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SAZETAK

Karcinom plocastih stanica usne Supljine jedan je od najCes¢ih karcinoma glave i vrata.
Standardni postupak za dijagnozu karcinoma plocastih stanica temelji se na histopatoloskom
pregledu, medutim, glavni izazov kod ove vrste pregleda je heterogenost tumora gdje
subjektivna komponenta pregleda moZze izravno utjecati na nacin lijeCenja specificnog za
pacijenta. Iz tog razloga, u ovom doktorskom radu koristili su se algoritmi umjetne
inteligencije za razvoj naprednog dijagnostickog sustava temeljenog na histopatoloskim
slikama kao pomo¢ u analizi tumora. Takav sustav objedinio je viSeklasnu klasifikaciju
gradusa, Grad-CAM vizualizaciju, semanticku segmentaciju tumora na epitelne i stromalne
regije te automatsku kvantifikaciju omjera tumora i strome zajedno s analizom prezivljenja
pacijenta u svrhu smanjenja varijabilnosti izmedu promatraca te ubrzanja vremena potrebnog

za postavljanje dijagnoze.

Kljuéne rijeci: Umjetna inteligencija, karcinom plocastih stanica usne Supljine, viseklasna

klasifikacija, semanticka segmentacija, Grad-CAM vizualizacija, omjer tumor-stroma



ABSTRACT

The most common malignant epithelial tumor that affects the oral cavity is oral squamous cell
carcinoma. The histopathological examination of biopsy slides is currently the most reliable
method for diagnosing oral cancer. However, tumor heterogeneity is the primary issue with
this type of procedure, since a subjective aspect of the examination may have a direct impact
on tumor diagnosis. For this reason, in this doctoral thesis, Artificial Intelligence algorithms
are used in order to develop an advanced diagnostic system based on histopathological images
as computational aid in tumor diagnosis. Such a system is composed of multiclass
classification of grades, Grad-CAM visualization, semantic segmentation of tumor into
epithelial vs. stromal regions, and automatic quantification of tumor-stroma ratio along with
overall survival analysis to reduce inter-and intra-observer variability and speed up the

diagnosis process.

Keywords: Artificial Intelligence, Oral Squamous Cell Carcinoma, Multiclass classification,

Semantic segmentation, Grad-Cam, Tumor-stroma Ratio
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PROSIRENI SAZETAK

Karcinom usne Supljine je medu deset najcescih karcinoma u Europi 1 SAD-u gdje vise od
90% spada u skupinu karcinoma plocastih stanica usne Supljine. Standardne metode za
otkrivanje karcinoma usne Supljine su inspekcija i palpacija uz detaljnu anamnezu dok se
histoloski potvrduje biopsijom tkiva. Biopsijom se definiraju karakteristike tumora te se na
temelju toga odreduju terapija, prognoza ishoda bolesti i prezivljenje pacijenta. Kljuéni izazov
histopatoloSkog pregleda proizlazi iz subjektivne komponente klinicke dijagnostike, odnosno
u varijabilnosti opazanja medu razli¢itim struénjacima. Stoga, cilj ovog istrazivanja je razviti
dijagnosticki sustav uz pomo¢ algoritama umjetne inteligencije za analizu kancerogenih lezija
koji moze poboljsati objektivnosti i ponovljivost histopatoloskog pregleda, odnosno smanjiti
varijabilnost opazanja izmedu stru¢njaka. Nadalje, takav sustav pridonio bi minimalnom
invazivnom lijecenju/kirurskoj terapiji, poboljSanju ishoda te stopi prezivljavanja i odrZzavanja
visoke kvalitete Zivota pacijenata. Nadalje, mogao bi pomo¢i stru¢njaku odnosno patologu u
smanjenju opterecenja rucnih pregleda te ubrzati vrijeme potrebno za dijagnozu.

Prvi korak ovog istraZivanja je uspostava jedinstvenog skupa podataka. Prikupljeni
histopatoloSki uzorci su se klasificirali u skladu sa Svjetskom zdravstvenom organizacijom,
koje su potom dodatno pregledala i recenzirala dva neovisna patologa. Prema ranije
spomenutoj klasifikaciji uzorci su se podijelili u tri klase: Gradus 1 (dobro diferencirani
tumor), Gradus II (umjereno diferencirani tumor) i Gradus III (slabo diferencirani tumor).
Dodatno, generirale su se pripadaju¢e maske na kojima je jasno odredena granica izmedu
epitelnog 1 stromalnog tkiva. Prikupljeni slikovni skup podataka koristio se kao ulaz u
algoritme umjetne inteligencije kako bi se razvio personalizirani dijagnosticki sustav za
analizu karcinoma plocastih stanica usne Supljine.

Iz perspektive umjetne inteligencije veliki raspon boja na slikama moze uzrokovati da
algoritmi teze prepoznaju klju¢ne znacajke jer nisu svi dijelovi slike jednako vidljivi ili
zna€ajni za analizu, stoga su se koristile relevantne tehnike za predobradu slika u svrhu
izlu€ivanja znacajki koje sadrzavaju informacije od interesa. Nadalje, ispitalo se viSe modela
temeljenih na umjetnoj inteligenciji za viSeklasnu klasifikaciju gradusa OSCC-a. Nakon
kona¢nog odabira modela i tehnike predobrade, ispitala ¢e se moguénost njihovog daljnjeg
razvoja u svrhu poboljSanja performansi. Ovakvim pristupom cilj je poboljsati objektivnost i
ponovljivost kako bi se smanjila varijabilnost opazanja medu patolozima u klasificiranju

gradusa plocastog karcinoma usne Supljine.
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Modeli temeljeni na umjetnoj inteligenciji postali su izuzetno mocan alat za otkrivanje i
klasifikaciju karcinoma, medutim, mnogi modeli dubokog u€enja i dalje se smatraju 'crnim
kutijama' Sto se ti¢e razumijevanja njihovih mehanizama za donoSenje odluka, posebice u
kljucnim primjenama kao je dijagnoza karcinoma. Stoga se u drugom koraku ovog
istrazivanja primijenila metoda objaSnjive umjetne inteligencije zvana Grad-CAM kako bi se
vizualizirale odluke modela dubokog ucenja. Takvim pristupom poboljsalo se povjerenje i
transparentnost u dijagnostickom procesu temeljenom na umjetnoj inteligenciji.

U iducem koraku izvrSila se semanticka segmentacija, gdje je svaki piksel slike oznacen
odgovaraju¢om klasom onoga $to predstavlja. Na taj se nacin to¢no odredilo podrucje
interesa, tj. lezije tumora na slici, zajedno s to¢nom granicom izmedu epitela i strome. U
istrazivanju se ispitalo viSe modela temeljenih na umjetnoj inteligenciji za semanticku
segmentaciju epitelnog i stormalnog tkiva u svrhu odabira modela s optimalnim
performansama. Kao i u prethodnom koraku, ispitala se mogucnost daljnjeg unapredenja
segmentacijskog modela u svrhu poboljSanja performansi. Ovakav pristup automatizirane
segmentacije stromalne regije moze pomoci patolozima u otkrivanju novih informativnih
znacajki.

Semantickom segmentacijom epitelnog i stormalnog tkiva dolazi se do zavrSnog koraka
istrazivanja, a to je kvantifikacija omjera tumora 1 strome (TSR). Omjer tumora i strome u
pokazao se kao obecavajuca metoda za predvidanje ishoda bolesti 1 prezivljenja pacijenta.
Usprkos potencijalnoj prognozirajucoj vrijednosti odredivanje TSR-a ponekad je izazovno,
stoga se u ovom istrazivanju razvio protokol za analizu omjera tumora i strome na
histopatoloSkim uzorcima. Automatiziranom kvantifikacijom omjera tumora 1 strome
doprinijelo bi se poboljSanju objektivnosti 1 ponovljivosti histopatoloSkog pregleda.
Zaklju¢no, omjer tumora i strome karcinoma plocastih stanica koristio se kao podatak za
procjenu ukupnog preZivljenja pacijenta.

Za postupak validacije prikupio se 1 oznacio novi skup histopatoloSkih podataka po istom
principu kao 1 inicijalni skup podataka. Predikciju Ul sustava temeljenu na novo prikupljenim
podacima vrednovali su struc¢njaci iz KBC Rijeka kako bi se utvrdile performanse sustava i

potvrdio koncept.
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J. Stifani¢: An Automated Computer-Aided System for Oral Squamous Cell Carcinoma Analysis

1. Introduction

This chapter introduces the doctoral theses along with scientific motivation for research.
Additionally, research goals and hypotheses are outlined. Furthermore, the significance and

contribution of the research are explained. Finally, the structure of the thesis is provided.

1.1. Scientific Motivation

More than 90% of cases of oral cancer (OC) are squamous cell carcinoma, making it
one of the top ten most prevalent cancers in both Europe and the United States [53, 91].
However, with advancements in diagnosis and treatment for OC patients, mortality and
morbidity rates have not decreased over the past 50 years [7]. Oral squamous cell carcinoma
(OSCC) frequently develops from pre-existing oral mucosal lesions that have a higher chance
of malignant transformation into cancer. Early detection, diagnosis, and therapy at the
precancerous stage improves the survival rates and morbidity related to OSCC treatment [31].
Surgical resection, with or without adjuvant radiation, is typically the main treatment for
OSCC, and it has a substantial effect on the patient's quality of life [27]. Even with significant
progress in comprehending the intricate processes of carcinogenesis, a trustworthy prognostic
prediction tool is still lacking. When determining the prognosis, treatment strategy, and
predicting outcomes for patients with OSCC tumor-node-metastasis (TNM) staging 1is
frequently utilized. However, the limits of TNM staging in prognostic prediction are evident
in its ability of assessing the individual characteristics of the patient, such as lifestyle choices

and clinical features [58].

The current gold standard for detecting oral cancer is clinical examination, conventional oral
examination (COE), and histological evaluation following biopsy. These approaches can

identify cancer in the stage of established lesions with notable malignant changes [105].
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However, the main drawback of employing histological examination for tumor classification
and prognostic evaluation is inter- and intra-observer variability [55]. The most recent
advances in artificial intelligence (Al)-based medical imaging contributed to reducing
variability among observers as well as reducing repetitive tasks and enabling quick accurate

diagnosis [11].

This research aims to create an advanced automated Al prognostic system that may directly
influence patient-specific interventions by determining patient’s outcome, while also

increasing inter- and intra-observer variability.

1.2. Research Objectives and Hypotheses

The main research objective is to develop an automated system based on artificial
intelligence algorithms for the analysis of oral squamous cell carcinoma. Such a system would
enable the objective grading of the carcinoma, precise separation of epithelial and stromal
tissues, which would be used for automatic quantification of the tumor and stroma, as well as

patient survival analysis.

Based on the defined objective, the following hypotheses are proposed:

¢ Through advanced data preprocessing combined with an artificial intelligence-based
model, it is possible to achieve high performance in the multiclass classification of

oral squamous cell carcinoma grades.

¢ With a hybrid artificial intelligence-based model, it is possible to achieve high
performance in the semantic segmentation of OSCC and to perform automatic

quantification of the tumor-to-stroma ratio, along with patient survival analysis.
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1.3. Research Contibution and Significance

This research makes a significant contribution to the field of medical image analysis
and the diagnosis of oral cancer using artificial intelligence. A novel Al-based system has

been proposed, and it consists of:

Stage 1: A novel preprocessing method based on the Stationary Wavelet Transform (SWT) is
intended to:
¢ increase classification performance by enhancing high-frequency components and

% extract low-level features for more precise semantic segmentation.

Stage 2: Automated multiclass grading of oral squamous cell carcinoma (OSCC), which
attempts to decrease the time needed for manual pathological inspections while increasing the

objectivity of histological evaluations.

Stage 3: Providing interpretable explanations to establish confidence and guarantee

transparency in Al-based diagnostic process utilizing explainable Al techniques.

Stage 4: Semantic segmentation of tumor into epithelial vs. stromal tissue regions in
histopathological images, enabling the identification of features that are clinically informative

and may assist in predicting tumor invasion and metastasis.

Stage 5: Establishing a procedure for the automated quantification of the tumor-stroma ratio
and the analysis of patient survival would help to increase the objectivity and repeatability of

histopathological analysis.
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The scientific contributions of the research are:

% Development of data preprocessing methodology and implementation of a model for
multiclass grading of oral squamous cell carcinoma.

¢ Development of a customized hybrid model for semantic segmentation of the tumor
into epithelial vs. stromal regions.

¢+ Creation of a protocol for automatic quantification of the tumor-to-stroma ratio, along

with patient survival analysis.

1.4. Structure of the Thesis

The first step of the research is the establishment of a unique dataset. The collected
histopathology image dataset will be used as input for artificial intelligence algorithms in
order to develop a personalized diagnostic system for analyzing oral squamous cell
carcinoma. In the next step, image preprocessing techniques will be applied to extract features
containing information of interest. In the third step, multiple Al-based models will be
evaluated for multiclass classification of OSCC grades. After selecting the final model and
preprocessing technique, the possibility of further development will be explored in order to
improve performance. In the fourth step, visualization tools such as Grad-CAM will be
utilized to enhance transparency in the Al-based diagnostic process. In the next step, semantic
segmentation will be performed. The research will evaluate several Al-based models for the
semantic segmentation of tumor on epithelial vs. stromal tissue in order to select the model
with optimal performance. As in the third step, the potential for further enhancement of the

segmentation model will also be examined to improve its performance.

Semantic segmentation of tumor on epithelial vs. stromal tissue leads to the final step of the
research, which is the quantification of the tumor-stroma ratio (TSR). Despite its potential
prognostic value, determining TSR can be challenging. Therefore, this research will develop a
protocol for the analysis of the tumor-stroma ratio in histopathological samples. Finally, the
TSR will be used as a parameter for evaluating overall patient survival analysis. The

framework of the proposed Al-based system is shown in Figure 1.1.

4
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For the validation process, a new set of histopathological images will be collected and
annotated using the same principles as those applied to the initial dataset. The Al system's
predictions based on this newly collected data will be evaluated by experts from the Clinical
Hospital Center Rijeka (KBC Rijeka) to assess the performance of the proposed Al-based

system and validate the concept.

Semantic
[ ‘\ 1 Classification segmentation
3 algorithms algorithms
_, .
a V. | F s . # n -
Botasdl Grade | Grade Il Grade |l Eraluation

Evaluation

Explainable Automated quantification

Computer Vision of the tumor-stroma ratio

Survival analysis

Figure 1.1. Framework of the proposed Al-based system: It incorporates image acquisition,
preprocessing, tumor grading, explainable Al, semantic segmentation, quantification of
tumor-stroma ratio and overall survival analysis.
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2. Literature Review

This chapter aims to provide an overview of the existing Al — solutions in medical image

analysis. It briefly describes the various models, techniques, and methodologies used in

different solutions in similar areas of study. First, in order to ensure that proper studies are

chosen, inclusion and exclusion criteria are established. Then, an overview of Al solutions

for OSCC classification is presented. After that, an overview of Al solutions for segmentation

of tumor on epithelial vs. stromal tissue is given. Furthermore, research related to the

automatic quantification of TSR is presented. A literature overview regarding explainable

computer vision for OSCC is provided at the end of this section.

2.1. Inclusion and Exclusion Criteria

Establishing inclusion and exclusion criteria is crucial when performing a literature

review in order to guarantee the selection of high-quality literature. These standards aid in

streamlining the search and preserving the review's reliability and focus.

Inclusion criteria:

X/
°

Research should focus on oral cancer classification (grading) based on
histopathological images using Al techniques.

Research should focus on the segmentation of oral cancer based on histopathological
images using Al techniques.

Research should focus on digital image processing to enhance input histopathological
images or extract helpful information.

Research should focus on interpretability and explainability of Al techniques using

histopathological images as input.
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Exclusion Criteria:
¢+ Research articles that do not primarily address the detection of oral cancer through Al
techniques.
¢ Research that involves animals.

% Research articles with results lower than 80% accuracy in detecting oral cancer.

Articles published to detect OC using Al before inclusion and exclusion
criteria

30

25

uﬁ

18

20 17 17

13

15 12

10

3 3
I/ = P @ @

2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024

Year

Number of articles published per year

Figure 2.1. Graphical representation of studies published to detect oral cancer using Al
techniques — before inclusion and exclusion criteria.

Articles published to detect OC using Al with inclusion and exclusion

criteria
7
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Figure 2.2. Graphical representation of studies published to detect oral cancer using Al
techniques — with inclusion and exclusion criteria.
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Figure 2.1. shows the amount of research published in the period from 2014. to 2024. to
detect oral cancer. The articles that were collected are from various international journals and
conferences (Elsevier, IEEE Xplore, Springer, etc.). As can be seen from Figure 2.1., research

interest in this area increased in 2017 and is still growing as the field continues to improve.

After reviewing the inclusion and exclusion criteria, 38 articles covering numerous methods
for detecting oral cancer based on histopathological images were used to compare the results,
as shown in Figure 2.2. However, some of them discuss the nucleus's classification and
segmentation, which is outside the scope of this study; thus, these findings cannot be
compared. Furthermore, some researchers have included both classification and segmentation
in their research, even though, as previously mentioned, studies that include both
classification and segmentation of nuclei will not be taken into consideration, they will be

described since the techniques are noteworthy.

*Since no single study that has addressed the automated quantification of the tumor-stroma
ratio using Al algorithms and histopathological images as input data, the inclusion and

exclusion criteria do not refer to the literature on the subject.

2.2. Application of AI algorithms for OSCC classification

Image classification is the process of dividing data into distinct classes. OC
classification determines whether the provided data is malignant or not, and this
categorization is known as binary. Furthermore, it is also possible to use multiclass

classification to determine the various stages (grades) of cancer.

By employing Random Forests, a tree-based ensemble classifier, Baik et al. (2014) examined
a novel, semi-automated technique to separate OPLs at high risk of developing into invasive
SCC from those at low risk. For the test set, the novel method demonstrated an 80% right
classification rate at the cellular level (80.6% sensitivity, 79.3% specificity) and a 75% correct
classification rate at the tissue level (77.8% sensitivity, 71.4% specificity) [8]. Banerjee et al.

(2016) assessed the function of morphometric, intensity, and textural features extracted from
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liquid-based exfoliative cytology (LBEC), intensity and textural features extracted from ex
vivo optical coherence tomography (OCT) images, and spectral features from the difference
between mean spectra (DBMS) for classification. The results show that oral leukoplakia and
OSCC could be distinguished utilizing cellular characteristics of LBEC data with 100%
sensitivity and specificity at 10-fold cross-validation. Effective spectral biomarkers that could
identify the disorders with 81.3% sensitivity and 91.3% specificity were also retrieved,
illustrating chemical molecules’ role in pathological change [9].

Lu et al. (2017) examine computer-extracted features such as texture and nuclear shape on
digital H&E-stained images compared to standard clinical and pathologic parameters. To
create the oral cavity histomorphometric-based image classifier, a machine learning classifier
was used to combine the five best predictive quantitative histomorphometric features from the
modelling set. When identifying disease-specific outcomes on the test set, the classifier
achieved an AUC of 0.72 [49]. In order to train convolutional neural networks (CNNs) for
tissue categorization efficiently, Folmsbee et al. (2018) investigated the use of Active
Learning (AL) as opposed to the more popular Random Learning (RL).In the challenge of
employing a CNN to detect seven tissue classes (stroma, lymphocytes, tumor, mucosa, keratin
pearls, blood, and background/adipose), they compared AL and RL training. For a given
training set size, they discover that the AL method outperforms RL by an average of 3.26%
[30].

A study by Rahman et al. (2018) attempts to categorize microscopic images of OSCC from
histology slides into two groups: abnormal (malignant) and normal (benign). The
classification process takes into account the texture characteristics of the images. For feature
extraction, GLCM and histogram algorithms are employed. Linear SVM has been utilized for
classification, and the outcomes are quite pleasing since 100% accuracy is attained [73]. In
their research, Gupta et al. (2019) suggested a deep Convolutional Neural Network (CNN)
framework for the classification of images of dysplastic tissue. Normal tissue, mild dysplastic
tissue, moderate dysplastic tissue, and severe dysplastic tissue are the four categories into
which CNN has divided the provided images. It has been noted that the testing data attains
89.3% accuracy, whereas the training data displays 91.65% accuracy [34].

The automatic diagnosis of oral cancer utilizing histopathology images of oral squamous cell
carcinoma is more accurate when features are chosen precisely. Therefore, Nawandhar et al.

(2019) have employed the neighbourhood component analysis (NCA) feature selection
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technique with a feature weight estimator based on stochastic gradient descent. In order to
confirm the effectiveness of the feature selection method and the independence of classifier
selection, three popular classifiers are employed. A few chosen features are used to categorize
the oral mucosa histopathological images. It has been noted that using feature selection
significantly lowers the misclassification rate and increases classification accuracy by 49% to
65% [63]. Creating a CNN model that can classify oral histopathology images as either
malignant or non-cancerous is the primary goal of the study by Panigrahi et al. (2019). In
order to extract features and classify images of oral cancer, they recommend using
convolutional neural networks with four layers (5X5X3). With 10-fold cross-validation, the
suggested model's accuracy of 96.77% is comparable to that of pathologists and
cytotechnologists [68].

A cutting-edge Inception-V4-based CNN architecture is used for automated SCC detection in
the Halicek et al. (2019) study, which details a new and sizable histological SCC dataset of
primary head and neck SCC. The training group consists of patches from the tumor and
normal tissue samples, while the validation group consists of patches from the tumor-normal
margin sample. The testing and validation groups' AUCs for the suggested approach are 0.92
and 0.91, respectively [37]. In their research, Wetzer et al. (2020) examine and assess the
following three strategies: (1) special-purpose CNNs that concentrate on texture information
extraction; (2) general-purpose CNNs that benefit from pretraining; and (3) data
augmentation, which enhances the performance of OC detection. They demonstrate that even
with considerable data augmentation and pretraining, texture-focused methods perform better
on OC classification than general networks [107].

Rahman et al.'s (2020) aim is to create an exact algorithm that might be applied as an OSCC
screening tool. As a result, the binary classification method was adopted to filter out
cancerous cases automatically. Using morphological and textural data, they classified OSCC
with a decision tree classifier and achieved 99.78% accuracy [74]. The study by Das et al.
(2020) aims to categorize OSCC into four classes using Broder's histological grading system.
Their research uses two approaches to examine oral biopsy images. First, the best model for
their classification problem was identified by applying pre-trained deep convolutional neural
networks. Second, a CNN model has been proposed. The experimental results show that the

proposed CNN model performed better than the traditional transfer learning algorithms, with
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an accuracy of 97.5%, even though the Resnet-50 model attained the best classification
accuracy of 92.15% [20].

Wang et al. (2021) used machine learning techniques in conjunction with transmission FTIR
imaging to accurately distinguish OSCC biopsy samples from HK samples. Their current
study had the following specific goals: 1. produce representative epithelial FTIR spectra from
formalin-fixed paraffin-embedded biopsy samples in an efficient and useful manner; 2.
characterize HK, OED, and OSCC samples according to their representative spectra; 3. create
machine learning models to distinguish OSCC from HK samples, and 4. create a novel
approach to categorize OED samples for possible risk stratification applications. Despite the
study's limitations, their findings demonstrate that an FTIR-machine learning strategy can
accurately distinguish OSCC from HK oral biopsy samples [103].

Panigrahi et al. (2022) introduced a novel method for classifying oral cancer by utilizing the
capsule network. The capsule network is more resilient to rotation and affine modification of
the augmented oral dataset when it uses dynamic routing and routing by agreement. With
97.78% sensitivity, 96.92% specificity, and 96.77% accuracy, the proposed approach can
effectively classify the histological (cancerous and non-cancerous) images of OSCC,
according to cross-validation results [69]. Rahman et al. (2022) used biopsy images of oral
squamous cell carcinoma to predict malignant and normal mouth tissue using a modified
CNN AlexNet. Thus, the suggested model's prediction accuracy and loss rate were 90.06%
and 9.08%, respectively [76].

The study by Mohan et al. (2023) suggests OralNet, a framework for detecting oral cancer
from histopathology images. The study has four stages: The initial stage involves gathering
and preprocessing histopathological pictures in order to get them ready for analysis. Both
conventional and deep learning techniques are being used to extract relevant features from
images in the second phase, which involves feature extraction utilizing a deep and
handcrafted strategy. Concatenation and feature reduction with the artificial hummingbird
algorithm (AHA) are part of the third step. Binary classification and three-fold cross-
validation performance validation are included in the final step. These involve classifying
images as either healthy or OSCC tumor while evaluating the framework’s efficacy using 3-
fold cross-validation. According to OralNet's test findings, it could detect oral cancer with

more than 99.5% accuracy [60].
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The primary goal of the Meyyappan et al. (2024) study is to find a solution to the challenge of
distinguishing between benign and malignant histology images. Although the images can be
accurately identified by Transfer Learning (TL) models, their research indicates that weighted
ensemble learning can improve the model's accuracy to 93.16%, which is higher than the 90%
accuracy that individual TL models could reach [57]. In their study, Deo et al. (2024)
extracted features from the images using a 2D empirical wavelet transform. The images were
then classified into normal and OSCC classes using an ensemble of two pretrained models,
ResNet50 and DenseNet201. The model's effectiveness is evaluated and compared in terms of
accuracy, sensitivity, and specificity; the suggested model has a maximum classification
accuracy of 0.92, according to the simulation results [24].

Das et al. (2024) presented a deep ensemble learning and transfer learning-based classification
model for binary oral cancer classification using histopathology images. The advantages of
the DL technique can be increased via ensemble learning, which improves accuracy and
generalization. In this work, an ensemble model is constructed using the stacking method,
outperforming base models with an accuracy of 97.88% [21]. In their study, Maia et al.
(2024) examined the use of multiple deep learning architectures to classify histological
images of epithelial dysplasia and oral cancer. According to experimental results, there is no
statistically significant difference between CNN and transformer models overall. The only
model that outperforms transformers is DenseNet-121, which has a balanced accuracy (BCC)
of 91.91%, Recall, and Precision of 91.93% [51].

Squeeze-excitation with Hybrid Deep Learning for Oral Squamous Cell Carcinoma
Recognition (SEHDL-OSCCR) on HIs was presented by Ragab and Asar (2024) in their
paper. Hybrid DL models are the primary tool used in the presented SEHDL-OSCCR
technique for the detection of oral cancer. First, the noise is eliminated using the bilateral
filtering (BF) approach. After that, the SE-CapsNet model is used by the SEHDL-OSCCR
approach to identify the feature extractors. The SE-CapsNet model's performance is enhanced
using an enhanced crayfish optimization algorithm (ICOA) approach. Lastly, a CNN with a
bidirectional long short-term memory (CNN-BiLSTM) model is used for binary
classification. In comparison to more contemporary methods, the experimental validation of

the SEHDL-OSCCR technique showed a higher accuracy result of 98.75% [72].
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2.3. Application of AI algorithms for semantic segmentation on

epithelial and stromal region

Image segmentation is the process of splitting an image into several parts, known as
segments. These sections are useful for a straightforward analysis of the digital image. This

aids the medical field by enabling more rapid and effective diagnosis.

The computational imaging method for automatic mitotic cell segmentation in OSCC
diagnosis is demonstrated in the study by Das et al. (2014). When it came to screening mitotic
cells from in vitro histology images, their suggested methodology worked noticeably with
Precision of 83,8%, Recall of 73.5% and F-score of 78.3% [15]. The approach proposed by
Albasri et al. (2015) shows that it is possible to segment individual cells in a tissue image
using a robust algorithm, PCA, and Local Adaptive Thresholding to identify the contour of b-
catenin expression found by immunohistochemistry staining of oral cancer [4].

Das et al.'s (2017) paper aims to provide an automated method for counting mitotic cells from
relevant histopathology pictures. Regarding this, a novel machine learning approach has been
presented that uses a random forest tree classifier that learns across four entropy measures,
fractal dimensions, and seven Hu's moments-based descriptors. According to the performance
validation, the suggested methodology has an 89% precision, 95% recall or sensitivity,
97.35% specificity, 96.92% accuracy, 96.45% AUC, and 92% F-score measure for effectively
detecting mitotic cells from OSCC histological pictures [17].

Wu et al. (2022) created a computerized segmentation model for automatic epithelial
segmentation from diagnostic OSCC H&E-stained histology images. They then independently
assessed the trained model using images from three separate institutions. Moreover, they
demonstrated that the DL model that was trained on tissue microarray (TMA) images can be
used to whole-slide images from various locations and pre-analytic variation sources. They
also showed that the extraction of morphological features from manually annotated and

automatically segmented epithelial sections was equivalent [109].
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2.4. Application of AI algorithms for OSCC classification and

semantic segmentation

Kumar et al. (2015) described an automated detection and classification process that
uses clinically meaningful and biologically interpretable features to detect cancer from
microscopic biopsy images. A contrast-limited adaptive histogram equalization technique was
employed to improve microscopic biopsy images. Then, the k-means clustering algorithm was
applied to image segmentation. Moreover, K-nearest neighborhood (KNN), fuzzy KNN,
Support Vector Machines (SVM), and Random forest-based classifiers were used for
classification. The average accuracy, specificity, sensitivity, BCR, F-measure, MCC, and
specificity for the connective tissues dataset are 0.921909, 0.940164, 0.819922, 0.880263,
0.759395, and 0.717455, respectively [46].

Das et al. (2015) aim to develop a computer-assisted quantitative microscopic methodology
for automatic keratinization and keratin pearl region detection using in situ oral histology
images. The Chan-Vese approach uses the proposed model to segment the keratinized area.
Comparing the model to ground truths based on (manually) experts, the segmentation
accuracy is 95.08%. Additionally, a keratinization area grading index is investigated for
OSCC cases (poorly, moderately, and well-differentiated) [16].

Moreover, in 2018. Das et al. proposed a two-stage method for computing oral histology
images. In the first stage, a 12-layered (7 x 7x3 channel patches) deep convolution neural
network is used to segment the constituent layers. In the second stage, texture-based feature
(Gabor filter) trained random forests are used to detect keratin pearls from the segmented
keratin regions. For epithelial layer segmentation, their approach achieved an average of
98.42% segmentation accuracy, 97.76% sensitivity, 90.63% Jaccard index, and 95.03% dice
coefficient. Furthermore, the proposed approach achieved an average segmentation accuracy
0f 98.05%, a Jaccard index of 71.87%, and a dice coefficient of 75.19% for the keratin region.
The keratin pearl recognition accuracy of the suggested texture-based random forest classifier
is 96.88% [18].

Das et al. (2019) developed a two-stage computational pipeline for automatic nucleus

recognition and segmentation from oral histology images with the aim of assisting healthcare
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professionals in diagnosing OSCC. The nucleus is efficiently detected (88.87% recall and
82.03% precision) in the first stage using a 12-layer CNN driven by wavelet downsampled
patches, and in the next phase, the AC-NSCT-based nucleus segmentation technique achieves
comprehensive accuracy (Dice coefficient of 94.22%, Jaccard index of 89.38%, Precision of
97.56%, and Recall of 91.58%) for its automatic delineation [19]. An automated, effective
computer-aided system for diagnosing the normal and malignant (OSCC) categories has been
proposed by Rahman et al. (2020). The images' color, texture, and shape have all been
retrieved. Various classifiers were used to achieve classification. For form, textural, and color
features, respectively, accuracy of 99.4% was obtained using the Decision Tree Classifier,
accuracy of 100% using SVM and Logistic Regression, and accuracy of 100% using SVM,
Logistic Regression, and Linear Discriminant [74].

Segmentation, object recognition, and image classification are the three deep learning (DL)
techniques compared in the Matias et al. (2021) research. Their findings demonstrate that the
most effective method for detecting and localizing nuclei is detection using Faster R-CNN
(0.76 ToU. ResNet 34 performed well in classifying abnormal nuclei (0.86 scores). Therefore,
they deduced that these two models could be combined to create a dependable pipeline for
localization and classification [54].

The study by Hameed et al. (2021) uses a blue color component feature-based SVM classifier
to build an automatic IHC scoring technique. Entropy thresholding is used to partition the
tissue images, and the watershed transform is applied selectively to resolve clustered cells.
Using a SVM, each cell nucleus in tissue pictures is categorized as positive or negative based
on the staining intensity. The J-scoring technique is then used to obtain the tissue score. The
feature that was taken from the blue component achieved the maximum classification
accuracy of 98.01%, with sensitivity and specificity of 98.86% and 94.74%, respectively,
according to the testing results [38].

In their study, Sujatha et al. (2021) improve the image by removing noise. The preprocessed
image is then sent to the segmentation process, using the Patch-based Fuzzy Local Similarity
CMeans (PFLSCM) scheme. They used feature extraction techniques to extract the feature
from the image. Ultimately, a Hybrid Hopfield Neural Network with an Ant Colony
Optimization (ACO) algorithm is used to accurately identify retrieved features images. The

accuracy of the suggested model was 98.98% [90].
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Using oral histopathology images, Musulin et al. (2021) propose a two-stage Al-based
system for automatic multiclass grading (the first stage) and segmentation of the tumor on
epithelial and stromal tissue (the second stage) to aid the clinician in diagnosing oral
squamous cell carcinoma. Semantic segmentation prediction using DeepLabv3+ and
Xception_65 as backbone and data preprocessing produced mIOU of 0.878 and F1 of 0.955
score, while the combination of Xception and SWT produced the highest classification value
of 0.963 AUCmacro and 0.966 AUCmicro [62]. The study by Shetty et al. (2023) creates a
design for the detection of oral cancer in a scattered cloud environment. Following initial
preprocessing, images were segmented using a region-growing algorithm. Graph, textural,
and morphological aspects are also retrieved. The characteristics in this study were selected
using the suggested Linear Discriminant Analysis. Ensemble classifiers are used for the
chosen features in order to classify cancer. Additionally, stage 1 incorporates the Multi-layer
Perceptron (MLP) and Support Vector Machine (SVM) models for disease categorization.
The optimal CNN, which determines whether oral cancer is present, is part of the stage 2
phase [83].

In their study, Dharani and Danesh (2024) suggested two novel deep-learning techniques for
OSCC segmentation and identification: MaskMeanShiftCNN and SV-OnionNet. While SV-
OnionNet 1s appropriate for classifying oral cancer and normal oral tissues,
MaskMeanShiftCNN segments OSCC regions from input images using color, texture, and
shape. The suggested techniques achieved a classification accuracy of 98.94%, sensitivity of
98.96%, specificity of 97.18%, and error rate of 1.05%, outperforming current methods for
OSCC detection [22].

In an effort to improve diagnostic precision, Shukla et al. (2024) presented a unique method
for cancer diagnosis that uses machine vision. Unlike conventional deep learning or
supervised algorithms, they use an unsupervised approach for cancer identification due to the
complexity of histopathology images. Because of its essential features and shape, the nucleus
is recognized as the region of interest (ROI) in a biopsy image of malignant tissue. For the last
step of cancer identification, they use a unique binary classification method and K-means
clustering enhanced with a thresholding strategy to extract the ROI. The suggested model is
more effective and dependable at detecting cancer since it achieved an accuracy of nearly

97.28% with a closely followed validation accuracy of roughly 96.34% [85].
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The literature indicates that the majority of researchers have used Al algorithms in
retrospective studies to detect and classify oral cancer. It is evident that binary classification,
which uses the image's color, form, and texture, constituted most of the classification tasks.
Deep CNN architectures were used to complete most segmentation tasks using histopathology
images. A shortcoming of the aforementioned studies is that they were trained to determine

miotic cells from relevant data.

The only deep learning model for classifying cells into multiple classes in OSCC epithelial
tissue was proposed by Das et al. (2020), based on a literature review. The dataset consisted
of image patches derived from whole slide biopsy images. The proposed CNN model resulted
in accuracy of 97.5% [20].

According to a thorough literature review, at the time when this research was performed, no
studies had been done on multiclass grading along with segmenting of OSCC using

histopathology images obtained by biopsy and stained with marker protein.

2.5. Automatic quantification of tumor-stroma ratio

The predictive value of the tumor-stroma ratio in various cancer types has been
validated by multiple investigations using manually examined histopathology images.
However, the subjective nature of pathologists and the variability of observers render manual
visual evaluation techniques inappropriate for extensive implementation in clinical practice.
Recent advancements in artificial intelligence and digital pathology have made it possible to
perform additional quantitative analysis on numerous histopathological images.

Hong et al. (2021) introduced a DL-based TSR measuring tool for advanced gastric cancer
[40], while Zhao et al. (2020) used whole-slide HE-stained images to demonstrate a deep-
learning (DL) model for completely automated TSR quantification of colorectal cancer [115].
Furthermore, Millar et al. (2020) used machine learning algorithms and digital image analysis
to determine the clinical importance of tumor stroma ratio in luminal and triple negative
breast cancer (TNBC) [59]. Using H&E-stained images of bladder cancer, Zheng et al. (2023)

created a machine learning technique for the quantitative evaluation of TSR [117].
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Smit et al. (2023) examined whether completely or semi-automated uses of artificial
intelligence (more precisely, deep learning algorithms) could produce comparable outcomes
in automated analysis, particularly for hard-to-score cases. The study found that the TSR
evaluated by deep learning algorithms and using a microscope had good relationships [87].

Their fully automated techniques allow for objective and consistent application while
reducing the workload of pathologists. Most of these papers looked at the TSR quantification

of various cancer forms, although OSCC is the primary focus of this study.

2.6. Explainable computer vision for OSCC classification

Explainable deep learning (XDL) has drawn a lot of interest in the field of artificial
intelligence, particularly in domains such as medical imaging, where accurate and
understandable machine learning models are crucial for effective diagnosis and treatment
planning [89]. In order to enhance reliability and confidence in results, Grad-CAM is a
baseline that determines the key image regions used in a deep learning model's decision-
making. There are several computer vision (CV) uses for it, such as classification and
explanation [89].

To improve diagnostic reliability and interpretability, Grad-CAM has been used in a variety
of studies to classify cancer images with higher performance.

Oya et al. (2022) aimed to investigate ability of Al to evaluate OSCC by employing a novel
training approach that considers cellular and structural atypia and their applicability. The
convolutional neural network model that was employed was EfficientNet BO. The use of
gradient-weighted class activation mapping provided insight into its validity. The proposed
method achieved an accuracy of 99.65% using images with 512 x 512 pixels as input. Grad-
CAM results showed that the Al model covered both the cellular and structural atypia of SCC,
focusing on the region around the basal layer [66]. The study by Afify et al. (2023) proposes a
novel model that employs Grad-CAM and deep transfer learning to identify the lesion area in
the image in order to predict oral squamous cell carcinoma. The results of the proposed
method are noteworthy since they demonstrate the clinical community's crucial role in the
prompt and accurate detection of oral cancer [3]. The performance of two DL models that are

renowned for their high accuracy in oral cancer classification was thoroughly evaluated by
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Da Silva et al. (2024) in order to better understand the potential and constraints of DL
methods in the context of oral cancer diagnosis. Beyond just analyzing standard accuracy
measures, they additionally examined subclass accuracy rates and the distribution of
prediction confidences, furthermore, they used Grad-CAM to visualize the models' decisions.

[14].
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3. Oral Squamous Cell Carcinoma

This chapter aims to provide an overview of oral squamous cell carcinoma, first focusing
on its clinical features and diagnostic procedures, and then discussing the latest advancements

in computer-aided diagnosis.

3.1. Clinical Presentation and Diagnosis

Oral cancer makes up 2% to 4% of all cancer cases worldwide. The most prevalent
malignant epithelial neoplasm that affects the oral cavity is oral squamous cell carcinoma
[53]. The GLOBOCAN database estimates that 377 713 new cases were diagnosed in 2020,
and 177 757 deaths were reported [91]. The morbidity and mortality rates for OSCC have not
changed much over the past 30 years, despite improvements in therapy techniques [7]. OSCC
frequently develops from pre-existing oral mucosal lesions that have a higher chance of
developing into cancer. Even though the oral cavity is easily accessible for clinical inspection,
OSCC is typically detected in advanced stages. However, early detection and care at the
precancerous stage increases OSCC survival rates and the morbidity associated with treatment
[31]. The primary therapy for OSCC is usually surgical resection, either with or without
adjuvant radiotherapy, which significantly affects the patient's quality of life [27].

In the Western world, smoking tobacco and drinking alcohol are the most significant risk
factors for oral cancer. Although the risk factors are independent, they appear to work
together. Smoking tobacco is associated with 75% of all cases of oral cancer, and the risk of
developing oral cancer is six times higher for smokers than for non-smokers. Additionally,
alcohol drinkers are six times more likely to develop oral cancer than non-drinkers [52]. Even
though alcohol and tobacco use are typically the most significant risk factors, it is crucial to

consider other known risk factors, like chewing betel quid in some ethnic groups.
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Other factors also contribute, such as immune defects, deficiencies in vitamins A, E, C, or

trace elements, and an impaired capacity to metabolize carcinogens and repair DNA damaged

by mutagens [52]. Risk factors are demonstrated in Figure 3.1.
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Figure 3.1. Risk factors, such as malnutrition, immunological deficiencies, smoking, alcohol
misuse, chewing betel quid (BQ), human papillomavirus (HPV) infection, and genetic

disorders [97].

In the USA, the median age of diagnosis for OSCC is 62 years, but the incidence of OSCC in

people under 45 is rising. The reason why OSCC affects men more often than women (M:F =

1.5:1) is that more men engage in high-risk behaviors than women. The likelihood of

developing OSCC rises with the length of time that a person is exposed to risk factors, and

growing older adds the additional dimension of age-related mutagenic and epigenetic changes

[28]. The most common locations for the malignant neoplasm are the oral cavity floor, the

tongue's lateral borders, and the lip.
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OSCC may appear as one of the following [7]:

¢ an area of redness (erythroplakia),

«» a white lesion (erythroleukoplakia),

¢ higher exophytic borders or fissuring in a granular ulcer,

¢ aunilateral lesion on the buccal mucosa or tongue's lateral edge that is red and white,
¢ an ulcer or indurated lump, which is a solid infiltration beneath the mucosa,

¢ and an ulcer or crust that has been present for more than three weeks on the vermilion

edge of the lip (rule out herpes simplex).

An example of OSCC in patients is presented in Figure 3.2.

Figure 3.2. The tongue is where 30% of oral cancers originate, followed by the lip (17%) and
the floor of the mouth (14%). HPV-related oropharyngeal cancer primarily affects the tonsil
and tonsillar pillars, the base of the tongue, and the oropharynx [25].
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Despite significant progress in comprehending the intricate process of carcinogenesis, no
trustworthy predictive tool has been discovered. For the prognosis, treatment strategy, and
outcome prediction of oral cancer in patients with OSCC, tumor-node-metastasis (TNM)
staging is commonly utilized. The limitation of TNM staging in prognostic prediction is
reflected in its deficiency to include clinical features as well as personal traits of the patient,

such as lifestyle choices [58]. The current gold standard for detecting oral cancer is:

%+ clinical examination,
¢ conventional oral examination (COE),

+ and histological evaluation following biopsy.

These approaches can identify cancer in the stage of established lesions with notable
malignant changes [105]. The International Histological Classification of Tumors classifies

the lesions based on the degree of tumor differentiation [78]:

«» Grade I - well differentiated,
% Grade II - moderately differentiated,

7

¢ Grade III - poorly differentiated.

Most medical centers base their decisions upon clinical and pathological medical data. The
main determinants of the therapeutic approach are the TNM stage, the degree of tumor
differentiation, and the patient's health status [78]. An example of tumor differentiation is

shown in Figure 3.3.
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Figure 3.3. OSCC group of Grade I, Grade II and Grade III. First row represents H&E-
stained images while the second row represents IHC-stained images.

3.2. Advances in Computer-aided OSCC Diagnosis

The primary issue with histological examination for tumor differentiation is the
subjective nature of the examination, specifically the intra- and inter-observer variability [55].
By determining patient outcomes, computer-aided diagnosis systems (CAD) that increase
objectivity and accuracy while decreasing inter- and intra-observer variability could
immediately impact patient-specific therapeutic interventions. Additionally, such an approach
could help the pathologist make quicker, more accurate conclusions and reduce the workload
associated with manual inspections [55]. Due to recent Al and image processing
developments, CAD systems can now recognize and classify OSCC with near-human or even

better performance.
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3.2.1. Role of Artificial Intelligence algorithms in OC analysis

The development of artificial intelligence may enhance the screening process for OC.
Al can accurately analyze an enormous dataset from multiple imaging modalities and help in
healthcare, primarily in the field of oncology [110]. Fundamentally, Al aims to enable
computers to perform operations that usually require human intelligence, such as learning,
problem-solving, applying logic, and making rational choices [101]. This covers a wide range
of techniques and strategies, including robotics, computer vision (CV)-image analysis, natural
language processing (NLP), machine learning (ML), and deep learning (DL) [101]. Within
science, Al enables the development of personalized treatment strategies by incorporating
patient-specific data, such as genetic profiles and medical histories, to create personalized
interventions based on unique traits, maximizing effectiveness and reducing side effects [45].
Ability of Al models to recognize molecular signs and biomarkers reinforces the idea of
personalized healthcare by making it easier to formulate treatments that specifically target the
mechanisms causing cancer to advance. Figure 3.4. lists the use of Al in OC detection and

treatment.

Al in oral oncology |

Machine Learning

Deep Learning

Natural Language
processing

Predictive
analysis

Robotics and
automation

Expert analysis

Medical image
analysis
Clinical decision
support
Personalized
medication
Predictive analysis —

Medicalimaging
interpretation
Drug discovery

Genomicsanalysis

- Clinical
documentation

- Virtual health

assistants

- Patient behaviour

monitoring

- Disease outbreak
- High-risk patient

indentification

- Roboticsurgery

system

- Automationin lab

procedures

- Clinical decision

support

- Oral cancer diagnosis

Figure 3.4. A visual representation of Al in oral oncology; it facilitates the use of various
cutting-edge technologies for imaging, diagnosis, prediction, patient monitoring, and therapy

automation.
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3.2.2. Application of Artificial Intelligence algorithms in OC analysis

By using various data sources to increase accuracy and efficiency, machine learning
techniques are proven to be extremely useful tools in OC detection and diagnosis [6]. ML
algorithms absorb data, identify trends, and make predictions without the help of humans.
Deep learning uses multilayer artificial neural networks to analyze and interpret complex
medical data in the healthcare industry [6]. This technology has the potential to completely
transform several aspects of healthcare, including patient care management, personalized
medicine, treatment planning, and diagnostics. In clinical practice, the application of DL to
oral cancer data may assist healthcare professionals diagnose, identify, and forecast prognoses
for oral cancer. This allows for early diagnosis and therapy selection, which increases the

survival rate of patients with oral cancer [23].

Around the world, hospitals are quickly switching from paper-based to electronic medical
data. In the healthcare industry, natural language processing (NLP) is essential for gathering
and interpreting data from medical records. By enabling improved clinical documentation,
analysis, and decision-making, this technology has the potential to completely transform the
way OC is identified, treated, and managed. Through the extraction of pertinent data from
pathology reports, radiological findings, and medical notes of OC, NLP can automate the

clinical documentation process [44].

Predictive analytics is one of the big data analytics that is becoming increasingly significant
in clinical care. Risk stratification, differential diagnosis, illness occurrence prediction, and
intervention efficacy prediction are just a few of the clinical medicine applications of
predictive analytics. In order to create predictive models that can aid health professionals with
early detection, individualized treatment planning, and disease progression monitoring, this
approach uses a range of data types, such as patient demographics, medical records, genetic
traits, and clinical pathological results. Predictive methods like these can improve prior
treatment planning, enable more individualized therapy approaches, and improve patient
outcomes managing OSCC [48]. Figure 3.5. gives information about the role of ML, DL and
NPL in OC treatment and diagnosis.
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Figure 3.5. An illustration of machine learning, deep learning, and natural language
processing algorithms used in oral cancer, including their particular methods and associated
clinical tasks like data generation, clinical text analysis, lesion classification, subtype
identification, and treatment response prediction.

Due to improvement in robotics and automation, OC therapy and surgical procedures are
facing tremendous advancements, which provide creative solutions that increase accuracy,
and shorten recuperation periods. OC surgeons can now perform complex procedures with
more control and precision with the development of robotic-assisted technologies.
Automation technologies can improve surgical results' consistency by optimizing several OC
treatment procedures, including tissue sampling, suturing, and organ retraction. This would

lower the possibility of human error [56].

Another kind of Al is expert systems, created to imitate experts' judgment in particular fields.
Expert networks in OC management may play a significant role in giving healthcare
professionals information by evaluating patient data, making suggestions, and supporting
treatment planning and monitoring [2]. Figure 3.6. gives information about the role of

predictive analysis along with robotics and automation in OC treatment and diagnosis.
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Figure 3.6. An outline of predictive analysis approaches and robotics in oral cancer,
demonstrating how robotic technologies improve diagnosis, screening, and precise tumor
removal while regression and classification methods contribute to disease progression
prediction and subtype identification.
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4. Dataset Description

The aim of this chapter is to provide a thorough overview of the dataset, including patient
demographics and metadata, data collection, and the procedures used for dataset preparation

and splitting.

4.1. Data Collection and Sources

A dataset consisting of 322 histology images with 768 x 768-pixel size was created for
this research. The Clinical Department of Pathology and Cytology's archives of the Clinical
Hospital Center in Rijeka provided the formalin-fixed, paraffin-embedded oral mucosa tissue
blocks of instances of oral squamous cell carcinoma that were histopathologically
documented. Two independent pathologists examined the sample slides, and they were
categorized in accordance with the World Health Organization's (WHO) [26]. The Kappa
coefficient was used to evaluate the pathologists' degree of agreement. Kappa coefficient

score was 0.94.

Briefly, a range of marker proteins were used to stain paraffin-embedded tissue slices that
were 4 um in size using the conventional IHC methodology. DAB and hematoxylin were
employed to stain the IHC images. The light microscope (Olympus BX51, Olympus, Japan)
with a digital camera (DP50, Olympus, Japan) was used to capture the images, and CellF
software (Olympus, Japan) transferred the images to a computer. Moreover, images were

captured with 10x objective lenses.

As illustrated in Figure 4.1., images have been categorized into three classes based on the

previously established classification.
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Figure 4.1. The OSCC group of Grade I, Grade II and Grade III under x10 magnification.

An additional dataset of 101 histopathological images was collected for experimental proof of
concept in order to ensure the proposed Al-based system's robustness. The protocol for

collecting additional images was the same as for the original data set.
This research guarantees data quality, representativeness, and generalizability for Al-driven

analysis in medical research by carefully choosing data sources and upholding strict ethical

norms.
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4.2. Patients Demographics and Metadata

Medical dataset analysis is extended by the contextual information provided by patient
demographics and metadata. Table 4.1. shows a comparable clinic-pathological report for the
patients. Demographic information included the patient's age at diagnosis, sex, smoking

status, and alcohol use.

70% of the patients were men and 30% were women. The median age among adult patients
was 64. Of the patients, 55% smoked, and 38% consumed alcohol. 45% of patients were
diagnosed with a Grade I, while only 15% were diagnosed with a Grade III. More patients

(52%) had lymph nodes metastases.

Table 4.1. Characteristics of the patients include sex, age, smoking and alcohol habits,
presence of metastases in the lymph nodes, and grade of OSCC.

Characteristics of the patients n =40 (100%)

Sex F 30
M 70
Age To 49 5
50-59 13
60 — 69 55

+70 27
55
45
38
62
52
48
45
40
15

Smoking
Alcohol
Lymph Node Metastases

Grading

SE—Z <2<
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4.3. Data preparation

4.3.1. Segmentation mask construction

In medical imaging, segmentation mask construction is an essential task that a medical
expert can manually perform. Mask is an array or matrix that highlights areas of interest in an
image. It marks which pixels are part of a specific item, class, or region. Each pixel in the

mask corresponds to a pixel in the original image.

Standard annotation software and tools include Labelbox, GIMP, ImageJ, ITK-SNAP, 3D
Slicer, and CVAT [65]. These tools offer features like region-growing methods, brush tools,

and polygonal annotation.

Figure 4.2. shows OSCC images with corresponding segmentation masks which are created

using GIMP.

Grade | Grade Il Grade lll

L}

Figure 4.2. Group of well-differentiated, moderately differentiated and poorly differentiated
OSCC along with segmentation masks.
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4.3.2. Image Augmentation

Deep convolutional neural networks are strongly dependent on many samples to
achieve good performance and prevent overfitting. However, since fields like medical image
analysis sometimes lack access to a large number of samples augmentation techniques are
required. Image augmentation is the process of applying different modifications to increase
the size and diversity of a dataset. It prevents overfitting and improves model generalization.
Due to previously mentioned neural network demand and the restricted availability of data, in
this research, augmentation techniques such as geometric transformations are used to

artificially increase the quantity of samples.

Geometrical transformations used for the augmentation procedure are shown in Figure 4.3.
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Figure 4.3. Geometrical transformations for augmentation procedure.

Testing samples are not augmented. The augmentation method is only utilized to create

training samples since newly created data are variations of the original data.
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As seen in Figure 4.4., a new training set including an additional 1799 images has been

created after applying geometrical transformations, resulting in a total of 2056 images.

Grade |

966

[
Original
& Images
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Augmented
Images
245
Grade lll

588

Grade Il

Figure 4.4. Visual representation of the original and augmented dataset.

4.4. Dataset Splitting

A reasonable data splitting approach is essential for model validation and developing a
model with strong generalization performance. Although there are other data splitting
techniques that have been described and utilized in the literature, cross-validation (CV) is the
most used. CV divides the data into k different parts, often known as k-folds. The validation
set represents a single fold. The model is trained on the remaining k-1 folds and then used in
the validation set to record its predictive performance [112]. In order for each part to be used
as a validation set once, this process was repeated k£ times. After averaging the recorded
predictive performances, the model parameter with the best average predictive performance is

identified as optimal.

In this research, due to the high imbalance among OSCC classes the performance of Al-based
models is estimated using stratified 5-fold cross-validation. In this manner, each class is

roughly represented throughout all test folds.
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5. Image Preprocessing

Significant increases in processing capacity and developments in image analysis
techniques over the past decade have made it possible to create robust computer-aided
analytical tools for medical data. With the development of whole-slide digital scanners, tissue
histopathological slides can now be scanned and stored digitally. Whole slide imaging (WSI)
is frequently used to examine tissue samples and diagnose cancerous diseases. However,
some scanning equipment, staining techniques, and tissue reactivity can cause color variations
in histopathology images, making it difficult to analyze them. This chapter gives an overview
of preprocessing techniques used in this research in order to aid computers comprehend

histopathology images for diagnostic purposes.

5.1. Normalization of Histopathological Images

Digital histopathology is a field of study that uses techniques such as color
normalization and feature extraction that aid computers comprehend histopathology images
for diagnostic purposes [108]. However, variations in color in histopathological images might
lead to issues. The stain or dye used to prepare histopathological images typically gives the
image a different hue. The results of analyzing images without preprocessing could lead to an

inaccurate diagnosis [35].

One tissue staining method that pathologists are particularly interested in is hematoxylin and
eosin (H&E) staining. Pathologists can quickly identify and analyze tissue sections according
to the H stain, which highlights nuclei in blue against the pink background of the cytoplasm

and surrounding structures [118].
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Figure 5.1. shows OSCC H&E histopathological images of well- and moderately
differentiated OSCC with magnification x10.

a) Well differentiated b) Moderately differentiated

Figure 5.1. Tissue slides of well- and moderately differentiated oral carcinoma.

The reasons for color diversity in histopathology images are heterogeneous stain coloring,
chemicals from different manufacturers, and the use of various scanners and equipment
during slide preparation [42]. Therefore, to ensure visual consistency in histopathology

images, color normalization is necessary.

Original patch (RGB) Hematoxylin channel Eosin channel Normalized patch

Figure 5.2. An illustration of H&E stain normalization shows the initial RGB patch, the
separated hematoxylin and eosin channels, and the final normalized patch for a uniform
histopathological image presentation.
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Histopathology images can be color-normalized using a variety of algorithms, including the
Reinhard method, Macenko method, stain color descriptor (SCD), histogram specification,
complete color normalization, and structure preserving color normalization (SPCN).
However, Macenko method is the most used color normalizing technique when utilizing H&E

stained images.

Figure 5.3. shows H&E histopathological images of OSCC before and after color (Macenko)

normalization.

Figure 5.3. Visual representation of A) H&E-stained images and B) normalized H&E-stained
images.

Obtained results reveal that the application of preprocessing method, such as Macenko image
normalization for image analysis, has great potential as the first step in the diagnosis of
OSCC. However, in our research, the histopathological sections were treated with two
different antibodies. A polyclonal rabbit anti-megalin antibody (Santa Cruz Biotechnology,
USA; also diluted 1:100 in the same buffer) and monoclonal mouse anti-MT I+II antibody
(clone E; DAKO, USA) was employed. A standard immunohistochemistry methodology was
followed throughout the process. Diaminobenzidine (DAB) was added to a peroxidase

substrate in order to visualize the immunological response.
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After visualization, the slides were dehydrated, stained with hematoxylin (Sigma, Germany),

and then mounted in Entelean (Sigma).

The aforementioned examples show how to use the Macenko approach to preprocess H&E-
stained histopathology images. However, this study employs IHC histopathology images,
whereas all the previous examples are centered around H&E images. An example of an IHC

image using the Macenko approach is presented in Figure 5.4.

Figure 5.4. Visual representation of IHC stain normalization.

Figure 5.4. shows that even though Macenko method is a widely used color normalization
technique for H&E images, it is not well-suited for immunohistochemical staining. Using two
dominating stain vectors, usually representing hematoxylin (blue) and eosin (pink), Macenko
is based on optical density (OD) deconvolution. Assuming that there are only two stains in the
color space, it conducts stain separation and calculates stain vectors using singular value
decomposition (SVD). Depending on the antibody and detection method, IHC slides are
stained with chromogens such as hematoxylin (counterstain) and DAB (brown), or different
combinations. This research staining process uses various antibodies, which produce

chromogen patterns that deviate from the Macenko method's H&E presumptions.
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Therefore, the normalizing process may result in images that seem faded, with areas that are
strongly stained losing detail and contrast. When one of the components, the hematoxylin or
the DAB is insufficient, Macenko normalization may not be able to distinguish them
correctly. That will result in a merging of tissue features and an incorrect representation of

color.

Moreover, the Macenko approach dismisses significant spatial information, such as
microstructural texture and local architectural patterns, which are important for later deep
learning tasks, especially for transformer-based segmentation models that rely on multi-scale
contextual reasoning. To solve these limitations, this research employs a preprocessing
pipeline based on the Stationary Wavelet Transform (SWT) for classification task and
Luminance Wavelet Enhancement (LWE) for semantic segmentation task, described in

chapter 5.2. and 5.3.

5.2. Preprocessing Method Based on SWT

Wavelet Transform (WT) is a powerful method frequently employed in data
preprocessing [1]. Wavelet transformation examines spatial frequency components at various
scales rather than depending on color deconvolution. This facilitates the maintenance of fine
and global structural characteristics of the tissue, making it resistant to changes in scanner

lighting and staining intensity.

Wavelet transform of signal x(t) can be defined as [95]

X(t,a) = x(mp ) ‘ (5.1)

where [114]:
= ais the dilation,
= v is the analyzing wavelet, and

= 1 is the translation parameter.
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The Discrete Wavelet Transform (DWT) of signal x[m] can be calculated as follows [95]
k [o0)
X[k, = 27T Z x[mlp[2~*m —1]. (5.2)

The Discrete wavelet transform (DWT) can be applied independently along each dimension
during image processing. As a result, the image is divided into four subbands: LL, LH, HL,
and HH. While the detail coefficients are represented by LH, HL, and HH, the approximation
coefficients can be identified asthe LL subband [71]. Although DWT is simple to
implement and reduces computing time, it has drawbacks in terms of decimation and shift-
invariance. In order to overcome the aforementioned issues, this research utilizes Stationary

Wavelet Transform (SWT), which enables the decomposition of histopathological images.
The advantages of SWT are as follows [43];

¢ improved time-frequency localization,
¢ no decimation step, which provides duplicate information and

7

¢ 1nvariance of translation.
Following the SWT decomposition process, a mapping function is used to weigh the derived
coefficients. This enables the further enhancement of important features of an image. The
mapping function is determined by incorporating the following factors:

¢ only detail coefficients undergo coefficient mapping and

¢ both details with high and low coefficient values are heavily weighted, as they
preserve important information.

Wavelet coefficient mapping function can be mathematically defined as follows:

Vij = awl-?,’j + bwfj +cw;j+d, (5.3)
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where;
= a,b,c, and d represent constants,

= w;j is an input coefficient, and

= Y 1s a coefficient after mapping.

An improved image is obtained by performing the SWT reconstruction using weighted and
approximate SWT coefficients after the coefficient mapping procedure. Figure 5.5. illustrates

the SWT decomposition, coefficient mapping, and SWT reconstruction procedure.
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Figure 5.5. The following symbols are used to represent wavelet coefficient mapping, SWT
reconstruction, and SWT decomposition: LL for approximation coefficients, LH for
horizontal coefficients, HL for vertical coefficients, HH for diagonal coefficients, CM for
coefficient mapping function, and L_D for low pass filter and H_D for high pass filter.

The wavelet function and mapping function have a direct impact on the quality of weighted
coefficients, therefore careful selection of these values is essential. Since it is highly
computationally costly to evaluate each value in huge search-spaces, conventional methods
for determining parameters, like random search or grid search, may not always be practical

[29].
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These approaches choose the next parameter configuration without considering the assessed
performance of previous iterations, which often results in time spent assessing the function
with suboptimal parameter selection. The Bayesian technique, on the other hand, chooses the
subsequent parameter configuration for the mapping function based on the outcomes of
previous iterations [92]. This approach outperforms more conventional approaches by
achieving convergence to the optimal solution in reduced iterations. In order to determine the
most suitable values for the wavelet function and wavelet coefficient mapping function

constants (a, b, ¢, and d), Bayesian optimization has been utilized.

The domain of mapping function constants over which to search is defined and shown in

Table 5.1.

Table 5.1. Combination of the hyperparameters used in the Bayesian optimization process.

Hyperparameter Possible parameters
a 0-0.1
b 0-0.1
c 0-0.1
d 0.001 -1
Wavelet function Haar, sym2, db2, biorl.3

Wavelet transform decomposes signals or images into their component parts at various
frequency and spatial scales using mathematical bases called wavelet functions, such as Haar,
sym2, db2, and biorl.3. Due to its distinct characteristics, each wavelet can be used for

specific types of signal or images.
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5.3. Luminance Wavelet Enhancement (LWE)

In order to improve the structural representation of immunohistochemistry images
before they are transmitted to the segmentation model, the proposed preprocessing technique
introduces Luminance Wavelet Enhancement (LWE). Unlike global color normalization
techniques which largely focus on modifying stain intensity distributions, LWE directly
tackles the spatial aspects of the image by increasing texture and border information included
within the luminance channel of the LAB color space [100]. Figure 5.6. shows pipeline of the
proposed LWE preprocessing approach.

‘Al model

RGB
image

HV,D *
scale
factor

Figure 5.6. Illustration of the Luminance Wavelet Enhancement (LWE) preprocessing
pipeline, displaying the transition from RGB to LAB color space and subsequent processing
steps: L (luminance channel), AB (chromatic channels), SWT (Stationary Wavelet
Transform), AHVD (approximation and horizontal, vertical, and diagonal detail coefficients),
ISWT (Inverse Stationary Wavelet Transform).

The RGB image is translated into the LAB color space as follows:

Iap = freB—1aBUrGB)- (5.4.)

After converting the input image to LAB space, the luminance component L is retrieved and

decomposed using the SWT as shown:

SWT
(L) —» {AHV,D} (5.5.)
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where SWT offers three high-frequency detail sub-bands (horizontal, vertical, and diagonal),
each of which captures structural information at a distinct orientation, in addition to an
approximation sub-band. Since SWT is shift-invariant and does not include downsampling, its
coefficients preserve complete spatial resolution, making this approach suitable for

downstream pixel-accurate segmentation.

Structural detail is increased by scaling each high-frequency component with a scale factor as

seen in Eq. 5.6.:

H' = kH,V' = kV,D' = kD. (5.6.)

The high-frequency detail coefficients are intentionally increased to highlight delicate
morphological details and reinforce boundary cues. This regulated enhancement corrects for
challenges such as poor staining, inconsistent illumination, and low contrast, which are

frequently observed in THC slides and may hide diagnostically relevant patterns.

The enhanced coefficients are then combined again using the inverse SWT to reconstruct an

enhanced luminance channel L and can be described as follows:

L' = ISWT(A,H',V',D"). (5.7.)

Color differences that are biologically significant are preserved because chromatic channels A
and B do not change. The increased luminance channel L is combined with the chromatic

channels as seen in Eq 5.8.:

III,AB = [LIIAIB]' (58)
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6. Artificial Intelligence Algorithms

This chapter presents the artificial intelligence algorithms used in this research,

emphasizing techniques for multiclass classification and semantic segmentation.

6.1. Al algorithms for multiclass classification

By combining Al algorithms with medical image analysis, large and complex datasets
can be analyzed in real time and provide insights that can improve patient outcomes. This

chapter gives a brief description of most used image classification algorithms.

6.1.1. ResNet50 and -101

The well-known vanishing gradient issue enables deep neural networks more challenging to
train. To facilitate deep neural network training, He et al. (2016) proposed a residual network
(ResNets) [39]. Authors improved the residual block and its pre-activation version, allowing
vanishing gradients to move freely to any other earlier layer via shortcut connections. In the
ResNet50 architecture, each 2-layer block in the 34-layer network is swapped out for a 3-layer
bottleneck block, producing 50 layers. On the other hand, the ResNet101 architecture is built
with additional 3-layer blocks, as shown in Table 6.1.
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Table 6.1. ResNet50 and ResNet101 architecture representation.

ResNet50 ResNet101
Layer Output Layers Number of repeating layers
7 x 7, 64, stride 2 x 1 x 1
Convl 112x 112 3 x 3 max pool, x 1
stride 2 x1
Ix1,64
Conv2 x 56 x 56 3x3,64 x3 X3
1x1,256
1x1,128
Conv3 x 28 x 28 3x3,128 X 4 x4
1x1,512
1x1,256
Conv4 x 14x 14 3x3,256 X 6 X 23
I1x1,1024
1x1,512
Conv5_x 7x7 3x3,512 x3 x3
1x1,2048
Flatten,
3-d Full x1
Ixl Connecte}é, x1
Softmax

He et al. (2016) demonstrated on the ImageNet dataset that ResNets perform better than other
topologies on the ILSVRC classification test, with an error of 3.57% [39].

6.1.2. InceptionV3

InceptionV3 was the concept proposed by Szegedy et al. (2015) after InceptionV1 and
InceptionV2 [93]. Its main goal is to reduce the amount of computing power by altering
earlier Inception designs. To relieve the limitations for simpler model adaptation, InceptionV3
has proposed several network optimization techniques, such as factorized convolutions,

regularization, dimension reduction, and parallelized computations.
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Setting a new state of the art, their best quality version of Inception-v3 achieves 21.2%, top 1,
and 5.6% top-5 error for single crop evaluation on the ILSVR 2012 classification. Figure 6.1.
illustrates the Inception-v3 architecture, which had one input block, two grid size reduction
blocks, three Inception Modules A, B, and C blocks, one auxiliary classifier block, and one

output block.

Grid Size Reduction Grid Size Reduction
e s e 2X Inception Module C

T

Input: 299x299x3 \
| <
! E Output: 8x8x2048

Figure 6.1. Block diagram of InceptionV3 architecture [86].

6.1.3. InceptionResNetV?2

Szegedy et al. (2016) present the InceptionResNetv2, which combines the Inception
design with residual connections [94]. It increases network efficiency and permits deeper
penetration without running into issues like vanishing or gradient explosion. The network
gains greater depth, improved processing power, and stronger nonlinearity through the
breakdown of the convolution kernel. The presented design shown in Figure 6.2., significantly

increases training speed and enhances recognition performance.
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Figure 6.2. Diagrams of the overall network structure and module structure of
InceptionResNetV2 [70].

6.1.4. Xception

In 2017. Chollet presented a new architecture called Xception [13]. Convolutional
layers in a conventional convolutional neural network seek correlation by navigating over
space and depth. Xception goes a step further by independently mapping the spatial
correlations for every output channel and capturing cross-channel correlation through 1x1
depth-wise convolution. The 36 convolutional layers that comprise the Xception architecture
are organized into 14 modules [13]. Figure 6.3. shows that every module, aside from the first

and last modules, has linear residual connections surrounding it.
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Figure 6.3. Xception architecture; the data propagates eight times, first through the input flow
and then through the middle flow. Furthermore, data moves through the third box,
representing the exit flow.

6.1.5. MobileNet

Due to its significant memory and computational demands classical CNN is not
suitable for use on mobile and embedded systems. For that reason, Howard et al. (2017)
proposed MobileNetV1, a lightweight network designed for embedded and mobile

applications.

In 2018. in order to enhance the functionality of mobile models, Sandler et al. introduced
MobileNetv2 architecture [81]. It expands on the concepts of MobileNetV1 by using
depthwise separable convolution as effective building blocks. MobileNetV2 uses small
bottleneck layers as input to the residual block, unlike traditional residual models that employ

an extended input representation. Table 6.2. demonstrates a detailed architecture structure.
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Table 6.2. Each row in the MobileNetV2 architecture represents a set of identical layers that
have been repeated n times. Every layer in a sequence has the same number of output
channels (c¢). The initial sequence’s layer employs a stride of s, but the subsequent layers use a
stride of 1. The expansion factor (¢) determines the size of the input.

Number of Repeating Stride (s)
output number (n)
channels (¢)

Expansion

Input Operator factor ()

224 X3224 X conv2d - 32 1 2
112 );21 12x bottleneck 1 16 1 1
112 )i 61 12x bottleneck 6 24 2 2
56 x 56 x 24 bottleneck 6 32 3 2
28 x 28 x 32 bottleneck 6 64 4 2
14 x 14 x 64 bottleneck 6 96 3 1
14 x 14 x 96 bottleneck 6 160 3 2
7x7x 160 bottleneck 6 320 1 1
7x7x320 conv2d 1 x 1 - 1280 1 1
7x7x 1280 avgp"7°1 7x - ] 1 -
fully
1 x1x1280 connected - 3 -
(Softmax)
6.1.6. NasNet

By framing the task of determining the optimal CNN architecture as a reinforcement
learning problem, Zoph et al. (2018) developed NASNet [117]. The main idea was to find the
optimal parameters inside the specified search space, including strides, number of layers,
output channels, filter sizes, etc. NASNet proposes identifying two kinds of cells: reduction
and normal cells. Reduction cells are primarily utilized to lower spatial resolution, while
normal cells are used to extract advanced information while maintaining the exact spatial

resolution.
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The depth of a network defines the search space, allowing the discovery of effective
architectures using a small dataset (e.g., CIFAR-10) and enabling the transfer of the learned

architecture to image classification tasks across various data sizes and computational scales.

The generated architectures outperform state-of-the-art performance on both the CIFAR-10
and ImageNet datasets while demanding less computational effort than human-designed

architectures. An illustration of a two-cell search space is shown in Figure 6.4.
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Figure 6.4. Left: An illustration of a two-cell search space. Right: An illustration of the ideal
design for a typical cell.

6.1.7. EfficientNetB3

EfficientNet, which Tan and Lee first presented in 2019, quickly gained prominence as
the preferred architecture for various demanding applications, such as language processing,
image segmentation, and object recognition [96]. The reason for success is its capacity to
compromise model performance and computing efficiency, two essential aspects of deep

learning.
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The EfficientNet family of models, which includes EfficientNetB3, is regarded as a balanced
and effective model. Compound scaling is one of EfficientNet-B3 key features. It
automatically scales up the model's architecture in terms of width (number of filters per layer)
and depth (number of layers), depending on the input image resolution. With this model, it
can be analyzed both large and small images more efficiently with better results while using
more resources. The architecture of EfficientNetB3 can be summarized as presented in Table

6.3.

Table 6.3. EfficientNetB3 architecture.

Stage Operator  Resolution 11‘;::1?1::1:1‘ Layers
1 Conv3x3  300x300 3 .
2 MBEonvl 150x150 16 )
3 MBEonve: 150x150 24 ;
) MBk(girswq 75x75 40 3
> MBCOMG, 3x38 80 5
° s 10w 12 5
! s 10x0 192 6
i MBkgigva 10x10 320 ’
O peclmggrc 1010 1280 I
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6.2. Al algorithms for semantic segmentation

In addition to multiclass classification, semantic segmentation is an essential Al-
driven method in medical image analysis, especially for identifying OSCC. Semantic
segmentation provides pixel-by-pixel classification, thus allowing to precisely identify
malignant areas in histopathology images. Deep learning architectures like U-Net,

DeepLabV3+, and transformer-based models are presented in this chapter.

6.2.1. U-Net

Ronneberger et al. (2015) in their research presented U-Net, a well-known deep
learning architecture. Having both contracting and expanding pathways is an advantage of the
U-Net architecture. The contracting path gradually lowers the input's spatial resolution by
using encoder layers to extract contextual features. The expanding path, on the other hand,
uses skip connections from the contracting path to precisely create the segmentation map by

including decoder layers that reconstruct the encoded representation [80].
This network was created to efficiently utilize a smaller amount of data while preserving

speed and accuracy, with the main goal of addressing the problem of limited annotated data in

the medical field [80]. U-Net architecture is shown in Figure 6.5.

53



J. Stifani¢: An Automated Computer-Aided System for Oral Squamous Cell Carcinoma Analysis

input

im > output

image P .

t?le o . segmentation
g 42 map

392 x 392

1402

H}KD —E’D'ﬂ = conv 3x3, ReLU
ol & = ol o

¥ sz s I copy and crop
,D"‘D"D e e ¥ max pool 2x2
8 Iy 1024 4 3 B 4 up-conv 2x2
i — = conv 1x1

Figure 6.5. Each multi-channel feature map in the U-Net architecture is represented by a blue
box with a label on top indicating the number of channels it contains. The box's lower left
edge displays the x- and y-sizes. Replicated feature maps are shown by white boxes, and
arrows show the operations performed between them [80].

The contracting path in U-Net is responsible for extracting the important features from the
input image. In order to capture increasingly abstract representations of the input, the encoder
layers use convolutional operations to gradually increase the feature maps' depth while
decreasing their spatial resolution. On the contrary, while preserving the input's spatial
resolution, the expanding path decodes the encoded data and locates the features. In addition
to conducting convolutional operations, the decoder layers in the expanded path upsample the
feature maps. Skip connections from the contraction path are employed to preserve the spatial
information that would otherwise be lost during the downsampling process, allowing the

decoder layers to localize features more precisely [80].
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6.2.2. DeepLabV3+

DeepLabV3 is a deep learning model for image semantic segmentation. Chen et al. in

2018 proposed the newest version of DeepLabV3 called DeepLabv3+ [11]. It adds a simple

yet effective decoder module to DeepLabV3 to help refine segmentation results, particularly

along object boundaries. It controls the feature map and receptive field resolutions using

Atrous (Dilated) Convolutions without adding more parameters overall. Atrous Spatial

Pyramid Pooling is an additional key characteristic that efficiently obtains multiscale

characteristics including valuable segmentation information [11].

DeepLabv3+ achieved remarkable results, 82.1% mIOU on the Cityscapes dataset and 89%

mIOU on the PASCAL VOC 2012 test set. These accomplishments demonstrate the series'

ongoing development in expanding the possibilities for semantic image segmentation. The

framework of DeepLabV3+ architecture is shown in Figure 6.6.
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Figure 6.6. The architectures described in subsection 6.1.

MobileNetv2) can be used as DeepLabv3+ backbones.

55

(Xception, ResNetl01,



J. Stifani¢: An Automated Computer-Aided System for Oral Squamous Cell Carcinoma Analysis

6.2.3. SegFormer

SegFormer, a straightforward, effective, and reliable framework for semantic
segmentation, was presented by Xie et al. in 2021. It combines lightweight multilayer

perception (MLP) decoders with Transformers [111].

SegFormer has two main attributes:

a) Multiscale feature generation from a hierarchically structured Transformer
encoder. By eliminating the need for positional encoding, it prevents positional
codes from being interpolated, which could otherwise degrade performance in
situations when the test resolution differs from the training resolution.

b) SegFormer avoids complicated decoders. In order to produce -effective
representations, the proposed MLP decoder combines local and global attention by

aggregating data from many layers.

Segformers appear in six different configurations, ranging from BO to BS. The lightest
configuration is B0, while the best segmentation quality is achieved with B5 configuration.
On the Cityscapes validation set, their top model, SegFormerB5, gets 84.0% mloU and has
exceptional zero-shot resilience on Cityscapes-C [111]. SegFormer framework is shown in

Figure 6.7.
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Figure 6.7. Two primary modules comprise the described SegFormer framework: lightweight
all-MLP decoder that directly incorporates these multi-level characteristics to produce the
semantic segmentation mask and a hierarchical Transformer encoder that records both coarse
and fine-grained information [111].
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7. Explainable Computer Vision for

Interpretable Analysis of OSCC

In recent years, a consistent increasing trend has been observed in the application of Al-
based models in the medical field, with numerous studies on automated diagnosis and
prognosis. However, many Al models are still considered as a black box and not very
interpretable. The issue of interpretability in the medical field significantly exceeds simple
intellectual interest. More precisely, it is noted that interpretabilities in the medical domain
include elements such as risk and responsibilities that are not considered in other fields. When
medical decisions are made, human lives can be at risk. It would be equivalent to completely
avoiding responsibility to entrust such major decisions to computers that are incapable of
providing accountability. For that reason, in this chapter explainable Al is demonstrated in

order to make Al systems more understandable to health professionals.

7.1. Explainability in Medical AI Systems

Explainable AI (XAI) is an emerging field that is extremely important in the medical
field [84]. The development of Al is briefly related to data science, computer vision, natural
language processing, machine learning, and statistical analysis. Despite these advancements,
they were unable to surpass human intellect, which was further enhanced by deep learning,
neural networks, and reinforcement learning. These developments were crucial for the
improvement of the medical field. However, in order to comprehend specific decisions,
outcomes, and the present state of the patient's problems, it is crucial that the medical field

incorporate explanations regarding legal and ethical Al [41].
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XAI aims to improve performance and explainability, which makes it easier for users to trust,

comprehend, accept and manage Al systems.

XAl

Design Limitations Transparency

Adaptability Explainability

Figure 7.1. Key components of Explainable Al (XAI), such as transparency, explainability,
adaptability, and limitations of design.

Figure 7.1. represents the benefits of XAI methods [84];

« Design Limitations: XAI facilitates a deeper understanding of data quality, feature
distribution, classification and comparison evaluation by improving interpretability at
every structural layer.

% Transparency: The transparent frameworks of XAI techniques are well-known for
offering details on data processing and model creation. With an accurate
understanding of the system’s fundamental features, transparency allows users to
effectively optimize the system.

» Explainability: When it comes to model design problems, explainability can assist in
identifying the process step where the incorrect choice was taken, allowing for a later

correction. For the initial data analysis, decision, and action for the entire XAI model,

explainability is crucial.
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¢ Adaptability: By utilizing the feedback technique, XAl models are renowned for their
great degree of adaptability. The ability of XAI systems to adapt explanations and

decision-support tools to various users

7.2. Global and Local Methods for the Preprocessing

Recent literature demonstrates the strategy of offering interpretability and

transparency while utilizing the models as [32]:

¢ Gradient Weighted Class Activation Mapping (Grad-CAM),
+» Layer-Wise Relevance Propagation (LRP),

¢ Statistical Functions for the Feature Analysis and Processing,
¢ SHapley Additive exPlanations (SHAP),

< Attention Maps and

% Local Interpretable Model-Agnostic Explanations (LIME)

Based on the literature review and aim of this research Grad-CAM will be utilized for visual

representation.

7.2.1. Gradient Weighted Class Activation Mapping

As interpretability in deep learning has become more significant, especially in CNN
architectures, Selvaraju et al. (2017) proposed Gradient-weighted Class Activation Mapping
(Grad-CAM) as a visual explanation technique [82]. Grad-CAM leverages the gradient
information of a target concept flowing backward into the last convolutional layer to generate
coarse localization maps that emphasize the most discriminative portions of the input image
that are most important in the model's prediction. This contribution enabled increased

transparency in decision-making and represented a major advancement toward XAlI.
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To construct the class discriminative localization map L%, qq—cam € R*Y, the authors first
calculate the gradient of the class score ¢, y¢ with respect to feature maps A*. Global average

pooled gradients are used to determine the neuron significance weights, aj:

1 ay°
c — _
ay =7 E E aA’;j (7.1)
i

This represents the significance of feature map k for a target class c and represents a partial
linearization of the deep learning model downstream from A. By using the ReL U activation

function, af, gathers the corresponding class discriminative localization map.

Lraa-cam = ReLU (2 a,ﬁA"") (7.2)

k

In general, a CNN that classifies images does not always need to produce y€ as its class score.
It might be any differentiable activation, such as a question response or words from a caption.
The Global Average Pooling method is used to spatially pool the K feature maps A* € R*X?.

The pooled feature map and linear transformation are then used to obtain the class ¢ score, S€.

DI
k 7 lj '
iJ

k

It is possible to modify the previous equation by using L (CAM).

RPN
Z Y )
i J kK
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8. Assessment of TSR in
Histopathological Samples

In this chapter, the assessment of the tumor-stroma ratio (TSR) in histopathological
specimens is described, along with its biological foundation, methodological techniques, and

prognostic significance using Kaplan-Meier survival analysis.

8.1. Biological Foundation of TSR Interaction

For a prolonged period, clinicopathological factors, including tumor type, malignancy
grade, tumor size, patient age and the existence of local or distant metastases, have
determined the optimal plan of treatment for cancer [102]. However, the tumor
microenvironment is becoming important feature of current biomarker development research.
The tumor-stroma ratio (TSR) is one of the simplest yet effective histopathological metrics
that represent the tumor metastatic environment (TME). The stroma interacts with both
malignant and nonmalignant cells during all stages of carcinogenesis, from tumor onset to
invasion and metastasis, making the tumor-stroma crucial to the growth and progression of

cancer [36].

Not all tumors are formed out of cancerous epithelial cells. They instead coexist alongside a
dynamic stroma consisting of extracellular matrix (ECM), fibroblasts, immunological cells,

and endothelial cells.
Stroma actively contributes to the development of cancer by [99]:
% stimulating angiogenesis,

+ modifying the extracellular matrix to make invasion easier,
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¢ supplying cytokines and growth factors, and

% causing immunological evasion.

Increased communication between the microenvironment and malignant cells is shown in
stroma-rich tumors, which are frequently associated with more aggressive biological behavior

[106].

8.2. Method of Assessment

Based on the tissue slide used in normal diagnostic pathology to determine the tumor
grade, the tumor-stroma ratio can be calculated. Using a 10x objective, one region within
vision site that has both tumor and stromal tissues should be chosen. The chosen image area
should show the tumor cells on all four sides. Groups with different stromal ratios were
separated into stroma-high and stroma-low groups. According to the histological section, a
tumor is classified as stroma-low if its stromal area is less than 50% and as stroma-high if it is

more than 50% [88]. The TSR assessment methodology is shown in Figure 8.1.
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Figure 8.1. Framework for stromal assessment in histopathological samples that describes
how to prepare samples, choose fields, examine them under a microscope, and classify tumors
according to their stromal proportion.
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8.3. Prognostic Significance

TSR has become a powerful independent prognostic indicator for several cancers:

¢ Colorectal carcinoma: Disease-free survival (DFS) and overall survival (OS) are
negatively correlated with stroma-rich tumors.

¢ Breast cancer: Particularly in triple-negative breast cancer, a high stromal content is
associated with an elevated risk of recurrence.

¢ Gastric and esophageal malignancies: TSR indicates a poor response to treatment and
a lower survival rate.

¢ Non-small cell lung cancer (NSCLC): Stroma-rich tumors exhibit aggressive

characteristics and a poor prognosis.

Table 8.1. Advantages and limitations of TSR assessment [113].

Point Description
Advantages of . Requires only routine stained slides,
Cost-effective o
TSR Assessment no additional tests.
) Standardized methodology allows high
Reproducible .
interobserver agreement.
Clinically Provides prognostic information beyond
relevant conventional staging.
o It can be incorporated into routine pathology
Easily integrable
workflow.
Challenges and . TSR estimation relies on visual assessment,
Subjectivity ) ) o
Limitations which may lead to inter-observer variability.
Tumor Different areas of the tumor may show
heterogeneity variable stromal content.
Cutoff Lack of universal agreement on the
discrepancies cutoff threshold.
Limited

Most evidence is restricted to
validation in rare )
common carcinomas.
cancers
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According to the limitations presented in Table 8.1, this research will utilize artificial
intelligence (Al)-based image analysis and digital pathology to standardize TSR evaluation

and reduce observer bias.

8.4. Kaplan-Meier survival analysis

The significance of tumor-stroma ratios as a prognostic marker will be assessed in this
research using the Kaplan—Meier (KM) survival curve. A subfield of statistics called survival
analysis examines time-to-event data, where the outcome of interest is the interval between an
event—such as death, return of an illness, or failure of a treatment—and the time until it
happens. Introduced by Edward L. Kaplan and Paul Meier in 1958, the Kaplan—Meier
survival curve is one of the most used methods in this field. Researchers and clinicians can
use this method to estimate survival probabilities across time, even if some data are censored

(i.e., the event of interest has not occurred for some individuals during the study period [79].

The Kaplan-Meier curve is a step function that decreases when events occur. A death or
relapse, for example, is represented by each step that goes down. The process of estimation
includes the following steps [79]:

I.  Determine unique event times by arranging survival times in ascending order.

II.  Determine the survival rate for each incident:

S(t) = ﬂ (1 - %) (8.1)

iit;<t t

where ¢; is the time of the i*" event, d; is the number of the events at t; and n;

is the number of individuals at risk just before t;.
III.  Plot the curve: A stepwise function that starts at 1.0 (100 percent survival at

time zero) and gets smaller with every occurrence. Usually, tick marks along

the curve denote censored data points.
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Figure 8.2. A schematic representation of a Kaplan-Meier survival curve which demonstrates
the point at which median survival is established as well as the decline in patient survival with
time.

The KM survival curve is schematically represented in Figure 8.4.1, with the vertical axis
representing the estimated probability of survival. Time is shown on the horizontal axis in
months, years, or any other applicable unit. Additionally, the point at which the survival

probability drops to 50 is known as the median survival time.
By using Kaplan—Meier analysis, it is possible to demonstrate whether patients with a high

stromal component (stroma-high TSR) indeed have lower overall or disease-free survival

rates compared to those with a low stromal component.
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9. Evaluation Criteria

The ability of a deep learning model to generalize new data is a fundamental component
when evaluating its performance [64]. Furthermore, validation methods are crucial for
detecting and preventing overfitting of the model, which ensures accurate results on
unseen data. The following metrics are commonly used to assess classification and

segmentation models.

The accuracy measure (ACC) points out what percentage of the pixels in the image are

assigned to the correct class and can be defined as follows [33]:

1CC TP + TN 01)
" TN+TP+FN+FP’ '

Cases where both the actual and predicted results are positive are referred to as true positives
(TP). When the actual and predicted outcomes are both negative, this is referred to as a true
negative (TN). When a positive actual outcome is mistakenly assigned a negative predicted by
the model, this is known as a false negative (FN). On the other hand, when the model predicts

a positive result when the actual result is negative, this is known as a false positive (FP).

Precision, shows the percentage of the results which are relevant and can be defined as [12]:

Precision = e (9.2)
recision = —o——0 . :
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Sensitivity, sometimes referred to as Recall or the True Positive Rate, quantifies the
percentage of data points with positive labels that the model correctly classifies and can be

calculated as [61]:

TP

Sensitivity = TP+—F1V .

(9.3)

Specificity, also known as the True Negative Rate, quantifies the percentage of data points
with a negative label that the model correctly classifies and can be mathematically expressed
as[61]:

TN

TN + FP’ ©-4)

Specificity =

Accuracy, Precision, Sensitivity and Specificity can be used as evaluation criteria for both
classification and segmentation models. However, multiclass classification requires
evaluation criteria considering numerous categories, unlike binary classification, which only

has two categories.

Model classification ability can be assessed using statistical metrics like Micro- and Macro-
Area Under the Curve (AUC). The AUC is an evaluation metric used to determine the binary
classifier's performance. In order to use AUC for multiclass classification, the problem needs
to be considered as binary classification problem using the One vs. All technique, in which
one class is categorized against every other class. The ratio of correctly identified cases across
all classes to the total number of samples is known as the micro-averaged true positive rate, or
TPR. The percentage of cases that are incorrectly classified across all classes in relation to the
total number of samples is also known as the false positive rate (FPR), or fallout. The

mathematical representation of Micro averaging is defined as follows [98]:

= TP,
kK TP, +Yk FN,
=1 l i=1 1A

TPRmicro = (9.5)

and
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K FP,
kK FP,+ Yk TN,

FPRpicro = (9.6)

by which AUChuicro can be calculated. In Macro averaging for k classes, the metrics are
calculated separately for each class, and the results are averaged together. Based on the

computation of both TPRmacro and FPRmacro, AUCmacro can be computed as follows [47]:

_ XK TPR
TPRyacro = T — (9.7)
and
FPR _ Zies FPR:
macro — K . (9.8)

The Jaccard Index, sometimes referred as Intersection-Over-Union (IOU), is one of the most

popular metrics for semantic segmentation, and it can be defined as [77]:

10U = i (9.9
" TP+ FP+FN 9)

The mIOU has a positive correlation with the Dice coefficient (F1). It is an overall measure of

a model's accuracy and can be calculated as follows [12]:

2TP

Fl= .
2TP+FP +FN

(9.10)
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10.Results and Discussion

This chapter summarizes the main outcomes of this doctoral thesis, which include
multiclass classification results, GRAD-CAM visualization for model
interpretability, semantic segmentation performance, automatic TSR quantification and

experimental proof of concept.

10.1. Multiclass classification

A thorough deep learning pipeline designed for OSCC multiclass classification is
demonstrated by the framework in Figure 10.1. Image acquisition is the first step in the
pipeline, which is followed by preprocessing and data augmentation. Preprocessing method
based on SWT is developed in order to increase classification performance by enhancing
high-frequency components. Augmentation techniques such as geometric transformations are
used to artificially increase the quantity of training samples. The processed images are then
forwarded into pre-trained deep CNN architectures. Each model performs multiclass
classification in order to assign histopathological images to one of three classes: Grade I,
Grade I, or Grade III. Due to the high imbalance among OSCC classes the performance of
Al-based models is estimated utilizing stratified 5-fold cross-validation. In the last step

AUCicro and -macro metrics are used to evaluate model performance.
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Figure 10.1. Framework for multiclass grading approach.

Initial experimental results are obtained on ImageNet using pretrained MobileNetV2,
ResNet50, ResNet101, NASNet, InceptionV3, InceptionResNetV2, EfficientNetB3, and
Xception architectures. In order to perform multiclass classification of OSCC, the current
research adds two additional layers to the widely used deep CNN architectures. The first layer
is the global average pooling layer, which reduces the hxwxc (height, width, channels) tensor
to a 1x1xc, which also forces the network to focus on global spatial information Furthermore,
the fully connected layer is the second added layer, consisting of three neurons and a Softmax
activation function. For training each model architecture, three optimizers are used: Adam,

RMSprop, and Stochastic Gradient Descent (SGD).
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Additionally, every Al model architecture is trained in two steps:

+¢ the first step involves only the output layer being trainable while the others are frozen,
and

¢ the second step involves the output layer being frozen while the other layers are
trainable.

This method provides steady training and gradual adaptation.

The results presented in Figures 10.2. — 10.9. are achieved by utilizing early stopping and
modifying optimizer hyperparameters such as learning rate and learning rate decay. In order
to offer a robust and unbiased evaluation of model performance, stratified 5-fold cross-

validation was used.
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Figure 10.2. InceptionV3; The AUCnacro and AUCnicro measures are used in the bar graph to
compare the performance of three optimization algorithms: SGD, Adam, and RMSprop.

Figure 10.2. compares the performance of InceptionV3 with different optimization
algorithms. Based on the SGD optimization algorithm, InceptionV3 achieved an AUCmacro of
0.824 and an AUCmicro 0f 0.854. With an AUCmacro 0f 0.932 and an AUCicro 0f 0.938, Adam,
however, achieved superior results. RMSprop also achieved strong performance, with an

AUCmacro Of 0923 and an AUCmicro Of 0933
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Figure 10.3. ResNet50; The AUCmacro and AUCnicro measures are used in the bar graph to
compare the performance of three optimization algorithms: SGD, Adam, and RMSprop.

ResNet50 results are shown in Figure 10.3. With an AUChacro 0of 0.871 and an AUChicro of
0.864, the Adam optimizer achieved the highest results. On the other hand, RMSprop
produced comparatively lower results, showing consistent performance but not exceeding
Adam, with AUCacro of 0.833 and AUChicro of 0.832. With a relatively low AUChmicro of
0.788 and a lowest AUCacro of 0.822, SGD showed limited efficiency.

Figure 10.4 shows the performance of ResNetl01 when trained with various optimizers,
which is comparable to the outcomes of ResNet50. Obtaining the highest values, an AUCacro
of 0.882 and AUCmicro of 0.890, Adam surpasses the other optimizers. With an AUCnmacro of
0.860 and an AUCmicro of 0.834, SGD demonstrates comparatively strong results. RMSprop
performs moderately but less reliably than Adam and SGD, with the lowest macro score

(0.829) and a slightly higher micro score (0.836).
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Figure 10.4. ResNet101; The AUCmacro and AUCnicro measures are used in the bar graph to
compare the performance of three optimization algorithms: SGD, Adam, and RMSprop.
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Figure 10.5. InceptionResNetv2; The AUCmacro and AUCnmicro measures are used in the bar
graph to compare the performance of three optimization algorithms: SGD, Adam, and
RMSprop.

InceptionResNetV2 results are shown in Figure 10.5. The best performance is demonstrated
by the Adam optimizer, which has the highest AUCmacro (0.920) and AUCnicro (0.931). With
closely aligned scores (AUCmacro 0.914, AUChicro 0.917), RMSprop also performs well.
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On the other hand, SGD performs noticeably worse with AUCmacro 0f 0.807 and AUCicro of
0.823.

Xception
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Figure 10.6. Xception; The AUCmacro and AUChicro measures are used in the bar graph to
compare the performance of three optimization algorithms: SGD, Adam, and RMSprop.

The lowest values (AUCmacro = 0.818, AUCmicro = 0.850) of the three optimizers in Xception
architecture were obtained by SGD as seen in Figure 10.6. In contrast, Adam's performance
showed a significant improvement, achieving an AUCicro 0f 0.933 and an AUCnacro 0f 0.924.
The superior results were obtained by RMSprop, which had an AUCmnacro of 0.929 and an
AUChicro 0£.992.

The comparison outcomes of the three optimizers for the MobileNet architecture are shown in
Figure 10.7 With an AUChicro 0of 0.901 and an AUChmacro 0of 0.877, SGD performed the best.
Adam achieved satisfactory performance of AUCmacro (0.762), however AUCmicro (0.613)
performance significantly declined. With an AUChmicro of 0.592 and an AUCacro 0of 0.745,

RMSprop achieved the lowest performance.

74



J. Stifani¢: An Automated Computer-Aided System for Oral Squamous Cell Carcinoma Analysis

1 0877 ©
0,9
0,8
0,7
0,6
0,5
0,4
03
0,2
0,1

0

SGD

Figure 10.7. MobileNetv2; The AUCmacro and AUCnicro measures are used in the bar graph to
compare the performance of three optimization algorithms: SGD, Adam, and RMSprop.
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Figure 10.8. NASNet; The AUCmacro and AUCmicro measures are used in the bar graph to
compare the performance of three optimization algorithms: SGD, Adam, and RMSprop.
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In Figure 10.8., the NASNet results are shown. Among the optimizers, Adam achieved
superior performance with an AUCmacro 0f 0.890 and an AUCmicro of 0.909. With an AUCnmacro
of 0.845 and an AUCnico of 0.869, SGD showed solid performance, whereas RMSprop
showed a limited improvement, better in terms of macro-average (0.849) but worse in terms

of micro-average (0.854).
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Figure 10.9. EfficientNetB3; The AUCnacro and AUCnmicro measures are used in the bar graph
to compare the performance of three optimization algorithms: SGD, Adam, and RMSprop.

The performance of the EfficientNetB3 model trained with SGD, Adam, and RMSprop
optimizers is shown in Figure 10.9. With an AUCnacro of 0.751 and an AUChicro 0f 0.796,
SGD produced the lowest results. Adam, on the other hand, achieved the highest results with
an AUChmacro 0f 0.911 and an AUChicro 0f 0.915. With AUChmacro and AUCmicro Values of 0.902

and 0.898, respectively, RMSprop also demonstrated strong performance.

A review of the research results revealed that the best overall performance metrics were
obtained with a two-step training approach. In the first phase, only the output layer was tuned,
using a learning rate decay of 1x107¢ and a learning rate of 1x1072. The next step involved
freezing the output layer and continuing training for the remaining network layers with the

same decay value of 1x107¢ and a reduced learning rate of 1x107.
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Stratified 5-fold cross-validation outcomes showed that the Adam optimizer consistently

performed better than most model architectures, as seen by both AUC micro and macro values.

Adam performed the best within the ResNet50 architecture, achieving 0.871 + 0.105 for
AUCnacro and 0.864 = 0.090 for AUCmicro, Wwhereas SGD produced the lowest results. Adam
produced better results with AUCnmacro of 0.882 + 0.125 and AUChmicro of 0.890 £ 0.11 for
ResNet101, following a similar pattern. Additionally, the best overall performance was shown
by the NASNet architecture trained using Adam, which achieved 0.890 + 0.054 for AUCmacro
and 0.909 + 0.043 for AUCmicro. RMSprop, on the other hand, consistently achieved the
lowest results, indicating that its optimization approach was less appropriate for the dataset

and the feature representations that these architectures were able to extract.

According to the performance evaluation, the Xception architecture with RMSprop optimizer
yielded the best overall results, with AUCmacro of 0.929 + 0.087 and AUCmicro of 0.942 +
0.074. In a comparable manner, SGD produced lowest results for InceptionV3 architecture,
whereas the Adam optimizer produced the best results for this architecture (AUCmacro 0f 0.932
+ 0.081 and AUChicro of 0.938 + 0.088). With SGD, MobileNetV2 had the best performance,
with AUCmacro of 0.877 = 0.062 and AUChuicro of 0.901 + 0.049. The Adam optimizer
repeatedly produced the best results for InceptionResNetV2 (AUCmacro of 0.920 £ 0.059 and
AUChicro of 0.931 + 0.064), whereas SGD produced the lowest results. AUCmacro of 0.911 +
0.148 and AUCmicro of 0.915 £ 0.148 were achieved using EfficientNetB3 and Adam;
nevertheless, this configuration showed more variability among folds, by showing a slight

increase in standard deviations.

It can be observed from the model architecture and optimizer performances that the Adam
optimizer generally provides superior classification performance on the data used in this
research. SGD, on the other hand, showed limited performance across all assessed models,
whereas RMSprop produced inconsistent results, demonstrating competitive performance

only with the Xception architecture.
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The SWT is used in the second step of the proposed approach to preprocess the data. The
original histopathological images were decomposed at level 1 using the Haar, sym2, db2, and
biorl.3 wavelet functions. After the decomposition process, high-frequency wavelet
coefficients LH, HL, HH are weighted using a mapping function, which resulted in new,
modified LH’, HL’, HH’ subbands. An input image for the AI model was obtained utilizing
SWT reconstruction using modified subbands alongside the unmodified LL subband, as seen

in Figure 10.10.

Decomposition at Level 1

Coefficient Mapping
LH'

Reconstructed Image

Figure 10.10. Level 1 SWT decomposition employing the Haar wavelet, coefficient mapping,
and SWT reconstruction.

The main goal of Bayesian optimization was to determine the ideal wavelet mapping function
constant values in order to maximize the performance measure. In this research, the AUChicro
performance metric was monitored throughout the optimization process. Each Bayesian
iteration involved data preprocessing with a defined set of mapping function constants, model
training process, and performance evaluation. After 25 steps of random exploration and 20
steps of Bayesian optimization, the best performing constant configuration was obtained as

shown in shown in Table 10.1.
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Table 10.1. Estimated constants for the coefficient mapping function obtained through
Bayesian optimization along with corresponding 5-fold cross-validation performance.

Parameters Xception + SWT
a b c d wavelet AUCnacro £ 6 AUCnicro £ 0
0.0084 0.0713 0.0599 0.0566  sym2 0.956 + 0.054 0.964 + 0.040
0.0091 0.0301 0.0086 0.3444 db2 0.963 + 0.042 0.966 = 0.027
0.0063 0.0021 0.0771 0.3007 db2 0.947 £ 0.092 0.954 +0.069
0.0081 0.0933 0.0469 0.2520 haar 0.952 £0.056 0.958 +£0.050
0.0053 0.0575 0.0649 0.1694 Dbiorl.3 0.962 £ 0.050 0.965 £+ 0.046

10.2. Grad-CAM visualization

The following phase of the research used Gradient-weighted Class Activation
Mapping to identify the areas of the image that showed the strongest impact on the model's
predictions. In order to support diagnostic reasoning and boost confidence in automated
systems, these visual explanations enhance interpretability by highlighting the regions of
histopathology slides that are most suggestive of classifications. For the proposed model, the
Grad-CAM visualizations are shown in Figures 10.11., 10.12., and 10.13. Figures show
examples of histopathological images along with the corresponding Grad-CAM
visualizations. In the left column, the original images are shown while the Grad-CAM
heatmaps placed on the original tissue images are displayed in the left column. The heatmaps
show the tissue regions that had strongest impact on the model's classification decision. The
significance of various locations is indicated by the color spectrum, which ranges from blue to
red. Blue shows places with the lowest activation, while red suggests areas with the highest

activation.
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Figure 10.11. Grad-CAM application on histopathology images in order to highlight the
Grade I discriminative regions

Figure 10.12. Grad-CAM application on histopathology images in order to highlight the
Grade II discriminative regions
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Figure 10.13. Grad-CAM application on histopathology images in order to highlight the
Grade III discriminative regions

Grad-CAM was used to create heatmaps that show the most discriminative areas of
histopathological images in the context of multiclass classification (Figures 10.11, 10.12, and
10.13). It captures gradients related to specific output classes, such as Grade I, Grade II, and
Grade III, that flow into the final convolutional layers. To create a localization map, these
gradients are pooled channel-wise, emphasizing important regions for class prediction. To
create a heatmap, an input image is forward propagated through the network, computing
gradients in relation to feature maps, spatially pooling these gradients, and combining weights
with activation maps. By visualizing the model's decision-making process, this procedure
verifies that the network focuses on pathologically significant regions rather than unimportant

ones or artifacts.

However, some of the drawbacks limit the use of this method for comprehending deep
learning models. It provides information about important aspects of the image but primarily
focuses on high-level characteristics from later model layers, excluding details on how mid-

or early-level features influence choices.
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Spatial localization is limited by the output feature maps' resolution, which produces coarse
heatmaps that may not accurately detect micro or subtle image features. Such features are

crucial in clinical contexts.

The advantage of this method, however, is that the Grad-CAM can be applied to other areas
outside the diagnosis of oral cancer from histopathology images. It can be used to create
heatmaps that highlight significant regions that influence model predictions using a variety of
medical imaging modalities, such as ultrasounds, CT scans, MRIs, and X-rays. Additionally,
this interpretability can enhance trust in Al models for tasks such as detecting cardiovascular

irregularities, brain tumors, lung tumors, or breast tumors.

10.3. Semantic segmentation

After multiclass grading of oral squamous cell carcinoma from histopathological images, the

next step is semantic segmentation of tumor on the epithelial vs. stromal tissue.
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Figure 10.14. Framework for semantic segmentation approach.
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The procedure for semantic segmentation designed for oral histopathology image analysis is
shown in Figure 10.14. In the same manner as described for multiclass classification, image
acquisition is the first step in the process, which follows data augmentation. Augmentation
techniques such as geometric transformations are used to artificially increase the quantity of
training samples. The images are then forwarded into several segmentation models, such as
DeepLabV3, SegFormer, U-Net (each with its individual backbones) and proposed model.
The proposed model consists of preprocessing method and transformer-based model.
Preprocessing method based on Luminance Wavelet Enhancement is developed in order to
improve the structural representation of immunohistochemistry images before they are
transmitted to the segmentation model. The model results are shown by comparing the
original histopathological image with its ground truth annotation and the predicted
segmentation mask, as shown at the bottom of the figure. This shows how well the models

detect relevant tissue features.

U-Net, DeepLabV3, and SegFormer were selected for the purpose of this research's
assessment of semantic segmentation performance since they highlight substantial differences

between generations and design approaches within segmentation architectures.

Unet:
e because of its encoder—decoder structure and skip connections, which maintain the
fine spatial features necessary for tissue border recognition, U-Net has long been

regarded as a benchmark model in biomedical image processing.

DeepLabV3+:

e is very good at capturing complicated structural variations that are frequently seen in
histopathology images as it introduces enhanced atrous (dilated) convolutions and

multi-scale context aggregation through ASPP modules.
SegFormer:
e offers strong global feature extraction and effective computation without depending on

bulky decoders.
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The performance evaluation of the DeepLabv3+ model with Xception 65 backbone utilizing
a variety of segmentation metrics is shown in Figure 10.15. The line plot (green) shows the
standard deviation (std) throughout experimental runs, while the bar chart (blue) shows the

mean values of significant metrics.

The model demonstrates strong segmentation capabilities with balanced true positive and true
negative detection, with 0.9466 + 0.0049 accuracy, 0.9587 = 0.0036 Dice coefficient, 0.9572
+ 0.0071 sensitivity, and 0.9602 + 0.0048 precision. The lowest of the metrics is mIOU of
0.8898 £ 0.011. Specificity of 0.9275 + 0.0039 is marginally lower, indicating a higher rate of
false positives. Except for mIOU, which shows higher variability, the standard deviation

across metrics is comparatively low, suggesting stable performance.
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Figure 10.15. Visual representation of DeepLabv3+ and Xception 65 as backbone
performance evaluation. Relevant segmentation metrics are shown in bar charts with
corresponding standard deviation shown in line plot.
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The segmentation performance of the DeepLabv3+ model using the ResNet101 backbone is

shown in Figure 10.16.

The model offers balanced segmentation performance and reliable true positive identification
with consistent high scores of 0.9545 + 0.0063 accuracy, 0.9574 + 0.0037 Dice coefficient,
0.9526 + 0.0088 sensitivity, and 0.9622 + 0.0032 precision. The specificity of 0.9314 =+
0,0039 indicates a slight decrease, suggesting limited false positive predictions. The mIOU of

0.8868 + 0,0147 is the lowest, indicating difficulties with correct pixel-wise overlap.

The standard deviation is low and largely consistent when compared to other metrics.
However, it significantly increases for mIOU, indicating a higher degree of variance in border
alignment between samples. Even though fine-grained segmentation borders are still difficult
to achieve, this performance trend shows that the ResNet101 backbone allows for robust

feature extraction.
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Figure 10.16. Visual representation of DeepLabv3+ and ResNet101 as backbone performance
evaluation. Relevant segmentation metrics are shown in bar charts with corresponding
standard deviation shown in line plot.
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The DeepLabv3+ model's performance evaluation using MobileNetV2 as the backbone is
shown in Figure 10.17. The results show a strong performance on most metrics, with Dice,
sensitivity, and precision reaching values of 0.9499 + 0.003, 0.951 + 0.0096, and 0.949 =+
0.0047, respectively.

Overall robustness is established by an accuracy of 0.9351 + 0,0049 and a specificity of 0.906
+ 0,0073. Despite having high Dice and sensitivity scores, the mIOU measure is lower
(0.8674 + 0.0119), indicating some limitations in pixel-wise overlap. All measures show

relatively low standard deviations, with sensitivity and mIOU showing the most variability.

DeepLAbv3+ & MobileNetV2
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Figure 10.17. Visual representation of DeepLabv3+ and MobileNetV?2 as backbone. Relevant

segmentation metrics are shown in bar charts with corresponding standard deviation shown in
line plot.
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The SegformerBO model's segmentation performance across several evaluation metrics is

shown in Figure 10.18.

With a Dice of 0.9548 + 0.0032, sensitivity of 0.9546 + 0.0073, and precision of 0.9552 +
0.0046, SegformerB0's overall performance is robust, indicating that the model offers

accurate segmentation with a high degree of overlap between predictions and ground truth.

While the specificity of 0.9172 + 0.0112 shows a relatively reduced ability to accurately
identify negative cases compared to positive ones, the accuracy of 0.9415 £ 0.0055 confirms
consistent overall performance. Despite strong global performance, the mIOU score of 0.8796
+ 0.0129 is lower than Dice, indicating difficulties in achieving pixel-level overlap. Although
sensitivity and mIOU are slightly higher, the standard deviation is often low in terms of

variability, indicating variability driven by dataset characteristics.
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Figure 10.17. Visual representation of SegformerB0 performance evaluation. Relevant
segmentation metrics are shown in bar charts with corresponding standard deviation shown in
line plot.
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Figure 10.18 presents the segmentation performance of the SegformerB3 model. With a Dice
score of 0.9622 + 0.0042, a sensitivity of 0.9631 £ 0.0052, and a precision of 0.9612 +
0.0062, the results show continuously high performance, demonstrating high true positive
detection and reliable prediction accuracy. While specificity is comparatively lower, showing
a slightly reduced capacity to accurately categorize negative regions compared to positives,
the accuracy of 0.9509 + 0.0061 and the specificity of 0.9279 + 0.0152 show strong
performance. The mIOU of 0.8979 + 0.0134 indicates some limitations in precise pixel-wise

segmentation overlap.

The overall low variability is significantly higher for specificity and mIOU, indicating

dataset-dependent variations in boundary delineation and the negative class.
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Figure 10.18. Visual representation of SegformerB3 performance evaluation. Relevant
segmentation metrics are shown in bar charts with corresponding standard deviation shown in
line plot.
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Figure 10.19 shows the SegformerB5 model's performance metrics for a segmentation task.

When it comes to both positive and negative class detection, the model consistently performs
well across key parameters, with 0.9533 £ 0.0066 accuracy, 0.9641 £+ 0.0046 Dice, 0.9682 +
0.005 sensitivity, 0.9253 + 0.0172 specificity, and 0.9602 + 0.0007 precision.

However, the much lower mIOU (0.9024 + 0.0143) reflects a more severe evaluation of
segmentation quality. Standard deviations for the majority of metrics are relatively low,

suggesting steady performance.
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Figure 10.19. Visual representation of SegformerB5 performance evaluation. Relevant
segmentation metrics are shown in bar charts with corresponding standard deviation shown in
line plot.
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The performance evaluation of a U-Net combined with ResNet50 architecture as backbone

across a multiple of segmentation metrics is shown in Figure 10.20.

While the mIOU is somewhat lower (0.851 + 0.0229), the blue bar graph shows high values
for accuracy (0.9262 + 0.0109), Dice coefficient (0.943 + 0.0071), sensitivity (0.9412 =+
0.0151), specificity (0.8986 £+ 0.0151), and precision (0.945 £ 0.0064), indicating great

overall performance.

Except for mIOU, which shows the most variability (0.0229), the standard deviation of each

metric is represented by the green line plot layered on top. The std is generally low and

consistent, ranging from 0.01 to 0.015.
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Figure 10.20. Visual representation of U-Net and ResNet50 as backbone performance
evaluation. Relevant segmentation metrics are shown in bar charts with corresponding
standard deviation shown in line plot.
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The performance metrics of the image segmentation U-Net and InceptionV3 as backbone are

shown in Figure 10.21.

The blue bar plot shows a high score in terms of accuracy (0.9214 + 0.0114), precision
(0.9372 £ 0.0132), Dice (0.9397 £ 0.0067), and sensitivity (0.9424 + 0.0096). In contrast,
specificity (0.8816 £ 0.0336) and mIOU (0.8413 £ 0.025) are relatively low.

The green overlay line figure indicates that specificity (0.0336) and mIOU (0.025) have

significantly larger variability than accuracy, dice, sensitivity, and precision, which have very

low variability (~0.01-0.015).
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Figure 10.21. Visual representation of U-Net and InceptionV3 as backbone performance
evaluation. Relevant segmentation metrics are shown in bar charts with corresponding
standard deviation shown in line plot.
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A quantitative assessment of the U-Net architecture with InceptionResNetV2 as the backbone

is shown in Figure 10.22.

The outcomes demonstrate high performance on most metrics, with substantial segmentation
capacity, as demonstrated by Dice of 0.9371 + 0.8367, sensitivity of 0.9369 + 0.0183, and
precision of 0.9376 + 0,0082. With a relatively lower specificity of 0.8856 + 0,0122 and a
comparatively high accuracy of 0.9184 + 0,0109, the identification of true negatives appears

to be fairly balanced.

However, the mIOU of (0.8367 + 0,0225) is low, indicating that it is more difficult to achieve
perfect spatial overlap. Other than mIOU, where variability is significantly higher, standard
deviations are low overall (<0.0225), which shows that the model is stable. This indicates that

region-level segmentation is inconsistent with pixel-wise measurements.

U-Net & InceptionResNetV2

0,96 0,025
0,94
0,92 0,02
0,9
0,015
0,88
0,86
0,01
0,84
0,82 0,005
08
0,78 0

Acc Dice Sensitivity Specificity Precision mlOU

e Value e std

Figure 10.22. Visual representation of U-Net and InceptionResNetV2 as backbone
performance evaluation. Relevant segmentation metrics are shown in bar charts with
corresponding standard deviation shown in line plot.
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Radar Chart of Model Performances
U-Net & ResNet50
U-Net & InceptionV3
—— U-Net & InceptionResNetV2
DeeplLabv3+ & Xception_65
—— DeeplLabv3+ & ResNet101
—— DeeplLabv3+ & MobileNetV2
—— SegformerB0
SegformerB3
SegformerB5

Sens

Acc

F1

Figure 10.23. Radar chart of models’ performances for semantic segmentation on tumor and
stromal region

Significant variations in performance across several segmentation metrics can be observed by

comparing the U-Net, DeepLabv3+, and Segformer models, as seen in Figure 10.23.

With accuracy values ranging from 0.918 to 0.926 and mIOU between 0.837 and 0.851, the
performance of the traditional U-Net implementations (ResNet50, InceptionV3, and
InceptionResNetV2) was the lowest across all metrics. These models showed limitations with

overall consistency, although they performed well in terms of Dice and sensitivity values.
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When compared to the U-Net, the DeepLabv3+ performed better. Stronger generalization was
demonstrated by models using Xception 65 and ResNetl01 backbones, which achieved
satisfactory Dice scores (0.950-0.957) and mIOU values of nearly 0.89.

Furthermore, the Segformer outperformed DeepLabv3+ and U-Net. When it came to accuracy
(0.953), Dice (0.964), sensitivity (0.968), and mIOU (0.902), SegformerB5 produced the best
and most balanced results. With minimal difference, SegformerB3 achieved lower but still

cutting-edge performance.

These results demonstrate how transformer-based segmentation models outperform
conventional CNN-based designs. Since the SegFormerB5 model performed the best out of
all the models evaluated it was of particular interest in this research. Building on its baseline
performance, the proposed SegFormer-LWE model was created as an upgraded version of the

SegFormer-B5 model in order to further enhance segmentation quality.

The baseline SegFormer-B5 achieves mIOU of 0.902 + 0.014, which has been utilized as a
benchmark to evaluate the effect of luminance wavelet improvement. The robustnes of the
LWE technique in strengthening structural detail and improving overall segmentation
performance is demonstrated by the fact that using the proposed preprocessing pipeline

typically results in improvements across the majority for evaluation metrics.

A quantitative comparison of the proposed SegFormer-LWE model and the baseline
SegFormer-B5 model is shown in Table 10.2. The parameters presented include mIOU,
Dice score, accuracy, precision, sensitivity, and specificity, along with their standard

deviation.
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Table 10.2. A quantitative analysis between the baseline SegFormer-B5 model and the
proposed SegFormer-LWE model developed utilizing various wavelet types and scale-factor
configurations.

SegformerB5

mlOU £ o

Fl+o

Accuracy £ ¢

Precision £ ¢ Sensitivity + ¢ Specificity + ¢

Original

0.902+0.014

0.964 + 0.004

0.953 = 0.006

0.960 = 0.007

0.967 +0.005

0.925+0.017

Segformer-LWE

Wavelet Scale factor

H,V,D

Sym3

1.8,1.8,1.8

0.906 +0.013

0.966 + 0.004

0.955 + 0.006

0.960 + 0.004

0.971 £ 0.008

0.924 +0.017

Sym5

22,22,22

0.905 +0.012

0.965 + 0.003

0.954 + 0.006

0.963 + 0.007

0.967 £ 0.006

0.930+0.015

Db3

2.3,24,23

0.906 + 0.011

0.966 = 0.003

0.955 £ 0.005

0.962 + 0.005

0.969 + 0.006

0.929 £0.015

Db5

22,22,22

0.907 £ 0.011

0.967 = 0.003

0.956 + 0.005

0.965 + 0.005

0.967 = 0.008

0.934 + 0.008

Db6

24,2416

0.904 +£0.012

0.965 £+ 0.003

0.955 +0.006

0.962 = 0.004

0.967 = 0.006

0.929 £0.015

Coif2

2.0,2.0,2.0

0.904 +£0.013

0.965 + 0.004

0.954 + 0.006

0.960 + 0.002

0.970 £ 0.007

0.925+0.014

Bior4.4

25,25, 1.1.

0.905+0.014

0.966 + 0.004

0.955 +0.007

0.961 + 0.007

0.970 £ 0.004

0.927 +0.017

Table 10.2. shows the seven best-performing configurations of the proposed SegFormer-LWE
model, determined by an exhaustive grid-search of multiple wavelet families and scale
factors. Each configuration shown reflects one of the top parameter combinations that

achieved the maximum performance across the evaluated metrics.

Among the analyzed wavelets, the Db5 with scale factors of H = 2.2, V=22 and D = 2.2
achieves the highest overall performance. It produces a mIOU of 0.907 + 0.011, reflecting the
best improvement over the baseline, combined with the top Dice score (0.967 = 0.003) and
accuracy (0.956 £ 0.005). Furthermore, Db5 also gives the highest specificity (0.934 £ 0.008),
showing a higher capacity to correctly identify background regions without increasing false

positives.
Other versions of wavelets, such as sym3, sym5, db3, db6, coif2, and bior4.4, also exhibit

modest increases over the baseline model but are lower than the performance achieved by

Db5. These configurations generally produce slightly lower mIOU and accuracy values,
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indicating that the degree of enhancement is strongly influenced by the wavelet family and

scale factor selection.

The contribution of wavelet-enhanced preprocessing to better segmentation performance is
shown graphically in Figure 10.24. The comparison displays both the original histopathology
image and its LWE preprocessed version, which highlights tissue boundaries and subtle
structures. This improvement enables the model to learn more discriminative features. Higher
performance metrics are consistent with the preprocessed image's improved structural

representation, which enables the network to more accurately identify tissue sections.

Grade Il

Grade I

Figure 10.24. Visual representation of histopathology images, ground truth masks,
preprocessed images, and semantic segmentation results. The original image and its LWE
preprocessed equivalent are shown in the magnified photos on the right, giving a clear
comparison of how preprocessing improves tissue appearance for additional analysis.

The results clearly demonstrate that the luminance-wavelet enhancement approach, as applied
in SegFormer-LWE, boosts segmentation quality compared to the baseline SegFormer-B5

model.

96



J. Stifani¢: An Automated Computer-Aided System for Oral Squamous Cell Carcinoma Analysis

The mIOU metric averages performance across all classes and all pixels, giving it a highly
sensitive and robust measure. As a result, a 0.5% improvement shows that the model
consistently produces more accurate pixel-level predictions throughout the whole dataset.
Overall, even slight improvements in performance metrics, such as a 0.5% improvement in

mlOU, are often considered significant.

Performance improvements have become even more challenging to achieve for cutting-edge
transformer-based models, such SegFormer-B5. These models are substantially optimized
through extensive pretraining and already function close to the upper bounds of
representational capability. It frequently takes significant algorithmic or architectural
innovation rather than simply hyperparameter tuning to get an additional 0.5% mIOU
increase. Improvements at this level show that the proposed enhancement, the LWE
preprocessing, is contributing important new information beyond what the original
transformer can extract on its own. Furthermore, literature benchmarks commonly highlight
increases of 0.3—0.7% as state-of-the-art advances, demonstrating that advancement in this

research is competitive with leading research advancement.

10.4. Automatic quantification of TSR

Regions with the largest proportion of tumor-associated stroma were selected at 10x
magnification for automatic TSR assessment. Analysis was limited to fields that included
tumor cells on each of the four microscopic view borders. Cases in which the tumor-
associated stroma occupied more than 50% of the selected field were classified as stroma-
high, whereas those with 50% or less were defined as stroma-low. In earlier research, this
50% cutoff was frequently used as a reliable predictive subgroup discriminator. Areas with
preexisting lymphoid clusters, necrosis, or other normal tissue components were not included
in the research. If these factors were not completely preventable, they were not included in the
tumor-associated stroma computational estimation. Furthermore, tumor and stromal regions
were then automatically defined using semantic segmentation algorithm based on

morphological, color, and texture characteristics.
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The proportional area of each compartment was quantified computationally, TSR was
computed as the ratio of tumor area to the overall area of tumor plus stroma. The automated

workflow used to determine the tumor-stroma ratio is shown in Figure 10.25.

Figure 10.25. The automated process to assess the tumor-stroma ratio (TSR). A
representative histologic image (left) that displays the surrounding tumor-associated stroma
and tumor epithelial areas was prepared for digital segmentation (in the middle). While the
lower panel displays classified regions with tumor (black area) and stroma (red area), the
upper panel displays the tissue border detection map. A TSR of 76% tumor and 24% stroma
was obtained by automatically calculating the proportionate areas of the two sections. This
case was classified as stroma-low (<50% stroma) based on the predetermined 50% limit.

In 40-patient cohort, the relationship between the tumor—stroma ratio and several
clinicopathologic characteristics was assessed. As a histopathologic marker that represents the
percentage of tumor-associated stroma in the tumor microenvironment, TSR was analyzed in
order to determine if it correlated with known prognostic factors like patient age, lymph node

status, tumor grade, and alcohol and smoke consumption.

Prior research on head and neck cancers has shown that a high stroma percentage (stroma-
high) is frequently related to less favorable clinical outcomes and more aggressive tumor
behavior. The correlation between TSR and clinicopathologic parameters was examined in the
cohort to determine whether similar trends exist in this patient population. Table 10.3.

summarizes the findings of this analysis.
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Table 10.3. Correlation between the tumor-stroma ratio and the clinicopathologic
characteristics of oral squamous cell carcinoma.

Variable Total Tumor-stroma ratio P
Stroma-low Stroma-high
N =40 Number (%) Number (%)
28 (70%) 12 (30%)

Gender
Male 28 19 (68%) 9 (32%) 0.94
Female 12 9 (75%) 3 (25%)

Alcohol intake

Yes 15 10 (75%) 5 (25%) 1.00
No 25 18 (72) 7 (28%)

Smoking
Yes 22 14 (64%) 8 (36%) 0.53
No 18 14 (78%) 4 (22%)

Age
To 49 2 1(50%) 1(50%)
50-59 5 5 (100%) 0 (0%) 0.28
60-69 22 16 (73%) 6 (27%)
+70 11 6 (55%) 5 (45%)
Grade
I 18 12 (67%) 6(33%) 0.74
11 16 11 (69%) 5(31%)
I 6 2 (33%) 4 (67%)
Lymh Node Metastases

Yes 21 14 (67%) 7(33%) 0.89
No 19 14 (74%) 5 (26%)

Several patterns observed in this research are biologically consistent with previously
established findings confirming the predictive value of the tumor—stroma ratio (TSR) in
OSCC, even if statistical significance was not attained for any of the clinicopathological
markers in our cohort (p > 0.05). In particular, clinically unfavorable categories had a larger

percentage of stroma-high tumors. A richer stromal environment may facilitate metastatic

99



J. Stifani¢: An Automated Computer-Aided System for Oral Squamous Cell Carcinoma Analysis

spread, as demonstrated by the finding that that up to one-third of patients with lymph node
metastases had a high stromal amount, compared to just over a quarter of individuals without
nodal involvement. Furthermore, the finding that that the oldest age group (=70 years), which
usually correlates with poorer cancer survival, showed the highest relative proportion of
stroma high tumors (45%) supports the theory that stroma high patterns may be linked to
systemic and microenvironmental conditions that increase tumor aggressiveness in older

people.

Although not statistically significant, the highest percentage of stroma-high tumors in G3
group is biologically significant since it indicates a more aggressive tumor microenvironment.
A dense, active stroma rich in cancer-associated fibroblasts frequently supports high-grade
OSCC, increasing invasion, metastasis, and resistance to therapy. Since stromal activity may
actively promote tumor development in advanced disease, the higher percentage of stroma-
high tumors in G3 patients emphasizes the potential value of TSR as a clinically relevant

biomarker.

On the other hand, clinically less aggressive patient categories were associated with a higher
probability of having stroma-low tumors. These comprised patients between the ages of 50
and 59, who showed only stroma low tumors (100%), as well as non-drinkers and non-
smokers. These results indirectly corroborate with studies in the literature that stroma low
cancers typically exhibit lower invasiveness, reduced metastatic potential, and slower

development dynamics since these populations usually correspond to better outcomes.
Kaplan-Meier survival curves demonstrated that TSR had a strong predictive value for overall

survival. As seen in Figure 10.26, patients with stroma-high tumors had significantly worse

survival rates.
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Kaplan-Meier Survival Curve (TSR: SL vs SH)
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Figure 10.26. Kaplan-Meier analysis of overall survival in patients with stroma-low versus
stroma-high OSCC tumor

The Kaplan—Meier survival curve shows that stroma-low (SL) and stroma-high (SH) tumors
consistently have different overall survival rates. The survival probability declined more
quickly in patients with SH tumors, especially in the early follow-up period, indicating earlier
mortality and faster disease progression. The SL group, on the other hand, had higher survival
probability for most of the observation period, with a more progressive decline and several

long-term survivors who outlived the 100-month follow-up period.

The visual comparison of the two curves confirms prior studies indicating that TSR actively
contributes to the aggressiveness of oral squamous cell carcinoma. A biologically active
stromal environment, marked by cancer-associated fibroblasts and elevated pro-tumor
signaling pathways that aid in invasion, rejection of the immune system, and metastatic
growth, may be the cause of stroma-high cancers' worse survival rates. Thus, this research
survival analysis's trend confirms TSR's possible predictive significance, particularly when
used as a supporting biomarker in conjunction with well-established clinicopathologic

variables.
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10.5. Experimental Proof of Concept

In order to validate and confirm the results of the research, this chapter presents an
experimental proof-of-concept (PoC) framework which demonstrates the consistency and
robustness of the proposed methods. While acknowledging that bigger datasets are necessary
for statistical generalization, the PoC evaluation was conducted on a small cohort of eight
patients, which is adequate for verifying the observed research patterns and system behavior.
Multiclass classification and semantic segmentation are two hybrid approaches that are

integrated into the proposed framework, as shown in Figure 10.27.

Xception + SWT SegFormer-lWE

| Gradel | Gradell [ Grade lll l Evaluation
< | Evaluation F
1
™\

GRAD-CAM
visualization

Figure 10.27. An outline of the proposed experimental framework for proof-of-concept. The
first step in the process is obtaining medical images from a small group of patients. Then, the
images go through two analytical branches. The first branch is a multiclass classification
module that uses Grad-CAM visuals to support model interpretability. It is built on a hybrid
SWT—Xception model. A semantic segmentation module using the SegFormer-B5
architecture and LWE preprocessing makes up the second branch. The Tumor—Stroma Ratio,
a quantitative biomarker with clinical relevance, is calculated once the segmentation
outcomes are evaluated.
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The initial step consists of collecting medical images from the chosen patient group. These
images serve as the raw input for pipeline used for multiclass classification and semantic
segmentation. Despite the small sample size, the dataset represents realistic inter-patient
heterogeneity, which is crucial for evaluating the resilience of the proposed system within a

proof-of-concept context.

The aim of the multiclass classification task is to assign three classes (Grade I, Grade II, and
Grade III) to the input images. This is achieved by using a hybrid deep learning model that
combines Xception with Stationary Wavelet Transform for image preprocessing. Standard
evaluation measures are used to evaluate model performance, while Grad-CAM visualizations

are used to aid in qualitative interpretability.

The framework incorporates a semantic segmentation branch to precisely localize and
delineate medically significant regions. This module uses a second hybrid model, which
consists of SegFormer-BS, a transformer-based segmentation architecture, and LWE for
image preprocessing. To determine the accuracy of region boundaries, segmentation outputs
are assessed using relevant quantitative measures. The Tumor—Stroma Ratio is calculated as
the ratio of tumor area to stromal area in the tissue under analysis based on the final

segmentation masks.

The quantitative performance of the proposed hybrid models employed in the

PoC for multiclass classification and semantic segmentation tasks can be seen in Table 10.3.

Table 10.4. Quantitative performance metrics of the proposed models in the proof-of-concept

AUCmacro AUCmicro

Xception +
0.992 0.973
SWT
mlOU F1 Accuracy Precision Sensitivity Specificity
SegFormer-
0.897 0.964 0.956 0.965 0.964 0.939
LWE
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With an AUCmacro of 0.992, the Xception + SWT model demonstrates balanced classification
across all three classes. High overall classification performance is further confirmed by the
AUChicro value of 0.973. These findings show that, even with limited data, the proposed

Xception + SWT model has considerable discriminative potential.

A Grad-CAM visualization of the proposed classification model is shown in Figure 10.28.
The Grad-CAM visualization is displayed on the top, and the original histopathological image
is displayed on the bottom.
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Figure 10.28. An illustration of the Grad-CAM heatmap that highlights discriminative tissue
regions that the proposed Xception + SWT hybrid model uses to grade histological images.
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In order to provide visual proof that the identified features correlate with pathological
information, Grad-CAM visualization improves the interpretability of the proposed model and
enhances the transparency of the classification results throughout the proof-of-concept

framework.

Several metrics are used to evaluate the SegFormer—-LWE model's performance for the
semantic segmentation task. A significant level of spatial overlap between the predicted and
ground-truth segmentation masks is reflected in the model's mloU of 0.897. Strong and
reliable pixel-level classification has been demonstrated by the Dice score of 0.964, high
precision (0.965), and accuracy of 0.956. Furthermore, accurate non-target area discrimination

is verified by sensitivity of 0.964 and specificity of 0.939.

The TSR estimation confirms the repeatability of the proposed system by reflecting the same
patterns observed in results of the primary research. This agreement shows that the
corresponding TSR values represent a stable and clinically significant biomarker within the
proof-of-concept evaluation, and that the semantic segmentation approach accurately

represents tumor and stromal regions.
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11.Conclusions and Future Work

One method for classifying cancer cells based on tissue abnormalities is histology
grading. It depends on the clinician's subjective component, which could have a negative
impact on the patient's results and the most effective course of therapy. This research
demonstrates the significant potential of using Al algorithms in conjunction with image

processing approaches to improve OSCC prognosis and improve survival rates.

In the first stage of the research, the author demonstrates how to incorporate a wavelet
coefficient mapping function and the SWT with deep convolutional neural networks for
OSCC multiclass grading. According to experimental results, the Xception architecture and
SWT combination produced the best classification performance, with AUCumacro and AUChmicro

0f0.963+ 0.042 and 0.966 + 0.027, respectively.

The following stage was the implementation of Grad-CAM visualization. Grad-CAM 1is used
to create heatmaps for multiclass classification, which emphasize important regions in
histopathology images. These heatmaps help healthcare professionals distinguish
pathologically significant features from irrelevant or potential artifacts by visually evaluating
sensitivity of the model to critical regions. This method provides a more comprehensive
analysis with less unpredictability and human error than conventional single-model

approaches.

The third step involved semantic segmentation. With the Db5 wavelet and scale factors of H =
2.2,V =22 and D = 2.2, the proposed SegFormer-LWE model produces the best overall
results for semantic segmentation. It achieves the best improvement over the baseline
model with a mIOU of 0.907 + 0.011, along with the highest accuracy (0.956 + 0.005) and
Dice score (0.967 = 0.003). Additionally, SegFormer-LWE has the highest specificity (0.934

+ 0.008), indicating a greater ability to accurately identify background regions without raising
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false positives. Segmentation of the tumor on the epithelial and stromal regions is the initial

step in the study of the tumor microenvironment and its impact on the disease progression.

In the last stage of the research, the tumor-stroma ratio was automatically quantified.
Automated methods improve diagnostic consistency and reduce interobserver variability by
precisely segmenting the tumor and stromal areas. According to the results of this research,
OSCC patients with a low TSR (stroma-high tumors) have a unfavorable prognosis for

survival.

Based on the results of the experimental proof of concept, an Al-based system has been
proven successful in terms of multiclass grading, Grad-CAM visualization, semantic
segmentation as well as automatic quantification of TSR and has a great potential in the

prediction of tumor invasion and outcomes of patient with OSCC.

Further research should employ a dataset with more histopathological images to create a more
dependable model, as the data availability of this research was limited. Additionally, a wider
variety of oral cancer subtypes should be included in the dataset to increase the system's
generalizability in various clinical applications. This would enable the system to record a

wider variety of morphological traits.

In order to create a more comprehensive overview of tumor biology, future research should
also consider incorporating multimodal data sources, such as molecular markers and genomic
profiles. Precision oncology may benefit from the integration of various technologies since it

will enable more precise prognostic evaluations and direct individualized treatment plans.

To increase practical relevance and generalizability of Al models, extensive prospective
validation in real healthcare settings is required. In addition to proving the dependability of
model in real-world scenarios, this kind of validation would highlight any potential
drawbacks that would not be apparent in controlled experimental or retrospective research. A
realistic approach to this process would be to include the Al-based system in actual diagnostic

procedures, initially serving as an advisor or support system rather than a decision-maker on
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its own. The ability to directly compare the output of Al with the skilled interpretations of
pathologists would enable a methodical assessment of the Al-based system accuracy and

potential utility.
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Appenices

Table A. Comparison of mean AUCmacro and -micro Values of three different optimizers (SGD,

ADAM, and RMSprop) on pre-trained model - MobileNetv2

MobileNetv2
AUCmacro AUCmicro
SGD 0,877 0,901
Adam 0,762 0,613
RMSprop | 0,745 0,592

Table B. Comparison of mean AUCnmacro and -micro Values of three different optimizers (SGD,

ADAM, and RMSprop) on pre-trained model — ResNet50

ResNet50
AUCmacro AUCmicro
SGD 0,822 0,788
Adam 0,871 0,864
RMSprop | 0,833 0,832
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Table C. Comparison of mean AUCmacro and -micro Values of three different optimizers (SGD,

ADAM, and RMSprop) on pre-trained model — ResNet101

ResNet101
AUCmacro AUCmicro
SGD 0,86 0,834
Adam 0,882 0,89
RMSprop 0,829 0,836

Table D. Comparison of mean AUCmacro and -micro values of three different optimizers (SGD,

ADAM, and RMSprop) on pre-trained model - NasNet

NasNet

AUCmacro AUCmicro

SGD 0,845 0,869
Adam 0,89 0,909
RMSprop = 0,849 0,854

Table E. Comparison of mean AUCmacro and -micro values of three different optimizers (SGD,

ADAM, and RMSprop) on pre-trained model — InceptionResNet2

InceptionResNetv2

AUCmacro AUCmicro
SGD 0,807 0,823
Adam 0,92 0,931
RMSprop | 0,914 0,917
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Table F. Comparison of mean AUCnacro and -micro Values of three different optimizers (SGD,

ADAM, and RMSprop) on pre-trained model — IneptionV3

InceptionV3
AUCmacro AUCmicro
SGD 0,824 0,854
Adam 0,932 0,934
RMSprop 0,923 0,933

Table G. Comparison of mean AUCmacro and -micro values of three different optimizers (SGD,

ADAM, and RMSprop) on pre-trained model — EfficientNetB3

EfficientNetB3
AUCmacro AUCmicro
SGD 0,751 0,796
Adam 0,911 0,915
RMSprop | 0,902 0,898

Table H. Comparison of mean AUCmacro and -micro values of three different optimizers (SGD,

ADAM, and RMSprop) on pre-trained model — Xception

Xception
AUCmacro AUCmicro
SGD 0,818 0,85
Adam 0,924 0,933
RMSprop | 0,929 0,942
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SegFormer-LWE
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Figure A. Visual representation of SegFormer-LWE performance evaluation. Relevant
segmentation metrics (Accuracy, Dice coefficient, Sensitivity, Specificity, Precision, and

mlOU) are shown in bar charts with corresponding standard deviation shown in line plot.
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Figure B. An illustration of the Grad-CAM heatmap that highlights discriminative tissue
regions that the proposed Xception—SWT model uses to grade histological images — patient 1

-PoC
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Figure C. An illustration of the Grad-CAM heatmap that highlights discriminative tissue
regions that the proposed Xception—-SWT model uses to grade histological images — patient 2
- PoC

Figure D. An illustration of the Grad-CAM heatmap that highlights discriminative tissue

regions that the proposed Xception—-SWT model uses to grade histological images — patient 3

-PoC
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Figure E. An illustration of the Grad-CAM heatmap that highlights discriminative tissue
regions that the proposed Xception—-SWT model uses to grade histological images — patient 4
—PoC
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Figure F. An illustration of the Grad-CAM heatmap that highlights discriminative tissue
regions that the proposed Xception—-SWT model uses to grade histological images — patient 5
—PoC
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Figure G. An illustration of the Grad-CAM heatmap that highlights discriminative tissue

regions that the proposed Xception—-SWT model uses to grade histological images — patient 6
—PoC

Figure H. An illustration of the Grad-CAM heatmap that highlights discriminative tissue

regions that the proposed Xception—-SWT model uses to grade histological images — patient 7
—PoC
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Figure I. An illustration of the Grad-CAM heatmap that highlights discriminative tissue
regions that the proposed Xception—SWT model uses to grade histological images — patient 8
—PoC
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