEPA/edit?usp=sharing
https://docs.google.com/spreadsheets/d/122Wf7zkGHr6pxZarTTlsNggakPIXNvEhUHNhUbMZEPA/edit?usp=sharing
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Figure B.3 presents a detailed analysis of the weighted mean absolute error (wMAE),
while Figure B.4 shows the double weighted mean absolute percentage error (wwMAPE)
on both the training and testing datasets for all 116 models, using both GLM and
LME methods. The error metrics are calculated according to Equations (3.6) and (3.7)
in Subsection 3.3.2. For readers’ convenience, a detailed table representation of these
results is available in Table S1 online2.

Figure B.1 Standardized coefficient values for modeled dependencies that comprise linear
(lin) and/or polynomial (poly) and other predictors and interactions: exponential (exp), height,
and weight (“:” denotes interaction).

2https://docs.google.com/spreadsheets/d/1JkbfzyNAdGuZEg0mXhJGEHl9DEgz
nLNN34KvTpnEcuQ/edit?usp=sharing

https://docs.google.com/spreadsheets/d/1JkbfzyNAdGuZEg0mXhJGEHl9DEgznLNN34KvTpnEcuQ/edit?usp=sharing
https://docs.google.com/spreadsheets/d/1JkbfzyNAdGuZEg0mXhJGEHl9DEgznLNN34KvTpnEcuQ/edit?usp=sharing
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Figure B.2 Standardized coefficient values for all modeled dependencies that consist of
random effects—subject intercept (subj_inte)—and fixed effects—linear (lin) and polynomial
(poly).
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Figure B.3 Weighted mean absolute error (WMAE) on train and test datasets across all 116
modeled dependencies for both GLM and LME models.
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Figure B.4 Double weighted mean absolute percentage error (WWMAPE) on train and test
datasets across all 116 modeled dependencies for both GLM and LME models.
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