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SAŽETAK 

 

Karcinom pločastih stanica usne šupljine jedan je od najčešćih karcinoma glave i vrata. 

Standardni postupak za dijagnozu karcinoma pločastih stanica temelji se na histopatološkom 

pregledu, međutim, glavni izazov kod ove vrste pregleda je heterogenost tumora gdje 

subjektivna komponenta pregleda može izravno utjecati na način liječenja specifičnog za 

pacijenta. Iz tog razloga, u ovom doktorskom radu koristili su se algoritmi umjetne 

inteligencije za razvoj naprednog dijagnostičkog sustava temeljenog na histopatološkim 

slikama kao pomoć u analizi tumora. Takav sustav objedinio je višeklasnu klasifikaciju 

gradusa, Grad-CAM vizualizaciju, semantičku segmentaciju tumora na epitelne i stromalne 

regije te automatsku kvantifikaciju omjera tumora i strome zajedno s analizom preživljenja 

pacijenta u svrhu smanjenja varijabilnosti između promatrača te ubrzanja vremena potrebnog 

za postavljanje dijagnoze. 

 

Ključne riječi: Umjetna inteligencija, karcinom pločastih stanica usne šupljine, višeklasna 

klasifikacija, semantička segmentacija, Grad-CAM vizualizacija, omjer tumor-stroma 
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ABSTRACT 

 

The most common malignant epithelial tumor that affects the oral cavity is oral squamous cell 

carcinoma. The histopathological examination of biopsy slides is currently the most reliable 

method for diagnosing oral cancer. However, tumor heterogeneity is the primary issue with 

this type of procedure, since a subjective aspect of the examination may have a direct impact 

on tumor diagnosis. For this reason, in this doctoral thesis, Artificial Intelligence algorithms 

are used in order to develop an advanced diagnostic system based on histopathological images 

as computational aid in tumor diagnosis. Such a system is composed of multiclass 

classification of grades, Grad-CAM visualization, semantic segmentation of tumor into 

epithelial vs. stromal regions, and automatic quantification of tumor-stroma ratio along with 

overall survival analysis to reduce inter-and intra-observer variability and speed up the 

diagnosis process. 

 

Keywords: Artificial Intelligence, Oral Squamous Cell Carcinoma, Multiclass classification, 

Semantic segmentation, Grad-Cam, Tumor-stroma Ratio 
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PROŠIRENI SAŽETAK 

 

Karcinom usne šupljine je među deset najčešćih karcinoma u Europi i SAD-u gdje više od 

90% spada u skupinu karcinoma pločastih stanica usne šupljine. Standardne metode za 

otkrivanje karcinoma usne šupljine su inspekcija i palpacija uz detaljnu anamnezu dok se 

histološki potvrđuje biopsijom tkiva. Biopsijom se definiraju karakteristike tumora te se na 

temelju toga određuju terapija, prognoza ishoda bolesti i preživljenje pacijenta. Ključni izazov 

histopatološkog pregleda proizlazi iz subjektivne komponente kliničke dijagnostike, odnosno 

u varijabilnosti opažanja među različitim stručnjacima. Stoga, cilj ovog istraživanja je razviti 

dijagnostički sustav uz pomoć algoritama umjetne inteligencije za analizu kancerogenih lezija 

koji može poboljšati objektivnosti i ponovljivost histopatološkog pregleda, odnosno smanjiti 

varijabilnost opažanja između stručnjaka. Nadalje, takav sustav pridonio bi minimalnom 

invazivnom liječenju/kirurškoj terapiji, poboljšanju ishoda te stopi preživljavanja i održavanja 

visoke kvalitete života pacijenata. Nadalje, mogao bi pomoći stručnjaku odnosno patologu u 

smanjenju opterećenja ručnih pregleda te ubrzati vrijeme potrebno za dijagnozu. 

Prvi korak ovog istraživanja je uspostava jedinstvenog skupa podataka. Prikupljeni 

histopatološki uzorci su se klasificirali u skladu sa Svjetskom zdravstvenom organizacijom, 

koje su potom dodatno pregledala i recenzirala dva neovisna patologa. Prema ranije 

spomenutoj klasifikaciji uzorci su se podijelili u tri klase: Gradus I (dobro diferencirani 

tumor), Gradus II (umjereno diferencirani tumor) i Gradus III (slabo diferencirani tumor). 

Dodatno, generirale su se pripadajuće maske na kojima je jasno određena granica između 

epitelnog i stromalnog tkiva. Prikupljeni slikovni skup podataka koristio se kao ulaz u 

algoritme umjetne inteligencije kako bi se razvio personalizirani dijagnostički sustav za 

analizu karcinoma pločastih stanica usne šupljine. 

Iz perspektive umjetne inteligencije veliki raspon boja na slikama može uzrokovati da 

algoritmi teže prepoznaju ključne značajke jer nisu svi dijelovi slike jednako vidljivi ili 

značajni za analizu, stoga su se koristile relevantne tehnike za predobradu slika u svrhu 

izlučivanja značajki koje sadržavaju informacije od interesa. Nadalje, ispitalo se više modela 

temeljenih na umjetnoj inteligenciji za višeklasnu klasifikaciju gradusa OSCC-a. Nakon 

konačnog odabira modela i tehnike predobrade, ispitala će se mogućnost njihovog daljnjeg 

razvoja u svrhu poboljšanja performansi. Ovakvim pristupom cilj je poboljšati objektivnost i 

ponovljivost kako bi se smanjila varijabilnost opažanja među patolozima u klasificiranju 

gradusa pločastog karcinoma usne šupljine.  
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Modeli temeljeni na umjetnoj inteligenciji postali su izuzetno moćan alat za otkrivanje i 

klasifikaciju karcinoma, međutim, mnogi modeli dubokog učenja i dalje se smatraju 'crnim 

kutijama' što se tiče razumijevanja njihovih mehanizama za donošenje odluka, posebice u 

ključnim primjenama kao je dijagnoza karcinoma. Stoga se u drugom koraku ovog 

istraživanja primijenila metoda objašnjive umjetne inteligencije zvana Grad-CAM kako bi se 

vizualizirale odluke modela dubokog učenja. Takvim pristupom poboljšalo se povjerenje i 

transparentnost u dijagnostičkom procesu temeljenom na umjetnoj inteligenciji. 

U idućem koraku izvršila se semantička segmentacija, gdje je svaki piksel slike označen 

odgovarajućom klasom onoga što predstavlja. Na taj se način točno odredilo područje 

interesa, tj. lezije tumora na slici, zajedno s točnom granicom između epitela i strome. U 

istraživanju se ispitalo više modela temeljenih na umjetnoj inteligenciji za semantičku 

segmentaciju epitelnog i stormalnog tkiva u svrhu odabira modela s optimalnim 

performansama. Kao i u prethodnom koraku, ispitala se mogućnost daljnjeg unapređenja 

segmentacijskog modela u svrhu poboljšanja performansi. Ovakav pristup automatizirane 

segmentacije stromalne regije može pomoći patolozima u otkrivanju novih informativnih 

značajki. 

Semantičkom segmentacijom epitelnog i stormalnog tkiva dolazi se do završnog koraka 

istraživanja, a to je kvantifikacija omjera tumora i strome (TSR). Omjer tumora i strome u 

pokazao se kao obećavajuća metoda za predviđanje ishoda bolesti i preživljenja pacijenta. 

Usprkos potencijalnoj prognozirajućoj vrijednosti određivanje TSR-a ponekad je izazovno, 

stoga se u ovom istraživanju razvio protokol za analizu omjera tumora i strome na 

histopatološkim uzorcima. Automatiziranom kvantifikacijom omjera tumora i strome 

doprinijelo bi se poboljšanju objektivnosti i ponovljivosti histopatološkog pregleda. 

Zaključno, omjer tumora i strome karcinoma pločastih stanica koristio se kao podatak za 

procjenu ukupnog preživljenja pacijenta.  

Za postupak validacije prikupio se i označio novi skup histopatoloških podataka po istom 

principu kao i inicijalni skup podataka. Predikciju UI sustava temeljenu na novo prikupljenim 

podacima vrednovali su stručnjaci iz KBC Rijeka kako bi se utvrdile performanse sustava i 

potvrdio koncept.                   
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1. Introduction 

 

This chapter introduces the doctoral theses along with scientific motivation for research. 

Additionally, research goals and hypotheses are outlined. Furthermore, the significance and 

contribution of the research are explained. Finally, the structure of the thesis is provided. 

 

1.1.  Scientific Motivation 

 

More than 90% of cases of oral cancer (OC) are squamous cell carcinoma, making it 

one of the top ten most prevalent cancers in both Europe and the United States [53, 91]. 

However, with advancements in diagnosis and treatment for OC patients, mortality and 

morbidity rates have not decreased over the past 50 years [7]. Oral squamous cell carcinoma 

(OSCC) frequently develops from pre-existing oral mucosal lesions that have a higher chance 

of malignant transformation into cancer. Early detection, diagnosis, and therapy at the 

precancerous stage improves the survival rates and morbidity related to OSCC treatment [31]. 

Surgical resection, with or without adjuvant radiation, is typically the main treatment for 

OSCC, and it has a substantial effect on the patient's quality of life [27]. Even with significant 

progress in comprehending the intricate processes of carcinogenesis, a trustworthy prognostic 

prediction tool is still lacking. When determining the prognosis, treatment strategy, and 

predicting outcomes for patients with OSCC tumor-node-metastasis (TNM) staging is 

frequently utilized. However, the limits of TNM staging in prognostic prediction are evident 

in its ability of assessing the individual characteristics of the patient, such as lifestyle choices 

and clinical features [58].  

 

The current gold standard for detecting oral cancer is clinical examination, conventional oral 

examination (COE), and histological evaluation following biopsy. These approaches can 

identify cancer in the stage of established lesions with notable malignant changes [105].  
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However, the main drawback of employing histological examination for tumor classification 

and prognostic evaluation is inter- and intra-observer variability [55]. The most recent 

advances in artificial intelligence (AI)-based medical imaging contributed to reducing 

variability among observers as well as reducing repetitive tasks and enabling quick accurate 

diagnosis [11].  

 

This research aims to create an advanced automated AI prognostic system that may directly 

influence patient-specific interventions by determining patient’s outcome, while also 

increasing inter- and intra-observer variability. 

 

1.2. Research Objectives and Hypotheses 

 

The main research objective is to develop an automated system based on artificial 

intelligence algorithms for the analysis of oral squamous cell carcinoma. Such a system would 

enable the objective grading of the carcinoma, precise separation of epithelial and stromal 

tissues, which would be used for automatic quantification of the tumor and stroma, as well as 

patient survival analysis. 

 

Based on the defined objective, the following hypotheses are proposed: 

 

❖ Through advanced data preprocessing combined with an artificial intelligence-based 

model, it is possible to achieve high performance in the multiclass classification of 

oral squamous cell carcinoma grades. 

 

❖ With a hybrid artificial intelligence-based model, it is possible to achieve high 

performance in the semantic segmentation of OSCC and to perform automatic 

quantification of the tumor-to-stroma ratio, along with patient survival analysis. 
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1.3. Research Contibution and Significance 

 

This research makes a significant contribution to the field of medical image analysis 

and the diagnosis of oral cancer using artificial intelligence. A novel AI-based system has 

been proposed, and it consists of: 

 

Stage 1: A novel preprocessing method based on the Stationary Wavelet Transform (SWT) is 

intended to: 

❖ increase classification performance by enhancing high-frequency components and  

❖ extract low-level features for more precise semantic segmentation. 

 

Stage 2: Automated multiclass grading of oral squamous cell carcinoma (OSCC), which 

attempts to decrease the time needed for manual pathological inspections while increasing the 

objectivity of histological evaluations. 

 

Stage 3: Providing interpretable explanations to establish confidence and guarantee 

transparency in AI-based diagnostic process utilizing explainable AI techniques. 

 

Stage 4: Semantic segmentation of tumor into epithelial vs. stromal tissue regions in 

histopathological images, enabling the identification of features that are clinically informative 

and may assist in predicting tumor invasion and metastasis. 

 

Stage 5: Establishing a procedure for the automated quantification of the tumor-stroma ratio 

and the analysis of patient survival would help to increase the objectivity and repeatability of 

histopathological analysis. 
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The scientific contributions of the research are: 

 

❖ Development of data preprocessing methodology and implementation of a model for 

multiclass grading of oral squamous cell carcinoma. 

❖ Development of a customized hybrid model for semantic segmentation of the tumor 

into epithelial vs. stromal regions. 

❖ Creation of a protocol for automatic quantification of the tumor-to-stroma ratio, along 

with patient survival analysis. 

 

 

1.4. Structure of the Thesis 

 

The first step of the research is the establishment of a unique dataset. The collected 

histopathology image dataset will be used as input for artificial intelligence algorithms in 

order to develop a personalized diagnostic system for analyzing oral squamous cell 

carcinoma. In the next step, image preprocessing techniques will be applied to extract features 

containing information of interest. In the third step, multiple AI-based models will be 

evaluated for multiclass classification of OSCC grades. After selecting the final model and 

preprocessing technique, the possibility of further development will be explored in order to 

improve performance. In the fourth step, visualization tools such as Grad-CAM will be 

utilized to enhance transparency in the AI-based diagnostic process. In the next step, semantic 

segmentation will be performed. The research will evaluate several AI-based models for the 

semantic segmentation of tumor on epithelial vs. stromal tissue in order to select the model 

with optimal performance. As in the third step, the potential for further enhancement of the 

segmentation model will also be examined to improve its performance. 

 

Semantic segmentation of tumor on epithelial vs. stromal tissue leads to the final step of the 

research, which is the quantification of the tumor-stroma ratio (TSR). Despite its potential 

prognostic value, determining TSR can be challenging. Therefore, this research will develop a 

protocol for the analysis of the tumor-stroma ratio in histopathological samples. Finally, the 

TSR will be used as a parameter for evaluating overall patient survival analysis. The 

framework of the proposed AI-based system is shown in Figure 1.1.  
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For the validation process, a new set of histopathological images will be collected and 

annotated using the same principles as those applied to the initial dataset. The AI system's 

predictions based on this newly collected data will be evaluated by experts from the Clinical 

Hospital Center Rijeka (KBC Rijeka) to assess the performance of the proposed AI-based 

system and validate the concept. 

 

 

 

Figure 1.1. Framework of the proposed AI-based system: It incorporates  image acquisition, 

preprocessing, tumor grading, explainable AI, semantic segmentation, quantification of 

tumor-stroma ratio and overall survival analysis. 
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2. Literature Review 

 

This chapter aims to provide an overview of the existing AI – solutions in medical image 

analysis. It briefly describes the various models, techniques, and methodologies used in 

different solutions in similar areas of study. First, in order to ensure that proper studies are 

chosen, inclusion and exclusion criteria are established.  Then, an overview of AI solutions 

for OSCC classification is presented. After that, an overview of AI solutions for segmentation 

of tumor on epithelial vs. stromal tissue is given. Furthermore, research related to the 

automatic quantification of TSR is presented. A literature overview regarding explainable 

computer vision for OSCC is provided at the end of this section. 

 

2.1. Inclusion and Exclusion Criteria 

 

Establishing inclusion and exclusion criteria is crucial when performing a literature 

review in order to guarantee the selection of high-quality literature. These standards aid in 

streamlining the search and preserving the review's reliability and focus. 

Inclusion criteria: 

❖ Research should focus on oral cancer classification (grading) based on 

histopathological images using AI techniques. 

❖ Research should focus on the segmentation of oral cancer based on histopathological 

images using AI techniques. 

❖ Research should focus on digital image processing to enhance input histopathological 

images or extract helpful information. 

❖ Research should focus on interpretability and explainability of AI techniques using 

histopathological images as input. 
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Exclusion Criteria: 

❖ Research articles that do not primarily address the detection of oral cancer through AI 

techniques. 

❖ Research that involves animals. 

❖ Research articles with results lower than 80% accuracy in detecting oral cancer. 

 

 

Figure 2.1. Graphical representation of studies published to detect oral cancer using AI 

techniques – before inclusion and exclusion criteria. 

 

 

Figure 2.2. Graphical representation of studies published to detect oral cancer using AI 

techniques – with inclusion and exclusion criteria. 
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Figure 2.1. shows the amount of research published in the period from 2014. to 2024. to 

detect oral cancer. The articles that were collected are from various international journals and 

conferences (Elsevier, IEEE Xplore, Springer, etc.). As can be seen from Figure 2.1., research 

interest in this area increased in 2017 and is still growing as the field continues to improve. 

 

 After reviewing the inclusion and exclusion criteria, 38 articles covering numerous methods 

for detecting oral cancer based on histopathological images were used to compare the results, 

as shown in Figure 2.2.  However, some of them discuss the nucleus's classification and 

segmentation, which is outside the scope of this study; thus, these findings cannot be 

compared. Furthermore, some researchers have included both classification and segmentation 

in their research, even though, as previously mentioned, studies that include both 

classification and segmentation of nuclei will not be taken into consideration, they will be 

described since the techniques are noteworthy. 

 

*Since no single study that has addressed the automated quantification of the tumor-stroma 

ratio using AI algorithms and histopathological images as input data, the inclusion and 

exclusion criteria do not refer to the literature on the subject. 

 

2.2. Application of AI algorithms for OSCC classification 

 

Image classification is the process of dividing data into distinct classes. OC 

classification determines whether the provided data is malignant or not, and this 

categorization is known as binary. Furthermore, it is also possible to use multiclass 

classification to determine the various stages (grades) of cancer. 

 

By employing Random Forests, a tree-based ensemble classifier, Baik et al. (2014) examined 

a novel, semi-automated technique to separate OPLs at high risk of developing into invasive 

SCC from those at low risk. For the test set, the novel method demonstrated an 80% right 

classification rate at the cellular level (80.6% sensitivity, 79.3% specificity) and a 75% correct 

classification rate at the tissue level (77.8% sensitivity, 71.4% specificity) [8]. Banerjee et al. 

(2016) assessed the function of morphometric, intensity, and textural features extracted from  
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liquid-based exfoliative cytology (LBEC), intensity and textural features extracted from ex 

vivo optical coherence tomography (OCT) images, and spectral features from the difference 

between mean spectra (DBMS) for classification. The results show that oral leukoplakia and 

OSCC could be distinguished utilizing cellular characteristics of LBEC data with 100% 

sensitivity and specificity at 10-fold cross-validation. Effective spectral biomarkers that could 

identify the disorders with 81.3% sensitivity and 91.3% specificity were also retrieved, 

illustrating chemical molecules’ role in pathological change [9].  

Lu et al. (2017) examine computer-extracted features such as texture and nuclear shape on 

digital H&E-stained images compared to standard clinical and pathologic parameters. To 

create the oral cavity histomorphometric-based image classifier, a machine learning classifier 

was used to combine the five best predictive quantitative histomorphometric features from the 

modelling set. When identifying disease-specific outcomes on the test set, the classifier 

achieved an AUC of 0.72 [49]. In order to train convolutional neural networks (CNNs) for 

tissue categorization efficiently, Folmsbee et al. (2018) investigated the use of Active 

Learning (AL) as opposed to the more popular Random Learning (RL).In the challenge of 

employing a CNN to detect seven tissue classes (stroma, lymphocytes, tumor, mucosa, keratin 

pearls, blood, and background/adipose), they compared AL and RL training. For a given 

training set size, they discover that the AL method outperforms RL by an average of 3.26% 

[30].  

A study by Rahman et al. (2018) attempts to categorize microscopic images of OSCC from 

histology slides into two groups: abnormal (malignant) and normal (benign). The 

classification process takes into account the texture characteristics of the images. For feature 

extraction, GLCM and histogram algorithms are employed. Linear SVM has been utilized for 

classification, and the outcomes are quite pleasing since 100% accuracy is attained [73]. In 

their research, Gupta et al. (2019) suggested a deep Convolutional Neural Network (CNN) 

framework for the classification of images of dysplastic tissue. Normal tissue, mild dysplastic 

tissue, moderate dysplastic tissue, and severe dysplastic tissue are the four categories into 

which CNN has divided the provided images. It has been noted that the testing data attains 

89.3% accuracy, whereas the training data displays 91.65% accuracy [34].   

The automatic diagnosis of oral cancer utilizing histopathology images of oral squamous cell 

carcinoma is more accurate when features are chosen precisely.  Therefore, Nawandhar et al. 

(2019) have employed the neighbourhood component analysis (NCA) feature selection  
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technique with a feature weight estimator based on stochastic gradient descent. In order to 

confirm the effectiveness of the feature selection method and the independence of classifier 

selection, three popular classifiers are employed. A few chosen features are used to categorize 

the oral mucosa histopathological images. It has been noted that using feature selection 

significantly lowers the misclassification rate and increases classification accuracy by 49% to 

65% [63]. Creating a CNN model that can classify oral histopathology images as either 

malignant or non-cancerous is the primary goal of the study by Panigrahi et al. (2019). In 

order to extract features and classify images of oral cancer, they recommend using 

convolutional neural networks with four layers (5X5X3). With 10-fold cross-validation, the 

suggested model's accuracy of 96.77% is comparable to that of pathologists and 

cytotechnologists [68].  

A cutting-edge Inception-V4-based CNN architecture is used for automated SCC detection in 

the Halicek et al. (2019) study, which details a new and sizable histological SCC dataset of 

primary head and neck SCC. The training group consists of patches from the tumor and 

normal tissue samples, while the validation group consists of patches from the tumor-normal 

margin sample. The testing and validation groups' AUCs for the suggested approach are 0.92 

and 0.91, respectively [37]. In their research, Wetzer et al. (2020) examine and assess the 

following three strategies: (1) special-purpose CNNs that concentrate on texture information 

extraction; (2) general-purpose CNNs that benefit from pretraining; and (3) data 

augmentation, which enhances the performance of OC detection. They demonstrate that even 

with considerable data augmentation and pretraining, texture-focused methods perform better 

on OC classification than general networks [107].  

Rahman et al.'s (2020) aim is to create an exact algorithm that might be applied as an OSCC 

screening tool. As a result, the binary classification method was adopted to filter out 

cancerous cases automatically. Using morphological and textural data, they classified OSCC 

with a decision tree classifier and achieved 99.78% accuracy [74]. The study by Das et al. 

(2020) aims to categorize OSCC into four classes using Broder's histological grading system. 

Their research uses two approaches to examine oral biopsy images. First, the best model for 

their classification problem was identified by applying pre-trained deep convolutional neural 

networks. Second, a CNN model has been proposed. The experimental results show that the 

proposed CNN model performed better than the traditional transfer learning algorithms, with  
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an accuracy of 97.5%, even though the Resnet-50 model attained the best classification 

accuracy of 92.15% [20].  

Wang et al. (2021) used machine learning techniques in conjunction with transmission FTIR 

imaging to accurately distinguish OSCC biopsy samples from HK samples. Their current 

study had the following specific goals: 1. produce representative epithelial FTIR spectra from 

formalin-fixed paraffin-embedded biopsy samples in an efficient and useful manner; 2. 

characterize HK, OED, and OSCC samples according to their representative spectra; 3. create 

machine learning models to distinguish OSCC from HK samples, and 4. create a novel 

approach to categorize OED samples for possible risk stratification applications. Despite the 

study's limitations, their findings demonstrate that an FTIR-machine learning strategy can 

accurately distinguish OSCC from HK oral biopsy samples [103].  

Panigrahi et al. (2022) introduced a novel method for classifying oral cancer by utilizing the 

capsule network. The capsule network is more resilient to rotation and affine modification of 

the augmented oral dataset when it uses dynamic routing and routing by agreement. With 

97.78% sensitivity, 96.92% specificity, and 96.77% accuracy, the proposed approach can 

effectively classify the histological (cancerous and non-cancerous) images of OSCC, 

according to cross-validation results [69]. Rahman et al. (2022) used biopsy images of oral 

squamous cell carcinoma to predict malignant and normal mouth tissue using a modified 

CNN AlexNet.  Thus, the suggested model's prediction accuracy and loss rate were 90.06% 

and 9.08%, respectively [76].  

The study by Mohan et al. (2023) suggests OralNet, a framework for detecting oral cancer 

from histopathology images. The study has four stages: The initial stage involves gathering 

and preprocessing histopathological pictures in order to get them ready for analysis. Both 

conventional and deep learning techniques are being used to extract relevant features from 

images in the second phase, which involves feature extraction utilizing a deep and 

handcrafted strategy. Concatenation and feature reduction with the artificial hummingbird 

algorithm (AHA) are part of the third step. Binary classification and three-fold cross-

validation performance validation are included in the final step. These involve classifying 

images as either healthy or OSCC tumor while evaluating the framework’s efficacy using 3-

fold cross-validation. According to OralNet's test findings, it could detect oral cancer with 

more than 99.5% accuracy [60].  
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The primary goal of the Meyyappan et al. (2024) study is to find a solution to the challenge of 

distinguishing between benign and malignant histology images. Although the images can be 

accurately identified by Transfer Learning (TL) models, their research indicates that weighted 

ensemble learning can improve the model's accuracy to 93.16%, which is higher than the 90% 

accuracy that individual TL models could reach [57]. In their study, Deo et al. (2024) 

extracted features from the images using a 2D empirical wavelet transform. The images were 

then classified into normal and OSCC classes using an ensemble of two pretrained models, 

ResNet50 and DenseNet201. The model's effectiveness is evaluated and compared in terms of 

accuracy, sensitivity, and specificity; the suggested model has a maximum classification 

accuracy of 0.92, according to the simulation results [24].  

Das et al. (2024) presented a deep ensemble learning and transfer learning-based classification 

model for binary oral cancer classification using histopathology images. The advantages of 

the DL technique can be increased via ensemble learning, which improves accuracy and 

generalization. In this work, an ensemble model is constructed using the stacking method, 

outperforming base models with an accuracy of 97.88% [21]. In their study, Maia et al. 

(2024) examined the use of multiple deep learning architectures to classify histological 

images of epithelial dysplasia and oral cancer. According to experimental results, there is no 

statistically significant difference between CNN and transformer models overall. The only 

model that outperforms transformers is DenseNet-121, which has a balanced accuracy (BCC) 

of 91.91%, Recall, and Precision of 91.93% [51]. 

 Squeeze-excitation with Hybrid Deep Learning for Oral Squamous Cell Carcinoma 

Recognition (SEHDL-OSCCR) on HIs was presented by Ragab and Asar (2024) in their 

paper. Hybrid DL models are the primary tool used in the presented SEHDL-OSCCR 

technique for the detection of oral cancer. First, the noise is eliminated using the bilateral 

filtering (BF) approach. After that, the SE-CapsNet model is used by the SEHDL-OSCCR 

approach to identify the feature extractors. The SE-CapsNet model's performance is enhanced 

using an enhanced crayfish optimization algorithm (ICOA) approach. Lastly, a CNN with a 

bidirectional long short-term memory (CNN-BiLSTM) model is used for binary 

classification. In comparison to more contemporary methods, the experimental validation of 

the SEHDL-OSCCR technique showed a higher accuracy result of 98.75% [72]. 

 

 



 

J. Štifanić: An Automated Computer-Aided System for Oral Squamous Cell Carcinoma Analysis 

 

__________________________________________________________________________________________ 

13 
 

 

2.3. Application of AI algorithms for semantic segmentation on 

epithelial and stromal region 

 

Image segmentation is the process of splitting an image into several parts, known as 

segments. These sections are useful for a straightforward analysis of the digital image. This 

aids the medical field by enabling more rapid and effective diagnosis. 

 

The computational imaging method for automatic mitotic cell segmentation in OSCC 

diagnosis is demonstrated in the study by Das et al. (2014). When it came to screening mitotic 

cells from in vitro histology images, their suggested methodology worked noticeably with 

Precision of 83,8%, Recall of 73.5% and F-score of 78.3% [15]. The approach proposed by 

Albasri et al. (2015) shows that it is possible to segment individual cells in a tissue image 

using a robust algorithm, PCA, and Local Adaptive Thresholding to identify the contour of b-

catenin expression found by immunohistochemistry staining of oral cancer [4].  

Das et al.'s (2017) paper aims to provide an automated method for counting mitotic cells from 

relevant histopathology pictures. Regarding this, a novel machine learning approach has been 

presented that uses a random forest tree classifier that learns across four entropy measures, 

fractal dimensions, and seven Hu's moments-based descriptors. According to the performance 

validation, the suggested methodology has an 89% precision, 95% recall or sensitivity, 

97.35% specificity, 96.92% accuracy, 96.45% AUC, and 92% F-score measure for effectively 

detecting mitotic cells from OSCC histological pictures [17].  

Wu et al. (2022) created a computerized segmentation model for automatic epithelial 

segmentation from diagnostic OSCC H&E-stained histology images. They then independently 

assessed the trained model using images from three separate institutions. Moreover, they 

demonstrated that the DL model that was trained on tissue microarray (TMA) images can be 

used to whole-slide images from various locations and pre-analytic variation sources. They 

also showed that the extraction of morphological features from manually annotated and 

automatically segmented epithelial sections was equivalent [109]. 
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2.4. Application of AI algorithms for OSCC classification and 

semantic segmentation 

 

Kumar et al. (2015) described an automated detection and classification process that 

uses clinically meaningful and biologically interpretable features to detect cancer from 

microscopic biopsy images. A contrast-limited adaptive histogram equalization technique was 

employed to improve microscopic biopsy images. Then, the k-means clustering algorithm was 

applied to image segmentation. Moreover, K-nearest neighborhood (KNN), fuzzy KNN, 

Support Vector Machines (SVM), and Random forest-based classifiers were used for 

classification. The average accuracy, specificity, sensitivity, BCR, F-measure, MCC, and 

specificity for the connective tissues dataset are 0.921909, 0.940164, 0.819922, 0.880263, 

0.759395, and 0.717455, respectively [46].  

 

Das et al. (2015) aim to develop a computer-assisted quantitative microscopic methodology 

for automatic keratinization and keratin pearl region detection using in situ oral histology 

images. The Chan-Vese approach uses the proposed model to segment the keratinized area. 

Comparing the model to ground truths based on (manually) experts, the segmentation 

accuracy is 95.08%. Additionally, a keratinization area grading index is investigated for 

OSCC cases (poorly, moderately, and well-differentiated) [16].  

Moreover, in 2018. Das et al. proposed a two-stage method for computing oral histology 

images. In the first stage, a 12-layered (7 × 7×3 channel patches) deep convolution neural 

network is used to segment the constituent layers. In the second stage, texture-based feature 

(Gabor filter) trained random forests are used to detect keratin pearls from the segmented 

keratin regions. For epithelial layer segmentation, their approach achieved an average of 

98.42% segmentation accuracy, 97.76% sensitivity, 90.63% Jaccard index, and 95.03% dice 

coefficient. Furthermore, the proposed approach achieved an average segmentation accuracy 

of 98.05%, a Jaccard index of 71.87%, and a dice coefficient of 75.19% for the keratin region. 

The keratin pearl recognition accuracy of the suggested texture-based random forest classifier 

is 96.88% [18].  

Das et al. (2019) developed a two-stage computational pipeline for automatic nucleus 

recognition and segmentation from oral histology images with the aim of assisting healthcare  
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professionals in diagnosing OSCC. The nucleus is efficiently detected (88.87% recall and 

82.03% precision) in the first stage using a 12-layer CNN driven by wavelet downsampled 

patches, and in the next phase, the AC-NSCT-based nucleus segmentation technique achieves 

comprehensive accuracy (Dice coefficient of 94.22%, Jaccard index of 89.38%, Precision of 

97.56%, and Recall of 91.58%) for its automatic delineation [19]. An automated, effective 

computer-aided system for diagnosing the normal and malignant (OSCC) categories has been 

proposed by Rahman et al. (2020). The images' color, texture, and shape have all been 

retrieved. Various classifiers were used to achieve classification. For form, textural, and color 

features, respectively, accuracy of 99.4% was obtained using the Decision Tree Classifier, 

accuracy of 100% using SVM and Logistic Regression, and accuracy of 100% using SVM, 

Logistic Regression, and Linear Discriminant [74].  

Segmentation, object recognition, and image classification are the three deep learning (DL) 

techniques compared in the Matias et al. (2021) research. Their findings demonstrate that the 

most effective method for detecting and localizing nuclei is detection using Faster R-CNN 

(0.76 IoU. ResNet 34 performed well in classifying abnormal nuclei (0.86 scores). Therefore, 

they deduced that these two models could be combined to create a dependable pipeline for 

localization and classification [54]. 

 The study by Hameed et al. (2021) uses a blue color component feature-based SVM classifier 

to build an automatic IHC scoring technique. Entropy thresholding is used to partition the 

tissue images, and the watershed transform is applied selectively to resolve clustered cells. 

Using a SVM, each cell nucleus in tissue pictures is categorized as positive or negative based 

on the staining intensity. The J-scoring technique is then used to obtain the tissue score. The 

feature that was taken from the blue component achieved the maximum classification 

accuracy of 98.01%, with sensitivity and specificity of 98.86% and 94.74%, respectively, 

according to the testing results [38].  

In their study, Sujatha et al. (2021) improve the image by removing noise. The preprocessed 

image is then sent to the segmentation process, using the Patch-based Fuzzy Local Similarity 

CMeans (PFLSCM) scheme. They used feature extraction techniques to extract the feature 

from the image. Ultimately, a Hybrid Hopfield Neural Network with an Ant Colony 

Optimization (ACO) algorithm is used to accurately identify retrieved features images. The 

accuracy of the suggested model was 98.98% [90]. 
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 Using oral histopathology images, Musulin et al. (2021) propose a two-stage AI-based 

system for automatic multiclass grading (the first stage) and segmentation of the tumor on  

epithelial and stromal tissue (the second stage) to aid the clinician in diagnosing oral 

squamous cell carcinoma. Semantic segmentation prediction using DeepLabv3+ and 

Xception_65 as backbone and data preprocessing produced mIOU of 0.878 and F1 of 0.955  

score, while the combination of Xception and SWT produced the highest classification value 

of 0.963 AUCmacro and 0.966 AUCmicro [62]. The study by Shetty et al. (2023) creates a 

design for the detection of oral cancer in a scattered cloud environment. Following initial 

preprocessing, images were segmented using a region-growing algorithm. Graph, textural, 

and morphological aspects are also retrieved. The characteristics in this study were selected 

using the suggested Linear Discriminant Analysis. Ensemble classifiers are used for the 

chosen features in order to classify cancer. Additionally, stage 1 incorporates the Multi-layer 

Perceptron (MLP) and Support Vector Machine (SVM) models for disease categorization. 

The optimal CNN, which determines whether oral cancer is present, is part of the stage 2 

phase [83].  

In their study, Dharani and Danesh (2024) suggested two novel deep-learning techniques for 

OSCC segmentation and identification: MaskMeanShiftCNN and SV-OnionNet. While SV-

OnionNet is appropriate for classifying oral cancer and normal oral tissues, 

MaskMeanShiftCNN segments OSCC regions from input images using color, texture, and 

shape. The suggested techniques achieved a classification accuracy of 98.94%, sensitivity of 

98.96%, specificity of 97.18%, and error rate of 1.05%, outperforming current methods for 

OSCC detection [22].  

In an effort to improve diagnostic precision, Shukla et al. (2024) presented a unique method 

for cancer diagnosis that uses machine vision. Unlike conventional deep learning or 

supervised algorithms, they use an unsupervised approach for cancer identification due to the 

complexity of histopathology images. Because of its essential features and shape, the nucleus 

is recognized as the region of interest (ROI) in a biopsy image of malignant tissue. For the last 

step of cancer identification, they use a unique binary classification method and K-means 

clustering enhanced with a thresholding strategy to extract the ROI. The suggested model is 

more effective and dependable at detecting cancer since it achieved an accuracy of nearly 

97.28% with a closely followed validation accuracy of roughly 96.34% [85]. 
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The literature indicates that the majority of researchers have used AI algorithms in 

retrospective studies to detect and classify oral cancer. It is evident that binary classification, 

which uses the image's color, form, and texture, constituted most of the classification tasks.  

Deep CNN architectures were used to complete most segmentation tasks using histopathology 

images. A shortcoming of the aforementioned studies is that they were trained to determine 

miotic cells from relevant data.  

 

The only deep learning model for classifying cells into multiple classes in OSCC epithelial 

tissue was proposed by Das et al. (2020), based on a literature review.  The dataset consisted 

of image patches derived from whole slide biopsy images. The proposed CNN model resulted 

in accuracy of 97.5% [20]. 

 

 According to a thorough literature review, at the time when this research was performed, no 

studies had been done on multiclass grading along with segmenting of OSCC using 

histopathology images obtained by biopsy and stained with marker protein. 

 

2.5. Automatic quantification of tumor-stroma ratio 

 

The predictive value of the tumor-stroma ratio in various cancer types has been 

validated by multiple investigations using manually examined histopathology images. 

However, the subjective nature of pathologists and the variability of observers render manual 

visual evaluation techniques inappropriate for extensive implementation in clinical practice. 

Recent advancements in artificial intelligence and digital pathology have made it possible to 

perform additional quantitative analysis on numerous histopathological images. 

Hong et al. (2021) introduced a DL-based TSR measuring tool for advanced gastric cancer 

[40], while Zhao et al. (2020) used whole-slide HE-stained images to demonstrate a deep-

learning (DL) model for completely automated TSR quantification of colorectal cancer [115]. 

Furthermore, Millar et al. (2020) used machine learning algorithms and digital image analysis 

to determine the clinical importance of tumor stroma ratio in luminal and triple negative 

breast cancer (TNBC) [59]. Using H&E-stained images of bladder cancer, Zheng et al. (2023) 

created a machine learning technique for the quantitative evaluation of TSR [117].  
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Smit et al. (2023) examined whether completely or semi-automated uses of artificial 

intelligence (more precisely, deep learning algorithms) could produce comparable outcomes 

in automated analysis, particularly for hard-to-score cases. The study found that the TSR 

evaluated by deep learning algorithms and using a microscope had good relationships [87].  

Their fully automated techniques allow for objective and consistent application while 

reducing the workload of pathologists. Most of these papers looked at the TSR quantification 

of various cancer forms, although OSCC is the primary focus of this study. 

 

2.6. Explainable computer vision for OSCC classification 

 

Explainable deep learning (XDL) has drawn a lot of interest in the field of artificial 

intelligence, particularly in domains such as medical imaging, where accurate and 

understandable machine learning models are crucial for effective diagnosis and treatment 

planning [89]. In order to enhance reliability and confidence in results, Grad-CAM is a 

baseline that determines the key image regions used in a deep learning model's decision-

making. There are several computer vision (CV) uses for it, such as classification and 

explanation [89]. 

To improve diagnostic reliability and interpretability, Grad-CAM has been used in a variety 

of studies to classify cancer images with higher performance. 

Oya et al. (2022) aimed to investigate ability of AI to evaluate OSCC by employing a novel 

training approach that considers cellular and structural atypia and their applicability. The 

convolutional neural network model that was employed was EfficientNet B0. The use of 

gradient-weighted class activation mapping provided insight into its validity. The proposed 

method achieved an accuracy of 99.65% using images with 512 × 512 pixels as input. Grad-

CAM results showed that the AI model covered both the cellular and structural atypia of SCC, 

focusing on the region around the basal layer [66]. The study by Afify et al. (2023) proposes a 

novel model that employs Grad-CAM and deep transfer learning to identify the lesion area in 

the image in order to predict oral squamous cell carcinoma. The results of the proposed 

method are noteworthy since they demonstrate the clinical community's crucial role in the 

prompt and accurate detection of oral cancer [3]. The performance of two DL models that are 

renowned for their high accuracy in oral cancer classification was thoroughly evaluated by  
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Da Silva et al. (2024) in order to better understand the potential and constraints of DL 

methods in the context of oral cancer diagnosis. Beyond just analyzing standard accuracy 

measures, they additionally examined subclass accuracy rates and the distribution of 

prediction confidences, furthermore, they used Grad-CAM to visualize the models' decisions. 

[14]. 
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3. Oral Squamous Cell Carcinoma 

 

This chapter aims to provide an overview of oral squamous cell carcinoma, first focusing 

on its clinical features and diagnostic procedures, and then discussing the latest advancements 

in computer-aided diagnosis. 

 

3.1. Clinical Presentation and Diagnosis 

 

Oral cancer makes up 2% to 4% of all cancer cases worldwide. The most prevalent 

malignant epithelial neoplasm that affects the oral cavity is oral squamous cell carcinoma  

[53]. The GLOBOCAN database estimates that 377 713 new cases were diagnosed in 2020, 

and 177 757 deaths were reported [91]. The morbidity and mortality rates for OSCC have not 

changed much over the past 30 years, despite improvements in therapy techniques [7]. OSCC 

frequently develops from pre-existing oral mucosal lesions that have a higher chance of 

developing into cancer. Even though the oral cavity is easily accessible for clinical inspection, 

OSCC is typically detected in advanced stages. However, early detection and care at the 

precancerous stage increases OSCC survival rates and the morbidity associated with treatment 

[31]. The primary therapy for OSCC is usually surgical resection, either with or without 

adjuvant radiotherapy, which significantly affects the patient's quality of life [27].  

 

In the Western world, smoking tobacco and drinking alcohol are the most significant risk 

factors for oral cancer. Although the risk factors are independent, they appear to work 

together. Smoking tobacco is associated with 75% of all cases of oral cancer, and the risk of 

developing oral cancer is six times higher for smokers than for non-smokers. Additionally, 

alcohol drinkers are six times more likely to develop oral cancer than non-drinkers [52]. Even 

though alcohol and tobacco use are typically the most significant risk factors, it is crucial to 

consider other known risk factors, like chewing betel quid in some ethnic groups.  
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Other factors also contribute, such as immune defects, deficiencies in vitamins A, E, C, or 

trace elements, and an impaired capacity to metabolize carcinogens and repair DNA damaged 

by mutagens [52]. Risk factors are demonstrated in Figure 3.1. 

 

 

Figure 3.1. Risk factors, such as malnutrition, immunological deficiencies, smoking, alcohol 

misuse, chewing betel quid (BQ), human papillomavirus (HPV) infection, and genetic 

disorders [97]. 

 

In the USA, the median age of diagnosis for OSCC is 62 years, but the incidence of OSCC in 

people under 45 is rising. The reason why OSCC affects men more often than women (M:F = 

1.5:1) is that more men engage in high-risk behaviors than women. The likelihood of 

developing OSCC rises with the length of time that a person is exposed to risk factors, and 

growing older adds the additional dimension of age-related mutagenic and epigenetic changes 

[28]. The most common locations for the malignant neoplasm are the oral cavity floor, the 

tongue's lateral borders, and the lip.  

 

 

 



 

J. Štifanić: An Automated Computer-Aided System for Oral Squamous Cell Carcinoma Analysis 

 

__________________________________________________________________________________________ 

22 
 

 

OSCC may appear as one of the following [7]: 

 

❖ an area of redness (erythroplakia), 

❖ a white lesion (erythroleukoplakia), 

❖ higher exophytic borders or fissuring in a granular ulcer, 

❖ a unilateral lesion on the buccal mucosa or tongue's lateral edge that is red and white, 

❖ an ulcer or indurated lump, which is a solid infiltration beneath the mucosa, 

❖ and an ulcer or crust that has been present for more than three weeks on the vermilion 

edge of the lip (rule out herpes simplex).   

 

An example of OSCC in patients is presented in Figure 3.2. 

 

 

Figure 3.2. The tongue is where 30% of oral cancers originate, followed by the lip (17%) and 

the floor of the mouth (14%). HPV-related oropharyngeal cancer primarily affects the tonsil 

and tonsillar pillars, the base of the tongue, and the oropharynx [25]. 
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Despite significant progress in comprehending the intricate process of carcinogenesis, no 

trustworthy predictive tool has been discovered. For the prognosis, treatment strategy, and 

outcome prediction of oral cancer in patients with OSCC, tumor-node-metastasis (TNM) 

staging is commonly utilized. The limitation of TNM staging in prognostic prediction is 

reflected in its deficiency to include clinical features as well as personal traits of the patient, 

such as lifestyle choices [58]. The current gold standard for detecting oral cancer is: 

 

❖ clinical examination,  

❖ conventional oral examination (COE),  

❖ and histological evaluation following biopsy.  

 

These approaches can identify cancer in the stage of established lesions with notable 

malignant changes [105]. The International Histological Classification of Tumors classifies 

the lesions based on the degree of tumor differentiation [78]: 

 

❖  Grade I - well differentiated, 

❖  Grade II - moderately differentiated, 

❖  Grade III - poorly differentiated. 

 

Most medical centers base their decisions upon clinical and pathological medical data. The 

main determinants of the therapeutic approach are the TNM stage, the degree of tumor 

differentiation, and the patient's health status [78]. An example of tumor differentiation is 

shown in Figure 3.3. 
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Figure 3.3. OSCC group of Grade I, Grade II and Grade III. First row represents H&E-

stained images while the second row represents IHC-stained images. 

 

3.2. Advances in Computer-aided OSCC Diagnosis 

 

The primary issue with histological examination for tumor differentiation is the 

subjective nature of the examination, specifically the intra- and inter-observer variability [55]. 

By determining patient outcomes, computer-aided diagnosis systems (CAD) that increase 

objectivity and accuracy while decreasing inter- and intra-observer variability could 

immediately impact patient-specific therapeutic interventions. Additionally, such an approach 

could help the pathologist make quicker, more accurate conclusions and reduce the workload 

associated with manual inspections [55]. Due to recent AI and image processing 

developments, CAD systems can now recognize and classify OSCC with near-human or even 

better performance. 
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3.2.1. Role of Artificial Intelligence algorithms in OC analysis 

 

The development of artificial intelligence may enhance the screening process for OC. 

AI can accurately analyze an enormous dataset from multiple imaging modalities and help in  

healthcare, primarily in the field of oncology [110]. Fundamentally, AI aims to enable 

computers to perform operations that usually require human intelligence, such as learning, 

problem-solving, applying logic, and making rational choices [101]. This covers a wide range 

of techniques and strategies, including robotics, computer vision (CV)-image analysis, natural 

language processing (NLP), machine learning (ML), and deep learning (DL) [101]. Within 

science, AI enables the development of personalized treatment strategies by incorporating 

patient-specific data, such as genetic profiles and medical histories, to create personalized 

interventions based on unique traits, maximizing effectiveness and reducing side effects [45]. 

Ability of AI models to recognize molecular signs and biomarkers reinforces the idea of 

personalized healthcare by making it easier to formulate treatments that specifically target the 

mechanisms causing cancer to advance. Figure 3.4. lists the use of AI in OC detection and 

treatment. 

 

Figure 3.4. A visual representation of AI in oral oncology; it facilitates the use of various 

cutting-edge technologies for imaging, diagnosis, prediction, patient monitoring, and therapy 

automation. 
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3.2.2. Application of Artificial Intelligence algorithms in OC analysis 

 

By using various data sources to increase accuracy and efficiency, machine learning 

techniques are proven to be extremely useful tools in OC detection and diagnosis [6]. ML 

algorithms absorb data, identify trends, and make predictions without the help of humans. 

Deep learning uses multilayer artificial neural networks to analyze and interpret complex 

medical data in the healthcare industry [6]. This technology has the potential to completely 

transform several aspects of healthcare, including patient care management, personalized 

medicine, treatment planning, and diagnostics. In clinical practice, the application of DL to 

oral cancer data may assist healthcare professionals diagnose, identify, and forecast prognoses 

for oral cancer. This allows for early diagnosis and therapy selection, which increases the 

survival rate of patients with oral cancer [23]. 

 

 Around the world, hospitals are quickly switching from paper-based to electronic medical 

data. In the healthcare industry, natural language processing (NLP) is essential for gathering 

and interpreting data from medical records. By enabling improved clinical documentation, 

analysis, and decision-making, this technology has the potential to completely transform the 

way OC is identified, treated, and managed. Through the extraction of pertinent data from 

pathology reports, radiological findings, and medical notes of OC, NLP can automate the 

clinical documentation process [44]. 

 

 Predictive analytics is one of the big data analytics that is becoming increasingly significant 

in clinical care. Risk stratification, differential diagnosis, illness occurrence prediction, and 

intervention efficacy prediction are just a few of the clinical medicine applications of 

predictive analytics. In order to create predictive models that can aid health professionals with 

early detection, individualized treatment planning, and disease progression monitoring, this 

approach uses a range of data types, such as patient demographics, medical records, genetic 

traits, and clinical pathological results. Predictive methods like these can improve prior 

treatment planning, enable more individualized therapy approaches, and improve patient 

outcomes managing OSCC [48]. Figure 3.5. gives information about the role of ML, DL and 

NPL in OC treatment and diagnosis. 
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Figure 3.5. An illustration of machine learning, deep learning, and natural language 

processing algorithms used in oral cancer, including their particular methods and associated 

clinical tasks like data generation, clinical text analysis, lesion classification, subtype 

identification, and treatment response prediction. 

 

Due to improvement in robotics and automation, OC therapy and surgical procedures are 

facing tremendous advancements, which provide creative solutions that increase accuracy, 

and shorten recuperation periods. OC surgeons can now perform complex procedures with 

more control and precision with the development of robotic-assisted technologies. 

Automation technologies can improve surgical results' consistency by optimizing several OC 

treatment procedures, including tissue sampling, suturing, and organ retraction. This would 

lower the possibility of human error [56].  

 

Another kind of AI is expert systems, created to imitate experts' judgment in particular fields. 

Expert networks in OC management may play a significant role in giving healthcare 

professionals information by evaluating patient data, making suggestions, and supporting 

treatment planning and monitoring [2]. Figure 3.6. gives information about the role of 

predictive analysis along with robotics and automation in OC treatment and diagnosis. 
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Figure 3.6. An outline of predictive analysis approaches and robotics in oral cancer, 

demonstrating how robotic technologies improve diagnosis, screening, and precise tumor 

removal while regression and classification methods contribute to disease progression 

prediction and subtype identification. 
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4. Dataset Description 

 

The aim of this chapter is to provide a thorough overview of the dataset, including patient 

demographics and metadata, data collection, and the procedures used for dataset preparation 

and splitting. 

 

4.1. Data Collection and Sources 

 

A dataset consisting of 322 histology images with 768 x 768-pixel size was created for 

this research. The Clinical Department of Pathology and Cytology's archives of the Clinical 

Hospital Center in Rijeka provided the formalin-fixed, paraffin-embedded oral mucosa tissue 

blocks of instances of oral squamous cell carcinoma that were histopathologically 

documented. Two independent pathologists examined the sample slides, and they were 

categorized in accordance with the World Health Organization's (WHO) [26]. The Kappa 

coefficient was used to evaluate the pathologists' degree of agreement. Kappa coefficient 

score was 0.94.  

 

Briefly, a range of marker proteins were used to stain paraffin-embedded tissue slices that 

were 4 µm in size using the conventional IHC methodology. DAB and hematoxylin were 

employed to stain the IHC images. The light microscope (Olympus BX51, Olympus, Japan) 

with a digital camera (DP50, Olympus, Japan) was used to capture the images, and CellF 

software (Olympus, Japan) transferred the images to a computer. Moreover, images were 

captured with 10x objective lenses. 

 

As illustrated in Figure 4.1., images have been categorized into three classes based on the 

previously established classification. 
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Figure 4.1. The OSCC group of Grade I, Grade II and Grade III under x10 magnification. 

 

An additional dataset of 101 histopathological images was collected for experimental proof of 

concept in order to ensure the proposed AI-based system's robustness. The protocol for 

collecting additional images was the same as for the original data set.  

 

This research guarantees data quality, representativeness, and generalizability for AI-driven 

analysis in medical research by carefully choosing data sources and upholding strict ethical 

norms. 
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4.2. Patients Demographics and Metadata 

 

Medical dataset analysis is extended by the contextual information provided by patient 

demographics and metadata.  Table 4.1. shows a comparable clinic-pathological report for the 

patients. Demographic information included the patient's age at diagnosis, sex, smoking 

status, and alcohol use.  

 

70% of the patients were men and 30% were women. The median age among adult patients 

was 64. Of the patients, 55% smoked, and 38% consumed alcohol. 45% of patients were 

diagnosed with a Grade I, while only 15% were diagnosed with a Grade III. More patients 

(52%) had lymph nodes metastases. 

 

Table 4.1. Characteristics of the patients include sex, age, smoking and alcohol habits, 

presence of metastases in the lymph nodes, and grade of OSCC. 

Characteristics of the patients  n = 40 (100%) 

Sex F 30 

M 70 

Age To 49 5 

50 – 59 

60 – 69 

+70 

13 

55 

27 

Smoking Y 55 

N 45 

Alcohol Y 38 

 N 62 

Lymph Node Metastases Y 

N 

52 

48 

Grading I 

II 

III 

45 

40 

15 
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4.3. Data preparation 

4.3.1. Segmentation mask construction 

 

In medical imaging, segmentation mask construction is an essential task that a medical 

expert can manually perform. Mask is an array or matrix that highlights areas of interest in an 

image. It marks which pixels are part of a specific item, class, or region. Each pixel in the 

mask corresponds to a pixel in the original image. 

 

Standard annotation software and tools include Labelbox, GIMP, ImageJ, ITK-SNAP, 3D 

Slicer, and CVAT [65]. These tools offer features like region-growing methods, brush tools, 

and polygonal annotation.  

 

Figure 4.2. shows OSCC images with corresponding segmentation masks which are created 

using GIMP. 

 

 

Figure 4.2. Group of well-differentiated, moderately differentiated and poorly differentiated 

OSCC along with segmentation masks. 
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4.3.2. Image Augmentation 

 

Deep convolutional neural networks are strongly dependent on many samples to 

achieve good performance and prevent overfitting. However, since fields like medical image 

analysis sometimes lack access to a large number of samples augmentation techniques are 

required. Image augmentation is the process of applying different modifications to increase 

the size and diversity of a dataset. It prevents overfitting and improves model generalization. 

Due to previously mentioned neural network demand and the restricted availability of data, in 

this research, augmentation techniques such as geometric transformations are used to 

artificially increase the quantity of samples.  

 

Geometrical transformations used for the augmentation procedure are shown in Figure 4.3.  

 

 

Figure 4.3. Geometrical transformations for augmentation procedure. 

 

Testing samples are not augmented.  The augmentation method is only utilized to create 

training samples since newly created data are variations of the original data.  
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As seen in Figure 4.4., a new training set including an additional 1799 images has been 

created after applying geometrical transformations, resulting in a total of 2056 images. 

 

 

Figure 4.4. Visual representation of the original and augmented dataset. 

 

4.4. Dataset Splitting 

 

A reasonable data splitting approach is essential for model validation and developing a 

model with strong generalization performance. Although there are other data splitting 

techniques that have been described and utilized in the literature, cross-validation (CV) is the 

most used. CV divides the data into k different parts, often known as k-folds. The validation 

set represents a single fold. The model is trained on the remaining k-1 folds and then used in 

the validation set to record its predictive performance [112].  In order for each part to be used 

as a validation set once, this process was repeated k times. After averaging the recorded 

predictive performances, the model parameter with the best average predictive performance is 

identified as optimal. 

 

In this research, due to the high imbalance among OSCC classes the performance of AI-based 

models is estimated using stratified 5-fold cross-validation.  In this manner, each class is 

roughly represented throughout all test folds.  
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5. Image Preprocessing 

 

Significant increases in processing capacity and developments in image analysis 

techniques over the past decade have made it possible to create robust computer-aided 

analytical tools for medical data. With the development of whole-slide digital scanners, tissue 

histopathological slides can now be scanned and stored digitally. Whole slide imaging (WSI) 

is frequently used to examine tissue samples and diagnose cancerous diseases. However, 

some scanning equipment, staining techniques, and tissue reactivity can cause color variations 

in histopathology images, making it difficult to analyze them. This chapter gives an overview 

of preprocessing techniques used in this research in order to aid computers comprehend 

histopathology images for diagnostic purposes. 

 

5.1. Normalization of Histopathological Images 

 

Digital histopathology is a field of study that uses techniques such as color 

normalization and feature extraction that aid computers comprehend histopathology images 

for diagnostic purposes [108]. However, variations in color in histopathological images might 

lead to issues. The stain or dye used to prepare histopathological images typically gives the 

image a different hue. The results of analyzing images without preprocessing could lead to an 

inaccurate diagnosis [35].  

 

One tissue staining method that pathologists are particularly interested in is hematoxylin and 

eosin (H&E) staining. Pathologists can quickly identify and analyze tissue sections according 

to the H stain, which highlights nuclei in blue against the pink background of the cytoplasm 

and surrounding structures [118].  
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Figure 5.1. shows OSCC H&E histopathological images of well- and moderately 

differentiated OSCC with magnification x10. 

 

 

Figure 5.1. Tissue slides of well- and moderately differentiated oral carcinoma. 

 

The reasons for color diversity in histopathology images are heterogeneous stain coloring, 

chemicals from different manufacturers, and the use of various scanners and equipment 

during slide preparation [42]. Therefore, to ensure visual consistency in histopathology 

images, color normalization is necessary. 

 

 

Figure 5.2. An illustration of H&E stain normalization shows the initial RGB patch, the 

separated hematoxylin and eosin channels, and the final normalized patch for a uniform 

histopathological image presentation. 
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Histopathology images can be color-normalized using a variety of algorithms, including the 

Reinhard method, Macenko method, stain color descriptor (SCD), histogram specification, 

complete color normalization, and structure preserving color normalization (SPCN). 

However, Macenko method is the most used color normalizing technique when utilizing H&E 

stained images. 

 

Figure 5.3. shows H&E histopathological images of OSCC before and after color (Macenko) 

normalization. 

 

Figure 5.3. Visual representation of A) H&E-stained images and B) normalized H&E-stained 

images. 

 

Obtained results reveal that the application of preprocessing method, such as Macenko image 

normalization for image analysis, has great potential as the first step in the diagnosis of 

OSCC. However, in our research, the histopathological sections were treated with two 

different antibodies. A polyclonal rabbit anti-megalin antibody (Santa Cruz Biotechnology, 

USA; also diluted 1:100 in the same buffer) and monoclonal mouse anti-MT I+II antibody 

(clone E; DAKO, USA) was employed. A standard immunohistochemistry methodology was 

followed throughout the process. Diaminobenzidine (DAB) was added to a peroxidase 

substrate in order to visualize the immunological response. 
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 After visualization, the slides were dehydrated, stained with hematoxylin (Sigma, Germany), 

and then mounted in Entelean (Sigma). 

 

The aforementioned examples show how to use the Macenko approach to preprocess H&E-

stained histopathology images. However, this study employs IHC histopathology images, 

whereas all the previous examples are centered around H&E images. An example of an IHC 

image using the Macenko approach is presented in Figure 5.4. 

 

 

Figure 5.4. Visual representation of IHC stain normalization. 

 

Figure 5.4. shows that even though Macenko method is a widely used color normalization 

technique for H&E images, it is not well-suited for immunohistochemical staining. Using two 

dominating stain vectors, usually representing hematoxylin (blue) and eosin (pink), Macenko 

is based on optical density (OD) deconvolution. Assuming that there are only two stains in the 

color space, it conducts stain separation and calculates stain vectors using singular value 

decomposition (SVD). Depending on the antibody and detection method, IHC slides are 

stained with chromogens such as hematoxylin (counterstain) and DAB (brown), or different 

combinations. This research staining process uses various antibodies, which produce 

chromogen patterns that deviate from the Macenko method's H&E presumptions.  
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Therefore, the normalizing process may result in images that seem faded, with areas that are 

strongly stained losing detail and contrast. When one of the components, the hematoxylin or 

the DAB is insufficient, Macenko normalization may not be able to distinguish them 

correctly. That will result in a merging of tissue features and an incorrect representation of 

color. 

 

Moreover, the Macenko approach dismisses significant spatial information, such as 

microstructural texture and local architectural patterns, which are important for later deep 

learning tasks, especially for transformer-based segmentation models that rely on multi-scale 

contextual reasoning. To solve these limitations, this research employs a preprocessing 

pipeline based on the Stationary Wavelet Transform (SWT) for classification task and 

Luminance Wavelet Enhancement (LWE) for semantic segmentation task, described in 

chapter 5.2. and 5.3. 

 

 

5.2. Preprocessing Method Based on SWT 

 

Wavelet Transform (WT) is a powerful method frequently employed in data 

preprocessing [1]. Wavelet transformation examines spatial frequency components at various 

scales rather than depending on color deconvolution. This facilitates the maintenance of fine 

and global structural characteristics of the tissue, making it resistant to changes in scanner 

lighting and staining intensity. 

 

Wavelet transform of signal x(t) can be defined as [95] 

 

𝑋(𝜏, 𝑎) =
1

√|𝑎|
∫ 𝑥(𝑡)𝜓∗ (

𝑡 − 𝜏

𝑎
) 𝑑𝑡,

∞

−∞

(5.1) 

where [114]: 

 a is the dilation,  

 ψ is the analyzing wavelet, and 

  τ is the translation parameter.  
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The Discrete Wavelet Transform (DWT) of signal x[m] can be calculated as follows [95] 

 

𝑋[𝑘, 𝑙] = 2−
𝑘
𝑙 ∑ 𝑥[𝑚]𝜓[2−𝑘𝑚 − 𝑙]

∞

𝑚=−∞

. (5.2) 

 

The Discrete wavelet transform (DWT) can be applied independently along each dimension 

during image processing. As a result, the image is divided into four subbands: LL, LH, HL, 

and HH. While the detail coefficients are represented by LH, HL, and HH, the approximation 

coefficients can be identified as the LL subband [71]. Although DWT is simple to 

implement and reduces computing time, it has drawbacks in terms of decimation and shift-

invariance. In order to overcome the aforementioned issues, this research utilizes Stationary 

Wavelet Transform (SWT), which enables the decomposition of histopathological images. 

 

The advantages of SWT are as follows [43]; 

 

❖ improved time-frequency localization,  

❖ no decimation step, which provides duplicate information and 

❖  invariance of translation. 

 

Following the SWT decomposition process, a mapping function is used to weigh the derived 

coefficients. This enables the further enhancement of important features of an image. The 

mapping function is determined by incorporating the following factors:  

 

❖ only detail coefficients undergo coefficient mapping and  

❖ both details with high and low coefficient values are heavily weighted, as they 

preserve important information. 

 

Wavelet coefficient mapping function can be mathematically defined as follows: 

 

𝑦𝑖,𝑗 = 𝑎𝑤𝑖,𝑗
3 + 𝑏𝑤𝑖,𝑗

2 + 𝑐𝑤𝑖,𝑗 + 𝑑, (5.3) 
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where; 

 𝑎, 𝑏, 𝑐, and 𝑑 represent constants, 

  𝑤𝑖,𝑗 is an input coefficient, and 

  𝑦𝑖,𝑗 is a coefficient after mapping. 

 

An improved image is obtained by performing the SWT reconstruction using weighted and 

approximate SWT coefficients after the coefficient mapping procedure. Figure 5.5. illustrates 

the SWT decomposition, coefficient mapping, and SWT reconstruction procedure. 

 

 

Figure 5.5. The following symbols are used to represent wavelet coefficient mapping, SWT 

reconstruction, and SWT decomposition: LL for approximation coefficients, LH for 

horizontal coefficients, HL for vertical coefficients, HH for diagonal coefficients, CM for 

coefficient mapping function, and L_D for low pass filter and H_D for high pass filter. 

 

The wavelet function and mapping function have a direct impact on the quality of weighted 

coefficients, therefore careful selection of these values is essential. Since it is highly 

computationally costly to evaluate each value in huge search-spaces, conventional methods 

for determining parameters, like random search or grid search, may not always be practical 

[29].  
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These approaches choose the next parameter configuration without considering the assessed 

performance of previous iterations, which often results in time spent assessing the function 

with suboptimal parameter selection. The Bayesian technique, on the other hand, chooses the 

subsequent parameter configuration for the mapping function based on the outcomes of 

previous iterations [92]. This approach outperforms more conventional approaches by 

achieving convergence to the optimal solution in reduced iterations. In order to determine the 

most suitable values for the wavelet function and wavelet coefficient mapping function 

constants (a, b, c, and d), Bayesian optimization has been utilized.  

 

The domain of mapping function constants over which to search is defined and shown in 

Table 5.1.  

 

Table 5.1. Combination of the hyperparameters used in the Bayesian optimization process. 

Hyperparameter Possible parameters 

𝑎 0 – 0.1 

𝑏 0 – 0.1 

𝑐 0 – 0.1 

𝑑 0.001 – 1 

Wavelet function Haar, sym2, db2, bior1.3 

 

 

Wavelet transform decomposes signals or images into their component parts at various 

frequency and spatial scales using mathematical bases called wavelet functions, such as Haar, 

sym2, db2, and bior1.3. Due to its distinct characteristics, each wavelet can be used for 

specific types of signal or images. 
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5.3. Luminance Wavelet Enhancement (LWE) 

 

In order to improve the structural representation of immunohistochemistry images 

before they are transmitted to the segmentation model, the proposed preprocessing technique 

introduces Luminance Wavelet Enhancement (LWE). Unlike global color normalization 

techniques which largely focus on modifying stain intensity distributions, LWE directly 

tackles the spatial aspects of the image by increasing texture and border information included 

within the luminance channel of the LAB color space [100]. Figure 5.6. shows pipeline of the 

proposed LWE preprocessing approach. 

 

 

Figure 5.6. Illustration of the Luminance Wavelet Enhancement (LWE) preprocessing 

pipeline, displaying the transition from RGB to LAB color space and subsequent processing 

steps: L (luminance channel), AB (chromatic channels), SWT (Stationary Wavelet 

Transform), AHVD (approximation and horizontal, vertical, and diagonal detail coefficients), 

ISWT (Inverse Stationary Wavelet Transform). 

 

The RGB image is translated into the LAB color space as follows: 

 

𝐼𝐿𝐴𝐵 = 𝑓𝑅𝐺𝐵→𝐿𝐴𝐵(𝐼𝑅𝐺𝐵). (5.4. ) 

 

After converting the input image to LAB space, the luminance component L is retrieved and 

decomposed using the SWT as shown: 

 

(𝐿) →
𝑆𝑊𝑇

{𝐴, 𝐻, 𝑉, 𝐷} (5.5. ) 
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where SWT offers three high-frequency detail sub-bands (horizontal, vertical, and diagonal), 

each of which captures structural information at a distinct orientation, in addition to an 

approximation sub-band. Since SWT is shift-invariant and does not include downsampling, its 

coefficients preserve complete spatial resolution, making this approach suitable for 

downstream pixel-accurate segmentation. 

 

Structural detail is increased by scaling each high-frequency component with a scale factor as 

seen in Eq. 5.6.: 

 

𝐻′ = 𝑘𝐻, 𝑉′ = 𝑘𝑉, 𝐷′ = 𝑘𝐷. (5.6. ) 

 

The high-frequency detail coefficients are intentionally increased to highlight delicate 

morphological details and reinforce boundary cues. This regulated enhancement corrects for 

challenges such as poor staining, inconsistent illumination, and low contrast, which are 

frequently observed in IHC slides and may hide diagnostically relevant patterns.  

 

The enhanced coefficients are then combined again using the inverse SWT to reconstruct an 

enhanced luminance channel L and can be described as follows: 

 

𝐿′ = 𝐼𝑆𝑊𝑇(𝐴, 𝐻′, 𝑉′, 𝐷′). (5.7. ) 

 

Color differences that are biologically significant are preserved because chromatic channels A 

and B do not change. The increased luminance channel L is combined with the chromatic 

channels as seen in Eq 5.8.: 

 

𝐼𝐿𝐴𝐵
′ = [𝐿′, 𝐴, 𝐵]. (5.8. ) 
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6. Artificial Intelligence Algorithms 

 

This chapter presents the artificial intelligence algorithms used in this research, 

emphasizing techniques for multiclass classification and semantic segmentation. 

 

6.1. AI algorithms for multiclass classification 

 

 By combining AI algorithms with medical image analysis, large and complex datasets 

can be analyzed in real time and provide insights that can improve patient outcomes. This 

chapter gives a brief description of most used image classification algorithms. 

        

6.1.1. ResNet50 and -101 

 

The well-known vanishing gradient issue enables deep neural networks more challenging to 

train. To facilitate deep neural network training, He et al. (2016) proposed a residual network 

(ResNets) [39]. Authors improved the residual block and its pre-activation version, allowing 

vanishing gradients to move freely to any other earlier layer via shortcut connections. In the 

ResNet50 architecture, each 2-layer block in the 34-layer network is swapped out for a 3-layer 

bottleneck block, producing 50 layers. On the other hand, the ResNet101 architecture is built 

with additional 3-layer blocks, as shown in Table 6.1. 
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Table 6.1. ResNet50 and ResNet101 architecture representation. 

Layer Output Layers 
ResNet50 ResNet101 

Number of repeating layers 

Conv1 112 x 112 

7 x 7, 64, stride 2 x 1 x 1 

3 x 3 max pool, 

stride 2 
x 1 

x 1 

Conv2_x 56 x 56 

1 x 1, 64 

x 3 

 

3 x 3, 64 x 3 

1 x 1, 256  

Conv3_x 28 x 28 

1 x 1, 128 

x 4 

 

3 x 3, 128 x 4 

1 x 1, 512  

Conv4_x 14 x 14 

1 x 1, 256 

x 6 

 

3 x 3, 256 x 23 

1 x 1, 1024  

Conv5_x 7 x 7 

1 x 1, 512 

x 3 

 

3 x 3, 512 x 3 

1 x 1, 2048  

 1 x 1 

Flatten, 

x 1 

 

3-d Fully 

Connected, 

x 1 

Softmax  
 

 

He et al. (2016) demonstrated on the ImageNet dataset that ResNets perform better than other 

topologies on the ILSVRC classification test, with an error of 3.57% [39]. 

 

6.1.2. InceptionV3 

 

InceptionV3 was the concept proposed by Szegedy et al. (2015) after InceptionV1 and 

InceptionV2 [93]. Its main goal is to reduce the amount of computing power by altering 

earlier Inception designs. To relieve the limitations for simpler model adaptation, InceptionV3 

has proposed several network optimization techniques, such as factorized convolutions, 

regularization, dimension reduction, and parallelized computations.  
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Setting a new state of the art, their best quality version of Inception-v3 achieves 21.2%, top 1, 

and 5.6% top-5 error for single crop evaluation on the ILSVR 2012 classification. Figure 6.1. 

illustrates the Inception-v3 architecture, which had one input block, two grid size reduction 

blocks, three Inception Modules A, B, and C blocks, one auxiliary classifier block, and one 

output block. 

 

 

 

Figure 6.1. Block diagram of InceptionV3 architecture [86]. 

  

 

6.1.3. InceptionResNetV2 

 

 Szegedy et al. (2016) present the InceptionResNetv2, which combines the Inception 

design with residual connections [94]. It increases network efficiency and permits deeper 

penetration without running into issues like vanishing or gradient explosion. The network 

gains greater depth, improved processing power, and stronger nonlinearity through the 

breakdown of the convolution kernel. The presented design shown in Figure 6.2., significantly 

increases training speed and enhances recognition performance. 
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Figure 6.2. Diagrams of the overall network structure and module structure of 

InceptionResNetV2 [70]. 

 

 

6.1.4. Xception 

 

 In 2017. Chollet presented a new architecture called Xception [13]. Convolutional 

layers in a conventional convolutional neural network seek correlation by navigating over 

space and depth. Xception goes a step further by independently mapping the spatial 

correlations for every output channel and capturing cross-channel correlation through 1x1 

depth-wise convolution. The 36 convolutional layers that comprise the Xception architecture 

are organized into 14 modules [13]. Figure 6.3. shows that every module, aside from the first 

and last modules, has linear residual connections surrounding it.  
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Figure 6.3. Xception architecture; the data propagates eight times, first through the input flow 

and then through the middle flow. Furthermore, data moves through the third box, 

representing the exit flow. 

 

 

6.1.5. MobileNet 

 

Due to its significant memory and computational demands classical CNN is not 

suitable for use on mobile and embedded systems. For that reason, Howard et al. (2017) 

proposed MobileNetV1, a lightweight network designed for embedded and mobile 

applications.  

 

In 2018. in order to enhance the functionality of mobile models, Sandler et al. introduced 

MobileNetv2 architecture [81]. It expands on the concepts of MobileNetV1 by using 

depthwise separable convolution as effective building blocks. MobileNetV2 uses small 

bottleneck layers as input to the residual block, unlike traditional residual models that employ 

an extended input representation. Table 6.2. demonstrates a detailed architecture structure. 
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Table 6.2. Each row in the MobileNetV2 architecture represents a set of identical layers that 

have been repeated n times. Every layer in a sequence has the same number of output 

channels (c). The initial sequence’s layer employs a stride of s, but the subsequent layers use a 

stride of 1. The expansion factor (t) determines the size of the input. 

Input Operator 
Expansion 

factor (t) 

Number of 

output 

channels (c) 

Repeating 

number (n) 

Stride (s) 

224 x 224 x 

3 
conv2d - 32 1 2 

112 x 112 x 

32 
bottleneck 1 16 1 1 

112 x 112 x 

16 
bottleneck 6 24 2 2 

56 x 56 x 24 bottleneck 6 32 3 2 

28 x 28 x 32 bottleneck 6 64 4 2 

14 x 14 x 64 bottleneck 6 96 3 1 

14 x 14 x 96 bottleneck 6 160 3 2 

7 x 7 x 160 bottleneck 6 320 1 1 

7 x 7 x 320 conv2d 1 x 1 - 1280 1 1 

7 x 7 x 1280 
avgpool 7 x 

7 
- - 1 - 

1 x 1 x 1280 

fully 

connected 

(Softmax) 

- 3 -  

 

 

 

6.1.6. NasNet 

 

By framing the task of determining the optimal CNN architecture as a reinforcement 

learning problem, Zoph et al. (2018) developed NASNet [117]. The main idea was to find the 

optimal parameters inside the specified search space, including strides, number of layers, 

output channels, filter sizes, etc. NASNet proposes identifying two kinds of cells: reduction 

and normal cells. Reduction cells are primarily utilized to lower spatial resolution, while 

normal cells are used to extract advanced information while maintaining the exact spatial 

resolution.  
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The depth of a network defines the search space, allowing the discovery of effective 

architectures using a small dataset (e.g., CIFAR-10) and enabling the transfer of the learned 

architecture to image classification tasks across various data sizes and computational scales.  

 

The generated architectures outperform state-of-the-art performance on both the CIFAR-10 

and ImageNet datasets while demanding less computational effort than human-designed 

architectures. An illustration of a two-cell search space is shown in Figure 6.4.  

 

 

Figure 6.4. Left: An illustration of a two-cell search space. Right: An illustration of the ideal 

design for a typical cell. 

 

 

6.1.7. EfficientNetB3 

 

EfficientNet, which Tan and Lee first presented in 2019, quickly gained prominence as 

the preferred architecture for various demanding applications, such as language processing, 

image segmentation, and object recognition [96]. The reason for success is its capacity to 

compromise model performance and computing efficiency, two essential aspects of deep 

learning.  
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The EfficientNet family of models, which includes EfficientNetB3, is regarded as a balanced 

and effective model. Compound scaling is one of EfficientNet-B3 key features. It 

automatically scales up the model's architecture in terms of width (number of filters per layer) 

and depth (number of layers), depending on the input image resolution. With this model, it 

can be analyzed both large and small images more efficiently with better results while using 

more resources. The architecture of EfficientNetB3 can be summarized as presented in Table 

6.3. 

 

Table 6.3. EfficientNetB3 architecture. 

Stage Operator Resolution 
Number of 

channels  

Layers 

1 Conv3x3 300x300 32 1 

2 
MBConv1, 

k3x3 
150x150 16 2 

3 
MBConv6, 

k3x3 
150x150 24 3 

4 
MBConv6, 

k5x5 
75x75 40 3 

5 
MBConv6, 

k3x3 
38x38 80 5 

6 
MBConv6, 

k5x5 
19x19 112 5 

7 
MBConv6, 

k5x5 
10x10 192 6 

8 
MBConv6, 

k3x3 
10x10 320 2 

9 
Conv1x1 & 

Pooling & FC 
10x10 1280 1 
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6.2. AI algorithms for semantic segmentation 

 

In addition to multiclass classification, semantic segmentation is an essential AI-

driven method in medical image analysis, especially for identifying OSCC. Semantic 

segmentation provides pixel-by-pixel classification, thus allowing to precisely identify 

malignant areas in histopathology images. Deep learning architectures like U-Net, 

DeepLabV3+, and transformer-based models are presented in this chapter. 

 

     6.2.1.   U-Net 

Ronneberger et al. (2015) in their research presented U-Net, a well-known deep 

learning architecture. Having both contracting and expanding pathways is an advantage of the 

U-Net architecture. The contracting path gradually lowers the input's spatial resolution by 

using encoder layers to extract contextual features. The expanding path, on the other hand, 

uses skip connections from the contracting path to precisely create the segmentation map by 

including decoder layers that reconstruct the encoded representation [80].  

 

This network was created to efficiently utilize a smaller amount of data while preserving 

speed and accuracy, with the main goal of addressing the problem of limited annotated data in 

the medical field [80]. U-Net architecture is shown in Figure 6.5. 
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Figure 6.5. Each multi-channel feature map in the U-Net architecture is represented by a blue 

box with a label on top indicating the number of channels it contains. The box's lower left 

edge displays the x- and y-sizes. Replicated feature maps are shown by white boxes, and 

arrows show the operations performed between them [80]. 

 

The contracting path in U-Net is responsible for extracting the important features from the 

input image. In order to capture increasingly abstract representations of the input, the encoder 

layers use convolutional operations to gradually increase the feature maps' depth while 

decreasing their spatial resolution. On the contrary, while preserving the input's spatial 

resolution, the expanding path decodes the encoded data and locates the features. In addition 

to conducting convolutional operations, the decoder layers in the expanded path upsample the 

feature maps. Skip connections from the contraction path are employed to preserve the spatial 

information that would otherwise be lost during the downsampling process, allowing the 

decoder layers to localize features more precisely [80]. 
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     6.2.2.   DeepLabV3+ 

 

DeepLabV3 is a deep learning model for image semantic segmentation. Chen et al. in 

2018 proposed the newest version of DeepLabV3 called DeepLabv3+ [11]. It adds a simple 

yet effective decoder module to DeepLabV3 to help refine segmentation results, particularly 

along object boundaries. It controls the feature map and receptive field resolutions using 

Atrous (Dilated) Convolutions without adding more parameters overall. Atrous Spatial 

Pyramid Pooling is an additional key characteristic that efficiently obtains multiscale 

characteristics including valuable segmentation information [11].  

 

DeepLabv3+ achieved remarkable results, 82.1% mIOU on the Cityscapes dataset and 89% 

mIOU on the PASCAL VOC 2012 test set. These accomplishments demonstrate the series' 

ongoing development in expanding the possibilities for semantic image segmentation. The 

framework of DeepLabV3+ architecture is shown in Figure 6.6. 

 

 

Figure 6.6. The architectures described in subsection 6.1. (Xception, ResNet101, 

MobileNetv2) can be used as DeepLabv3+ backbones. 
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     6.2.3.   SegFormer 

 

SegFormer, a straightforward, effective, and reliable framework for semantic 

segmentation, was presented by Xie et al. in 2021. It combines lightweight multilayer 

perception (MLP) decoders with Transformers [111]. 

 

 SegFormer has two main attributes:  

a) Multiscale feature generation from a hierarchically structured Transformer 

encoder.  By eliminating the need for positional encoding, it prevents positional 

codes from being interpolated, which could otherwise degrade performance in 

situations when the test resolution differs from the training resolution. 

b) SegFormer avoids complicated decoders. In order to produce effective 

representations, the proposed MLP decoder combines local and global attention by 

aggregating data from many layers.   

 

Segformers appear in six different configurations, ranging from B0 to B5. The lightest 

configuration is B0, while the best segmentation quality is achieved with B5 configuration. 

On the Cityscapes validation set, their top model, SegFormerB5, gets 84.0% mIoU and has 

exceptional zero-shot resilience on Cityscapes-C [111]. SegFormer framework is shown in 

Figure 6.7. 

 

 

 

Figure 6.7. Two primary modules comprise the described SegFormer framework: lightweight 

all-MLP decoder that directly incorporates these multi-level characteristics to produce the 

semantic segmentation mask and a hierarchical Transformer encoder that records both coarse 

and fine-grained information [111]. 
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7. Explainable Computer Vision for 

Interpretable Analysis of OSCC 

 

In recent years, a consistent increasing trend has been observed in the application of AI-

based models in the medical field, with numerous studies on automated diagnosis and 

prognosis. However, many AI models are still considered as a black box and not very 

interpretable. The issue of interpretability in the medical field significantly exceeds simple 

intellectual interest. More precisely, it is noted that interpretabilities in the medical domain 

include elements such as risk and responsibilities that are not considered in other fields. When 

medical decisions are made, human lives can be at risk. It would be equivalent to completely 

avoiding responsibility to entrust such major decisions to computers that are incapable of 

providing accountability. For that reason, in this chapter explainable AI is demonstrated in 

order to make AI systems more understandable to health professionals. 

 

7.1. Explainability in Medical AI Systems 

 

Explainable AI (XAI) is an emerging field that is extremely important in the medical 

field [84]. The development of AI is briefly related to data science, computer vision, natural 

language processing, machine learning, and statistical analysis. Despite these advancements, 

they were unable to surpass human intellect, which was further enhanced by deep learning, 

neural networks, and reinforcement learning. These developments were crucial for the 

improvement of the medical field. However, in order to comprehend specific decisions, 

outcomes, and the present state of the patient's problems, it is crucial that the medical field 

incorporate explanations regarding legal and ethical AI [41].  
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XAI aims to improve performance and explainability, which makes it easier for users to trust, 

comprehend, accept and manage AI systems. 

 

 

Figure 7.1. Key components of Explainable AI (XAI), such as transparency, explainability, 

adaptability, and limitations of design. 

 

Figure 7.1. represents the benefits of XAI methods [84]; 

 

❖ Design Limitations: XAI facilitates a deeper understanding of data quality, feature 

distribution, classification and comparison evaluation by improving interpretability at 

every structural layer.  

❖ Transparency: The transparent frameworks of XAI techniques are well-known for 

offering details on data processing and model creation. With an accurate 

understanding of the system’s fundamental features, transparency allows users to 

effectively optimize the system. 

❖ Explainability: When it comes to model design problems, explainability can assist in 

identifying the process step where the incorrect choice was taken, allowing for a later 

correction. For the initial data analysis, decision, and action for the entire XAI model, 

explainability is crucial. 
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❖ Adaptability: By utilizing the feedback technique, XAI models are renowned for their 

great degree of adaptability. The ability of XAI systems to adapt explanations and 

decision-support tools to various users 

 

7.2. Global and Local Methods for the Preprocessing 

 

Recent literature demonstrates the strategy of offering interpretability and 

transparency while utilizing the models as [32]: 

 

❖ Gradient Weighted Class Activation Mapping (Grad-CAM), 

❖ Layer-Wise Relevance Propagation (LRP), 

❖ Statistical Functions for the Feature Analysis and Processing, 

❖ SHapley Additive exPlanations (SHAP), 

❖ Attention Maps and 

❖ Local Interpretable Model-Agnostic Explanations (LIME) 

 

Based on the literature review and aim of this research Grad-CAM will be utilized for visual 

representation. 

 

7.2.1. Gradient Weighted Class Activation Mapping  

 

As interpretability in deep learning has become more significant, especially in CNN 

architectures, Selvaraju et al. (2017) proposed Gradient-weighted Class Activation Mapping 

(Grad-CAM) as a visual explanation technique [82]. Grad-CAM leverages the gradient 

information of a target concept flowing backward into the last convolutional layer to generate 

coarse localization maps that emphasize the most discriminative portions of the input image 

that are most important in the model's prediction. This contribution enabled increased 

transparency in decision-making and represented a major advancement toward XAI. 
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To construct the class discriminative localization map 𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 ∈ ℝ𝑢x𝑣, the authors first 

calculate the gradient of the class score c, 𝑦𝑐 with respect to feature maps 𝐴𝑘. Global average 

pooled gradients are used to determine the neuron significance weights, 𝛼𝑘
𝑐: 

                                                        

𝛼𝑘
𝑐 =

1

𝑍
∑ ∑  

𝜕𝑦𝑐

𝜕𝐴𝑖𝑗
𝑘

𝑗𝑖

(7.1) 

 

This represents the significance of feature map k for a target class c and represents a partial 

linearization of the deep learning model downstream from A. By using the ReLU activation 

function,  𝛼𝑘
𝑐  gathers the corresponding class discriminative localization map. 

 

𝐿𝐺𝑟𝑎𝑑−𝐶𝐴𝑀
𝑐 = 𝑅𝑒𝐿𝑈 (∑ 𝛼𝑘

𝑐𝐴𝑘

𝑘

) (7.2) 

 

In general, a CNN that classifies images does not always need to produce 𝑦𝑐 as its class score. 

It might be any differentiable activation, such as a question response or words from a caption. 

The Global Average Pooling method is used to spatially pool the K feature maps 𝐴𝑘 ∈ ℝ𝑢x𝑣. 

The pooled feature map and linear transformation are then used to obtain the class c score, 𝑆𝑐. 

 

𝑆𝑐 = ∑  𝑤𝑘
𝑐  

1

𝑍
∑ ∑ 𝐴𝑖𝑗

𝑘

𝑗𝑖𝑘

(7.3) 

 

It is possible to modify the previous equation by using 𝐿𝑐(CAM). 

 

𝑆𝑐 =  
1

𝑍
∑ ∑ ∑ 𝑤𝑐𝐴𝑖𝑗

𝑘

𝑘𝑗𝑖

(7.4) 
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8. Assessment of TSR in 

Histopathological Samples 

 

    In this chapter, the assessment of the tumor-stroma ratio (TSR) in histopathological 

specimens is described, along with its biological foundation, methodological techniques, and 

prognostic significance using Kaplan-Meier survival analysis. 

 

8.1. Biological Foundation of TSR Interaction 

 

For a prolonged period, clinicopathological factors, including tumor type, malignancy 

grade, tumor size, patient age and the existence of local or distant metastases, have 

determined the optimal plan of treatment for cancer [102]. However, the tumor 

microenvironment is becoming important feature of current biomarker development research. 

The tumor-stroma ratio (TSR) is one of the simplest yet effective histopathological metrics 

that represent the tumor metastatic environment (TME). The stroma interacts with both 

malignant and nonmalignant cells during all stages of carcinogenesis, from tumor onset to 

invasion and metastasis, making the tumor-stroma crucial to the growth and progression of 

cancer [36]. 

 

Not all tumors are formed out of cancerous epithelial cells. They instead coexist alongside a 

dynamic stroma consisting of extracellular matrix (ECM), fibroblasts, immunological cells, 

and endothelial cells.  

 

Stroma actively contributes to the development of cancer by [99]: 

❖ stimulating angiogenesis, 

❖ modifying the extracellular matrix to make invasion easier, 
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❖ supplying cytokines and growth factors, and 

❖ causing immunological evasion. 

 

Increased communication between the microenvironment and malignant cells is shown in 

stroma-rich tumors, which are frequently associated with more aggressive biological behavior 

[106]. 

 

8.2. Method of Assessment 

 

Based on the tissue slide used in normal diagnostic pathology to determine the tumor 

grade, the tumor-stroma ratio can be calculated. Using a 10× objective, one region within 

vision site that has both tumor and stromal tissues should be chosen. The chosen image area 

should show the tumor cells on all four sides. Groups with different stromal ratios were 

separated into stroma-high and stroma-low groups. According to the histological section, a 

tumor is classified as stroma-low if its stromal area is less than 50% and as stroma-high if it is 

more than 50% [88]. The TSR assessment methodology is shown in Figure 8.1. 

 

 

Figure 8.1. Framework for stromal assessment in histopathological samples that describes 

how to prepare samples, choose fields, examine them under a microscope, and classify tumors 

according to their stromal proportion. 
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8.3. Prognostic Significance 

 

TSR has become a powerful independent prognostic indicator for several cancers:  

❖ Colorectal carcinoma: Disease-free survival (DFS) and overall survival (OS) are 

negatively correlated with stroma-rich tumors.  

❖ Breast cancer: Particularly in triple-negative breast cancer, a high stromal content is 

associated with an elevated risk of recurrence. 

❖ Gastric and esophageal malignancies: TSR indicates a poor response to treatment and 

a lower survival rate. 

❖ Non-small cell lung cancer (NSCLC): Stroma-rich tumors exhibit aggressive 

characteristics and a poor prognosis. 

 

Table 8.1. Advantages and limitations of TSR assessment [113]. 

 Point   Description   
  

Advantages of 

TSR Assessment 
Cost-effective  

Requires only routine stained slides, 

no additional tests. 

  

 Reproducible  
Standardized methodology allows high 

interobserver agreement. 

 

 
Clinically 

relevant 
 

Provides prognostic information beyond 

conventional staging. 

 

 Easily integrable  
It can be incorporated into routine pathology 

workflow. 

 

Challenges and 

Limitations 
Subjectivity  

TSR estimation relies on visual assessment, 

which may lead to inter-observer variability. 

 
Tumor 

heterogeneity 
 

Different areas of the tumor may show 

variable stromal content. 

 

 
Cutoff 

discrepancies 
 

Lack of universal agreement on the 

cutoff threshold. 

  

 

Limited 

validation in rare 

cancers 

 
Most evidence is restricted to 

common carcinomas. 
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According to the limitations presented in Table 8.1, this research will utilize artificial 

intelligence (AI)-based image analysis and digital pathology to standardize TSR evaluation 

and reduce observer bias. 

 

8.4. Kaplan-Meier survival analysis 

 

The significance of tumor-stroma ratios as a prognostic marker will be assessed in this 

research using the Kaplan–Meier (KM) survival curve. A subfield of statistics called survival 

analysis examines time-to-event data, where the outcome of interest is the interval between an 

event—such as death, return of an illness, or failure of a treatment—and the time until it 

happens. Introduced by Edward L. Kaplan and Paul Meier in 1958, the Kaplan–Meier 

survival curve is one of the most used methods in this field. Researchers and clinicians can 

use this method to estimate survival probabilities across time, even if some data are censored 

(i.e., the event of interest has not occurred for some individuals during the study period [79].  

 

The Kaplan-Meier curve is a step function that decreases when events occur. A death or 

relapse, for example, is represented by each step that goes down. The process of estimation 

includes the following steps [79]: 

I. Determine unique event times by arranging survival times in ascending order. 

II. Determine the survival rate for each incident: 

 

𝑺(𝒕) =  ∏ (𝟏 −
𝒅𝒊

𝒏𝒊
)

𝒊:𝒕𝒊≤𝒕

(8.1) 

 

where 𝒕𝒊 is the time of the 𝒊𝒕𝒉 event, 𝒅𝒊 is the number of the events at 𝒕𝒊 and 𝒏𝒊 

is the number of individuals at risk just before 𝒕𝒊. 

 

III. Plot the curve: A stepwise function that starts at 1.0 (100 percent survival at 

time zero) and gets smaller with every occurrence. Usually, tick marks along 

the curve denote censored data points. 
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Figure 8.2. A schematic representation of a Kaplan-Meier survival curve which demonstrates 

the point at which median survival is established as well as the decline in patient survival with 

time. 

 

The KM survival curve is schematically represented in Figure 8.4.1, with the vertical axis 

representing the estimated probability of survival. Time is shown on the horizontal axis in 

months, years, or any other applicable unit. Additionally, the point at which the survival 

probability drops to 50 is known as the median survival time.  

 

By using Kaplan–Meier analysis, it is possible to demonstrate whether patients with a high 

stromal component (stroma-high TSR) indeed have lower overall or disease-free survival 

rates compared to those with a low stromal component. 
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9. Evaluation Criteria 

 

The ability of a deep learning model to generalize new data is a fundamental component 

when evaluating its performance [64]. Furthermore, validation methods are crucial for 

detecting and preventing overfitting of the model, which ensures accurate results on 

unseen data. The following metrics are commonly used to assess classification and 

segmentation models. 

 

The accuracy measure (ACC) points out what percentage of the pixels in the image are 

assigned to the correct class and can be defined as follows [33]: 

 

𝐴𝐶𝐶 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑁 + 𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃
. (9.1) 

 

Cases where both the actual and predicted results are positive are referred to as true positives 

(TP). When the actual and predicted outcomes are both negative, this is referred to as a true 

negative (TN). When a positive actual outcome is mistakenly assigned a negative predicted by 

the model, this is known as a false negative (FN). On the other hand, when the model predicts 

a positive result when the actual result is negative, this is known as a false positive (FP). 

 

Precision,  shows the percentage of the results which are relevant and can be defined as [12]: 

 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 . (9.2) 
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Sensitivity, sometimes referred to as Recall or the True Positive Rate, quantifies the 

percentage of data points with positive labels that the model correctly classifies and can be 

calculated as [61]: 

 

𝑆𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
. (9.3) 

 

Specificity, also known as the True Negative Rate, quantifies the percentage of data points 

with a negative label that the model correctly classifies and can be mathematically expressed 

as[61]: 

𝑆𝑝𝑒𝑐𝑖𝑓𝑖𝑐𝑖𝑡𝑦 =  
𝑇𝑁

𝑇𝑁 + 𝐹𝑃
. (9.4) 

 

Accuracy, Precision, Sensitivity and Specificity can be used as evaluation criteria for both 

classification and segmentation models. However, multiclass classification requires 

evaluation criteria considering numerous categories, unlike binary classification, which only 

has two categories. 

 

Model classification ability can be assessed using statistical metrics like Micro- and Macro-

Area Under the Curve (AUC). The AUC is an evaluation metric used to determine the binary 

classifier's performance. In order to use AUC for multiclass classification, the problem needs 

to be considered as binary classification problem using the One vs. All technique, in which 

one class is categorized against every other class. The ratio of correctly identified cases across 

all classes to the total number of samples is known as the micro-averaged true positive rate, or 

TPR. The percentage of cases that are incorrectly classified across all classes in relation to the 

total number of samples is also known as the false positive rate (FPR), or fallout. The 

mathematical representation of Micro averaging is defined as follows [98]: 

 

𝑇𝑃𝑅𝑚𝑖𝑐𝑟𝑜 =  
∑ 𝑇𝑃𝑖

𝑘
𝑖=1

∑ 𝑇𝑃𝑖
𝑘
𝑖=1 + ∑ 𝐹𝑁𝑖

𝑘
𝑖=1

(9.5)  

 

and 
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𝐹𝑃𝑅𝑚𝑖𝑐𝑟𝑜 =
∑ 𝐹𝑃𝑖

𝑘
𝑖=1

∑ 𝐹𝑃𝑖
𝑘
𝑖=1 + ∑ 𝑇𝑁𝑖

𝑘
𝑖=1

 , (9.6) 

 

by which AUCmicro can be calculated. In Macro averaging for k classes, the metrics are 

calculated separately for each class, and the results are averaged together.  Based on the 

computation of both TPRmacro and FPRmacro, AUCmacro can be computed as follows [47]: 

 

𝑇𝑃𝑅𝑚𝑎𝑐𝑟𝑜 =  
∑ 𝑇𝑃𝑅𝑖

𝑘
𝑖=1

𝑘
(9.7) 

 

and 

𝐹𝑃𝑅𝑚𝑎𝑐𝑟𝑜 =  
∑ 𝐹𝑃𝑅𝑖

𝑘
𝑖=1

𝑘
. (9.8) 

 

The Jaccard Index, sometimes referred as Intersection-Over-Union (IOU), is one of the most 

popular metrics for semantic segmentation, and it can be defined as [77]: 

 

𝐼𝑂𝑈 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
(9.9) 

 

The mIOU has a positive correlation with the Dice coefficient (F1). It is an overall measure of 

a model's accuracy and can be calculated as follows [12]: 

 

𝐹1 =  
2𝑇𝑃

2𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁
 . (9.10) 
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10. Results and Discussion 

 

This chapter summarizes the main outcomes of this doctoral thesis, which include 

multiclass classification results, GRAD-CAM visualization for model 

interpretability, semantic segmentation performance, automatic TSR quantification and 

experimental proof of concept. 

 

10.1. Multiclass classification 

 

A thorough deep learning pipeline designed for OSCC multiclass classification is 

demonstrated by the framework in Figure 10.1. Image acquisition is the first step in the 

pipeline, which is followed by preprocessing and data augmentation. Preprocessing method 

based on SWT is developed in order to increase classification performance by enhancing 

high-frequency components. Augmentation techniques such as geometric transformations are 

used to artificially increase the quantity of training samples. The processed images are then 

forwarded into pre-trained deep CNN architectures. Each model performs multiclass 

classification in order to assign histopathological images to one of three classes: Grade I, 

Grade II, or Grade III. Due to the high imbalance among OSCC classes the performance of 

AI-based models is estimated utilizing stratified 5-fold cross-validation. In the last step 

AUCmicro and -macro metrics are used to evaluate model performance. 
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Figure 10.1. Framework for multiclass grading approach. 

 

Initial experimental results are obtained on ImageNet using pretrained MobileNetV2, 

ResNet50, ResNet101, NASNet, InceptionV3, InceptionResNetV2, EfficientNetB3, and 

Xception architectures. In order to perform multiclass classification of OSCC, the current 

research adds two additional layers to the widely used deep CNN architectures. The first layer 

is the global average pooling layer, which reduces the h×w×c (height, width, channels) tensor 

to a 1×1×c, which also forces the network to focus on global spatial information Furthermore, 

the fully connected layer is the second added layer, consisting of three neurons and a Softmax 

activation function. For training each model architecture, three optimizers are used: Adam, 

RMSprop, and Stochastic Gradient Descent (SGD).  
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Additionally, every AI model architecture is trained in two steps:  

 

❖ the first step involves only the output layer being trainable while the others are frozen, 

and 

❖ the second step involves the output layer being frozen while the other layers are 

trainable.  

This method provides steady training and gradual adaptation. 

 

The results presented in Figures 10.2. – 10.9. are achieved by utilizing early stopping and 

modifying optimizer hyperparameters such as learning rate and learning rate decay. In order 

to offer a robust and unbiased evaluation of model performance, stratified 5-fold cross-

validation was used. 

 

 

Figure 10.2. InceptionV3; The AUCmacro and AUCmicro measures are used in the bar graph to 

compare the performance of three optimization algorithms: SGD, Adam, and RMSprop.  

 

Figure 10.2. compares the performance of InceptionV3 with different optimization 

algorithms. Based on the SGD optimization algorithm, InceptionV3 achieved an AUCmacro of 

0.824 and an AUCmicro of 0.854. With an AUCmacro of 0.932 and an AUCmicro of 0.938, Adam, 

however, achieved superior results. RMSprop also achieved strong performance, with an 

AUCmacro of 0.923 and an AUCmicro of 0.933. 
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Figure 10.3. ResNet50; The AUCmacro and AUCmicro measures are used in the bar graph to 

compare the performance of three optimization algorithms: SGD, Adam, and RMSprop.  

 

ResNet50 results are shown in Figure 10.3. With an AUCmacro of 0.871 and an AUCmicro of 

0.864, the Adam optimizer achieved the highest results. On the other hand, RMSprop 

produced comparatively lower results, showing consistent performance but not exceeding 

Adam, with AUCmacro of 0.833 and AUCmicro of 0.832. With a relatively low AUCmicro of 

0.788 and a lowest AUCmacro of 0.822, SGD showed limited efficiency. 

 

Figure 10.4 shows the performance of ResNet101 when trained with various optimizers, 

which is comparable to the outcomes of ResNet50. Obtaining the highest values, an AUCmacro 

of 0.882 and AUCmicro of 0.890, Adam surpasses the other optimizers. With an AUCmacro of 

0.860 and an AUCmicro of 0.834, SGD demonstrates comparatively strong results. RMSprop 

performs moderately but less reliably than Adam and SGD, with the lowest macro score 

(0.829) and a slightly higher micro score (0.836). 

 

 

 

 

 

 

 



 

J. Štifanić: An Automated Computer-Aided System for Oral Squamous Cell Carcinoma Analysis 

 

__________________________________________________________________________________________ 

73 
 

 

Figure 10.4. ResNet101; The AUCmacro and AUCmicro measures are used in the bar graph to 

compare the performance of three optimization algorithms: SGD, Adam, and RMSprop. 

 

 

Figure 10.5. InceptionResNetv2; The AUCmacro and AUCmicro measures are used in the bar 

graph to compare the performance of three optimization algorithms: SGD, Adam, and 

RMSprop. 

 

InceptionResNetV2 results are shown in Figure 10.5. The best performance is demonstrated 

by the Adam optimizer, which has the highest AUCmacro (0.920) and AUCmicro (0.931). With 

closely aligned scores (AUCmacro 0.914, AUCmicro 0.917), RMSprop also performs well.  
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On the other hand, SGD performs noticeably worse with AUCmacro of 0.807 and AUCmicro of 

0.823. 

 

 

Figure 10.6. Xception; The AUCmacro and AUCmicro measures are used in the bar graph to 

compare the performance of three optimization algorithms: SGD, Adam, and RMSprop. 

 

The lowest values (AUCmacro = 0.818, AUCmicro = 0.850) of the three optimizers in Xception 

architecture were obtained by SGD as seen in Figure 10.6. In contrast, Adam's performance 

showed a significant improvement, achieving an AUCmicro of 0.933 and an AUCmacro of 0.924. 

The superior results were obtained by RMSprop, which had an AUCmacro of 0.929 and an 

AUCmicro of.992. 

 

The comparison outcomes of the three optimizers for the MobileNet architecture are shown in 

Figure 10.7 With an AUCmicro of 0.901 and an AUCmacro of 0.877, SGD performed the best. 

Adam achieved satisfactory performance of AUCmacro (0.762), however AUCmicro (0.613) 

performance significantly declined. With an AUCmicro of 0.592 and an AUCmacro of 0.745, 

RMSprop achieved the lowest performance. 
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Figure 10.7. MobileNetv2; The AUCmacro and AUCmicro measures are used in the bar graph to 

compare the performance of three optimization algorithms: SGD, Adam, and RMSprop. 

 

 

Figure 10.8. NASNet; The AUCmacro and AUCmicro measures are used in the bar graph to 

compare the performance of three optimization algorithms: SGD, Adam, and RMSprop. 
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In Figure 10.8., the NASNet results are shown. Among the optimizers, Adam achieved 

superior performance with an AUCmacro of 0.890 and an AUCmicro of 0.909. With an AUCmacro 

of 0.845 and an AUCmicro of 0.869, SGD showed solid performance, whereas RMSprop 

showed a limited improvement, better in terms of macro-average (0.849) but worse in terms 

of micro-average (0.854). 

 

 

Figure 10.9. EfficientNetB3; The AUCmacro and AUCmicro measures are used in the bar graph 

to compare the performance of three optimization algorithms: SGD, Adam, and RMSprop. 

 

The performance of the EfficientNetB3 model trained with SGD, Adam, and RMSprop 

optimizers is shown in Figure 10.9. With an AUCmacro of 0.751 and an AUCmicro of 0.796, 

SGD produced the lowest results. Adam, on the other hand, achieved the highest results with 

an AUCmacro of 0.911 and an AUCmicro of 0.915. With AUCmacro and AUCmicro values of 0.902 

and 0.898, respectively, RMSprop also demonstrated strong performance. 

 

A review of the research results revealed that the best overall performance metrics were 

obtained with a two-step training approach. In the first phase, only the output layer was tuned, 

using a learning rate decay of 1×10⁻⁶ and a learning rate of 1×10⁻³. The next step involved 

freezing the output layer and continuing training for the remaining network layers with the 

same decay value of 1×10⁻⁶ and a reduced learning rate of 1×10⁻⁴.   
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Stratified 5-fold cross-validation outcomes showed that the Adam optimizer consistently 

performed better than most model architectures, as seen by both AUC micro and macro values.  

 

Adam performed the best within the ResNet50 architecture, achieving 0.871 ± 0.105 for 

AUCmacro and 0.864 ± 0.090 for AUCmicro, whereas SGD produced the lowest results. Adam 

produced better results with AUCmacro of 0.882 ± 0.125 and AUCmicro of 0.890 ± 0.11 for  

ResNet101, following a similar pattern. Additionally, the best overall performance was shown 

by the NASNet architecture trained using Adam, which achieved 0.890 ± 0.054 for AUCmacro 

and 0.909 ± 0.043 for AUCmicro. RMSprop, on the other hand, consistently achieved the 

lowest results, indicating that its optimization approach was less appropriate for the dataset 

and the feature representations that these architectures were able to extract. 

 

According to the performance evaluation, the Xception architecture with RMSprop optimizer 

yielded the best overall results, with AUCmacro of 0.929 ± 0.087 and AUCmicro of 0.942 ± 

0.074. In a comparable manner, SGD produced lowest results for InceptionV3 architecture, 

whereas the Adam optimizer produced the best results for this architecture (AUCmacro of 0.932 

± 0.081 and AUCmicro of 0.938 ± 0.088). With SGD, MobileNetV2 had the best performance, 

with AUCmacro of 0.877 ± 0.062 and AUCmicro of 0.901 ± 0.049. The Adam optimizer 

repeatedly produced the best results for InceptionResNetV2 (AUCmacro of 0.920 ± 0.059 and 

AUCmicro of 0.931 ± 0.064), whereas SGD produced the lowest results. AUCmacro of 0.911 ± 

0.148 and AUCmicro of 0.915 ± 0.148 were achieved using EfficientNetB3 and Adam; 

nevertheless, this configuration showed more variability among folds, by showing a slight 

increase in standard deviations. 

 

It can be observed from the model architecture and optimizer performances that the Adam 

optimizer generally provides superior classification performance on the data used in this 

research. SGD, on the other hand, showed limited performance across all assessed models, 

whereas RMSprop produced inconsistent results, demonstrating competitive performance 

only with the Xception architecture.  
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The SWT is used in the second step of the proposed approach to preprocess the data. The 

original histopathological images were decomposed at level 1 using the Haar, sym2, db2, and 

bior1.3 wavelet functions. After the decomposition process, high-frequency wavelet 

coefficients LH, HL, HH are weighted using a mapping function, which resulted in new, 

modified LH’, HL’, HH’ subbands. An input image for the AI model was obtained utilizing 

SWT reconstruction using modified subbands alongside the unmodified LL subband, as seen 

in Figure 10.10. 

 

 

Figure 10.10. Level 1 SWT decomposition employing the Haar wavelet, coefficient mapping, 

and SWT reconstruction. 

 

The main goal of Bayesian optimization was to determine the ideal wavelet mapping function 

constant values in order to maximize the performance measure. In this research, the AUCmicro 

performance metric was monitored throughout the optimization process. Each Bayesian 

iteration involved data preprocessing with a defined set of mapping function constants, model 

training process, and performance evaluation. After 25 steps of random exploration and 20 

steps of Bayesian optimization, the best performing constant configuration was obtained as 

shown in shown in Table 10.1. 
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Table 10.1. Estimated constants for the coefficient mapping function obtained through 

Bayesian optimization along with corresponding 5-fold cross-validation performance. 

Parameters Xception + SWT 

a b c d wavelet AUCmacro ± σ AUCmicro ± σ 

0.0084 0.0713 0.0599 0.0566 sym2 0.956 ± 0.054 0.964 ± 0.040 

0.0091 0.0301 0.0086 0.3444 db2 0.963 ± 0.042 0.966 ± 0.027 

0.0063 0.0021 0.0771 0.3007 db2 0.947 ± 0.092 0.954 ± 0.069 

0.0081 0.0933 0.0469 0.2520 haar 0.952 ± 0.056 0.958 ± 0.050 

0.0053 0.0575 0.0649 0.1694 bior1.3 0.962 ± 0.050 0.965 ± 0.046 

 

 

10.2. Grad-CAM visualization 

 

The following phase of the research used Gradient-weighted Class Activation 

Mapping to identify the areas of the image that showed the strongest impact on the model's 

predictions. In order to support diagnostic reasoning and boost confidence in automated 

systems, these visual explanations enhance interpretability by highlighting the regions of 

histopathology slides that are most suggestive of classifications. For the proposed model, the 

Grad-CAM visualizations are shown in Figures 10.11., 10.12., and 10.13. Figures show 

examples of histopathological images along with the corresponding Grad-CAM 

visualizations. In the left column, the original images are shown while the Grad-CAM 

heatmaps placed on the original tissue images are displayed in the left column. The heatmaps 

show the tissue regions that had strongest impact on the model's classification decision. The 

significance of various locations is indicated by the color spectrum, which ranges from blue to 

red. Blue shows places with the lowest activation, while red suggests areas with the highest 

activation. 
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Figure 10.11. Grad-CAM application on histopathology images in order to highlight the 

Grade I discriminative regions  

 

 

Figure 10.12. Grad-CAM application on histopathology images in order to highlight the 

Grade II discriminative regions 
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Figure 10.13. Grad-CAM application on histopathology images in order to highlight the 

Grade III discriminative regions 

 

Grad-CAM was used to create heatmaps that show the most discriminative areas of 

histopathological images in the context of multiclass classification (Figures 10.11, 10.12, and 

10.13). It captures gradients related to specific output classes, such as Grade I, Grade II, and 

Grade III, that flow into the final convolutional layers. To create a localization map, these 

gradients are pooled channel-wise, emphasizing important regions for class prediction. To 

create a heatmap, an input image is forward propagated through the network, computing 

gradients in relation to feature maps, spatially pooling these gradients, and combining weights 

with activation maps. By visualizing the model's decision-making process, this procedure 

verifies that the network focuses on pathologically significant regions rather than unimportant 

ones or artifacts.  

 

However, some of the drawbacks limit the use of this method for comprehending deep 

learning models. It provides information about important aspects of the image but primarily 

focuses on high-level characteristics from later model layers, excluding details on how mid- 

or early-level features influence choices.  
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Spatial localization is limited by the output feature maps' resolution, which produces coarse 

heatmaps that may not accurately detect micro or subtle image features. Such features are 

crucial in clinical contexts. 

 

The advantage of this method, however, is that the Grad-CAM can be applied to other areas 

outside the diagnosis of oral cancer from histopathology images. It can be used to create 

heatmaps that highlight significant regions that influence model predictions using a variety of 

medical imaging modalities, such as ultrasounds, CT scans, MRIs, and X-rays. Additionally, 

this interpretability can enhance trust in AI models for tasks such as detecting cardiovascular 

irregularities, brain tumors, lung tumors, or breast tumors. 

 

10.3. Semantic segmentation 

 

After multiclass grading of oral squamous cell carcinoma from histopathological images, the 

next step is semantic segmentation of tumor on the epithelial vs. stromal tissue.   

 

 

Figure 10.14. Framework for semantic segmentation approach. 
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The procedure for semantic segmentation designed for oral histopathology image analysis is 

shown in Figure 10.14. In the same manner as described for multiclass classification, image 

acquisition is the first step in the process, which follows data augmentation. Augmentation 

techniques such as geometric transformations are used to artificially increase the quantity of 

training samples. The images are then forwarded into several segmentation models, such as 

DeepLabV3, SegFormer, U-Net (each with its individual backbones) and proposed model. 

The proposed model consists of preprocessing method and transformer-based model. 

Preprocessing method based on Luminance Wavelet Enhancement is developed in order to 

improve the structural representation of immunohistochemistry images before they are 

transmitted to the segmentation model.  The model results are shown by comparing the 

original histopathological image with its ground truth annotation and the predicted 

segmentation mask, as shown at the bottom of the figure. This shows how well the models 

detect relevant tissue features. 

 

U-Net, DeepLabV3, and SegFormer were selected for the purpose of this research's 

assessment of semantic segmentation performance since they highlight substantial differences 

between generations and design approaches within segmentation architectures. 

 

Unet: 

• because of its encoder–decoder structure and skip connections, which maintain the 

fine spatial features necessary for tissue border recognition, U-Net has long been 

regarded as a benchmark model in biomedical image processing. 

 

DeepLabV3+: 

• is very good at capturing complicated structural variations that are frequently seen in 

histopathology images as it introduces enhanced atrous (dilated) convolutions and 

multi-scale context aggregation through ASPP modules.  

 

SegFormer: 

• offers strong global feature extraction and effective computation without depending on 

bulky decoders. 
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The performance evaluation of the DeepLabv3+ model with Xception_65 backbone utilizing 

a variety of segmentation metrics is shown in Figure 10.15. The line plot (green) shows the 

standard deviation (std) throughout experimental runs, while the bar chart (blue) shows the 

mean values of significant metrics.  

 

The model demonstrates strong segmentation capabilities with balanced true positive and true 

negative detection, with 0.9466 ± 0.0049 accuracy, 0.9587 ± 0.0036 Dice coefficient, 0.9572 

± 0.0071 sensitivity, and 0.9602 ± 0.0048 precision. The lowest of the metrics is mIOU of 

0.8898 ± 0.011. Specificity of 0.9275 ± 0.0039 is marginally lower, indicating a higher rate of 

false positives. Except for mIOU, which shows higher variability, the standard deviation 

across metrics is comparatively low, suggesting stable performance. 

 

 

Figure 10.15.  Visual representation of DeepLabv3+ and Xception_65 as backbone 

performance evaluation. Relevant segmentation metrics are shown in bar charts with 

corresponding standard deviation shown in line plot. 
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The segmentation performance of the DeepLabv3+ model using the ResNet101 backbone is 

shown in Figure 10.16.  

 

The model offers balanced segmentation performance and reliable true positive identification 

with consistent high scores of 0.9545 ± 0.0063 accuracy, 0.9574 ± 0.0037 Dice coefficient, 

0.9526 ± 0.0088 sensitivity, and 0.9622 ± 0.0032 precision. The specificity of 0.9314 ± 

0,0039 indicates a slight decrease, suggesting limited false positive predictions. The mIOU of 

0.8868 ± 0,0147 is the lowest, indicating difficulties with correct pixel-wise overlap.  

 

The standard deviation is low and largely consistent when compared to other metrics. 

However, it significantly increases for mIOU, indicating a higher degree of variance in border 

alignment between samples. Even though fine-grained segmentation borders are still difficult 

to achieve, this performance trend shows that the ResNet101 backbone allows for robust 

feature extraction. 

 

 

 

Figure 10.16. Visual representation of DeepLabv3+ and ResNet101 as backbone performance 

evaluation. Relevant segmentation metrics are shown in bar charts with corresponding 

standard deviation shown in line plot. 
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The DeepLabv3+ model's performance evaluation using MobileNetV2 as the backbone is 

shown in Figure 10.17. The results show a strong performance on most metrics, with Dice, 

sensitivity, and precision reaching values of 0.9499 ± 0.003, 0.951 ± 0.0096, and 0.949 ± 

0.0047, respectively. 

 

Overall robustness is established by an accuracy of 0.9351 ± 0,0049 and a specificity of 0.906 

± 0,0073. Despite having high Dice and sensitivity scores, the mIOU measure is lower 

(0.8674 ± 0.0119), indicating some limitations in pixel-wise overlap. All measures show 

relatively low standard deviations, with sensitivity and mIOU showing the most variability. 

 

 

 

Figure 10.17. Visual representation of DeepLabv3+ and MobileNetV2 as backbone. Relevant 

segmentation metrics are shown in bar charts with corresponding standard deviation shown in 

line plot. 
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The SegformerB0 model's segmentation performance across several evaluation metrics is 

shown in Figure 10.18. 

 

With a Dice of 0.9548 ± 0.0032, sensitivity of 0.9546 ± 0.0073, and precision of 0.9552 ± 

0.0046, SegformerB0's overall performance is robust, indicating that the model offers 

accurate segmentation with a high degree of overlap between predictions and ground truth. 

  

While the specificity of 0.9172 ± 0.0112 shows a relatively reduced ability to accurately 

identify negative cases compared to positive ones, the accuracy of 0.9415 ± 0.0055 confirms 

consistent overall performance. Despite strong global performance, the mIOU score of 0.8796 

± 0.0129 is lower than Dice, indicating difficulties in achieving pixel-level overlap. Although 

sensitivity and mIOU are slightly higher, the standard deviation is often low in terms of 

variability, indicating variability driven by dataset characteristics. 

 

 

Figure 10.17.  Visual representation of SegformerB0 performance evaluation. Relevant 

segmentation metrics are shown in bar charts with corresponding standard deviation shown in 

line plot. 
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Figure 10.18 presents the segmentation performance of the SegformerB3 model. With a Dice 

score of 0.9622 ± 0.0042, a sensitivity of 0.9631 ± 0.0052, and a precision of 0.9612 ± 

0.0062, the results show continuously high performance, demonstrating high true positive 

detection and reliable prediction accuracy. While specificity is comparatively lower, showing 

a slightly reduced capacity to accurately categorize negative regions compared to positives, 

the accuracy of 0.9509 ± 0.0061 and the specificity of 0.9279 ± 0.0152 show strong 

performance. The mIOU of 0.8979 ± 0.0134 indicates some limitations in precise pixel-wise 

segmentation overlap. 

 

 The overall low variability is significantly higher for specificity and mIOU, indicating 

dataset-dependent variations in boundary delineation and the negative class. 

 

 

Figure 10.18. Visual representation of SegformerB3 performance evaluation. Relevant 

segmentation metrics are shown in bar charts with corresponding standard deviation shown in 

line plot. 
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Figure 10.19 shows the SegformerB5 model's performance metrics for a segmentation task.  

 

When it comes to both positive and negative class detection, the model consistently performs 

well across key parameters, with 0.9533 ± 0.0066 accuracy, 0.9641 ± 0.0046 Dice, 0.9682 ± 

0.005 sensitivity, 0.9253 ± 0.0172 specificity, and 0.9602 ± 0.0007 precision.  

 

However, the much lower mIOU (0.9024 ± 0.0143) reflects a more severe evaluation of 

segmentation quality. Standard deviations for the majority of metrics are relatively low, 

suggesting steady performance. 

 

 

 

Figure 10.19. Visual representation of SegformerB5 performance evaluation. Relevant 

segmentation metrics are shown in bar charts with corresponding standard deviation shown in 

line plot. 
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The performance evaluation of a U-Net combined with ResNet50 architecture as backbone 

across a multiple of segmentation metrics is shown in Figure 10.20.  

 

While the mIOU is somewhat lower (0.851 ± 0.0229), the blue bar graph shows high values 

for accuracy (0.9262 ± 0.0109), Dice coefficient (0.943 ± 0.0071), sensitivity (0.9412 ± 

0.0151), specificity (0.8986 ± 0.0151), and precision (0.945 ± 0.0064), indicating great 

overall performance. 

 

 Except for mIOU, which shows the most variability (0.0229), the standard deviation of each 

metric is represented by the green line plot layered on top. The std is generally low and 

consistent, ranging from 0.01 to 0.015. 

 

 

Figure 10.20. Visual representation of U-Net and ResNet50 as backbone performance 

evaluation. Relevant segmentation metrics are shown in bar charts with corresponding 

standard deviation shown in line plot. 
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The performance metrics of the image segmentation U-Net and InceptionV3 as backbone are 

shown in Figure 10.21.  

 

The blue bar plot shows a high score in terms of accuracy (0.9214 ± 0.0114), precision 

(0.9372 ± 0.0132), Dice (0.9397 ± 0.0067), and sensitivity (0.9424 ± 0.0096). In contrast, 

specificity (0.8816 ± 0.0336) and mIOU (0.8413 ± 0.025) are relatively low.  

 

The green overlay line figure indicates that specificity (0.0336) and mIOU (0.025) have 

significantly larger variability than accuracy, dice, sensitivity, and precision, which have very 

low variability (~0.01–0.015). 

 

 

Figure 10.21. Visual representation of U-Net and InceptionV3 as backbone performance 

evaluation. Relevant segmentation metrics are shown in bar charts with corresponding 

standard deviation shown in line plot. 
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A quantitative assessment of the U-Net architecture with InceptionResNetV2 as the backbone 

is shown in Figure 10.22.  

 

The outcomes demonstrate high performance on most metrics, with substantial segmentation 

capacity, as demonstrated by Dice of 0.9371 ± 0.8367, sensitivity of 0.9369 ± 0.0183, and 

precision of 0.9376 ± 0,0082. With a relatively lower specificity of 0.8856 ± 0,0122 and a 

comparatively high accuracy of 0.9184 ± 0,0109, the identification of true negatives appears 

to be fairly balanced.  

 

However, the mIOU of (0.8367 ± 0,0225) is low, indicating that it is more difficult to achieve 

perfect spatial overlap. Other than mIOU, where variability is significantly higher, standard 

deviations are low overall (<0.0225), which shows that the model is stable. This indicates that 

region-level segmentation is inconsistent with pixel-wise measurements. 

 

 

Figure 10.22. Visual representation of U-Net and InceptionResNetV2 as backbone 

performance evaluation. Relevant segmentation metrics are shown in bar charts with 

corresponding standard deviation shown in line plot. 
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Figure 10.23. Radar chart of models’ performances for semantic segmentation on tumor and 

stromal region  

 

Significant variations in performance across several segmentation metrics can be observed by 

comparing the U-Net, DeepLabv3+, and Segformer models, as seen in Figure 10.23.  

 

With accuracy values ranging from 0.918 to 0.926 and mIOU between 0.837 and 0.851, the 

performance of the traditional U-Net implementations (ResNet50, InceptionV3, and 

InceptionResNetV2) was the lowest across all metrics. These models showed limitations with 

overall consistency, although they performed well in terms of Dice and sensitivity values.  
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When compared to the U-Net, the DeepLabv3+ performed better. Stronger generalization was 

demonstrated by models using Xception_65 and ResNet101 backbones, which achieved 

satisfactory Dice scores (0.950–0.957) and mIOU values of nearly 0.89. 

 

Furthermore, the Segformer outperformed DeepLabv3+ and U-Net. When it came to accuracy 

(0.953), Dice (0.964), sensitivity (0.968), and mIOU (0.902), SegformerB5 produced the best 

and most balanced results. With minimal difference, SegformerB3 achieved lower but still 

cutting-edge performance.  

 

These results demonstrate how transformer-based segmentation models outperform 

conventional CNN-based designs. Since the SegFormerB5 model performed the best out of 

all the models evaluated it was of particular interest in this research. Building on its baseline 

performance, the proposed SegFormer-LWE model was created as an upgraded version of the 

SegFormer-B5 model in order to further enhance segmentation quality. 

 

The baseline SegFormer-B5 achieves mIOU of 0.902 ± 0.014, which has been utilized as a 

benchmark to evaluate the effect of luminance wavelet improvement. The robustnes of the 

LWE technique in strengthening structural detail and improving overall segmentation 

performance is demonstrated by the fact that using the proposed preprocessing pipeline 

typically results in improvements across the majority for evaluation metrics. 

 

A quantitative comparison of the proposed SegFormer-LWE model and the baseline 

SegFormer-B5 model is shown in Table 10.2. The parameters presented include mIOU, 

Dice score, accuracy, precision, sensitivity, and specificity, along with their standard 

deviation. 
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Table 10.2. A quantitative analysis between the baseline SegFormer-B5 model and the 

proposed SegFormer-LWE model developed utilizing various wavelet types and scale-factor 

configurations. 

         SegformerB5 mIOU ± σ F1 ± σ Accuracy ± σ Precision ± σ Sensitivity ± σ Specificity ± σ 

 

Original 0.902 ± 0.014 0.964 ± 0.004 0.953 ± 0.006 0.960 ± 0.007 0.967 ± 0.005 0.925 ± 0.017 

Segformer-LWE 

      Wavelet Scale factor 

H, V, D 

Sym3 1.8, 1.8, 1.8 0.906 ± 0.013 0.966 ± 0.004 0.955 ± 0.006 0.960 ± 0.004 0.971 ± 0.008 0.924 ± 0.017 

Sym5 2.2, 2.2, 2.2 0.905 ± 0.012 0.965 ± 0.003 0.954 ± 0.006 0.963 ± 0.007 0.967 ± 0.006 0.930 ± 0.015 

Db3 2.3, 2.4, 2.3 0.906 ± 0.011 0.966 ± 0.003 0.955 ± 0.005 0.962 ± 0.005 0.969 ± 0.006 0.929 ± 0.015 

Db5 2.2, 2.2, 2.2 0.907 ± 0.011 0.967 ± 0.003 0.956 ± 0.005 0.965 ± 0.005 0.967 ± 0.008 0.934 ± 0.008 

Db6 2.4, 2.4, 1.6 0.904 ± 0.012 0.965 ± 0.003 0.955 ± 0.006 0.962 ± 0.004 0.967 ± 0.006 0.929 ± 0.015 

Coif2 2.0, 2.0, 2.0 0.904 ± 0.013 0.965 ± 0.004 0.954 ± 0.006 0.960 ± 0.002 0.970 ± 0.007 0.925 ± 0.014 

 Bior4.4 2.5, 2.5, 1.1. 0.905 ± 0.014 0.966 ± 0.004 0.955 ± 0.007 0.961 ± 0.007 0.970 ± 0.004 0.927 ± 0.017 

 

Table 10.2. shows the seven best-performing configurations of the proposed SegFormer-LWE 

model, determined by an exhaustive grid-search of multiple wavelet families and scale 

factors. Each configuration shown reflects one of the top parameter combinations that 

achieved the maximum performance across the evaluated metrics. 

 

Among the analyzed wavelets, the Db5 with scale factors of H = 2.2, V = 2.2 and D = 2.2 

achieves the highest overall performance. It produces a mIOU of 0.907 ± 0.011, reflecting the 

best improvement over the baseline, combined with the top Dice score (0.967 ± 0.003) and 

accuracy (0.956 ± 0.005). Furthermore, Db5 also gives the highest specificity (0.934 ± 0.008), 

showing a higher capacity to correctly identify background regions without increasing false 

positives. 

 

Other versions of wavelets, such as sym3, sym5, db3, db6, coif2, and bior4.4, also exhibit 

modest increases over the baseline model but are lower than the performance achieved by 

Db5. These configurations generally produce slightly lower mIOU and accuracy values,  
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indicating that the degree of enhancement is strongly influenced by the wavelet family and 

scale factor selection. 

 

The contribution of wavelet-enhanced preprocessing to better segmentation performance is 

shown graphically in Figure 10.24. The comparison displays both the original histopathology 

image and its LWE preprocessed version, which highlights tissue boundaries and subtle 

structures. This improvement enables the model to learn more discriminative features. Higher 

performance metrics are consistent with the preprocessed image's improved structural 

representation, which enables the network to more accurately identify tissue sections. 

 

 

Figure 10.24. Visual representation of histopathology images, ground truth masks, 

preprocessed images, and semantic segmentation results. The original image and its LWE 

preprocessed equivalent are shown in the magnified photos on the right, giving a clear 

comparison of how preprocessing improves tissue appearance for additional analysis. 

 

The results clearly demonstrate that the luminance-wavelet enhancement approach, as applied 

in SegFormer-LWE, boosts segmentation quality compared to the baseline SegFormer-B5 

model.  
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The mIOU metric averages performance across all classes and all pixels, giving it a highly 

sensitive and robust measure. As a result, a 0.5% improvement shows that the model 

consistently produces more accurate pixel-level predictions throughout the whole dataset. 

Overall, even slight improvements in performance metrics, such as a 0.5% improvement in 

mIOU, are often considered significant. 

 

Performance improvements have become even more challenging to achieve for cutting-edge 

transformer-based models, such SegFormer-B5. These models are substantially optimized 

through extensive pretraining and already function close to the upper bounds of 

representational capability. It frequently takes significant algorithmic or architectural 

innovation rather than simply hyperparameter tuning to get an additional 0.5% mIOU 

increase. Improvements at this level show that the proposed enhancement, the LWE 

preprocessing, is contributing important new information beyond what the original 

transformer can extract on its own. Furthermore, literature benchmarks commonly highlight 

increases of 0.3–0.7% as state-of-the-art advances, demonstrating that advancement in this 

research is competitive with leading research advancement. 

 

 

10.4. Automatic quantification of TSR 

 

Regions with the largest proportion of tumor-associated stroma were selected at 10× 

magnification for automatic TSR assessment. Analysis was limited to fields that included 

tumor cells on each of the four microscopic view borders. Cases in which the tumor-

associated stroma occupied more than 50% of the selected field were classified as stroma-

high, whereas those with 50% or less were defined as stroma-low. In earlier research, this 

50% cutoff was frequently used as a reliable predictive subgroup discriminator. Areas with 

preexisting lymphoid clusters, necrosis, or other normal tissue components were not included 

in the research. If these factors were not completely preventable, they were not included in the 

tumor-associated stroma computational estimation. Furthermore, tumor and stromal regions 

were then automatically defined using semantic segmentation algorithm based on 

morphological, color, and texture characteristics.  
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The proportional area of each compartment was quantified computationally, TSR was 

computed as the ratio of tumor area to the overall area of tumor plus stroma. The automated 

workflow used to determine the tumor-stroma ratio is shown in Figure 10.25. 

 

 

Figure 10.25. The automated process to assess the tumor-stroma ratio (TSR). A 

representative histologic image (left) that displays the surrounding tumor-associated stroma 

and tumor epithelial areas was prepared for digital segmentation (in the middle). While the 

lower panel displays classified regions with tumor (black area) and stroma (red area), the 

upper panel displays the tissue border detection map. A TSR of 76% tumor and 24% stroma 

was obtained by automatically calculating the proportionate areas of the two sections. This 

case was classified as stroma-low (≤50% stroma) based on the predetermined 50% limit. 

 

In 40-patient cohort, the relationship between the tumor–stroma ratio and several 

clinicopathologic characteristics was assessed. As a histopathologic marker that represents the 

percentage of tumor-associated stroma in the tumor microenvironment, TSR was analyzed in 

order to determine if it correlated with known prognostic factors like patient age, lymph node 

status, tumor grade, and alcohol and smoke consumption. 

 

Prior research on head and neck cancers has shown that a high stroma percentage (stroma-

high) is frequently related to less favorable clinical outcomes and more aggressive tumor 

behavior. The correlation between TSR and clinicopathologic parameters was examined in the 

cohort to determine whether similar trends exist in this patient population. Table 10.3. 

summarizes the findings of this analysis. 
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Table 10.3. Correlation between the tumor-stroma ratio and the clinicopathologic 

characteristics of oral squamous cell carcinoma. 

Variable Total Tumor-stroma ratio P 

Stroma-low Stroma-high 

N = 40 Number (%) 
28 (70%) 

Number (%) 
12 (30%) 

Gender 
    

 Male 28 19 (68%) 9 (32%) 0.94 

 Female 12 9 (75%) 3 (25%) 
 

Alcohol intake 
    

 Yes 15 10 (75%) 5 (25%) 1.00 

 No 25 18 (72) 7 (28%) 
 

Smoking 
    

 Yes 22 14 (64%) 8 (36%) 0.53 

 No 18 14 (78%) 4 (22%) 
 

Age 
    

 To 49 2 1 (50%) 1 (50%) 
 

 50-59 5 5 (100%) 0 (0%) 0.28 

 60-69 22 16 (73%) 6 (27%) 
 

 +70 11 6 (55%) 5 (45%) 
 

Grade 
    

 I 18 12 (67%) 6 (33%) 0.74 

 II 16 11 (69%) 5 (31%) 
 

 III 6 2 (33%) 4 (67%) 
 

Lymh Node Metastases 
    

 Yes 21 14 (67%) 7 (33%) 0.89 

 No 19 14 (74%) 5 (26%) 
 

 

 

Several patterns observed in this research are biologically consistent with previously 

established findings confirming the predictive value of the tumor–stroma ratio (TSR) in 

OSCC, even if statistical significance was not attained for any of the clinicopathological 

markers in our cohort (p > 0.05). In particular, clinically unfavorable categories had a larger 

percentage of stroma-high tumors. A richer stromal environment may facilitate metastatic  
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spread, as demonstrated by the finding that that up to one-third of patients with lymph node 

metastases had a high stromal amount, compared to just over a quarter of individuals without 

nodal involvement. Furthermore, the finding that that the oldest age group (≥70 years), which 

usually correlates with poorer cancer survival, showed the highest relative proportion of 

stroma high tumors (45%) supports the theory that stroma high patterns may be linked to 

systemic and microenvironmental conditions that increase tumor aggressiveness in older 

people. 

 

Although not statistically significant, the highest percentage of stroma-high tumors in G3 

group is biologically significant since it indicates a more aggressive tumor microenvironment. 

A dense, active stroma rich in cancer-associated fibroblasts frequently supports high-grade 

OSCC, increasing invasion, metastasis, and resistance to therapy. Since stromal activity may 

actively promote tumor development in advanced disease, the higher percentage of stroma-

high tumors in G3 patients emphasizes the potential value of TSR as a clinically relevant 

biomarker. 

 

On the other hand, clinically less aggressive patient categories were associated with a higher 

probability of having stroma-low tumors. These comprised patients between the ages of 50 

and 59, who showed only stroma low tumors (100%), as well as non-drinkers and non-

smokers. These results indirectly corroborate with studies in the literature that stroma low 

cancers typically exhibit lower invasiveness, reduced metastatic potential, and slower 

development dynamics since these populations usually correspond to better outcomes. 

 

Kaplan-Meier survival curves demonstrated that TSR had a strong predictive value for overall 

survival. As seen in Figure 10.26, patients with stroma-high tumors had significantly worse 

survival rates. 
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Figure 10.26. Kaplan-Meier analysis of overall survival in patients with stroma-low versus 

stroma-high OSCC tumor  

 

The Kaplan–Meier survival curve shows that stroma-low (SL) and stroma-high (SH) tumors 

consistently have different overall survival rates. The survival probability declined more 

quickly in patients with SH tumors, especially in the early follow-up period, indicating earlier 

mortality and faster disease progression. The SL group, on the other hand, had higher survival 

probability for most of the observation period, with a more progressive decline and several 

long-term survivors who outlived the 100-month follow-up period. 

 

The visual comparison of the two curves confirms prior studies indicating that TSR actively 

contributes to the aggressiveness of oral squamous cell carcinoma. A biologically active 

stromal environment, marked by cancer-associated fibroblasts and elevated pro-tumor 

signaling pathways that aid in invasion, rejection of the immune system, and metastatic 

growth, may be the cause of stroma-high cancers' worse survival rates. Thus, this research 

survival analysis's trend confirms TSR's possible predictive significance, particularly when 

used as a supporting biomarker in conjunction with well-established clinicopathologic 

variables. 
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10.5. Experimental Proof of Concept 

 

In order to validate and confirm the results of the research, this chapter presents an 

experimental proof-of-concept (PoC) framework which demonstrates the consistency and 

robustness of the proposed methods. While acknowledging that bigger datasets are necessary 

for statistical generalization, the PoC evaluation was conducted on a small cohort of eight 

patients, which is adequate for verifying the observed research patterns and system behavior. 

Multiclass classification and semantic segmentation are two hybrid approaches that are 

integrated into the proposed framework, as shown in Figure 10.27. 

 

 

Figure 10.27. An outline of the proposed experimental framework for proof-of-concept. The 

first step in the process is obtaining medical images from a small group of patients. Then, the 

images go through two analytical branches. The first branch is a multiclass classification 

module that uses Grad-CAM visuals to support model interpretability. It is built on a hybrid 

SWT–Xception model. A semantic segmentation module using the SegFormer-B5 

architecture and LWE preprocessing makes up the second branch. The Tumor–Stroma Ratio, 

a quantitative biomarker with clinical relevance, is calculated once the segmentation 

outcomes are evaluated. 
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The initial step consists of collecting medical images from the chosen patient group. These 

images serve as the raw input for pipeline used for multiclass classification and semantic 

segmentation. Despite the small sample size, the dataset represents realistic inter-patient 

heterogeneity, which is crucial for evaluating the resilience of the proposed system within a 

proof-of-concept context. 

 

The aim of the multiclass classification task is to assign three classes (Grade I, Grade II, and 

Grade III) to the input images. This is achieved by using a hybrid deep learning model that 

combines Xception with Stationary Wavelet Transform for image preprocessing. Standard 

evaluation measures are used to evaluate model performance, while Grad-CAM visualizations 

are used to aid in qualitative interpretability. 

 

The framework incorporates a semantic segmentation branch to precisely localize and 

delineate medically significant regions. This module uses a second hybrid model, which 

consists of SegFormer-B5, a transformer-based segmentation architecture, and LWE for 

image preprocessing. To determine the accuracy of region boundaries, segmentation outputs 

are assessed using relevant quantitative measures. The Tumor–Stroma Ratio is calculated as 

the ratio of tumor area to stromal area in the tissue under analysis based on the final 

segmentation masks. 

 

The quantitative performance of the proposed hybrid models employed in the 

PoC for multiclass classification and semantic segmentation tasks can be seen in Table 10.3. 

 

Table 10.4. Quantitative performance metrics of the proposed models in the proof-of-concept  

  AUCmacro  AUCmicro      

 
Xception + 

SWT 
0.992 0.973     

  mIOU  F1  Accuracy  Precision  Sensitivity Specificity 

 
SegFormer-

LWE 
0.897 0.964 0.956 0.965 0.964 0.939 
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With an AUCmacro of 0.992, the Xception + SWT model demonstrates balanced classification 

across all three classes. High overall classification performance is further confirmed by the 

AUCmicro value of 0.973. These findings show that, even with limited data, the proposed 

Xception + SWT model has considerable discriminative potential. 

 

A Grad-CAM visualization of the proposed classification model is shown in Figure 10.28. 

The Grad-CAM visualization is displayed on the top, and the original histopathological image 

is displayed on the bottom. 

 

 

Figure 10.28. An illustration of the Grad-CAM heatmap that highlights discriminative tissue 

regions that the proposed Xception + SWT hybrid model uses to grade histological images. 
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In order to provide visual proof that the identified features correlate with pathological 

information, Grad-CAM visualization improves the interpretability of the proposed model and 

enhances the transparency of the classification results throughout the proof-of-concept 

framework. 

 

Several metrics are used to evaluate the SegFormer–LWE model's performance for the 

semantic segmentation task. A significant level of spatial overlap between the predicted and 

ground-truth segmentation masks is reflected in the model's mIoU of 0.897. Strong and 

reliable pixel-level classification has been demonstrated by the Dice score of 0.964, high 

precision (0.965), and accuracy of 0.956. Furthermore, accurate non-target area discrimination 

is verified by sensitivity of 0.964 and specificity of 0.939. 

 

The TSR estimation confirms the repeatability of the proposed system by reflecting the same 

patterns observed in results of the primary research. This agreement shows that the 

corresponding TSR values represent a stable and clinically significant biomarker within the 

proof-of-concept evaluation, and that the semantic segmentation approach accurately 

represents tumor and stromal regions. 
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11. Conclusions and Future Work 

 

One method for classifying cancer cells based on tissue abnormalities is histology 

grading. It depends on the clinician's subjective component, which could have a negative 

impact on the patient's results and the most effective course of therapy. This research 

demonstrates the significant potential of using AI algorithms in conjunction with image 

processing approaches to improve OSCC prognosis and improve survival rates. 

 

In the first stage of the research, the author demonstrates how to incorporate a wavelet 

coefficient mapping function and the SWT with deep convolutional neural networks for 

OSCC multiclass grading. According to experimental results, the Xception architecture and 

SWT combination produced the best classification performance, with AUCmacro and AUCmicro 

of 0.963± 0.042 and 0.966 ± 0.027, respectively. 

 

The following stage was the implementation of Grad-CAM visualization. Grad-CAM is used 

to create heatmaps for multiclass classification, which emphasize important regions in 

histopathology images. These heatmaps help healthcare professionals distinguish 

pathologically significant features from irrelevant or potential artifacts by visually evaluating 

sensitivity of the model to critical regions. This method provides a more comprehensive 

analysis with less unpredictability and human error than conventional single-model 

approaches. 

 

The third step involved semantic segmentation. With the Db5 wavelet and scale factors of H = 

2.2, V = 2.2, and D = 2.2, the proposed SegFormer-LWE model produces the best overall 

results for semantic segmentation. It achieves the best improvement over the baseline 

model with a mIOU of 0.907 ± 0.011, along with the highest accuracy (0.956 ± 0.005) and 

Dice score (0.967 ± 0.003). Additionally, SegFormer-LWE has the highest specificity (0.934 

± 0.008), indicating a greater ability to accurately identify background regions without raising  
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false positives. Segmentation of the tumor on the epithelial and stromal regions is the initial 

step in the study of the tumor microenvironment and its impact on the disease progression. 

 

In the last stage of the research, the tumor-stroma ratio was automatically quantified. 

Automated methods improve diagnostic consistency and reduce interobserver variability by 

precisely segmenting the tumor and stromal areas. According to the results of this research, 

OSCC patients with a low TSR (stroma-high tumors) have a unfavorable prognosis for 

survival.  

 

Based on the results of the experimental proof of concept, an AI-based system has been 

proven successful in terms of multiclass grading, Grad-CAM visualization, semantic 

segmentation as well as automatic quantification of TSR and has a great potential in the 

prediction of tumor invasion and outcomes of patient with OSCC. 

 

Further research should employ a dataset with more histopathological images to create a more 

dependable model, as the data availability of this research was limited. Additionally, a wider 

variety of oral cancer subtypes should be included in the dataset to increase the system's 

generalizability in various clinical applications. This would enable the system to record a 

wider variety of morphological traits.  

 

In order to create a more comprehensive overview of tumor biology, future research should 

also consider incorporating multimodal data sources, such as molecular markers and genomic 

profiles. Precision oncology may benefit from the integration of various technologies since it 

will enable more precise prognostic evaluations and direct individualized treatment plans. 

 

To increase practical relevance and generalizability of AI models, extensive prospective 

validation in real healthcare settings is required. In addition to proving the dependability of 

model in real-world scenarios, this kind of validation would highlight any potential 

drawbacks that would not be apparent in controlled experimental or retrospective research. A 

realistic approach to this process would be to include the AI-based system in actual diagnostic 

procedures, initially serving as an advisor or support system rather than a decision-maker on  
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its own. The ability to directly compare the output of AI with the skilled interpretations of 

pathologists would enable a methodical assessment of the AI-based system accuracy and 

potential utility. 
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Figure A. Visual representation of SegFormer-LWE performance evaluation. Relevant 

segmentation metrics (Accuracy, Dice coefficient, Sensitivity, Specificity, Precision, and 

mIOU) are shown in bar charts with corresponding standard deviation shown in line plot. 

 

 

Figure B. An illustration of the Grad-CAM heatmap that highlights discriminative tissue 

regions that the proposed Xception–SWT model uses to grade histological images – patient 1 
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Figure C. An illustration of the Grad-CAM heatmap that highlights discriminative tissue 

regions that the proposed Xception–SWT model uses to grade histological images – patient 2 

- PoC 

 

Figure D. An illustration of the Grad-CAM heatmap that highlights discriminative tissue 

regions that the proposed Xception–SWT model uses to grade histological images – patient 3 

- PoC 
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Figure E. An illustration of the Grad-CAM heatmap that highlights discriminative tissue 

regions that the proposed Xception–SWT model uses to grade histological images – patient 4 

– PoC 

 

Figure F. An illustration of the Grad-CAM heatmap that highlights discriminative tissue 

regions that the proposed Xception–SWT model uses to grade histological images – patient 5 

– PoC 
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Figure G. An illustration of the Grad-CAM heatmap that highlights discriminative tissue 

regions that the proposed Xception–SWT model uses to grade histological images – patient 6 

– PoC 

 

Figure H. An illustration of the Grad-CAM heatmap that highlights discriminative tissue 

regions that the proposed Xception–SWT model uses to grade histological images – patient 7 

– PoC 
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Figure I. An illustration of the Grad-CAM heatmap that highlights discriminative tissue 

regions that the proposed Xception–SWT model uses to grade histological images – patient 8 

– PoC 

 

 


