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Abstract

Modern ship weather routing approaches fail to fully capture the inherently stochastic
nature of the maritime environment. Even though the optimization methods proposed so
far have demonstrated benefits in reducing fuel consumption and voyage duration, they
frequently rely on deterministic weather forecasts and simplified ship performance
assumptions, which are insufficient. This particularly applies to weather forecast
uncertainties and their propagation through ship performance predictions, which are not
adequately quantified and integrated into the routing optimization process. By relying on
single-point deterministic forecasts, conventional approaches can lead to significant
deviations in estimated times of arrival and fuel consumption predictions, ultimately
resulting in degraded operational efficiency and increased response times to adverse
weather conditions. On the other hand, it can be noticed that the integration of ensemble
weather forecasts, stochastic optimization methods, and data-driven vessel performance
modelling are not appropriately combined within a unified framework in existing literature,
leaving significant potential for improving routing decisions under uncertainty.

Ship weather routing involves nonlinear objective functions and operational constraints
that cannot be effectively addressed through deterministic optimization. The research
problem is thus formulated as a stochastic multi-objective optimization problem that
requires simultaneous handling of weather forecast uncertainties, nonlinear ship
performance, and operational safety constraints. Suitable stochastic optimization methods
provide a rigorous yet computationally feasible framework for this formulation. In this
context, three distinct methodological approaches are proposed and evaluated in this thesis.
The first one is based on stochastic estimated time of arrival (ETA) voyage planning with
weather uncertainty quantification, the second employs rolling horizon optimization with
model predictive control (MPC), and the third represents a novel hybrid approach coupling
A* graph search algorithms with stochastic model predictive control (SMPC). The latter
approach is particularly convenient for handling complex probabilistic routing scenarios
while maintaining the global solution quality. The proposed hierarchical optimization
framework operates across multiple temporal and spatial scales, with strategic planning
determining the global route structure while tactical control manages real-time adaptation
to evolving conditions. Extensive validation through simulated voyage scenarios for varying
weather patterns has demonstrated clear advantages of all three proposed approaches over
classical voyage planning. The stochastic approaches consistently delivered improved
robustness in fuel consumption predictions, enhanced reliability in arrival time estimation,
and superior adaptation to dynamic weather evolution throughout voyage execution
phases, all the while satisfying operational safety and environmental constraints.

Keywords

Ensemble forecasting, Weather forecast uncertainty, Ship performance estimation, Ship
weather routing, Stochastic multi-objective optimization, Stochastic model predictive
control
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Sažetak

Suvremeni pristupi optimizaciji rute broda temeljeni na nesigurnosti vremenskih prognoza
i dalje predstavljaju izazov s obzirom na stohastičku prirodu pomorskog okruženja. Premda
su do sada korištene optimizacijske metode pokazale poboljšanja u smanjenju potrošnje
goriva i vremenu trajanja putovanja, one se uglavnom oslanjaju na determinističke
vremenske prognoze i pojednostavljene pretpostavke o pomorstvenim značajkama broda,
što je neadekvatno. Ovo se posebno odnosi na nesigurnosti vremenskih prognoza, koje su
rijetko kvantificirane i integrirane u sami proces optimizacije rute, kao i njihovu propagaciju
kroz estimaciju pomorstvenih značajki broda. Korištenjem determinističkih prognoza,
konvencionalni pristupi mogu uzrokovati značajna odstupanja u procijenjenom vremenu
dolaska i procjeni potrošnje goriva, što u konačnici vodi do degradacije operativne
učinkovitosti i duljeg vremena odziva u nepovoljnim vremenskim uvjetima. S druge strane,
analizom postojeće literature, može se zaključiti da se integracija ansambl vremenskih
prognoza, stohastičkih optimizacijskih metoda i modeliranja pomorstvenih značajki broda
temeljenih na podacima ne kombiniraju na odgovarajući unutar cjelovitog optimizacijskog
okvira što predstavlja potencijal za značajno poboljšanje donošenja odluka u uvjetima
nesigurnosti.
Optimizacija rute broda uključuje nelinearne funkcije cilja i operativna ograničenja koja se
ne mogu adekvatno riješiti determinističkom optimizacijom. Problem istraživanja je stoga
formuliran kao stohastički više-ciljni optimizacijski problem koji zahtijeva istovremeno
uzimanje u obzir nesigurnosti vremenskih prognoza, nelinearne pomorstvene značajke
broda i operativna sigurnosna ograničenja. Odgovarajuće stohastičke optimizacijske
metode pružaju rigorozan, ali ipak računalno provediv okvir za ovako formuliran problem.
U tom kontekstu, u ovom su radu predložena i evaluirana tri različita metodološka pristupa.
Prvi se temelji na stohastičkom planiranju putovanja s procjenom vremena dolaska (ETA) i
kvantifikacijom nesigurnosti vremenskih prognoza, drugi primjenjuje optimizaciju
pomičnog horizonta s modelskim prediktivnim upravljanjem (MPC), a treći predstavlja novi
hibridni pristup koji spaja A* algoritme pretraživanja sa stohastičkim modelskim
prediktivnim upravljanjem (SMPC). Potonji pristup posebno je pogodan za složene
probabilističke scenarije rutiranja broda uz održavanje globalne kvalitete rješenja.
Predloženi hijerarhijski optimizacijski okvir djeluje kroz više vremenskih i prostornih
slojeva, pri čemu strateško planiranje određuje globalnu rutu, dok taktičko upravljanje
prilagođuje i definira promjene rute u stvarnom vremenu s obzirom na vremenske uvjete
koji se razvijaju. Sveobuhvatna validacija kroz simulirane scenarije putovanja za različite
vremenske uvjete utvrdila je jasne prednosti sva tri predložena pristupa u odnosu na
klasično planiranje putovanja. Stohastički pristupi dosljedno su pružili poboljšanu
robusnost u procjeni potrošnje goriva, povećanu pouzdanost u procjeni vremena dolaska i
superiornu prilagodbu na dinamičnu evoluciju vremena kroz različite faze izvršavanja
putovanja, pri čemu su bili zadovoljeni svi operativni, sigurnosni i okolišni uvjeti.

Ključne riječi
Ansambl prognoze, nesigurnost vremenskih prognoza, pomorstvene značajke broda,
optimizacija rute broda, stohastička više-ciljna optimizacija, stohastičko modelsko
prediktivno upravljanje
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1 INTRODUCTION

1.1 Motivation

The inspiration for this research arises from the apparent gap between the maritime
industry's urgent demand for effective weather routing solutions and the current limits
of existing methodologies in dealing with the inherent uncertainties of marine
operations. The International Maritime Organisation's 2023 strategy mandates a 20 %
reduction in greenhouse gas emissions by 2030 (striving for 30 %) and 70% by 2040
(striving for 80 %) compared to 2008 levels, alongside a 40 % reduction in carbon
intensity by 2030 (IMO, 2023), which calls for immediate operational improvements.
While ship weather routing has been identified as one of the main strategies for
achieving compliance with Energy Efficiency Existing Ship Index (EEXI) and Carbon
Intensity Indicator (CII) regulations, current routing systems predominantly rely on
deterministic weather forecasts and simplified vessel performance models that fail to
capture the complex, probabilistic nature of maritime operations. This disconnect
between regulatory requirements and technological capabilities encourages the
development of more sophisticated approaches that can quantify and propagate
uncertainties through the entire decision-making chain, from weather prediction to
speed modelling to route optimization.
Modern ship weather routing systems must simultaneously optimize multiple, often
conflicting objectives, including fuel consumption reduction, voyage time
minimisation, crew safety enhancement, and environmental impact mitigation (Zis et
al., 2020; Walther et al., 2016). Existing research has typically addressed these
challenges in isolation, developing either advanced speed prediction models without
uncertainty quantification or sophisticated optimization algorithms without realistic
vessel performance modelling. Such a fragmented approach fails to capture the
consistent nature of maritime operations, where weather forecast uncertainty directly
impacts speed predictions, which in turn affects route optimization decisions,
ultimately determining fuel consumption and emissions. Therefore, this research is
motivated by the need to address these gaps through a unified framework that not only
advances the theoretical understanding of ship routing under uncertainty but also
provides practical, computationally feasible tools that can potentially be implemented
in real-time operations.

1.2 Background and literature review

Traditional voyage planning follows the four-stage process mandated by IMO
Resolution A.893(21): Appraisal, Planning, Execution, and Monitoring (IMO, 2000).
This framework is legally enforced through SOLAS Chapter V, Regulation 34, which
requires all ships to plan voyages from berth to berth, considering all pertinent
information for safe navigation (IMO, 2020). During the appraisal stage, the navigator
gathers all relevant information including nautical charts, sailing directions, notices to
mariners, and weather forecasts. The planning stage involves plotting the intended
track as a series of waypoints – specific geographical positions defined by latitude and
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longitude coordinates that mark course alterations, traffic separation scheme entry
and exit points, or other navigationally significant locations (NGA, 2019). The track
between consecutive waypoints forms a route leg or route segment, typically following
either a rhumb line (constant compass bearing) for coastal navigation or a great circle
(shortest distance) for ocean passages (House, 2012).
The complete voyage plan comprises these sequential route legs from berth to berth,
with each waypoint annotated with the expected course to steer, distance to the next
waypoint, and Estimated Time of Arrival (ETA). The ETA calculation traditionally
assumes constant speed based on the vessel's service speed in calm conditions,
adjusted by an empirical weather margin typically ranging from 10-20 % (British
Ministry of Defence, 1987). This deterministic approach, while straightforward and
proven effective over centuries of maritime practice, fails to account for the variable
nature of weather conditions and their spatiotemporal evolution during the voyage
(Cutler, 2003). The execution and monitoring stages require the bridge team to follow
the planned route while making real-time adjustments for traffic, weather changes, or
navigational hazards. As emphasized by the International Chamber of Shipping (2022),
this reactive approach to changing weather, where course or speed adjustments occur
only after encountering adverse conditions differs significantly from weather-aware
routing, where environmental conditions are integrated into the planning process from
the outset. Weather-aware or weather-optimized routes dynamically adjust waypoint
positions and route legs based on forecast conditions, seeking to minimize fuel
consumption, voyage time, or motion-induced stresses while maintaining the safety
margins prescribed by SOLAS (Smith, 2018).
In any case, it should be noted that traditional voyage planning methods offer several
advantages: simplicity of execution, minimal computational requirements, and
robustness in the absence of detailed weather data. Navigators can execute these plans
using basic instruments and paper charts, even when electronic systems fail which is a
capability that remains mandatory under SOLAS requirements for backup navigation
(IMO, 2020). However, these methods exhibit fundamental limitations in modern
shipping operations. The static nature of traditional routes cannot exploit favorable
weather conditions or avoid developing storm systems efficiently. The empirical
weather margins often prove either too conservative, resulting in unnecessary fuel
consumption, or insufficient, leading to delays and increased emissions when severe
weather is encountered (Weintrit, 2013). Furthermore, traditional planning treats the
voyage as a deterministic process, neglecting the inherent uncertainties in weather
forecasts, ship performance, and operational constraints that characterize actual
maritime operations. This deterministic simplification, while computationally feasible
for manual planning as described in classic navigation texts from Bowditch (1802) to
modern manuals (Cutler, 2003), fails to provide the probabilistic arrival time windows
and confidence bounds essential for modern just-in-time shipping operations. These
limitations motivate the transition from traditional voyage planning to the advanced
optimization frameworks, which integrate ensemble weather forecasts, uncertainty
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quantification, and multi-objective optimization while preserving the safety principles
embedded in conventional maritime practice.
Ship weather routing is mainly dependent on weather forecasts, which significantly
influence routing decisions considering safety, efficiency, and environmental
sustainability of ships. Considering the already mentioned IMO regulations, efficient
and sustainable solutions that ensure reduced fuel consumption and environmental
impact of ships are needed to meet these requirements. In this context, ship weather
routing has become a primary area of research and development within the industry.
The route optimization process relies on the analysis of ensemble short-term and
medium-term weather forecasts and their trends, with a focus on the impact of sea
conditions on ship motions. Unlike a single deterministic forecast, ensemble forecasts
provide multiple possible weather development scenarios. This enables the
assessment of probabilities for various meteorological conditions. Each forecast within
the ensemble contains results from slightly different initial conditions and variations
in atmospheric and ocean models. Considering these factors, ensemble forecasts
themselves have limited reliability, especially as the time span for which the forecast
is made extends. It is necessary to recognise the complexity of this forecast uncertainty
and develop a methodological frame for its integration into ship route optimization.
The objectives of the ship route optimization are not limited to reducing travel time or
fuel consumption but can also include other objective functions such as minimising
total voyage distance, reducing dynamic loads on the ship due to waves, or increasing
safety in extreme weather conditions. Optimization approaches depend on the type of
ship, its purpose, and operational requirements, but the need to incorporate forecast
uncertainty into the process is still apparent. Despite the advances in meteorological
predictions such as ensemble forecasting, underlying uncertainty remains an inherent
aspect of weather prediction. This uncertainty presents a significant challenge for
operational decision-making in ship routing, where decisions often must balance
several conflicting objectives. Current methods for ship route optimization often rely
on deterministic weather forecasts, neglecting uncertainties stemming from the
variability of meteorological conditions. Deterministic models assume that
meteorological variables like significant wave height, wave direction, wind speed and
direction are known in advance and unchangeable during navigation. However, due to
nonlinear dynamics and perturbations, even the most advanced weather forecasts
have a certain level of uncertainty that increases with time from the moment the
forecast is issued. These uncertainties can cause significant deviations between
planned and realised routes, leading to increases in fuel consumption, reduced
navigational safety, and unreliability in estimated time of arrival (ETA).
As mentioned, weather forecasts are at the basis of ship weather routing, and their
uncertainty presents a substantial operational challenge, becoming increasingly
pronounced beyond 72 hours. Ensemble Prediction Systems (EPS) have been
introduced to quantify forecast uncertainty through multiple model realisations with
perturbed initial conditions (Leutbecher & Palmer, 2008; Mylne et al., 2002; Buizza &
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Leutbecher, 2015; Randriamampianina et al., 2011). Despite this capability, Ksciuk et
al. (2023) highlight that ensemble forecasts are frequently post-processed or reduced
to deterministic averages before integration into routing algorithms, neglecting the
probabilistic nature of weather (Luo et al., 2023). Zhang et al. (2023) found wind speed
forecast errors grow non-linearly over five days in the North Atlantic, while Wu et al.
(2019) confirmed that forecast uncertainty grows with the prediction horizon,
providing computational methods for prediction intervals applicable to ship
operations. Vitali et al. (2020) coupled voyage data with hindcast weather; however,
the reliance on hindcast rather than forecast data limits the practical application for
voyage planning. The connection between ensemble uncertainties and ship fuel
consumption was established by Vettor & Guedes Soares (2022), though their
simplified resistance models may not capture complex speed-power relationships.
Jeuring et al. (2024) improved uncertainty visualisation but provided limited guidance
on how mariners should integrate this information into routing decisions. Valčić et al.
(2011) developed an ANFIS-based model for ship speed prediction, while Vettor et al.
(2021) proposed first-order probabilistic frameworks, though linearization
assumptions may be invalid for highly nonlinear ship responses.
The evolution of numerical weather prediction has undergone what Bauer et al. (2015)
describe as a "quiet revolution," resulting in a dramatic improvement in forecast
reliability. Recent breakthroughs in AI-based weather forecasting from organisations
such as Google DeepMind (GraphCast), Huawei (Pangu-Weather), and NVIDIA
(FourCastNet) have demonstrated comparable accuracy to traditional numerical
weather prediction systems while reducing computation time from hours to seconds
(Lam et al., 2023; Bi et al., 2023). This acceleration could enable more dynamic ship
routing strategies, allowing vessels to update routes more frequently during voyages
as new predictions become available (de Burgh-Day & Leeuwenburg, 2023). Baran &
Baran (2023) proposed parametric post-processing frameworks to enhance ensemble
forecast functionality, though these advancements have not been integrated into
unified uncertainty models that dynamically adjust to spatial and temporal variations.
Ship route optimization has started out from deterministic methods, where weather
conditions and sea states are assumed to be known at all times (Bijlsma, 2010), to
sophisticated stochastic approaches. Mannarini et al. (2016, 2024) extended Dijkstra's
algorithm for maritime applications with the VISIR framework for least-time routing.
Silveira et al. (2019) explored graph-based algorithms in deterministic conditions,
while Shin et al. (2020) applied the A-star algorithm to enhance computational
efficiency. Early work on stochastic ship routing relied mostly on dynamic
programming and Markov decision processes (Shao et al., 2012; Ferguson & Elinas,
2011). Given the inherent uncertainty in maritime operations, stochastic optimization
methods provide frameworks for explicitly incorporating uncertainties. Azaron &
Kianfar (2003) formulated two-stage and multi-stage stochastic programming models,
though these suffer from the curse of dimensionality for large-scale problems, as noted
by Birge & Louveaux (2011) and Puterman (2014). The computational challenges were
further emphasised even early on by Bellman (1957), who identified the curse of
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dimensionality as a fundamental limitation where problem complexity grows
exponentially with state variables and decision steps. As for robust optimization
approaches to the ship routing problem, they mainly focused on finding solutions that
perform effectively in worst-case scenarios (Bertsimas & Sim, 2004), though solutions
might be overly conservative. Fabbri et al. (2018) and Wang et al. (2019) developed
risk indicators and objectives for robust optimization. Scenario-based optimization
and chance-constrained programming, on the other hand, showed a good balance
between robustness and performance (Kepaptsoglou et al., 2015). Regarding special
ship routing areas and applications, Liu et al. (2023) reviewed Arctic routing
challenges, acknowledging the lack of data and several model validation challenges in
ice-covered waters. Tarovik et al. (2024) provided comprehensive Arctic
benchmarking, revealing limitations even in sophisticated ML approaches.
Nature-inspired heuristic methods have recently enabled better adaptation to
changing conditions. Szlapczynska (2015) and Vettor and Soares (2016) used genetic
algorithms to obtain near-optimal solutions. Zhang et al. (2021) implemented ant
colony optimization, demonstrating potential in balancing multiple conflicting
objectives. Chen et al. (2025) provided advanced evolutionary algorithms, while Zhou
et al. (2022) and Dębski & Dreżewski (2024) proposed optimization methods requiring
extensive function evaluations, though these may be impractical for time-sensitive
routing. Ship weather routing naturally involves multiple conflicting objectives. Multi-
objective optimization provides Pareto-optimal solutions that cannot be improved in
one objective without compromising another (Marler & Arora, 2004; Collette & Siarry,
2003). These objectives typically include minimising fuel consumption and travel time
(Azaron & Kianfar, 2003), ensuring safety (Fabbri et al., 2018), and minimising
environmental impact (Christiansen et al., 2013; Ma et al., 2024). García & Peña (2017)
emphasise that multi-objective optimization (MOO) provides an efficient framework
for managing conflicting objectives while identifying optimal decisions meeting
operator preferences. Szłapczyński et al. (2023) developed multicriteria weather
routing with fuzzy logic to handle uncertain conditions, while Charalambopoulos et al.
(2023) applied probabilistic roadmap algorithms.
Machine learning (ML) has enhanced optimization methods through improved
prediction and adaptation capabilities. Miao et al. (2023) and Wu et al. (2023)
demonstrated the ability of ML algorithms to predict weather patterns, identify
patterns in historical data, and adapt to dynamic environments. Gkerekos et al. (2019)
applied supervised learning algorithms, including artificial neural networks and
support vector machines, for assessing fuel consumption. Moradi et al. (2022)
combined stochastic optimization with reinforcement learning for improved real-time
decision-making, enabling routes to be altered based on the most recent observations
and forecasts while dynamically adapting to changing weather patterns. Bâra et al.
(2024) utilised unsupervised learning methods, including clustering and anomaly
detection for weather pattern recognition and identification of abnormal
circumstances that could affect ship performance and safety. Computational efficiency
has also been addressed through various approaches. Carneiro & Melab (2019) and
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Hishinuma & Iiduka (2019) developed incremental search strategies and parallel
computing approaches to enable timely performance for real-time optimization.
Martelli et al. (2018) further emphasised the high dimensionality of state and action
spaces as a key computational challenge, particularly for real-time decision-making
requirements adhering to weather forecast data. Continuing on contemporary
approaches, Wei et al. (2023) presented digital twin frameworks for Carbon Intensity
Indicator (CII) compliance, while more recently, Latinopoulos et al. (2025) enhanced
digital twin capabilities through reinforcement learning for adaptive ship performance
prediction. Orlandi et al. (2021) integrated weather forecasts with ECDIS interfaces,
though without stating the impacts of forecast uncertainties.
In the last few years, Model Predictive Control (MPC) has emerged as a particularly
interesting and powerful framework for ship weather routing, having the ability to
optimize vessel trajectories while accounting for dynamic environmental conditions
and operational constraints. Potočnik (2025) demonstrates the effectiveness of MPC
for autonomous ship navigation by integrating chart-based path planning with
COLREG-compliant collision avoidance, using a simplified MPC formulation that
balances computational efficiency with predictive accuracy for real-time
implementation. Wang et al. (2022) propose a continuous dynamic optimal control
approach for unmanned ships that combines chart-based path planning with MPC-
based collision avoidance, establishing a dual-objective optimization framework that
simultaneously minimises energy consumption and sailing time while adapting to real-
time meteorological information.
The challenge of real-time route optimization is specifically addressed by Wang and
Wang (2022), who transform the traditional multi-stage decision-making problem into
a one-step optimal control problem using predictive control principles, thereby
avoiding the computational delays that can render routes suboptimal when conditions
change. To handle the inherent uncertainties in weather prediction and sensor
measurements, stochastic MPC (SMPC) approaches have gained significant attention.
Jeong (2021) demonstrates this in the autonomous driving domain, where recursive
covariance estimation is integrated with SMPC to adaptively adjust chance constraints
based on time-varying uncertainty characteristics, providing insights applicable to
maritime navigation under uncertain weather conditions.
Nonetheless, optimal ship routing under varying and severe weather conditions
remains a fundamental challenge within the shipping industry due to performance
parameters as well. Ships operating in adverse weather conditions experience
significant speed losses due to added resistance from waves and wind, degraded
propeller performance, and voluntary speed reductions for safety reasons (Prpić-Oršić
et al., 2020; Dalheim & Steen, 2020). These complex interactions between
environmental loads and vessel dynamics have been partially captured through bridge
simulators such as Wärtsilä NTPRO 5000, which models real-time ship dynamics in six
degrees of freedom (Toman et al., 2020). The economic implications of these
interactions and effects are substantial, with Ormevik (2023) demonstrating that
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speed optimization according to weather conditions could achieve 15-20 % CO₂
reductions for platform supply vessels.
Various methodologies for attainable ship speed modelling have been explored, though
each approach exhibits distinct limitations. The Semi-Empirical SHIPERA-NTUA-NTU-
MARIC (SNNM) method was validated by Wang et al. (2021) using 1,477 data points,
yet this validation focused primarily on specific vessel types and sea conditions. Lang
& Mao (2020) developed semi-empirical models for speed loss in head waves, but
excluded beam and following seas, limiting operational relevance. Methods for
estimating added resistance were proposed by Kim et al. (2017) and Kim et al. (2022),
though validated only against single vessel types. Korkmaz et al. (2021) improved
calm-water predictions, but validation was not extended to realistic operational
conditions. Liu & Papanikolaou (2020) focused mainly on added resistance due to
diffraction effects at design and low speeds, leaving high-speed performance omitted.
Physics-based models for attainable ship speed prediction, while considering first-
principles hydrodynamics, often rely on idealised assumptions. Potential-flow
approaches such as strip theory and panel methods neglect viscous effects and
nonlinear phenomena, which are fundamental in severe conditions (Kim et al., 2017).
Simulator-based research has provided controlled environments but faces validation
challenges, as it lacks a comprehensive comparison to full-scale trials (Nas et al., 2014;
Aydogdu, 2022). Nishizaki et al. (2019) examined Energy Efficiency Design Index
(EEDI) effects using simulators, though translating findings to real-world operations
requires careful consideration of scale effects and environmental complexity.
Computational Fluid Dynamics (CFD) approaches have advanced significantly as well,
though computational costs remain prohibitive for operational use. Jiao et al. (2016)
utilised large-scale models tested in natural sea conditions to predict wave-induced
ship motions and loads. Liu et al. (2021) extended CFD approaches to URANS and LES
for parametric rolling, though computational requirements make such methods
impractical for route optimization. Insights on trim and swell-induced speed loss were
provided by Inno & Boxall (2021) and Martić et al. (2024), but only for specific ship
types without generalised frameworks. Ntouras et al. (2022) demonstrated bow wing
concepts, though transitioning from CFD validation to practical implementation
remains unexplored. Czaplewski et al. (2021) enhanced simulator environmental
modelling through CFD but addressed only training applications.
The foundational work of Prpić-Oršić & Faltinsen (2012) and Prpić-Oršić et al. (2016)
examined fuel consumption and CO₂ emissions in realistic seaway conditions,
establishing a critical understanding of weather impacts on vessel performance. Taskar
& Andersen (2020) assessed the benefits of speed reduction under different weather
conditions, confirming that uncertainty in weather forecasts significantly impacts
expected fuel savings. Norlund & Geibkovskaia (2017) focused specifically on offshore
supply vessels, while Guo et al. (2024) developed learning-based Pareto optimization
approaches. Mason et al. (2023) provided adaptive strategies for vessels with wind
propulsion, offering insights into stochastic wind variability. Perera & Guedes Soares
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(2017) have further emphasised that next-generation routing systems must
incorporate uncertainty quantification.
Specific challenges in quantifying weather forecast uncertainty for the North Atlantic
area were highlighted by Kodaira et al. (2023), confirming that traditional approaches
fail to effectively manage uncertainties in operational conditions. Comprehensive
frameworks integrating empirical, physics-based, CFD, and ML methods remain
underdeveloped. Most studies validate their models under specific conditions without
systematic assessment for different ship types, loading conditions, or sea states. While
forecast uncertainty is recognised, few studies quantify its distribution through
attainable ship speed models. Current approaches mostly consider speed modelling
and uncertainty separately or use simplified propagation methods. None of the existing
frameworks simultaneously develops attainable ship speed models and quantifies the
propagation of forecast uncertainty while comparing different approaches under
operational conditions.
The integration of diverse methodologies, ranging from traditional optimization
algorithms to modern AI-based forecasting, machine learning approaches, and
advanced control strategies like MPC and SMPC, represents the future directions of
ship weather routing research. The successful synthesis of Model Predictive Control
frameworks with stochastic optimization, ensemble weather forecasting, and machine
learning presented in this research offers particular promise for addressing the
complex, multi-objective nature of ship routing under uncertainty.

1.3 Problem statement

The main objective of the thesis was the development of a ship routing system that
integrates techniques for modelling maritime vessel characteristics, attainable speed
and speed loss, and the application of machine learning algorithms, while considering
weather forecast uncertainties through stochastic optimization. The proposed system
focuses on providing support to ship masters and other Officers of the Watch (OOWs)
in decision-making during navigation, enabling dynamic route adjustments in real-
time with the goal of increasing operational efficiency, safety, and compliance with
industry environmental standards. In the selection of the optimization methods, apart
from some already suggested solutions (e.g. Rolling Horizon Optimization, Model
Predictive Control, A-star and Stochastic Model Predictive Control) that were used, a
new approach has been proposed based on hybrid A-star and Stochastic Model
Predictive Control algorithms.
The main hypothesis (H0) can be stated as follows: "The integration of stochastic
optimization methods, attainable ship speed models, and weather forecast uncertainties
significantly improves the efficiency, safety, and environmental sustainability of ship
routes compared to traditional routing methods."
Alongside the main hypothesis, there are also several auxiliary hypotheses:
• H1: The application of stochastic optimization methods enables better

management of weather forecast uncertainties and results in a significant
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reduction of the impact of adverse weather conditions on attainable ship speed,
fuel consumption, and voyage duration compared to deterministic methods;

• H2: The use of ensemble weather forecasts improves the accuracy of ship
Estimated Time of Arrival (ETA) predictions, ensuring better robustness and
adaptability to ship operational conditions;

• H3: Ship route optimization systems that include adaptive strategies such as
intentional vessel speed reduction in adverse weather conditions contribute to
navigation decision support systems, fuel consumption reduction, safety, and
maintenance of environmental standards.

1.4 Scientific contributions

The scientific contributions of this thesis are reflected in:
(i)  An integrated framework for quantifying weather forecast uncertainties within

stochastic ship route optimization is proposed and developed, which enables
more realistic and robust route planning under variable weather conditions
(Chapters 3, 4 and 5).

(ii) A neural network-based prediction model is proposed and deployed, which
accurately captures the relationship between weather conditions and vessel
performance parameters such as attainable ship speed, speed loss and fuel
consumption (Chapter 5).

(iii) Quantified uncertainties in meteorological variables, attainable ship speed, and
estimated time of arrival, modelled as stochastic variables and embedded even in
the case of classical voyage planning, i.e. without optimal ship routing,
significantly improved robustness and reliability of overall ship voyage logistics.

(iv) A dynamic ship routing system based on the waypoint sequencing model
predictive control (MPC) approach was proposed and deployed. It considers
quantified uncertainties of meteorological data and applies them to real weather
conditions, ultimately enabling real-time route adaptation with the goal of
improving operational efficiency and safety in terms of decreased fuel
consumption, increased navigational safety and optimized path smoothness
(Chapters 3, 6 and 7).

(v) A hybrid optimization framework that integrates the graph-theory A-star
algorithm with Stochastic Model Predictive Control (SMPC) is proposed and
deployed, while using neural network models to accelerate attainable ship speed
estimation and associated weather routing computations (Chapters 6 and 7).
Proposed hybrid dynamic and stochastic optimization framework
simultaneously handles weather forecasts and vessel performance uncertainties,
enabling: (1) probabilistic routing with confidence bounds on ETA and fuel
consumption; (2) integration of ensemble forecasts with learned vessel
performance distributions to distinguish reducible from irreducible
uncertainties; and (3) multi-stage adaptive routing that dynamically adjusts
decisions as forecast confidence evolves during voyage (Chapters 6 and 7).
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(vi) A comprehensive validation methodology was applied in terms of historical
voyage data and hindcast weather forecasts to quantify the performance gains of
uncertainty-aware routing, demonstrating reduction in fuel consumption
variance and improvement in ETA reliability compared to deterministic and
single-forecast stochastic approaches.

1.5 Thesis outline

According to the problem statement and defined objectives, this thesis is structured
and organised into eight main chapters, followed by the bibliography, appendices, and
lists of figures and tables. The Introduction presents the motivation for developing
advanced ship weather routing systems in response to increasingly stringent
environmental regulations and operational challenges. A comprehensive literature
review analyses state-of-the-art approaches in attainable ship speed modelling,
weather forecast uncertainty quantification, and optimization methodologies. The
problem statement, scientific contributions, and thesis organisation are clearly
outlined.
Chapter 2 provides a comprehensive foundation of ship characteristics and
performance, essential for understanding vessel behaviour under various
environmental conditions. Basic ship particulars and reference frames are established,
followed by a detailed analysis of ship resistance and propulsion systems.
Environmental loads from wind, waves, and ocean currents are systematically
examined, along with their effects on ship dynamics and response. Particular emphasis
is placed on added resistance phenomena and speed loss mechanisms, which directly
impact attainable ship speed calculations. The chapter concludes with ship
performance parameters, including fuel consumption, CO₂ emissions, and safety
considerations that form the basis for subsequent optimization formulations.
Chapter 3 outlines the methodological framework behind the research. Data
acquisition strategies are detailed, encompassing multiple sources including onboard
measurements, hydrodynamic software packages, and navigational simulator outputs.
Stochastic modelling approaches and uncertainty quantification techniques are
introduced to handle the probabilistic nature of maritime operations. Data-driven
regression modelling methodologies, including feedforward neural networks and
multivariate linear regression, are presented with their respective performance
metrics and workflow procedures. The chapter concludes with dynamic optimization
methods for ship weather routing, introducing multi-objective formulations under
stochastic conditions, graph search optimization, and model predictive control
approaches that form the core of the proposed framework.
Chapter 4 focuses on the aspect of modelling weather forecast uncertainties, which
fundamentally distinguishes this work from deterministic approaches. Environmental
data formats, structures, and resolutions are analysed in both temporal and spatial
dimensions. This chapter provides a detailed quantification of weather forecast
uncertainties, examining their spatial and temporal characteristics, as well as the
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specific behaviour of individual environmental variables. Challenges and limitations in
handling ensemble forecasts and their propagation through the routing system are
thoroughly addressed as well.
Chapter 5 develops data-driven estimation methods for ship performance variables
using a reference vessel as the case study. Initial conditions and simulation
combinations are established for comprehensive ship performance estimation.
Attainable ship speed models are developed and validated, followed by fuel
consumption and CO₂ emission estimation procedures. The chapter extends to
determining critical sea states based on ship response analysis, establishing safety
margins that serve as constraints in the optimization framework. The integration of
seakeeping analysis with performance prediction provides a holistic approach to
vessel capability assessment under varying environmental conditions.
Chapter 6 presents the core modelling framework for ship weather routing
optimization under uncertainty. A stochastic ETA-based routing approach is
introduced, which quantifies the uncertainties in attainable ship performance
variables under stochastic weather conditions. Inter-relationships between attainable
ship speed and weather variable uncertainty metrics are analysed. The comprehensive
routing optimization framework incorporates weather uncertainties through multiple
strategies including reference speed adaptation, heading control, and persistence
criteria. Multi-objective dynamic optimization based on rolling horizon principles is
developed, establishing decision criteria for route alteration. At the end of the chapter,
a hybrid optimization framework is presented, combining A-star and stochastic MPC,
with detailed problem setup, stage cost functions, constraint specifications, and
coordination strategies.
Chapter 7 provides extensive validation and verification of the ship routing
optimization framework proposed in Chapter 6. Initial conditions and optimization
scenarios are established for the North Atlantic case studies, examining compatibilities
and disparities between optimization algorithms. Reference estimated times of arrival
serve as benchmarks, while comprehensive performance metrics evaluate routing
effectiveness. Comparative analysis against conventional voyage planning methods
validates the superiority of the proposed approaches in handling weather
uncertainties while maintaining computational feasibility.
Finally, Chapter 8 synthesises the research findings through a critical discussion of
results, highlighting how the integration of uncertainty quantification, data-driven
performance modelling, and hybrid optimization advances the state-of-the-art in ship
weather routing. Main conclusions emphasise the demonstrated improvements in fuel
efficiency, emission reduction, and operational safety achieved through the proposed
framework. The chapter closes with recommendations for future work, including
extensions to additional vessel types, integration with emerging AI-based weather
forecasting systems, and real-time implementation considerations for commercial
deployment.
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2 SHIP CHARACTERISTICS AND PERFORMANCE

This chapter examines the fundamental characteristics and performance aspects of
ships operating at sea. First, the principal dimensions and geometric properties that
define a vessel's form and size are explained. These basic particulars are the basis for
understanding how ships move through water and respond to external forces. The
reference frames and kinematic descriptions necessary for analysing ship motion are
also explained, followed by the resistance components and propulsion systems that
determine the ship’s power requirements. Since ships rarely operate in ideal
conditions, the chapter addresses environmental loads from wind, waves, and
currents, along with the resulting dynamic responses and motions. Particular attention
is given to the added resistance experienced in waves and the corresponding speed
loss, which significantly affects operational efficiency. The chapter concludes with the
main performance parameters, including attainable speed, fuel consumption,
emissions, and safety considerations that regulate practical ship operation.

2.1  Basic ship particulars

The principal dimensions of a ship define its basic geometry and serve as the starting
point for resistance, stability, and seakeeping calculations. These measurements
determine the vessel's displacement, wetted surface area, and form coefficients such
as the block coefficient and prismatic coefficient, which are essential for estimating
hydrodynamic performance. The ratios between these dimensions, particularly the
length-to-beam ratio (L/B) and beam-to-draft ratio (B/T), provide insight into the
ship's operational characteristics and design trade-offs.
The four primary dimensions presented in Table 2.1 follow standardised maritime
conventions to ensure consistency in ship design and analysis. While ships have
numerous geometric parameters, these particular dimensions are required for
hydrodynamic calculations and performance prediction. Additional dimensions, such
as length overall and molded breadth, are used for harbour operations and docking
requirements, but the moulded dimensions shown here are sufficient for resistance
and powering estimates as they define the actual hull form in contact with water.

Table 2.1. Principal ship dimensions

Dimension Symbol Description Measurement Method

Length between
perpendiculars Lpp Horizontal distance at the

summer load waterline
Measured between the forward and after
perpendiculars

Molded breadth B Maximum hull width
(excluding shell plating)

Measured between the inner surfaces of the
side shell plating at the widest section

Molded depth D Vertical hull depth
Measured from the top of the keel to the
underside of the deck plating at the ship's
side (at midship)

Design draft T Operational depth in
water

Vertical distance from the bottom of the keel
to the summer load waterline at the
designated cargo capacity

Source: (SNAME, 1950)
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Beyond the principal dimensions, several reference points must be acknowledged that
define how a ship behaves in water and responds to external forces. These points
represent the locations where various forces and moments act on the vessel, and their
relative positions determine the ship's stability characteristics, trim, and response to
load changes. Understanding these reference points is also fundamental to analysing
ship motions and ensuring safe vessel operation under different loading conditions.
The centre of gravity (CG) and centre of buoyancy (CB) form the primary force pair of
opposing forces that govern ship stability. When a ship heels or trims, the relative
movement between these two points creates the righting moment that returns the
vessel to equilibrium. The centre of flotation (CF) serves as the pivot point for trim
calculations and is significant when calculating the effects of adding or removing
weights from the vessel. Table 2.2 summarises these reference points, their standard
notation, and their significance in naval architecture calculations.

Table 2.2. Principal reference points and their characteristics for ship stability calculations

Reference point Symbol Description Characteristics

Centre of gravity CG The point through which
the total weight force acts

Position varies with loading condition and
affects ship stability

Longitudinal
position of CG LCG Horizontal location of CG Measured from after perpendicular or

midship
Vertical position VCG/KG Vertical location of CG Measured from keel baseline

Centre of
buoyancy CB Centroid of underwater

volume

Buoyancy force acts vertically upward
through this point and aligns vertically with
the CG in static equilibrium

Centre of
flotation CF Centroid of waterplane

area
Point about which vessel trims, important
for weight addition/removal calculations

Longitudinal
position of CF LCF Horizontal location of CF Typically located slightly aft of midship for

merchant vessels

Source: (Rawson and Tupper, 2001)

While the principal dimensions provide the basic geometric framework of a vessel,
additional parameters are needed to fully describe the hull's volumetric distribution
and shape characteristics. For that purpose, hull form coefficients are used, which are
dimensionless measures that characterise the fullness and shape of the underwater
hull. These coefficients have usually served as reference values for preliminary ship
design assessments and empirical resistance estimations, though modern software can
now directly analyse complex hull geometries. The three coefficients serve as essential
input parameters in most naval architecture software packages. Relevant to this
research, in NavCad, these coefficients are input for resistance and powering
predictions using empirical methods, while DNV GL’s HydroD utilises them for initial
hydrostatic calculations and as validation parameters when importing hull geometry
models (HydroComp, 2024; DNV GL, 2017).

The block coefficient ( )BC  represents the ratio of the underwater volume displacement
to the product of the principal dimensions (Rawson and Tupper, 2001)
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 


B L B T
C (2.1)

where  denotes the volume displacement in cubic meters. The block coefficient
directly influences resistance characteristics, with fuller forms generally experiencing
higher wave-making resistance at moderate speeds but improved cargo capacity
(Eyers and Bruce, 2012).

The waterplane area coefficient ( )WPC  relates the area of the waterplane to the
rectangular area defined by length and breadth



WP

WP L B
AC (2.2)

where
WP

A represents the waterplane area at the design draft. This coefficient affects

the vessel's initial stability and influences the distribution of buoyancy forces along the
hull (Rawson and Tupper, 2001; Schneekluth and Bertram, 1998).

The midship section coefficient ( )MC  compares the immersed area of the midship
section to the rectangular area formed by breadth and draft (Schneekluth and Bertram,
1998)


 M

M
AC
B T

(2.3)

where MA  denotes the immersed midship sectional area.

2.2 Ship kinematics and dynamics

Ship kinematics establishes the physical relationships between different reference
frames, thereby enabling the transformation of motion variables between reference
frames without considering the forces and moments that cause the motion (Fossen,
2011).
The earth-fixed frame and the body-fixed frame are the two main reference frames that
are necessary for explaining ship motion. With its origin fixed at the centre of the Earth,
the Earth-Centred Earth-Fixed (ECEF) { } ( , , )e e ee x y z reference frame rotates its axes

relative to inertial space with an angular rate of e  = 7.2921 × 10⁻⁵ rad/s. This rotation
can be disregarded by marine vessels travelling at relatively slow speeds, making the
ECEF frame inertial for useful navigation (Fossen, 2011).
North-East-Down (NED) { } ( , , )n n nn x y z coordinates are the main reference for
navigation. This frame is defined in relation to the Earth's reference ellipsoid, with its
origin at a point on the surface. The x -axis points toward true North, the y -axis toward
East, and the z -axis downward, normal to the Earth's surface. This Earth-fixed tangent
plane serves as a realistic inertial reference frame for marine craft operating in a
limited area with about constant longitude and latitude (Fossen, 2011).
Usually situated midships on the waterline, the body-fixed reference frame's origin is
known as the coordinate origin, or CO, and it moves with the ship. The body axes
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{ } ( , , )b b bb x y z are chosen to coincide with the principal axes of inertia: the bx -axis
directed from aft to fore (longitudinal), the by -axis directed to starboard (transverse),
and the bz -axis directed from top to bottom (normal). As defined by the Society of
Naval Architects and Marine Engineers (SNAME, 1950), this arrangement is consistent
with standard notation.
As illustrated in Figure 2.1, the ship's motion may generally be broken down into six
degrees of freedom (6DOF) motion on three translational and three rotational motions.

Figure 2.1. 6DOF in the body reference frame {b}
Source: (Fossen, 2011)

Vessel motion in six degrees of freedom follows standard notations where surge, sway,
and heave represent translations along the x, y, and z axes with forces X, Y, and Z,
velocities u, v, and w, and positions x, y, and z, respectively. The rotational motions
comprising roll, pitch, and yaw about the x, y, and z axes are associated with moments
K, M, and N, angular velocities p, q, and r, and Euler angles ϕ, θ, and ψ, respectively.
Table 2.3 lists these standard notations for vessel locations and orientation (Euler
angles), linear and angular velocities, and forces and moments.

Table 2.3. Notations of characteristic physical quantities with respect to the motion in 6DOF

# Type of motion DOF Forces and
moments

Linear and angular
velocities

Positions and
Euler angles

1 Translation in the x direction Surge X u x

2 Translation in the y direction Sway Y v y

3 Translation in the z direction Heave Z w z

4 Rotation about the x axis Roll K p 

5 Rotation about the y axis Pitch M q 

6 Rotation about the z axis Yaw N r 

Source: (SNAME, 1950)
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While linear (u, v, w) and angular (p, q, r) velocities are typically stated in the {b}
reference frame, position (x, y, z) and Euler angles (ϕ, θ, ψ), or the ship's orientation,
are expressed relatively with relation to the inertial coordinate systems {e} or {n}.
For the hydrodynamic analysis of ship behaviour relevant for this research, the
classical rigid-body dynamics formulation is adopted following Harvald (1983). This
approach directly applies Newton's laws of motion to the ship as a rigid body, providing
a comprehensive framework particularly suited for resistance, propulsion, and
seakeeping analyses. The unit vectors along the x, y, and z axes can be designated by i,
j, and k, respectively.  When the origin of the body-fixed coordinate system is placed at
the ship's centre of gravity (CG), Newton's laws for rigid-body motion can be expressed
in their fundamental form


dm
dt
VF (2.4)


d
dt
ΩM I (2.5)

where F represents the total external force vector acting on the ship, Mis the total
moment matrix, m is the ship's mass (considered constant as fuel consumption effects
are negligible), and I denotes the moment of inertia tensor that characterises the mass
distribution of the ship. The velocity vector V is in the ship's centre of gravity, while
Ω is the angular velocity vector, which represents how fast the ship is rotating about
each axis. These equations express Newton's second law in two forms: force equals the
rate of change of speed, and moment equals the rate of change of angular momentum.
The force and moment vectors can be further decomposed into their components along
the body-fixed axes, as per Table 2.3.

  X Y ZF i j k (2.6)

   .K M NM i j k (2.7)

Similarly, the linear and angular velocity vectors from (2.4) and (2.5), considering the
notations in Table 2.3 in the body-fixed frame, can be written as

  u v wV i j k (2.8)
   .p q rΩ i j k (2.9)

When expressed in the body-fixed coordinate system, the angular momentum H can
be written in terms of the inertia tensor as

 H I Ω (2.10)
with

  
 
  
   

 = ,
xx xy xz

yx yy yz

zx zy zz

I I I
I I I
I I I

I and
 
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  

p
q
r

Ω (2.11)

where xxI , yyI , zzI are the moments of inertia about the respective axes, and xyI , xzI , ,yxI

,yzI zxI and zyI  are the products of inertia.
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When the body-fixed coordinate system is aligned with the principal axes of inertia and
has its origin at the centre of gravity, the products of inertia become zero, yielding a
diagonal inertia matrix. The angular momentum becomes

   
       
      

0 0
0 0 ,
0 0

xx

yy

zz

I p
I q

I r
H (2.12)

and this simplification allows the angular momentum to be finally expressed as
   .xx yy zzI p I q I rH i j k (2.13)

By applying the relationships from equations (2.4) through (2.13) and accounting for
the fact that the body-fixed frame rotates with angular velocity Ω relative to the
inertial frame, we can derive the complete set of equations describing the ship's
motion. The time derivatives of the velocity vectors in the rotating reference frame lead
to the appearance of centrifugal and Coriolis terms, resulting in the following six-
degree-of-freedom equations of motion

   
   
   





( )
( )
( )

X m u qw rv
Y m v ru pw
Z m w pv qu

(2.14a)

  


   
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



( )
( )

( )

xx zz yy

yy xx zz

zz yy xx

K I p I I qr
M I q I I rp
N I r I I pq

(2.14b)

Here, the dot notation denotes the time derivative. The first three equations (2.14a)
govern the translational motion along the x, y, and z axes, while the last three equations
(2.14b) describe the rotational motion about these axes. The coupling terms (such as
qw - rv) arise from expressing the equations in the rotating body-fixed reference frame
and represent the Coriolis and centrifugal accelerations.
For practical applications, it may be convenient to place the origin of the body-fixed
coordinate system at a location other than the centre of gravity. If the centre of gravity
is located at position G G G( , , )x y z  relative to the chosen origin, the equations of motion
become more complex

     
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            

  
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In this formulation, the first three equations (2.15a) still describe translational motion
along the axes, while the last three (2.15b) govern rotational motion. The additional
terms containing G ,x Gy  and Gz account for the coupling between translational and
rotational motions due to the offset of the centre of gravity from the coordinate origin.
When analysing ship behaviour at sea, all six equations must be considered for a
complete motion description. However, for specific naval architecture problems,
reduced sets of equations often suffice. For steering and manoeuvrability studies of
conventional vessels, the motion can typically be constrained to the horizontal plane,
yielding the simplified system

 
 






( )
( )

.zz

X m u rv
Y m v ru
N I r

(2.16)

Furthermore, when investigating ship resistance and propulsion characteristics in
straight-line motion, the analysis reduces to a single equation

 .X m u (2.17)

This demonstrates that only a small subset of the complete mathematical model is
actually employed for many practical ship hydrodynamics problems, with the
appropriate simplification chosen based on the specific phenomenon under
investigation.
While the equations of motion presented above elegantly describe the forces,
moments, and accelerations in the body-fixed reference frame, practical navigation and
path planning require relating these body-fixed quantities to earth-fixed positions and
trajectories. The ship's actual geographic position (x, y, z) and orientation (Euler angles
ϕ, θ, ψ) must be expressed in an earth-fixed coordinate system to determine where the
vessel is located and how it moves through the water relative to fixed geographic
references.
The relationship between the body-fixed frame {b}  and the earth-fixed navigation
frame {n} is illustrated in Figure 2.2, which shows the transformation through the
heading angle ψ. The left panel demonstrates the ship’s kinematics, with the vessel's
body-fixed axes (xb, yb) oriented relative to the earth-fixed North-East coordinates (xn,
yn). The right panel illustrates the ship’s dynamics with a practical distinction between
the ship's heading ψ and the path tangent direction χ, which becomes significant when
the vessel experiences drift due to environmental forces or during manoeuvring
operations.
With the framework established for describing ship position and motion in various
reference frames, the forces that drive and oppose vessel movement are presented in
the following sections. The ability to maintain forward speed depends fundamentally
on the balance between propulsive thrust and resistance forces. Understanding these
relationships is important for predicting attainable speeds under varying
environmental conditions, which directly determines route feasibility.
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Figure 2.2. Ship kinematics (left) and dynamics (right) in the horizontal plane

2.3 Ship resistance and propulsion

2.3.1  Ship resistance

The total resistance when a ship is moving at constant speed results from the combined
effects of viscous forces, wave generation, and form-related pressure variations. This
resistance must be overcome by the propulsive thrust to maintain steady forward
motion. The viscous resistance occurs from the tangential stresses acting on the wetted
surface due to fluid viscosity. Following the ITTC-1978 methodology, the frictional
resistance coefficient is expressed as

 



F 2

10

0.075
log 2n

C
R

(2.18)

where the Reynolds number




n
V LppR (2.19)

characterises the flow regime, with V representing ship speed, Lpp the length between
perpendiculars, and  the kinematic viscosity (approximately 1.0∙10⁻⁶ m²/s for
seawater at 20°C). This formulation, based on the ITTC-1957 friction line, provides the
baseline for smooth hull resistance (ITTC, 1978).
At moderate to high speeds, the generation of surface waves becomes a significant
resistance component. The wave-making resistance results from the pressure
distribution around the hull, creating a wave system that transports energy away from
the vessel. This resistance component exhibits strong speed dependence, particularly
near the hull speed, where the Froude number approaches 0.4. The interference
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between bow and stern wave systems creates the characteristic humps and hollows in
the resistance curve. The wave resistance coefficient WC increases rapidly with Froude
number, following approximately

 2 4
W n nC F to F (2.20)

for Froude numbers above 0.25. The exact relationship depends on hull form
parameters, particularly the prismatic coefficient and the entrance angle of the
waterlines. Form or pressure resistance arises from the pressure distribution around
the hull, particularly in regions of flow separation. Unlike the idealised case of potential
flow where pressure forces cancel (D'Alembert's paradox), viscous effects cause flow
separation and wake formation, creating a net pressure drag. This component becomes
significant for bluff bodies and increases with the block coefficient. The total calm-
water resistance coefficient TC combines these components as (ITTC, 1978)

   T V W AA AC C C C C (2.21)

where VC is the viscous resistance coefficient, WC is the resistance due to wave-

making, AAC represents the air resistance coefficient (which is typically 0.001 for

cargo ships) and AC is the correlation allowance accounting for scale effects between
model tests and full-scale performance. The total resistance force follows

 2
T T

1
2

R SV C (2.22)

where V  represents the ship's speed (velocity) through the water,  denotes water
density and S the wetted surface area. This formulation serves as the basis for power
predictions.
The total resistance for a representative sea condition, TwR , is calculated by adding

 windR , which notes the added resistance due to wind, and waveR , which is the added

resistance due to waves, to the total resistance TR in calm sea conditions  (ITTC, 2021)

    Tw T W T wind waveR R R R R R (2.23)

where the calm water resistance follows the decomposition

  T F R AR R R R (2.24)

where FR is the frictional resistance, RR is the residual resistance, and AR is the air
resistance. Frictional resistance is primarily determined by how much of the hull's
surface is in contact with water, while residual resistance captures all the other energy
losses, the waves generated by the ship's movement through water, the eddies forming
around the hull, and viscous pressure effects. These residual components are directly
influenced by the specific shape and curvature of the hull lines.
The additional resistance in waves can be estimated using the simplified speed loss
relationship (Townsin and Kwon, 1983)
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where NB is the Beaufort number and   is the volume displacement in m³. This speed
loss translates to an increase in resistance that must be overcome by additional power
to maintain the service speed. For design purposes, a typical weather margin of
15-20 % is added to the calm water power requirement to account for these wave-
induced effects (Molland, 2011).

2.3.2 Ship propulsion

The main purpose of the propulsion system is to convert engine power into thrust in
order to overcome resistance and maintain the ship's speed. The ideal efficiency of this
process, given by actuator disk theory, establishes the theoretical limit for propulsive
performance. In practice, the propeller efficiency in open water typically ranges from
0.55 to 0.75, depending on the blade area ratio, pitch distribution, and operating
conditions (Kerwin, 2003; Molland, 2011).
The thrust T and torque Q developed by a propeller are expressed through non-
dimensional coefficients. These coefficients, usually determined from model tests or
computational methods, form the basis for propeller selection and performance
prediction. The ship's propeller operates in the ship's wake field, experiencing non-
uniform inflow velocities that differ significantly from the ship's speed (Molland,
2011). The effective wake fraction quantifies this velocity reduction, and typically
ranges from 0.20 to 0.40 for single-screw vessels, with fuller hull forms exhibiting
higher values due to thicker boundary layers and stronger wake peaks.
The thrust deduction factor accounts for the propeller-induced pressure field affecting
hull resistance, typically ranging from 0.10 to 0.20, and represents the increase in
resistance due to propeller operation. Finally, the hull efficiency captures the combined
effect of wake and thrust deduction, with values generally between 1.0 and 1.2 for well-
designed hull-propeller combinations.
The overall propulsive efficiency considers all losses in the power transmission from
the engine to the effective thrust. This efficiency typically ranges from 0.95 to 1.05, with
values above unity possible when the propeller recovers rotational energy from the
hull wake.
Optimal propulsion system performance requires careful matching between engine
characteristics and propeller demand. For fixed-pitch propellers, the engine must
provide sufficient torque across the operational speed range while avoiding overload
conditions. The propeller law, where power varies with the cube of rotational speed
(P~n³), controls the engine-propeller interaction for constant-pitch operation
(Molland, 2011). Controllable-pitch propellers offer operational flexibility by adjusting
blade angle to match varying resistance conditions while maintaining constant shaft
speed. Detailed explanations and mathematical formulations can be found in (Kerwin,
2003; Molland, 2011). With calm-water resistance and propulsion characteristics
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defining baseline performance, actual vessel operations occur in dynamic
environmental conditions that significantly modify these ideal values. Wind, waves,
and currents impose additional loads that not only increase resistance but also induce
motions and drift forces that must be considered in routing decisions. The following
section quantifies these environmental forcing functions that serve as primary inputs
to weather routing optimization.

2.4 Environmental loads

Wind, waves, and ocean currents are the three main environmental loads that have an
impact on ship operations. Although their relative relevance changes depending on
operational conditions, vessel attributes, and geographic location, each of these
elements adds to the overall environmental load acting on the vessel (DNV, 2017). The
extended form of environmental loads and other external disturbances is as follows

   total wind wave currentτ τ τ τ τ (2.26)

where τ  is a vector of generalised forces and moments generated by means of the
vessel’s propulsion system, windτ  is a vector of wind loads, waveτ  is a vector of wave

loads, currentτ  is a vector of sea current loads. Each generalised force and moment vector

τ  in equation (2.26) is a 6 1  vector representing associated forces and moments in
all six degrees of freedom

 
TX Y Z K M Nτ (2.27)

where , , , ,X Y Z K M and N correspond to the forces and moments in Table 2.3.

The superposition principle is frequently used for marine vessels operating in open
ocean circumstances, where it is considered that the generalised environmental
pressures are cumulative (Fossen, 2011).

2.4.1  Wind

In general, wind is the relative motion of air in relation to the surface of the Earth. The
main purpose of mathematical and empirical models of wind forces and moments in
marine systems is to optimize the ship's operational profile and improve performance.

The wind vector windτ can be defined as

 
T

wind wind wind wind wind wind windX Y Z K M Nτ (2.28)

where wind wind wind, ,X Y Z are the longitudinal, lateral and vertical wind forces,

respectively. The rotational components wind ,K windM and windN  are the  wind-
induced moments about the longitudinal, transverse and vertical axes, respectively.
The relative wind direction ,rel wind  can be found using a vector sum of appropriate

components of wind and vessel velocities. The relative wind speed rel,windV  can be found
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using components of the ship speed  ( , )U u v and components of the wind speed windV

wind wind( , )u v according to

   2 2
rel,wind wind wind( ) ( ) .V u u v v (2.29)

The drag force, which is positive in the direction of the wind, and the cross force, which
is positive to the right when facing the wind, are forces and moments in the horizontal
plane with regard to the wind, or the perceived wind if the ship is moving. The only
forces taken into account are those in the horizontal plane. While they may be
significant for special ship types, the pitching moment and vertical wind force have no
bearing on the behaviour of typical ships (Blendermann, 1996). Due to simplicity
reasons, the resulting horizontal wind load is decomposed into three components, i.e.
into longitudinal force x,wind( )F , transverse force y,wind( )F and yaw moment z,wind( )M .

While wind loads primarily affect the vessel's station-keeping capability and slow drift
motions, the interaction between wind and waves generates more complex loading
patterns that must be considered for comprehensive environmental load assessment.

2.4.2  Waves

Total wave load waveτ  in (2.26) can be written as the following sum

 wave wave1 wave2τ τ τ (2.30)

where wave1τ  denotes first-order wave-induced forces proportional to wave amplitude,

and wave2τ  presents second-order wave-induced forces proportional to the square of
the wave amplitude. The second-order wave-induced forces can be observed as slowly
varying components, considering the low-frequency part of the vessel's motion.
The first-order wave force vector 1τ represents the linear wave-induced loads

 
T

1 1 1 1 1 1 1X Y Z K M Nτ (2.31)

where 1X represents the first-order oscillatory surge force, 1Y is the first-order sway

force, 1Z is the first-order heave force, while 1 ,K 1M and 1N denote the first-order roll,
pitch, and yaw moments, respectively.
These forces and moments oscillate at the wave encounter frequency e and are

linearly proportional to wave amplitude .a  It can further be expressed as

      1 1 1cosa eA tτ (2.32)

where 1A  is the first-order force transfer function (RAO), e  is the encounter

frequency, and 1  is the phase angle.

The second-order wave force vector 2τ represents the non-linear wave-induced loads

 
T

2 2 2 2 2 2 2X Y Z K M Nτ (2.33)
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The second-order forces consist of two components, the first one being mean drift
forces (time-averaged, steady components), and the second one being slowly-varying
forces (low-frequency oscillatory components). While first-order forces dominate
vessel motions at wave frequencies, second-order forces, despite their smaller
magnitude, can excite resonant responses in mooring systems and cause large
horizontal excursions due to their low-frequency nature.

In order to determine the vectors’ wave1τ  and wave2τ  values for the purpose of numerical
simulations, different methods based on the response amplitude operators (RAO) of
the first and second order are used, where the wave amplitude is modelled by the
corresponding wave spectra and the sea state, which is defined by a significant wave
height and appropriate wave period (Faltinsen, 1993; Fossen, 2011; Journée and
Massie, 2001; Newman, 1977).
The most commonly used wave spectra are Bretschneider, Pierson-Moskowitz,
JONSWAP (Fossen, 2011; Ochi, 1998). The Pierson and Moskowitz (1964) spectrum is
particularly important in this research, as it presents a two-parameter wave spectral
formulation, particularly for fully developed wind-generated seas

45( ) .BS A e  
  (2.34)

This spectrum was developed from analysis of measured data obtained in the North
Atlantic Ocean. However, to predict the responses of marine vessels in the open sea,
the International Towing Tank Conference (ITTC, 1978) has recommended the use of
a modified version of the Pierson-Moskowitz spectrum in the following form (Prpić-
Oršić and Čorić, 2006)

4
2

wind

, gA g B
V

 
 

   
 

(2.35)

where 0.0081,  0.74,  and windV  is the wind speed (m/s) measured at 19.5 m
above the sea surface level. This modification should only be used for a fully developed
sea with large depth, without swell and with unlimited fetch.
For non-fully developed seas, the JONSWAP is recommended (Fossen, 2011). The
JONSWAP spectrum was based on Joint North Sea Wave Project measurements and is
also considered an ITTC standard (ITTC, 1984), formulated as follows

4 4
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2
944 /5
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( ) 155 T YsHS e
T

  
 (2.36)

where 1T  is the average wave period. The value  , noting the peak-shape parameter  is
generally set as 3.30  (Hasselmann et al., 1973) and

2
1[(0.191 1)/( 2 )]TY e    (2.37)

where
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The spectrum can be formulated differently from (2.36), with respect to various
characteristic periods 0 ,T 1T  and ,zT  based on

1 00.834 1.073 ,zT T T  (2.39)

where 0T  is the peak wave period.

2.4.3  Ocean Currents

Ocean currents represent steady or slowly varying water movements that affect vessel
operations through additional resistance and drift forces. These currents originate
from various sources, including wind-driven circulation, thermohaline processes, and
tidal flows, with velocities typically ranging from 0.1 to 2.0 m/s in open ocean
conditions (Stewart, 2008).
While ocean currents significantly influence ship routing decisions, particularly in
regions with strong, persistent currents such as the Gulf Stream or Kuroshio Current,
their inclusion substantially increases computational complexity due to the need for
high-resolution oceanographic data and time-varying current predictions. For this
research, current effects are excluded from the weather routing optimization to focus
on the wind and wave contributions to ship performance. This simplification is justified
for trans-oceanic routes where current effects partially cancel over the voyage time.
Having characterised the individual environmental forces acting on the vessel through
equation (2.26), it should be examined how these loads combine with ship inertia and
hydrodynamic effects to create motion. The complete dynamic system, incorporating
rigid body mechanics, added mass effects, and environmental forcing, controls the
vessel's instantaneous response to different sea conditions. These equations of motion,
though complex, form the theoretical foundation for predicting ship behaviour in
weather routing applications.

2.5 Ship Response

Response Amplitude Operators (RAOs), which represent the transfer functions
between wave amplitude and ship motion amplitude, can be used to describe how a
ship responds to waves (Bergdah, 2009).
The motion response in an irregular sea is obtained by superposing regular waves with
varying amplitudes, wavelengths, and propagation directions, assuming linear theory
and steady-state response (Faltinsen, 1993). The equation of motion for a rigid ship in
6DOF

  



      
6

1
[( ( )) ( ) ] ,    1,2,...,6ei t

jk jk k jk k jk k j
k

e jM A η B η C η F (2.40)

is then solved to assess the body motions.

On the right-hand side, jF  is the intricate excitation load amplitudes of associated

forces and moments, and the real part of  ei t
jF e denotes the force and moment

components (Faltinsen, 1993). On the left-hand side, one can find the vessel mass
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matrix  6 6[ ]jk jkMM  ,  6 6[ ]jk jkAA  is the added mass matrix,  6 6[ ]jk jkBB

is the damping matrix,  6 6[ ]jk jkCC  is the restoring matrix, and kη is the motion

vector that can be expressed as          T T
1 2 3 4 5 6[ ]  [ ] .k x y zη

Similarly, one can write  T T
1 2 3 4 5 6[ ] [ ] .j x y z x y zF F F F F F F F F M M MF

The total excitation load term on the right-hand side of (2.40) can be expressed as

      ,i t i t
j a je eF X (2.41)

where  a  is the wave amplitude,   is the wave frequency,   is the wave direction, and

  ,jX  is the transfer function of excitation loads defined in the complex domain. If

one defines the motion vector kη  in the complex domain as
 ,i t

k kaeη η (2.42)

the body motion system (2.40), combined with (2.42), can be rewritten as

      


     
6

2

1
[ ( ( )) ( ) ] ( , ),    1,2,...,6.jk jk jk jk ka a j

k
i jM A B C η X  (2.43)

When divided by  a , the body motions' amplitude and phase in relation to the waves
are described by the transfer function  ( , ),H  which can be expressed as

       



       

12( , ) ( ( ) ( ) ( , ),a
j

a

iH M A B C X (2.44)

where the RAO is the real part |  ( , )H | of the function (2.44) and  1,2,...,6.j  Further
clarification can be found in (Faltinsen, 1993) and (Bergdah, 2009).

2.6 Added resistance and ship speed loss

2.6.1  Added ship resistance

Three factors typically account for a ship's increased resistance in waves: the so-called
drifting force, which is caused by the interference of incident waves and waves
produced by pitching and heaving; the damping force, which is related to pitching and
heaving in calm water; and the diffraction force, which is caused by the interference of
waves and the ship.
Added resistance in waves refers to the mean increase in resistance beyond calm-water
values resulting from the presence of waves. When a ship encounters waves, two
primary mechanisms create additional resistance. First, the ship's oscillatory motions
(primarily heave and pitch) generate waves that radiate energy away from the hull.
Second, the waves are reflected and diffracted by the hull structure. As noted by
Bertram (2000), for high frequencies, the crests of waves radiated by ship motions are
near the ship, almost parallel to the ship hull, predominantly in the longitudinal
direction. This energy loss manifests as increased resistance that the propulsion
system must overcome.
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The added resistance in waves is usually measured during basic seakeeping tests, along
with motions and related effects. Some general recommendations are outlined in ITTC
procedure 7.5-02-07-02.1 and can be used for added resistance tests (ITTC, 2021). The
estimation of added resistance in waves is performed in two steps:
(i)   The measurement of the total still water resistance, RT, at speeds of interest;
(ii)  The measurement of the total resistance in waves, Rwave, at the same speed, with

the same loading condition, model outfit and measurement system.
The added resistance  wave ,R previously mentioned in (2.23), is obtained as a
difference between the mean values of the two aforementioned resistances

  wave wave T .R R R (2.45)

The following Figure 2.3 illustrates the complete ship propulsion energy flow system,
showing how fuel energy is converted through the main engine into mechanical power
(P), which drives the ship's propeller to generate thrust (T). This thrust must overcome
the total still water resistance (RT) together with added resistances related to
environmental loads such as wind, waves and ocean currents. The diagram also
indicates various degradation factors that reduce system efficiency over time,
including main engine maintenance, propeller and hull fouling, as well as operational
factors such as shallow water, draught/trim variations, and sea temperature/density
changes, all of which ultimately affect the attainable ship speed (Vatt.).

Figure 2.3. Schematic representation of the ship propulsion system energy flow
and resistance components

The magnitude of added resistance varies significantly with wave conditions and
encounter angle. According to the ITTC (1978) review, experimental measurements
show that added resistance coefficients reach maximum values in head seas and
decrease substantially in following seas. This directional sensitivity is fundamental to
consider in weather routing, as route alterations to avoid head seas can significantly
reduce the overall resistance penalty.
The impact on voyage planning is substantial. As documented in recent studies
referenced in the project (Kim et al., 2017; Lang and Mao, 2020), added resistance can
cause speed losses of 15-30 % in moderate sea states and over 50 % in severe
conditions. This speed reduction directly affects:
(a)  Voyage duration and arrival time reliability,
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(b)  Fuel consumption (which increases non-linearly with resistance),
(c)  Route selection decisions in weather routing optimization.

2.6.2  Ship speed loss

Ship speed loss represents the reduction in vessel speed from calm water conditions
when operating at a given power setting, including both involuntary speed reduction
due to environmental forces and voluntary speed reduction imposed by the ship
master for safety considerations. The speed loss ΔV is defined as the difference
between the calm water speed Vcalm and the actual speed in waves Vwaves at constant
power (Kim et al., 2017)

  calm waves .V V V (2.46)

For a vessel operating at constant power, the equilibrium condition requires that the
power consumed in waves wavesP equals the calm water power calm ,P  i.e.

calm wavesP P (2.47)
where




 T calm
calm

D,calm

R VP (2.48)


    

waves
D,w
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T wave ind wa

s

ves( ) .R R R VP (2.49)

Here, ηD represents the overall propulsion efficiency, which may differ between calm
water (ηD,calm) and wave conditions (ηD,waves) due to changes in wake fraction, thrust
deduction, and propeller efficiency in waves. Combining equations (2.47) through
(2.49), the relationship between the ship speed in calm water and the ship speed in
waves can be expressed as

 
   

T
waves calm

T wave wind

,RV V
R R R

(2.50)

and the associated speed loss can then be expressed as


 
   

T

T

calm wave wind

1 .V R
V R R R

(2.51)

In reality, the propulsive efficiency ηD,waves changes in waves due to variations in wake
fraction, thrust deduction, and propeller operating conditions, i.e. ηD,calm ≠ ηD,waves. It
should be emphasised that equation (2.50) represents a simplified first-order
approximation.
The actual speed in waves must be determined iteratively, taking into account the
variation in propulsive efficiency with loading conditions. For practical applications
where the power-speed relationship follows approximately a cubic law  3( ),P V  Lang
and Mao (2021) proposed an iterative calculation procedure. Starting with an initial
estimate of calm wavesV V , the iteration proceeds as

(i)  Calculate total resistance in real sea conditions: Tw T wave wind    R R R R
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(ii)  Calculate required power: prediction Tw waves D,waves/ P R V

(iii)  Adjust speed: new curr. adj.V V V 

(iv)  Repeat until: setting prediction setting.0.05P P P 

The predicted power requirement is denoted as predictionP , newV is the adjusted speed for

the next iteration, curr.V is the current speed, and adj.V is the speed adjustment factor

determined from the power difference. Finally, the iteration repeats until the absolute
difference between the target/set power settingP  and the predicted power predictionP  is less

than 5 % of the set power, indicating convergence has been achieved.

In severe weather conditions, the ship master may deliberately reduce speed to avoid
dangerous ship motions, slamming, or propeller emergence. For this purpose, critical
operational limits that trigger voluntary speed reduction can be expressed as (Prpić-
Oršić and Faltinsen, 2012):
(i)  Slamming probability: slam 0.01 0.03 
(ii)  Deck wetness probability: wetness 0.05
(iii)  Propeller emergence probability: emergence 0.10

(iv)  Vertical acceleration at the bridge: RMS 0.215,za g .

When these limits are exceeded, the ship master typically reduces engine power
incrementally (often in 10 % steps) until acceptable motion levels are achieved (Prpić-
Oršić and Faltinsen, 2012). The resulting operational speed (Voperational) represents the
final attainable ship speed after accounting for both involuntary speed loss
(ΔVinvoluntary), due to added resistance, and voluntary speed reduction (ΔVvoluntary) for
safety considerations. Thus, it yields

operational calm total ,V V V   (2.52)

where

total involuntary T wave wind ,waves

voluntary

( ( , , , )),
(safety limits)).

DV f V R R R
V

    


(2.53)

Here, Voperational represents the attainable ship speed that can be maintained under the
prevailing conditions, and ΔVtotal is the combined speed reduction determined through
an iterative process that accounts for both resistance increases and safety constraints.
It is important to note that ΔVtotal is not a simple arithmetic sum of involuntary and
voluntary components but rather the result of a coupled interaction where voluntary
speed reduction further affects the vessel's response to waves, potentially allowing
operation in conditions that would otherwise exceed safety limits. The actual
determination of Voperational requires the iterative procedure as described above, with
continuous adjustment until both power balance and safety criteria are satisfied.
In Prpić-Oršić et al. (2018), it is further emphasised that propeller emergence and
ventilation have a much greater influence on speed loss than added resistance at higher
sea states. They model thrust loss using experimental data, showing that when the
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propeller operates near or breaks the surface, severe thrust losses can occur. The
determination of operational speed through this coupled iterative process, accounting
for both resistance increases and safety constraints, directly impacts fuel consumption
and voyage planning. The non-linear relationships between these factors highlight the
importance of accurate speed prediction methods in weather routing optimization.

2.7 Ship performance parameters

The evaluation of ship performance in realistic operating conditions requires a
comprehensive assessment of multiple parameters that manage operational efficiency,
environmental impact, and safety margins. The following sections briefly address the
primary parameters that characterise ship performance under environmental loading:
attainable speed as the fundamental measure of transport capability, fuel consumption
and emissions as indicators of economic and environmental performance, and safety
considerations that establish operational boundaries.

2.7.1  Attainable ship speed

The attainable ship speed is the actual vessel speed that can be maintained under
prevailing environmental conditions at a specified engine power setting, accounting
for both involuntary and voluntary speed reductions. This parameter links theoretical
performance predictions and operational reality, therefore providing the basis for
voyage duration estimation, fuel consumption calculations, and routing decisions.
Unlike the theoretical speed-power relationships established for calm water
conditions, the attainable speed incorporates the cumulative effects of environmental
loads, ship motion responses, and operational constraints that govern actual vessel
performance at sea. The involuntary speed reduction component results from
increased resistance due to environmental loads, while the voluntary speed reduction
reflects deliberate power limitations imposed to maintain acceptable motion levels and
structural integrity.
For practical applications in weather routing systems, attainable ship speed serves as
the primary performance metric, effectively connecting weather forecasts to voyage
outcomes. The speed achieved under specific sea states determines the vessel's
progress along a planned route. This relationship can be used to construct performance
polar diagrams, lookup tables, or machine learning models that enable the rapid
evaluation of route alternatives under varying environmental scenarios. The
computational framework for determining attainable ship speed, incorporating both
empirical formulations and numerical simulation approaches, is detailed and
implemented in Section 5.2.2.

2.7.2  Fuel consumption and CO2 emissions

The instantaneous fuel consumption rate depends on the specific fuel oil consumption
(SFOC) characteristics of the propulsion system and the brake power required to
maintain vessel speed against total resistance. For a vessel operating at constant power
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settings, the fuel consumption increases non-linearly with added resistance, as the
speed reduction in waves results in extended voyage duration and cumulative fuel
usage. The relationship between fuel consumption rate FOC and brake power PB

typically follows

   6FOC SFOC 10BP (2.54)

where FOC is expressed in t/h, SFOC in g/kWh and varies with engine load and ambient
conditions, and PB is expressed in kW. The corresponding CO₂ emission rate follows
directly from the fuel consumption through application of appropriate emission
factors, typically ranging from 3,100 to 3,200 g CO₂/kg fuel for marine gas oil and heavy
fuel oil, respectively, as specified in the CORINAIR emission inventory guidelines
(EMEP/CORINAIR, 1999).
Another regulatory framework established through MARPOL Annex VI and subsequent
amendments introduces mandatory measures, including the Energy Efficiency Design
Index (EEDI) for new ships and the Energy Efficiency Operational Indicator (EEOI) for
existing vessels. These indices express CO₂ emissions per unit of transport work (g
CO₂/tonne-mile), providing standardised metrics for performance comparison and
regulatory compliance. The computational framework for estimating fuel consumption
and emissions, incorporating engine characteristics, operational profiles, and
environmental correction factors, will be detailed and implemented in Chapter 5.2.3.

2.7.3  Ship safety considerations

Operational standards that set limits on appropriate vessel operation in waterways,
avoiding structural damage and cargo loss, and assuring crew effectiveness and
passenger comfort are all included in ship safety considerations. According to Prpić-
Oršić et al. (2016), the main safety metrics include motion-based criteria like roll
amplitude, pitch angle, and vertical accelerations as well as phenomenon-specific
criteria like slamming probability, deck wetness frequency, and propeller emergence
occurrence.
Slamming occurrence, for example, is characterised by strong water impact on the hull
bottom or bow flare. Since it poses risks of structural damage, it must be limited to
acceptable probabilities, typically 0.01-0.03 occurrences per 100 wave encounters
(Lloyd, 1998). Similarly, green water on deck threatens deck cargo and superstructure
integrity, while propeller emergence causes racing conditions that compromise
propulsion machinery. These phenomena exhibit strong dependencies on vessel speed,
heading angle, and sea state characteristics. The quantification of these safety
parameters through hydrodynamic analysis software, their statistical evaluation in
irregular seas, and implementation as operational constraints within the weather
routing optimization framework is detailed in Chapter 5.3, where threshold values
specific to the reference vessel’s type and operational requirements refine the feasible
solution space for route selection.
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3 METHODOLOGY

This chapter outlines the methodological framework which was adopted for this thesis,
structured around three main components: data acquisition and analysis, data-driven
regression modelling, and dynamic optimization methods. The first part presents data
sources together with statistical analysis, stochastic modelling, and uncertainty
quantification. The second part introduces regression-based modelling approaches,
including neural networks and linear regression, while the final part addresses
dynamic optimization methods with emphasis on multi-objective formulations, graph
search procedures, and model predictive control. Together, these elements form a
coherent methodological structure aimed at achieving reliable, adaptive, and efficient
routing solutions in stochastic maritime environments.

3.1 Data acquisition and statistical data analysis
3.1.1 Data sources

This section provides an overview of the data sources employed within the
methodological framework. Particular attention is given to the integration of
heterogeneous datasets obtained from publicly available databases, web-based
repositories, and onboard measurements, as well as the utilisation of specialised
hydrodynamic software packages and navigational simulators. These sources jointly
provide the empirical and computational basis required for subsequent statistical
analysis, stochastic modelling, and regression-based approaches.

3.1.1.1 Databases, web sources and onboard ship measurements

Since the foundation for accurate ship performance prediction relies on
comprehensive meteorological data acquisition and real-time vessel monitoring
systems, weather forecast data was systematically retrieved from the National Oceanic
and Atmospheric Administration (NOAA) Global Forecast System (GFS). Both provide
publicly accessible high-resolution gridded binary format files (NOAA, 2025). These
forecasts, generated at multiple daily cycles with temporal resolutions extending up to
168 hours, were specifically used to quantify forecast uncertainty for its
implementation in ship weather routing optimization. The spatial resolution of 0.25° ×
0.25° latitude-longitude grids ensured adequate capture of mesoscale weather
patterns important for ship routing applications (Marjanović et al., 2025).
For onboard measurements of sea state and ship motions, a reference 28,000 DWT
bulk carrier CLIPPER IWAGI was chosen. The data was collected from 2010 to 2016,
and the ship's route passed through several high-risk navigation areas in the Southern
Hemisphere, making the observations particularly valuable for validation purposes. An
Integrated Bridge System Solution (IBSS) was employed, incorporating multiple data
acquisition channels. The Voyage Data Recorder (VDR) continuously logged
navigational parameters including GPS position, speed over ground, course over
ground, water depth from echo sounder, and heading from gyro compass at one-second
intervals. Environmental conditions were monitored through dedicated sensors, with
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wind speed and direction recorded via anemometer, while engine performance
parameters were captured through the data logger system, recording shaft speed, fuel
pump marks, atmospheric pressure, seawater temperature, and exhaust gas
temperatures across all cylinders. Additional ship motion dynamics were captured
through a Crossbow accelerometer system, providing roll, pitch, and yaw angular rates
alongside three-axis acceleration data at 0.1-second resolution. A JRC radar wave
observation system provided wave height and direction data at two-minute intervals.
This comprehensive dataset, transmitted daily via satellite communication, enabled
the comparison of simulated attainable speeds with actual vessel performance under
real weather conditions, thereby refining the optimization algorithms used in this
research.

3.1.1.2 Hydrodynamic software packages

For the hydrodynamic analysis framework, two complementary software systems
were utilised, serving distinct purposes in the evaluation of ship performance.
HydroD/WASIM, developed by DNV GL, was specifically used to determine critical sea
states and analyse ship seakeeping behaviour in order to establish operational limits
(DNV GL, 2017). The software solves the fully three-dimensional radiation-diffraction
problem using a Rankine panel method, computing rigid body motions in six degrees
of freedom, sectional forces and moments, and relative motions at specified points.
This analysis was essential for identifying sea conditions where voluntary speed
reduction becomes necessary for safety, establishing thresholds for slamming, deck
wetness, and excessive accelerations that would trigger operational restrictions.
WASIM's operational framework transforms time-domain results to the frequency
domain through Fourier analysis, providing transfer functions that describe the
transformation between input wave signals and output vessel responses. The non-
linear capabilities, including integration of Froude-Krylov pressures over exact wetted
surfaces and quadratic terms in the Bernoulli equation, enabled accurate prediction of
critical phenomena such as parametric rolling and surf-riding conditions (DNV GL,
2017).
NavCad was employed for a different but complementary purpose to help generate
comprehensive, attainable ship speed lookup tables for the reference ship modelled
after the actual bulk carrier. The software's systematic resistance decomposition
methodology separates total ship resistance into distinct physical components,
enabling detailed analysis of calm-water resistance, wind resistance, and wave-added
resistance (HydroComp, 2024). The software architecture enables the selection of
appropriate calculation methods for each resistance component based on ship type and
operational profile. For bare-hull resistance, the system primarily utilises ITTC-1978
correlation line methodology, separating viscous and wave-making resistance, while
accounting for Reynolds number effects through form factors. Environmental
resistance components are managed through specialised modules implementing
various prediction methods. Wind resistance calculations range from simplified
parametric approaches to detailed computations based on vessel-specific wind areas
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and drag coefficients (HydroComp, 2024). Wave-added resistance predictions utilise
regression-based methods from systematic model test series, strip theory for slender
ships, or empirical corrections based on sea state characteristics. Through its scripting
Application Programming Interface, parallel simulations were executed across 1014
distinct scenarios, which resulted in lookup tables providing the fundamental speed-
power relationships necessary for route optimization. When speed loss prediction
methods were selected, NavCad performed inverse calculations using the ship's calm-
water resistance curve to maintain consistency within the resistance-based
framework.

3.1.1.3 Navigational simulator

The Wärtsilä NaviTrainer Professional 5000 (NTPro 5000) served primarily for
generating attainable ship speed data for the reference bulk carrier, which was
specifically modelled to match the one used for onboard measurements. The
simulator's sophisticated mathematical model, solving vessel motion equations in real-
time for all six degrees of freedom, enabled a comprehensive assessment of speed loss
under varying environmental conditions (Wärtsilä, 2023). Through systematic
simulations totalling 2028 scenarios, the obtained data were used to generate lookup
tables for attainable speeds as functions of sea state, wave encounter angle, wave
spectrum type (JONSWAP and Pierson-Moskowitz), loading condition, and intended
speed.
Environmental loads are computed through distinct models for wind and wave
disturbances, accounting for both steady and dynamic effects. Wave-induced forces
consist of first-order oscillatory components driving seakeeping motions and second-
order mean drift forces contributing to steady speed loss and course deviation. These
forces are calculated using generalised reduction coefficients dependent on vessel
draft through the Smith effect, wavelength to ship length ratio governing force
distribution along the hull, and wave encounter angle (Wärtsilä, 2023). The simulator
continuously adjusts propeller thrust and rudder angle through the autopilot system
to maintain commanded speed and heading, with resulting speed loss emerging
naturally from force balance calculations. This physics-based approach ensured that
the attainable speed predictions incorporated both involuntary speed loss due to
added resistance and voluntary speed reductions for safety considerations. The DNV
Class A certification validates the simulator's accuracy, thus making it suitable for
generating reliable performance data. The resulting attainable speed lookup tables
from NTPro 5000, along with those from NavCad, provided multiple independent
datasets for cross-validation.

3.1.2 Stochastic modelling and data uncertainty quantification

Stochastic modelling provides the mathematical framework for analysing systems
influenced by randomness, imperfect information, and variable environmental
conditions. Unlike deterministic models, where all quantities are fixed, stochastic
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formulations represent uncertain factors as random variables or stochastic processes,
therefore allowing the explicit treatment of variability and uncertainty.

3.1.2.1 Random variables and moments

Let  be a random variable characterised by a probability density function (PDF) ( ).p
The expectation (mean value) and variance are given by

2 2[ ] ( ) ,      Var[ ] ( ) ( ) ,p d p d          
 

      (3.1)

where  denotes the domain of  . Higher-order moments, such as skewness and
kurtosis, capture asymmetry and tail behaviour of the distribution.

For a finite set of N  observations  
( )

1{ } ,i N
i sample estimators of these quantities are

    
 

  
 

( ) ( )2 2
1 1

1 1ˆ ˆ ˆ,      ( ) .
1

i iN N

i iN N
(3.2)

3.1.2.2 Stochastic processes

Uncertain quantities often evolve over time and are best represented as stochastic
processes  { : T}.t t A simple example is the autoregressive process of order one,
AR(1)

   1 ,t t t (3.3)

where   1  ensures stationarity and 2(0, )t    represents Gaussian white noise.

Such processes capture persistence and correlation in time series data, which is
essential when modelling forecasts and their uncertainty over different horizons.
More complex models may involve multivariate stochastic processes, allowing
correlation across different uncertain variables (e.g., wind speed and wave height).
These can be described by covariance matrices or correlation functions

Cov( , ) [( )( )].i j i i j j        (3.4)

3.1.2.3 Propagation of uncertainty

The propagation of input uncertainties through a model is a central task of uncertainty
quantification (UQ). If the system response is defined as

 ( , ),Y f X (3.5)

with deterministic decision variables X and stochastic inputs  ,  then the output
distribution is obtained by integrating over the uncertainty

   


 ( ) ( ( , )) ( ) ,Yp y y f X p d (3.6)

where ( )p is the Dirac delta function.

In practice, such integrals are rarely solvable in closed form, so approximation
techniques are employed. The most common approach is Monte Carlo simulation,
where N  independent samples  ( )i are drawn from ( ),p  and corresponding outputs
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( ) ( )( , )i iY f X are computed. From these empirical distributions, confidence
intervals, and other statistical descriptors are derived.
Alternative methods include polynomial chaos expansion (PCE), which approximates
the stochastic response as a weighted sum of orthogonal polynomials of the random
inputs, and stochastic collocation, which evaluates the model at carefully chosen
quadrature points to efficiently approximate moments of Y.
In the context of this thesis, weather forecast variables and attainable ship speed in a
stochastic environment represent the most significant source of uncertainties for ship
weather routing. Therefore, in order to assess the reliability of forecasts and the
robustness of optimization outcomes, a set of uncertainty metrics is employed. These
include measures of average and extreme errors, indicators of systematic bias,
probabilistic scores for distributional forecasts, as well as specialised approaches for
circular variables. Together, these metrics provide a comprehensive framework for
evaluating how uncertainties evolve over time and their impact on model predictions.
A detailed presentation and application of these metrics is given in the following
Section 4.2.

3.1.2.4 Integration into optimization

When embedding uncertainty into optimization problems, the standard deterministic
formulation

min ( )
X

J X


(3.7)

is extended to incorporate stochastic objectives and constraints.
A common approach is expected value optimization

min [ ( , )]
X

J X 


 (3.8)

where ( , )J X denotes the cost function under random inputs  .

Alternatively, risk-aware formulations may be employed. For instance, variance-
penalised optimization accounts for both expected performance and variability

min [ ( , )] Var[ ( , )]
X

J X J X  




 (3.9)

with  controlling the trade-off between mean performance and robustness.
Another common formulation involves chance constraints, where probabilistic
requirements must be satisfied with a given confidence level

   ( ( , ) 0) 1 ,p g X (3.10)
where ( , )g X  is a constraint function and  is the allowable risk of violation.

These frameworks ensure that optimization accounts not only for nominal conditions
but also for variability and risk, thereby producing solutions that remain feasible and
effective under uncertainty.
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3.2 Data-driven regression modelling

For the purpose of optimal ship routing, it is essential to have at disposal adequate
models for determining various ship performance variables, such as models for
estimating attainable ship speed and fuel consumption under different sea states. In
this context, sophisticated computational tools were employed in this study, as
outlined in Section 3.1.1. However, their direct application within the optimization
process is not feasible. Consequently, all previously collected data were utilised to
construct suitable data-driven regression models.
While numerous machine learning methods exist for tackling regression problems,
including regression trees, Gaussian process regression models, support vector
machines, kernel approximation, ensembles of regression trees, and more, the primary
emphasis in this work is placed on the feedforward neural network regression models.
Moreover, a simplified approach based on multivariable linear regression is also
proposed, particularly well-suited for practical applications where high model
accuracy is not a primary concern.

3.2.1 Feedforward neural networks

Neural networks are learning algorithms inspired by the functioning of the human
brain. Learning occurs through the adjustment of weights on connections between
nodes, analogous to synapses and neurons.

Typically, a neuron receives multiple inputs. These individual inputs 1 2, ,..., ,Rp p p  also
referred to as input neurons, are weighted by corresponding elements 1,1 1,2 1,, ,..., Rw w w

of the weight matrix W (Beale et al., 2023).
The neuron includes a bias term ,b  which is summed with the weighted inputs to
compute the net input n

    1,1 1 1,2 2 1,... .R Rn w p w p w p b (3.11)

This expression can be represented in matrix form
  ,n bWp (3.12)

where the matrix  1,1 1,2 1,[ ... ] R
Rw w wW  for the single neuron case has only one

row, and  T
1 2[ ... ] .R

Rp p pp

Therefore, the neuron output can be written as
 ( ),a f bWp (3.13)

where f  presents a transfer function.

For S  neurons in the first hidden layer, each input is connected to each neuron.
Consequently, the weight matrix now has S  rows and is structured as follows (Beale
et al., 2023):
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Each element of the input vector p  is connected to each neuron through the weight
matrix .W  Additionally, each neuron has a bias , 1,2,..., ,ib i S  a summation function,

a transfer function f  and an output .ia  Collectively, the outputs form the output vector
a  structured as:

  ( ),    , .Sa f Wp b a b (3.15)

The number of inputs to a layer often varies from the number of neurons in the hidden
layer, leading to different neural network configurations like narrow ( ),R S  medium

( ),R S  and wide networks ( ).R S

Neural networks can consist of multiple hidden layers, each with its unique weight
matrix ,LW  bias vector ,Lb  net input vector ,Ln  output vector La  and transfer
function vector ,Lf  where L  represents the layer number.

For example, consider a trilayered neural network with two hidden layers, as
illustrated in Figure 3.1. The network topology includes R  input neurons, 1S  neurons
in the first hidden layer, 2S   neurons in the second hidden layer, and 3S neurons in the
third layer. It's important to note that different hidden layers may have varying
numbers of neurons. The outputs from the first and second layers serve as inputs for
the subsequent layers. Consequently, the second layer can be seen as a single-layer
network with  1R S   inputs,  2S S  hidden neurons, and a weight matrix  2 12 .S SW
The input to the second layer is denoted as 1 ,a  and its output is denoted as 2 .a

Figure 3.1. An example of a trilayered feedforward neural network architecture
Source: Adjusted according to (Beale et al., 2023)

A layer that produces the network output is referred to as the output layer, while the
preceding layers are termed hidden layers. The network output, denoted as 3 ,a  can be
represented as a vector and expressed as (Beale et al., 2023):

    3 3 3 2 2 1 1 1 2 3( ( ( ) ) ) .a f W f W f W p b b b y (3.16)

Multilayer networks offer greater computational power compared to single-layer
networks. For example, a two-layer network comprising a sigmoid first layer and a
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linear second layer can be trained to accurately approximate most functions, a
capability beyond the reach of single-layer networks.
In the context of multilayer networks, determining the optimal number of neurons for
the hidden layers is not straightforward. Few problems allow for the direct prediction
of the ideal number of neurons in a hidden layer. This issue is actively researched and
falls under the domain of hyperparameter optimization.
Regarding the number of layers, most practical neural networks consist of only two or
three layers, with four or more layers being less common. Additionally, the choice
between using neurons with or without biases is available. Including biases provides
the network with an additional variable, typically enhancing its computational power
compared to networks without biases.
Commonly used transfer functions f in neural network topologies include, but are not
limited to (Beale et al., 2023):
(i) Rectified Linear Unit (ReLU) transfer function


   

, 0
ReLU( ) .

0, 0
n n

a n
n

(3.17)

(ii) Hyperbolic tangent sigmoid (tansig) transfer function
  22 /(1 ) 1na e (3.18)

(iii) Log-Sigmoid (logsig) transfer function
 1 /(1 )na e (3.19)

(iv) Identity linear (purelin) transfer function
 .a n (3.20)

The training process of a neural network involves adjusting its weights and biases
through the use of a suitable training algorithm. The goal of this procedure is to train
the network to accomplish a specific task. Neural network learning rules can be
categorised into three main types: supervised learning, unsupervised learning, and
reinforcement learning.
Supervised learning, which is particularly relevant to this research, involves providing
the learning rule with a training set consisting of data points 1 1 2 2{ , },{ , },...,{ , },Q Qp t p t p t

that demonstrate the desired behaviour of the network, where qp  is an input to the

network and qt  is the corresponding correct (target) output, where  1,2,..., .q Q

During supervised learning, the inputs are fed into the network, and the resulting
outputs are compared to the desired targets. Subsequently, the learning rule is
employed to modify the network's weights and biases, aiming to bring the network
outputs closer to the targets. The objective of the algorithm is to iteratively adjust the
network parameters to minimise the mean square error:

2 2( ) [ ] [( ) ]F e t a  x   (3.21)

where x  is the vector of network weights and biases.
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Numerous well-established training algorithms exist (Beale et al., 2023), with some of
the most commonly utilised being Levenberg-Marquardt, Bayesian Regularisation,
BFGS Quasi-Newton, Back-propagation, and Gradient Descent (with or without
momentum), among others.
Neural network (NN) models generally exhibit high predictive accuracy but lack
interpretability. The flexibility of the model increases with the number and size of fully
connected layers in the neural network. To determine the most suitable neural
network (NN) model, one can categorise them based on their fundamental
characteristics:
(i) Narrow Neural Network ( )R S

The input layer contains more neurons than the hidden layer. It offers medium
model flexibility, which grows as the size of the first layer increases.

(ii) Medium Neural Network ( )R S
The number of neurons in the input layer is roughly equal to that in the hidden
layer. Similarly, it provides medium model flexibility that increases with the size
of the first layer.

(iii) Wide Neural Network ( )R S
The input layer has fewer neurons than the hidden layer. Like the others, it offers
medium model flexibility, which escalates with the size of the first layer.

(iv) Bilayered Neural Network
This type encompasses two hidden layers with variable numbers of neurons. It
boasts high model flexibility, which expands with the sizes of both the first and
second hidden layers.

(v) Trilayered Neural Network
With three hidden layers and variable neuron counts, this model also offers high
model flexibility. Its flexibility increases with the sizes of the first, second, and
third hidden layers.

Every model described is a feedforward, fully connected neural network tailored for
regression tasks. In each neural network, the initial fully connected layer is linked
directly to the network input, with subsequent layers connected to the preceding one.
Each fully connected layer conducts matrix multiplication with the input, followed by
the addition of a bias vector. Following each fully connected layer, except for the last
one, is an activation function. The last fully connected layer generates the network's
output, which represents predicted response values. However, it's important to note
that all the neural network models mentioned above are notably challenging to
interpret.

3.2.2 Multivariate linear regression

A linear regression model elucidates the connection between a dependent variable y
and one or more independent variables .X  The dependent variable is often referred to
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as the response variable, while independent variables are also known as explanatory
or predictor variables. Continuous predictor variables are alternatively termed
covariates, whereas categorical predictor variables are referred to as factors. The
matrix X  of observations 1 2( , ,..., )nx x x  on predictor variables is commonly denoted as
the design matrix. A multiple linear regression model is represented as (Kutner et al.,
2004):

          0 1 1 2 2 ... ,    1,2,..., ,i i i m im iy X X X i n (3.22)

where n  is the number of observations, iy  is the i-th response, k  is the k-th

coefficient, while 0  presents the constant term in the model, ijX  is the i-th

observation on the j-th predictor variable,  1,2,..., ,j m  and  i  is the i-th noise term,
i.e. random error.
In general, a linear regression model can be of the form

  


   0 1 21
( , ,..., ) ,    1,2,..., ,K

i k k i i im ik
y f X X X i n (3.23)

where ( )f  is a scalar-valued function of the independent variables .ijX  The functions

( )f X  might be in any form, including nonlinear functions or polynomials. The linearity,

in the linear regression models, refers to the linearity of the coefficients  ,k  i.e. the

response variable y  is a linear function of the coefficients  .k

The fitted linear function ˆ iy  is of the form

 


  0 1 21
ˆ ˆˆ ( , ,..., ),    1,2,..., ,K

i k k i i imk
y f X X X i n (3.24)

where ˆ iy  is the estimated response and ̂k  are the fitted coefficients. The coefficients
are estimated to minimise the mean squared difference between the prediction vector
ŷ  and the true response vector ,y  i.e., the error vector  ˆ .ε y y  This estimation
process typically relies on the least squares estimation method. However, under the
assumption that the noise terms  i  are uncorrelated, these coefficients also maximise
the likelihood of the prediction vector (Kutner et al., 2004).

3.2.3 Performance metrics for data-driven regression models

It's challenging to prescribe specific values for model performance metrics since they
depend on various factors, including the need to balance overfitting concerns and
ensure robust generalisation capabilities. Typically used performance metrics for
model evaluation include:
(a) The Root Mean Squared Error (RMSE) is a metric used to evaluate the accuracy

of a predictive model. It represents the square root of the average of the squared
differences between predicted and actual values. It is usually calculated as
follows:


  2

1

1 ˆRMSE ( ) .n
i ii

y y
n

(3.25)
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(b) The Mean Squared Error (MSE) measures the average squared difference
between the predicted values and the actual values. It is essentially the square
of the Root Mean Squared Error (RMSE), and is calculated as follows:


  2

1

1 ˆMSE ( ) .n
i ii

y y
n

(3.26)

(c) The coefficient of determination is often denoted as 2 ,R  measures the
proportion of the variance in the dependent variable that is predictable from the
independent variables. It compares the performance of the trained model with
that of a baseline model where the response is constant and equal to the mean
of the training response. It is calculated as:






 
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
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i ii
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y y
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1 .n
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y y
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(3.27)

(d) The Mean Absolute Error (MAE) calculates the average absolute difference
between the predicted values and the actual values. Unlike RMSE, it is not
influenced by the square of the errors, making it less sensitive to outliers. The
calculation for MAE is as follows:




 1

ˆ| |MAE .n i i
i

y y
n

(3.28)

3.2.4 Data-driven modelling workflow

Data-driven modelling workflows typically encompass several key steps, which are as
follows:
(i) Data preparation and pre-processing,
(ii) Selection of machine learning method/algorithms,
(iii) Creating/fitting a model based on available data points,
(iv) Selection of an appropriate validation method,
(v) Iterative model refinement, i.e. iterating and updating the fitted model until

predefined criteria are met,
(vi) Application and evaluation of the created fitted model for predictions on an

independent testing data set.
The first three steps are relatively straightforward. On the other hand, depending on
the sample size, some randomly chosen subset is usually extracted for independent
testing (vi). The larger remaining subset of data is then used for training and validation
purposes. Usually, 70-80 % of this subset is used for training the model, and the rest
(20-30 %) is used to assess its performance. The model used for validation (iv) is based
on only a portion of the data; therefore, this so-called holdout validation is appropriate
only for large datasets.
On the other hand, cross-validation is based on selecting the number of folds (or
divisions) to partition the data set. Therefore, when one chooses k folds, the data are
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partitioned into k disjoint sets or folds. Afterwards, for each validation fold, a model is
trained using the training-fold observations, i.e. observations not in the validation fold,
and assessed using validation-fold data. At the end, the average validation error over
all folds is calculated. This method provides a reliable estimate of the predictive
accuracy of the final model trained on the entire dataset. The method requires multiple
fits but efficiently utilises all the data, making it work well even for small datasets.
Generally, to avoid overfitting, one should look for a less flexible model that provides
sufficient accuracy. On the other hand, good generalisation capabilities will have
models for which performance indexes for both validation and testing are equivalent.

3.3 Dynamic optimization methods for ship weather routing

Dynamic optimization methods have become central to modern ship weather routing,
as they explicitly consider the temporal evolution of maritime conditions. These
approaches include multi-objective optimization for balancing conflicting goals, graph
search algorithms such as A* for finding globally optimal paths, and Model Predictive
Control (MPC) for receding-horizon optimization. Stochastic MPC extends this
framework by incorporating weather forecast uncertainty through scenario-based
optimization and chance constraints.
The hybrid integration of A* with SMPC represents a particularly powerful approach,
creating a hierarchical architecture where A* provides global strategic guidance while
SMPC performs local tactical optimization within a corridor. This decomposition
effectively combines discrete path planning with continuous trajectory refinement
under uncertainty, representing the state of the art in ship weather routing.

3.3.1 Model predictive control (MPC)

Model Predictive Control (MPC) addresses the optimal control problem for a dynamic
system by solving a sequence of finite-horizon optimization problems (Rawlings et al.,
2017; Grüne and Pannek, 2017). At each time step k , the controller solves an open-
loop optimal control problem over a prediction horizon while implementing only the
initial portion of the computed control sequence, a principle known as receding
horizon control (Mayne, 2014).

3.3.1.1 General MPC Formulation

The general MPC problem at time step k  can be formulated as (Borrelli et al., 2017):



  
 1

| | |0
P( ) : min ( , ) ( , , )p

k

N i
k k k k i k k i k k i ki

k J L
U

x U x u d (3.29)

      1| | | |              s.t. ( , , ),    0,1,2,..., 1k i k k i k k i k k i k pf i Nx x u d (3.30)

   1| U, 0,1,2,..., 1k k ci Nu (3.31)

  1| X, 0,1,2,...,k k pi Nx (3.32)

    1| 1| , ,..., 1
ck k k N k c pi N Nu u (3.33)

|k k kx x (3.34)
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where |k i kx  is the predicted state at time  1k  given information at time ,k |k i ku is

the control input, |k i kd  are exogenous disturbances, pN  is the prediction horizon,

c pN N  is the control horizon,  (0,1]  is the discount factor, and ( )L  is the stage

cost function.

For maritime navigation, the state vector kx represents the ship position

 T 2[lat lon ]k k kx (3.35)

and the control vector ku comprises heading and speed decisions

 T 2[ ]k k kvu (3.36)

where  [0,2 ]k  is the heading angle and  discreteVkv  belongs to a discrete set of
engine settings, reflecting practical operational constraints.
The ship dynamics under weather influence become (Vettor and Soares, 2016)



   
1

1 ˆ( ( ), ( ), ( )) ( ( ))k

k

t

k k t
V t t t t dtx x x u w n (3.37)

where V  is the attainable speed function accounting for weather-induced speed loss,
( )tw  represents weather conditions, and ˆ ( ( )tn  is the unit vector in the direction  .

The stage cost combines multiple objectives (Rawlings et al., 2017)


 1

( , , ) ( , , )M
j jj

L w lx u w x u w (3.38)

where jw  are objective weights satisfying


 1
1M

jj
w  and jl  represents individual

cost components.
For ship routing, the primary objectives usually are (Ma et al., 2022; Gkerekos and
Lazakis, 2020)

 fuel engine fuel( , , ) FOC( , ( , ))l v P v V Cx u w (3.39)

  safety risk S S ,crit.( , , ) ( )l p H Hx u w (3.40)

   2
smooth smooth( , , )l Cx u w (3.41)

where FOC denotes fuel oil consumption rate, engineP  is the engine power, fuelC is the

fuel price, risk is the risk weighting factor, SH  is the significant wave height, S ,crit.H is

the critical significant wave height, smoothC is the smoothness penalty coefficient, and
  represents a heading change.

3.3.1.2 Stochastic weather approach

The weather evolution follows a stochastic process (Groenke et al., 2025)
(for.)

| | ( )k i k k i k k i i   w w ε (3.42)

where (for.)
|k i kw  is the deterministic forecast and  ( )k i iε represents forecast error with

lead time    .i i t



45

The forecast uncertainty grows with the prediction horizon

   0Cov[ ( )] ( )k i hε Σ (3.43)

where 0Σ  is the baseline covariance matrix and ( )h is a monotonically increasing
function with (0) 0,h typically following empirical models from ensemble weather
prediction systems, like those presented in the following Chapter 4.

3.3.1.3 Receding horizon implementation of the MPC algorithm

The MPC algorithm implements the following steps iteratively (Schwenzer et al., 2021):
Step 1 State measurement

 At time ,k  obtain current state estimate ˆ kx according to

 ˆ k k kx x ν (3.44)

 where ( , )k kν 0 R   represents measurement noise from GNSS systems, 0
 is the mean vector of the measurement noise, and kR  is the measurement
 covariance matrix.

Step 2  Forecast Update
Acquire updated weather forecast from numerical weather prediction
models (ECMWF, 2023)

  | 1| |{ , , ..., }
pk k k k k k N kW w w w (3.45)

Step 3  Optimization
Solve problem P( )k  to obtain an optimal control sequence

  * * * *
| 1| 1|{ , ,..., }

ck k k k k k N kU u u u (3.46)

Step 4  Control Application
 Implement the first implN  control actions

      *
applied | impl( ) ,    [ , 1),    0,1..., 1k i kt t k i k i i Nu u (3.47)

Step 5  Time Advance
 Set   impl:k k N  and return to Step 1.

Solution methodology usually includes the nonlinear optimization problem at each
MPC step that is solved using the Sequential Quadratic Programming (SQP) technique
(Nocedal and Wright, 2000). At iteration ,j  the algorithm solves a quadratic
approximation


  



 

  

( ) ( )T T

( ) ( )

1min ( )
2

 s.t.

j j

j j

U
U H U g U

A U b 0
(3.48)

where ( )jH  approximates the Hessian of the Lagrangian using limited-memory BFGS
updates (Liu and Nocedal, 1989; Byrd et al., 1995) and ( )jg  is the associated gradient.
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The control update follows (Biegler, 2021)

   ( 1) ( ) ( ) *j j jU U U (3.49)

with step size  ( )j  determined by line search satisfying Armijo conditions.
Under appropriate technical conditions, the MPC framework ensures stability and
performance as follows (Rawlings et al., 2017; Müller and Allgöwer, 2021)
(i) Recursive feasibility

If problem P( )k  is feasible, then P( 1)k  is also feasible (Kerrigan and
Maciejowski, 2000).

(ii) Asymptotic stability
The closed-loop system satisfies (Limon et al., 2009)


 destlim 0kk

x x (3.50)

(iii) Performance bound
The MPC cost satisfies (Grüne and Rantzer, 2008)

  *
MPC open-loop uncertaintyJ J J (3.51)

where *
open-loopJ  is the optimal open-loop cost and  uncertaintyJ  accounts for forecast

errors (Lucia and Engell, 2015).
In terms of computational complexity, the computational burden per MPC iteration
scales as (Wang and Boyd, 2010; Stellato et al., 2017)

3 2( )c p cN N N m   (3.52)

where m is the number of constraints. This motivates the use of a control horizon
c pN N  to maintain tractability while preserving solution quality (Gondhalekar and

Kerrigan, 2013).
From the convergence point of view, the iterative solution within each MPC step
converges when (Boyd and Vandenberghe, 2004; Nocedal and Wright, 2000)




 ( ) ( ) ( )
opt.( , , )j j jLU U λ μ (3.53)



( )

feas.( )jc U (3.54)

( ) ( )T
comp.( ) ( )j jμ g U (3.55)

where opt. ,  feas. and  comp.  prescribed tolerances for optimality, feasibility, and

complementarity, respectively (Biegler, 2021).
The overall MPC performance approaches the optimal solution as (Grüne and Pannek,
2017; Rawlings et al., 2017)

MPC 0 0

0

lim ( ) *( )
pN
t

J V


 

x x (3.56)

where 0* ( )V x  is the optimal value function of the infinite-horizon problem.
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3.3.2 Stochastic model predictive control (SMPC)

While the deterministic MPC framework presented in the previous section 3.3.1
provides a solid foundation for ship weather routing optimization, it fundamentally
assumes perfect knowledge of future weather conditions or, at best, treats forecasts as
deterministic inputs. This assumption becomes increasingly problematic in maritime
applications where weather forecast errors grow significantly with prediction horizon,
typically doubling every 48-72 hours for significant wave height predictions (Pinson,
2013). Real-world voyage planning must contend with inherent uncertainties in
meteorological and oceanographic forecasts, where a deterministic approach may lead
to either overly conservative decisions that sacrifice efficiency or overly optimistic
plans that become infeasible when actual weather deviates from predictions.
Furthermore, the deterministic formulation cannot provide probabilistic guarantees
on constraint satisfaction, particularly critical for arrival time requirements in
commercial shipping, where charter party agreements often specify reliability levels.
These limitations motivate the extension to Stochastic Model Predictive Control
(SMPC), which explicitly incorporates forecast uncertainty into the optimization
framework, enabling risk-aware decision-making that balances economic objectives
with operational reliability. The stochastic formulation transforms the problem from
optimising a single deterministic trajectory to optimising over a distribution of
possible outcomes, providing solutions that are robust to weather forecast errors while
maintaining computational tractability through scenario-based approximations and
chance constraint reformulations.

3.3.2.1 Stochastic MPC problem formulation

Let us consider a discrete-time stochastic system that must be controlled over a
receding horizon under uncertainty (Mesbah, 2016; Farina et al., 2016). The system
evolves from the current state 0x  toward a desired target while subject to stochastic

disturbances ( ).tξ  The stochastic optimal control problem seeks to find a control
sequence U that minimises expected cost under uncertainty

0min [ ( , , )]JξU
x U ξ (3.57)

where  0 1 1{ , ,..., }
cNU u u u  is the control sequence over the control horizon, ( )tξ

represents stochastic disturbances, and ( )J  is the cost functional.

The control sequence is defined over a finite control horizon

  cN
0 1 1{ , ,..., } U

cNU u u u (3.58)

with receding horizon implementation, where only 0u  is applied before re-
optimization (Mayne, 2015).
The total cost functional, i.e. the stochastic objective function, combines expected
performance with risk measures (Rockafellar and Uryasev, 1999)
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  


     1SMPC

0
( , , ) ( )pN i

i i ii
J E Jξ x u ξ (3.59)

where  (0,1]  is the discount factor, ( )  represents the stage cost, pN  is the

prediction horizon with  ,p cN N [0,1]  is the risk aversion parameter, and ( )J is

a coherent risk measure.
Each stage cost can be expressed as a function of state, control, and disturbance

   nom. stoch.( , , ) ( , ) ( , , )i i i i i i i ix u ξ x u x u ξ (3.60)

where nom.  is the nominal cost component and stoch.  captures disturbance-dependent
costs.
For risk-aware optimization, the Conditional Value at Risk is commonly employed
(Rockafellar and Uryasev, 1999)

CVaR [ ] [ | VaR [ ]]J J J J   (3.61)

where VaR  is the Value at Risk at confidence level (0,1).

The system dynamics evolve according to

 1 ( , , )i i i ifx x u ξ (3.62)

where ( )f  is the state transition function,   X xn
ix  is the system state with xn

state variables,   U un
iu  is the control input with un  control inputs, and iξ is the

stochastic disturbance.
The disturbance follows a known probability distribution

 ( , )i i iPξ μ Σ (3.63)

where iμ  and iΣ may be time-varying (Bernardini and Bemporad, 2009).

The uncertainty typically grows with the prediction horizon

  0Var[ ] ( )i g i tξ Σ (3.64)

where 0Σ  is the baseline covariance and ( )g  is the uncertainty growth function with
(0) 1.g

For practical implementation, deterministic constraints are replaced with chance
constraints (Mesbah, 2016)

{ } 1 ,    1,...,i x pi N   x  (3.65)

where  is the feasible state space and  (0,1)x  is the acceptable violation
probability.
Joint chance constraints handle multiple requirements simultaneously (Nemirovski
and Shapiro, 2006)

 1
{ ( , ) 0} 1m

j i i gj
g 


  x u  (3.66)
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where ( )jg  are constraint functions, m  is the number of constraints and  (0,1)g  is

the acceptable probability of joint constraint violation for operational constraints
during the trajectory.
Terminal constraints ensure convergence properties (Primbs and Sung, 2009)

{ ( )} 1
pN fh  x (3.67)

where ( )
pNh x  defines the terminal region and  f  is the acceptable probability of

terminal constraint violation at the final prediction step.
For computational tractability, the continuous distribution is approximated using
scenarios (Calafiore et al., 2011)

 ( ) ( ) ( ) ( )
0 1 1{ , ,..., },    1,2,...,

p

s s s s
N ss Nξ ξ ξ ξ (3.68)

where sN  is the number of scenarios with associated probabilities sp  satisfying


 1

1.sN
ss

p

The stochastic problem, expressed with a cost function based on the Sample Average
Approximation (SAA) method, now becomes (Nemirovski and Shapiro, 2006)
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(3.69)

      ( ) ( ) ( )
1s.t. ( , , ),    0,..., 1,    1,...,s s s

i i i i p sf i N s Nx x u ξ (3.70)

  ( )
0 0 ,    1,...,s

ss Nx x (3.71)

   U,    0,..., 1i ci Nu (3.72)




     ( )
1

 1[ X] 1 ,    0,...,sN s
s i x ps

p i Nx (3.73)

 


    1 ( )

0
 ,    1,...,pN si

s i si
z s N (3.74)

   0,    1,...,s sz s N (3.75)
where   is the VaR auxiliary variable and z  are CVaR auxiliary variables.

Non-anticipativity ensures that control decisions cannot use future information
(Bertsekas, 2012)

  1 2 1 2( ) ( ) ( ) ( )
[0 , 1] [0 , 1]   ifs s s s

i i i iu u ξ ξ (3.76)

where 
( )
[0 , 1]
s

iξ  denotes the disturbance history up to time 1i  in scenario .s These

constraints can be enforced through scenario tree structures with branching at
discrete stages.
The optimal value function satisfies the stochastic Bellman equation (Bertsekas, 2012)

U
* ( ) min{ [ ( , , ) * ( ( , , ))]}V V f


 ξu

x x u ξ x u ξ  (3.77)

subject to chance constraints being satisfied.
Under suitable assumptions, the receding horizon implementation satisfies
(Kouvaritakis and Cannon, 2015)
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 
* *

SMPC SMPC optimal global0
lim ( ) ( )

t
J JU U (3.78)

where SMPCJ  is the receding horizon cost and *
globalU  is the globally optimal solution.

Solution quality can be assessed through the expected optimality gap (Lucia and Engell,
2015)

SMPC deterministic[ ]J J J   (3.79)

where deterministicJ  is the cost under perfect information.

Robustness is measured via Value at Risk at a confidence level   (Kouvaritakis and
Cannon, 2015)

totalVaR inf{ : [ ] }j J j    (3.80)

providing a probabilistic bound on worst-case performance.
In terms of computational considerations, the required number of scenarios for
probabilistic guarantees follows (Campi and Garatti, 2011)

 
   
 

2 1lns u cN n N (3.81)

where   is the constraint violation tolerance and   is the confidence parameter.
The computational complexity scales as (Zhang et al., 2014)

3 2
SMPC s p x s c uN N n N N n  (3.82)

requiring careful selection of sN  to balance accuracy and computational tractability.
Comparison with deterministic MPC in terms of key differences between MPC and
SMPC in solution methodology is presented in Table 3.1.

Table 3.1. Key differences in solution methodology between MPC and SMPC

Aspect Deterministic MPC Stochastic MPC
Objective Single trajectory cost Expected cost + CVaR

Constraints Hard constraints Chance constraints
Variables c uN n c uN n  (with non-anticipativity)

Gradient Single evaluation sN  evaluations

Complexity 3( )c pN N 3( )s c pN N N

Memory ( )p xN n ( )s p xN N n

3.3.2.2 SMPC iterative solution methodology

The stochastic MPC problem formulated in the previous Section 3.3.2.1 must be solved
at each time step k  of the receding horizon implementation. Due to the nonlinear
dynamics and the presence of multiple scenarios, we employ a Sequential Quadratic
Programming (SQP) approach that has been modified to handle the scenario-based
structure efficiently (Nocedal and Wright, 2000).
At iteration j  within the time step ,k  the SQP algorithm constructs a quadratic
approximation of the objective function and linearises the constraints around the
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current iterate. The key modification for the stochastic problem is that linearization
must be performed for each scenario {1,..., }ss N  independently, while maintaining
non-anticipativity constraints across scenarios.
The nonlinear dynamics  ( ) ( ) ( )

1 ( , , )s s s
i i i ifx x u w  is linearised around the current iterate

to obtain

 
   ( , 1) ( , ) ( , ) ( , )( )

1
s j s j s j s js

i i i i i ix x A x B u (3.83)

where ( , ) xs j n
ix  is the state at stage ,i  scenario ,s  and iteration ;j 

 ( , 1)
1

xs j n
ix  is the

predicted state at the next stage for iteration 1;j  ( ) xns
ix  is the state perturbation

for the scenario s  at stage ;i   un
iu  is the control perturbation at stage i  (same

across scenarios due to non-anticipativity); ( , ) x xs j n n
iA  is the state Jacobian matrix

for the scenario ;s and ( , )s j
iB  is the control Jacobian matrix for the scenario .s

The Jacobians are evaluated at the current operating point and are scenario-dependent
due to different disturbance realisations:

 
 
 ( , ) ( ) ( , ) ( )( ) ( )

( , ) ( , )

, , , ,

,
s j j s j js s

i i i i i i

s j s j
i i

f f
x u w x u w

A B
x u

(3.84)

where  /f x  is the partial derivative of the dynamics function with respect to state,

 /f u is the partial derivative of the dynamics function with respect to control, ( )j
iu

is the current control estimate at iteration j  (shared across scenarios), and ( )s
iw  is the

disturbance realisation for the scenario s  at stage i  (fixed throughout iterations).
These Jacobians capture how small changes in state and control affect the system
evolution under each specific weather scenario. The scenario dependence arises
because the system dynamics f  may respond differently to controls depending on the

environmental conditions ( ).s
iw

Using these linearizations, the original nonlinear stochastic problem is approximated
by a quadratic program (QP) at each SQP iteration, like in (3.48). The Hessian matrix
combines second-order information from all scenarios, weighted by their probabilities
and risk preferences


 

   
 

CVaR

( ) ( ) ( )2 2
1 S 1
sNj j js

s s ss s

pp J JUU UUH (3.85)

where (0,1)sp  is the probability of the scenario s with


 1
1,sN

ss
p

   ( ) ( ) ( )2 c u c uj N n N n
sJUU  is the Hessian of cost for the scenario ,s [0,1]  is the risk

aversion parameter, CVaRS {1,..., }sN  is the set of scenarios in the CVaR tail (worst

1  fraction), (0,1)  is the CVaR confidence level, and ( )j
sJ  is the total cost for the

scenario s at iteration .j

Similarly, the gradient aggregates first-order information:
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
 

   
 

CVaR

( ) ( ) ( )
1 S 1
sNj j js

s s ss s

pp J JU Ug (3.86)

where  ( ) c uj N n
sJU  is the gradient of cost with respect to controls for the scenario .s

The first term in (3.86) represents the expected value optimization, while the second
term adds emphasis on improving the worst-case scenarios, implementing the CVaR
risk measure. The factor   1(1 )  normalizes the CVaR contribution to maintain proper
scaling.

3.3.3 Graph search-based optimization

Graph search algorithms transform the continuous path planning problem into a
discrete search over a graph structure, where nodes represent feasible positions and
edges encode transitions. Various algorithms offer different trade-offs between
optimality and computational efficiency: Dijkstra's algorithm (Dijkstra, 1959)
guarantees optimal solutions through exhaustive exploration; the A* algorithm (Hart
et al., 1968) employs heuristic guidance to improve efficiency while maintaining
optimality; and variants such as D* (Stentz, 1994) and RRT* (Karaman and Frazzoli,
2011) address dynamic and sampling-based scenarios.
The A* algorithm combines Dijkstra's optimality guarantee with heuristic search
efficiency. When using admissible and consistent heuristics, A* finds optimal paths
while exploring significantly fewer nodes than Dijkstra, particularly effective in spatial
planning where Euclidean or great-circle distances provide natural lower bounds. For
MPC integration, A* provides the globally optimal reference path for local optimization,
enabling hierarchical decomposition where A* handles strategic planning while MPC
manages tactical control (Dolgov et al., 2010). The discrete waypoint sequence
naturally provides the geometric reference structure required by path-following MPC
formulations.

3.3.3.1 Problem setup

Let us consider the problem of finding an optimal path through a discretised spatial
domain from an origin to a destination. The path planning problem is formulated on a
graph structure where the continuous space is discretised into a finite set of nodes
connected by edges (Hart et al., 1968). The A* algorithm seeks to find a path P that
minimises the total cost from origin to destination


min ( ) ( )

e
C c e

PP
P (3.87)

where  0 1{ , ,..., }kn n nP  is a path consisting of nodes, Π  is the set of all possible paths

from the origin to the destination,  1( , )i ie n n represents an edge, and ( )c e  is the cost
of traversing the edge .e
The path is constrained to be a sequence of connected nodes

    0 1 1{ , ,..., }   s.t.   ( , ) ,   {0,..., 1}k i in n n n n i kP (3.88)
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where   is the set of edges in the graph, 0 startn n  is the origin node, and  goalkn n  is

the destination node.
The search space is represented as a directed graph (Russell and Norvig, 2010)

 ( , )G N (3.89)

where  1 2{ , ,... }mN n n n  is the set of nodes,  N N  is the set of edges.

Each node represents a discrete position in the search space  ( , )i i in x A where d
ix

is the position vector in d-dimensional space and iA  represents additional attributes
(e.g., time, heading).
The edge set is defined by a neighbourhood relation

   neighbors{( , ) : ( ) feas( , )}i j j i i jn n n N n n n (3.90)

where neighbors( )iN n  defines the connectivity pattern and feas( , )i jn n  is a boolean

predicate for path validity.
The A* algorithm employs three fundamental cost functions. The path cost from the
start node is defined as (Dechter and Pearl, 1985)


 

start( , )
( ) min ( )

en n
g n c e

PP
(3.91)

where  start( , )n n  is the set of all paths from startn  to ,n  and ( )c e  is the edge cost
function.
The heuristic function estimates the cost from the node to the goal

  goal
ˆ: ,    ( ) ( , )h N h n C n n (3.92)

where Ĉ is an underestimate of the optimal cost from n  to goal .n

The evaluation function combines actual and estimated costs (Hart et al., 1968)
 ( ) ( ) ( )f n g n h n (3.93)

representing the estimated total cost of the optimal path through the node .n
For general path planning, the edge cost between adjacent nodes is defined as

 ( , ) ( , ) ( , )i j i j i jc n n d n n w n n (3.94)

where  ( , )i j j id n n x x  is the distance metric and ( , ) 1i jw n n  is a weight factor

incorporating problem-specific penalties.
For multi-objective optimization, the cost becomes (Mandow and Pérez-de-la-Cruz,
2005)


 1

( , ) ( , )K
i j k k i jk

c n n w c n n (3.95)

where kw  are objective weights with


 1
1,K

kk
w kc  represents the k-th objective

component, and K is the number of objectives. For A* to guarantee finding the optimal
path, the heuristic must be admissible (Pearl, 1984), which yields  *( ) ( ),h n h n
  ,n N where * ( )h n is the true optimal cost from n  to the goal.
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For optimal efficiency, the heuristic should also be consistent (monotone)
   ( ) ( , ) ( ),    ( , )i i j j i jh n c n n h n n n (3.96)

ensuring that f  values along any path are non-decreasing.

3.3.3.2 Algorithm formulation

The A* algorithm can be formulated as a best-first search that maintains a partial order
on nodes. Let us define the state of the algorithm at iteration t  as

S (O ,C , , )t t t t tg (3.97)

where Ot  is the open set (frontier), Ct is the closed set (explored),   : { }tg N

is the current best distance function, and  :t N N  is the parent mapping.

The node selection criterion at each iteration is

 
  

O O
arg min ( ) arg min[ ( ) ( )]

t t
t t tn n

n f n g n h n (3.98)

The algorithm terminates when
  goal O .t tn n (3.99)

For each neighbour jn  of the current node ,tn  the cost update follows



  


1

min{ ( ), ( ) ( , )},   if C
( )

( ), otherwise
t j t t t j j t

t j
t j

g n g n c n n n
g n

g n
(3.100)




  


1

,        if ( ) ( , ) ( )
( )

( ), otherwise.
t t t t j t j

t j
t j

n g n c n n g n
n

n
(3.101)

Once the goal is reached at the iteration ,T  the optimal path is extracted through the
parent mapping

(0) (1) ( )* { , ,..., }kn n nP (3.102)
where ( )

goal ,
kn n  ( 1) ( )( )i i

Tn n  for  , 1,...,1,i k k  and (0)
start .n n

The path can be expressed in position space as
0 1* { , ,..., }kX x x x (3.103)

where ix  corresponds to the position of the node ( )in .

For integration with control systems, the discrete path must be parameterised. The arc
length parameterisation is defined as




   1

10
( ) ,    0,...,i

j jj
s i i kx x (3.104)

where (0) 0s  and ( )s k L is the total path length.
The continuous path representation using piecewise linear interpolation is




    

  1
( )( ) ( ),    [ ( ), ( 1)].

( 1) ( )i i i
s s is s s i s i

s i s i
P x x x (3.105)

The path tangent angle at each segment is

    (2) (2) (1) (1)
1 1atan2( , )i i i i ix x x x (3.106)
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where superscripts denote vector components and the function atan2 can be expressed
in general as








   
      
  


 

arctan( / ), 0
arctan( / ) , 0 and 0
arctan( / ) , 0 and 0

atan2( , )
/2, 0 and 0
/2, 0 and 0

undefined, 0 and 0

y x x
y x x y
y x x y

y x
x y
x y
x y

 . (3.107)

The A* algorithm possesses strong theoretical guarantees (Hart et al., 1972). For
completeness, if a path exists and the graph is finite, A* terminates with a solution

     ( ) ( )    *N AP Π (3.108)

which means that A* finds a solution in finite time.
For optimality with an admissible heuristic, one can write


*( ) min ( )AC C

P
P P (3.109)

where *AP  is the path returned by * .A

The time complexity of A* depends on the heuristic quality (Russell and Norvig, 2010)

worst ( ),db   where b is the effective branching factor and d is the depth of the

solution. With relative error   ( * )/ *h h h  in the heuristic, the number of expanded

nodes is expanded ( ).dN b  The space complexity for storing the open and closed sets

is equal to ( ).dM b

For integration with MPC, the A* path provides a reference trajectory. The path is
augmented with additional information

  {( , , , ) : 0,..., }i i i is i kR x (3.110)

where is  is the arc length,  i  is the tangent angle, and i  is the path curvature at node
.i

The curvature at interior nodes is approximated as (do Carmo, 1976)


 




1 1

2 sin( )i
i

i ix x
(3.111)

where       1i i i  is the heading change.

This reference trajectory serves as the nominal path for the MPC optimization,
providing global guidance while allowing local adjustments for disturbance rejection
and constraint satisfaction.
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4 MODELLING OF WEATHER FORECASTS UNCERTAINTIES

4.1 Environmental data

4.1.1 Data format and structure

The weather forecast data used in this research were obtained in the General Regularly
distributed Information in Binary form (GRIB), specifically GRIB2 format, which
represents the World Meteorological Organisation (WMO) standard format for
archiving and exchanging gridded data (WMO, 2023). This format is common in
meteorology and defines space-time grids where, for each time point and each grid
point, meteorological parameters such as wind intensity and direction are specified.
GRIB files primarily represent the output of numerical weather prediction models,
utilising computational techniques and atmospheric model simulations to forecast
weather conditions based on current atmospheric states. The said binary format
provides efficient data compression while maintaining the precision required for
operational weather forecasting applications.
The data structure follows the hierarchical organisation typical of numerical weather
prediction outputs from the National Oceanic and Atmospheric Administration (NOAA)
Global Forecast System (GFS), with each GRIB2 file containing multiple messages
corresponding to different meteorological variables, forecast lead times, and
atmospheric levels (NOAA, 2014). Each message captures metadata describing the
generating model, grid specifications, temporal validity, and parameter identification
codes following WMO standards.

4.1.1.1 Temporal resolution

The temporal structure of the forecast data comprises two distinct dimensions: the
forecast initialisation frequency and the temporal granularity of predictions. Forecast
initialisation occurs at four synoptic times daily - 00, 06, 12, and 18 UTC - aligning with
the standard observational cycles of the global meteorological network. Each
initialisation produces a complete forecast extending to 168 hours (7 days), with new
forecasts issued every 6 hours, ensuring comprehensive temporal coverage and
enabling uncertainty quantification across the full forecast horizon (NOAA, 2014). For
example, a 48-hour forecast initialised at 00 UTC on January 1st and a 24-hour forecast
initialised at 00 UTC on January 2nd both predict conditions for 00 UTC on January 3rd.
This configuration allows for the creation of pseudo-ensemble datasets by collecting
multiple forecasts valid for identical temporal points but initialised at different times.
The temporal resolution of forecast outputs follows a variable scheme optimized for
operational requirements. For the period from 0 to 120 hours, predictions are available
at 3-hour intervals (0, 3, 6, 9, 12 hours, etc.), capturing the evolution of synoptic-scale
weather systems with sufficient detail for tactical voyage planning. Beyond 120 hours,
the interval extends to 6-hour outputs (126, 132, 138, 144, 150, 156, 162, 168 hours),
which reflects the reduced predictability at extended ranges while maintaining
adequate resolution for strategic route planning. As noted by Buizza and Leutbecher
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(2015), this variable temporal spacing allows for detailed short-range predictions
where forecast skill is highest, while conserving computational resources at longer
lead times where uncertainty dominates.

4.1.1.2 Spatial resolution

The points at which a weather model solves equations to produce weather forecasts
are not randomly distributed; rather, they constitute a grid that can either span the
entire Earth or just a portion of it. The spatial configuration of forecast data employs a
regular latitude-longitude grid at 0.25°×0.25° resolution, corresponding to
approximately 27 kilometres at mid-latitudes. This resolution represents the
operational standard for the NOAA GFS, balancing the representation of mesoscale
atmospheric features with global coverage requirements. However, as noted by
ECMWF (2004), the smallest range that GRIB files can meteorologically portray is over
50 km, or 30 nautical miles, which is about five times the usual grid length of 0.1
degrees. This value of five grid lengths is known as the "Effective Grid Length".

4.1.1.3 Meteorological variables

There are currently 150 external meteorological variables in weather models that can
be entered or generated by them, and furthermore, variables of significance to ship
weather routing can be extracted from the GRIB2 files, as shown in detail in Table 4.1.
Wind parameters include wind speed (ws) in meters per second, wind direction (wdir)
in degrees true, and the U and V wind components representing eastward and
northward wind velocities, respectively.

Table 4.1. Significant meteorological variables for ship weather routing

Variable Type Variable Code Description

Wind Parameters

ws Wind speed (m/s)
wdir Wind direction (degrees true)
u U-component of wind (m/s)
v V-component of wind (m/s)

Combined Waves
swh Significant height of combined wind waves and swell (m)
perpw Primary wave mean period (s)
dirpw Primary wave direction (degrees true)

Wind Waves
shww Significant height of wind waves (m)
wvdir Direction of wind waves (degrees true)
mpww Mean period of wind waves (s)

Swell
shts Significant height of total swell (m)
swdir Direction of swell waves (degrees true)
mpts Mean period of total swell (s)

Note:  All directional measurements are in degrees true, with 0° representing North, 90° East,
180° South, and 270° West. Wind components (u, v) represent eastward and northward
wind components, respectively, enabling vector analysis of wind patterns.
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Wave parameters are categorised into three groups: combined waves, wind waves, and
swell. Combined wave variables include significant height of combined wind waves and
swell (swh) in meters, primary wave mean period (perpw) in seconds, and primary
wave direction (dirpw) in degrees true. Wind wave specific parameters comprise
significant height of wind waves (shww), direction of wind waves (wvdir), and mean
period of wind waves (mpww). Swell characteristics are represented by significant
height of total swell (shts), direction of swell waves (swdir), and mean period of total
swell (mpts). All directional measurements follow the meteorological convention with
0° representing North, 90° East, 180° South, and 270° West, indicating the direction
from which waves or wind originate.

4.1.2  Area specification and data collection

The weather forecast dataset that was used in this research was obtained for a period
extending from early January through the end of April 2025. This temporal coverage
was purposely selected to capture the diverse meteorological conditions characteristic
of the North Atlantic winter and early spring seasons, when weather conditions vary
significantly. The raw data were sourced from the NOAA GFS, which can be publicly
accessed on their servers. The acquisition process involved the systematic and
automated retrieval of forecast outputs across multiple initialisation cycles, as
described in the previous section. New forecasts were issued every 6 hours, extending
to 168-hour lead times, ensuring comprehensive temporal coverage and enabling
uncertainty quantification across the full forecast horizon.
The spatial domain was focused on the North Atlantic Ocean area, with forecast data
extracted at 2,619 discrete geographical points of the rectangular grid bounded by
20°N to 65°N latitude and 70°W to 10°W longitude. Grid points located over land
masses were automatically excluded from the analysis, ensuring that only oceanic data
points relevant to ship routing were retained. These points were strategically
positioned at 50 nautical mile intervals, as shown in Figure 4.1, to capture mesoscale
weather patterns, while maintaining practical data processing requirements, which
created a spatial resolution that balances computational efficiency with coverage that's
adequate for ship routing applications.

Figure 4.1. The rectangular grid of points 50 NM apart in the North Atlantic
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4.1.3  Data processing and integration

The analysis of weather variables was divided into four distinct forecast lead time
windows, each serving specific operational planning requirements. Short-range
forecasts (0-24 hours) were considered for capturing immediate operational decisions
with new forecast outputs at 0, 6, 12, 18, and 24-hour intervals. Medium-range
forecasts (24-72 hours) were analysed for tactical voyage planning with data points at
30, 36, 42, 48, 54, 60, 66, and 72 hours. Extended-range forecasts (72-120 hours) can
enable strategic route optimization with predictions at 78, 84, 90, 96, 102, 108, 114,
and 120 hours. Finally, long-range forecasts (120-168 hours) provided advance
planning capabilities with outputs at 126, 132, 138, 144, 150, 156, 162, and 168 hours.
This temporal segmentation enables an accurate assessment of forecast skill
degradation across different planning horizons, which is crucial for understanding the
propagation of uncertainty in ship speed predictions.
The dataset included both forecasted and actual observed values for six primary
meteorological variables important for ship performance estimation: significant wave
height ( )sH measured in meters, representing the average height of the highest one-
third of waves; peak wave period ( )pT  in seconds, indicating the dominant wave period

in the spectrum; wind speed wind( )V  recorded in meters per second at the 10-meter

reference height; wave direction waves( ) specified in degrees, indicating the direction

from which waves propagate related to the North axis; wind direction wind( )  measured
in degrees, denoting the direction from which wind originates, related to the North
axis, and the encounter angle waves( )  calculated in degrees, representing the relative
angle between vessel heading and wave direction.
The computational framework for data processing utilised Python libraries optimized
for handling large meteorological datasets. The processing pipeline included:
(i)  data decoding using libraries such as cfgrib and eccodes for GRIB2 format

interpretation
(ii)  spatial-temporal organisation through xarray and numpy implementations for

efficient manipulation and storage of multi-dimensional arrays
(iii)  statistical analysis, distribution fitting, and uncertainty quantification
(iv)  calculation of specialised metrics, including CRPS (Continuous Ranked

Probability Score), using the proper scoring library with custom
implementations for marine applications

(v)  structured data organisation and batch processing workflows.
The data architecture was constructed to handle the computational demands of
analysing multiple forecast cycles while maintaining data integrity and enabling easier
workflows. Special attention was given to the unique dataset structure, where each
meteorological state was replicated for 25 different ship headings (0-360° at 15°
intervals) to comprehensively assess encounter angle effects on ship performance.
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This systematic approach enabled the parallel processing of heading-dependent
calculations while reducing redundant storage of meteorological data.

4.2 Weather forecasts uncertainties

Weather forecast uncertainties arise from multiple intersecting sources throughout
the entire prediction chain. Initial condition uncertainties stem from sparse oceanic
observations, with satellite altimeters measuring wave heights with ±(0.25-0.5) m
errors and covering only narrow tracks separated by 200-500 km, while in-situ buoys
are distributed hundreds of kilometres apart, creating substantial data voids over open
oceans. Numerical weather prediction models like NOAA's Global Forecasting System
(GFS), operating at 0.25° resolution (~27 km), cannot resolve sub-grid phenomena and
rely on imperfect parameterisations for processes like wave generation, dissipation,
and air-sea interactions, with these physical approximations contributing 30-40 % of
total forecast error (NDBC, 2025). Data assimilation compounds these uncertainties
through observation operator errors, simplified background error covariance
assumptions, and quality control procedures that reject 15-30 % of observations. As
forecasts evolve, chaotic error growth doubles synoptic-scale errors every 2-3 days,
imposing a theoretical predictability limit of approximately two weeks. Post-
processing adds further uncertainty through spatial and temporal interpolation.
Converting from 6-hourly model output to a continuous time series can introduce 10-
20 % error for rapidly changing parameters. For wave parameters, the WaveWatch III
(WW3) global wave analysis assimilates significant wave height (Hs) measurements
from satellite altimeters, including Jason-3 and Sentinel-3A/B, complemented by in-
situ observations from NOAA's NDBC buoy network, providing both global coverage
and ground-truth validation at approximately 0.5° resolution with 6-hourly updates
(NOAA, 2025). Wave direction (βwaves) information is derived from directional wave
buoys and Sentinel-1 SAR wave mode data when available. Wind field verification
relies on the GFS 0.25° analysis, which incorporates ASCAT scatterometer observations
from MetOp-B and MetOp-C satellites for ocean surface wind vectors, AMSR2
microwave radiometer-derived wind speeds, and conventional ship and buoy reports
(Salles, 2025; NOAA-DA, 2024).
Satellite observations provide data as well, though each measurement system has
inherent limitations. Radar altimeters measure significant wave height with
approximately 10 % accuracy (±0.5 m for moderate seas) by analysing radar pulse
broadening, but only sample along narrow ground tracks with multi-day revisit
periods (NOAA-DA, 2024; ECMWF, 2010). Scatterometers provide wide-swath wind
coverage, enabling near-daily global coverage, though rain contamination and coastal
proximity compromise data quality. Synthetic Aperture Radar (SAR) captures
directional wave spectra but cannot resolve waves shorter than 150-200 m due to
velocity bunching effects. These diverse observations ultimately undergo data
assimilation procedures including quality control screening, bias correction, spatial
thinning to ~100 km spacing, and optimal weighting with model backgrounds. This
produces analysis fields that are not pure observations but rather model-observation
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blends. Essentially, this observational uncertainty of approximately 0.2-0.3 m in wave
height analyses sets a fundamental limit on achievable forecast accuracy. When
modern wave models achieve similar RMSE values at short lead times, they approach
the theoretical limit of predictability given current observational constraints.
The spatiotemporal matching methodology ensures appropriate forecast-observation
comparisons through careful interpolation and alignment procedures. Spatial
matching uses bilinear interpolation for scalar variables (Hs, Tp, Vwind) while utilising
vector component interpolation for directional quantities to maintain circular
consistency. Near coastal boundaries, the methodology switches to nearest-neighbour
interpolation to prevent land contamination. Temporal alignment restricts forecast-
observation pairs to those within a ±3-hour window, balancing data availability with
temporal consistency. Multi-level quality control procedures are implemented from
initial sensor-level checks through variational quality control (VarQC) within the
assimilation systems, ensuring robust verification statistics while maximising data
utilisation (NDBC, 2025; NOAA-DA, 2024).

4.2.1  Spatial and temporal aspects of weather uncertainties

For the uncertainty analysis of non-directional meteorological variables across
multiple forecast horizons (0-24h, 24-72h, 72-120h, and 120-168h) and associated
attainable ship speeds, the following metrics have been used, where n denotes the
number of observations, and Fi and Oi are i-th forecasted and observed values,
respectively.
The Root Mean Square Error (RMSE), as one of the most fundamental accuracy
measures in forecast verification (Buizza and Leutbecher, 2015), can be defined as


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1RMSE ( )
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i i
i

F O
n

. (4.1)

A perfect forecast yields RMSE = 0 (Buizza and Leutbecher, 2015). The squaring
operation, however, makes RMSE particularly sensitive to outlier errors, which aids in
identifying systematic biases in ship speed predictions that could impact route
planning.
The Mean Absolute Error (MAE) provides a linear measure of average forecast error
magnitude (Buizza and Leutbecher, 2015), and it can be noted as:



 
1

1MAE
n

i i
i

F O
n

. (4.2)

Unlike RMSE, MAE weights all errors equally, making it less sensitive to outliers [59].
The relationship between RMSE and MAE provides insights into error distribution
characteristics. When RMSE values exceed MAE, it indicates the presence of large
outlier errors, as RMSE "penalizes large errors more", whereas MAE weights all errors
linearly (Buizza and Leutbecher, 2015). In practice, both metrics are often advised for
comprehensive model comparisons (Buizza and Leutbecher, 2015).
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Bias quantifies systematic forecast tendencies, revealing whether a model consistently
over- or under-predicts, and it can be noted as (Wilks, 2019)


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Positive bias indicates systematic over-prediction, while negative values suggest
under-prediction. Unlike RMSE and MAE, bias can approach zero values even with
large errors if positive and negative deviations cancel out. For that reason, bias should
always be interpreted alongside magnitude-based metrics to distinguish between
compensating errors and genuine accuracy (Wilks, 2019).
The Index of Agreement, also known as Willmott's Index (Willmott et al., 2011),
provides a standardised measure (range 0 to 1) of how well a model's predictions
match observations, which is relative to the variability in the observations (Willmott
et al., 2011). It is defined as
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where O  denotes the mean value of all observations.
A value of 1 indicates perfect agreement, while 0 suggests the model performs no better
than using the observed mean as a constant predictor (Willmott et al., 2011). This
normalisation makes IoA particularly useful for comparing model performance across
variables with different scales and variabilities.
Fractions Skill Score (FSS) is a spatial verification metric designed for high-resolution
forecasts of categorical events (e.g., rain exceeding some threshold) (Antonio and
Aitchison, 2025). It usually ranges from 0, i.e. no skill, to 1, which represents a perfect
forecast. Instead of comparing forecast and observed values point-by-point, FSS
compares the fractional coverage of an event within neighbourhoods around each
point (Antonio and Aitchison, 2025). The forecast and observation fields are first
converted into binary maps (whether an event or no-event above a threshold is
present), then a moving window (neighbourhood) is used to calculate the fraction of
grid points with the event in both fields. FSS is hence defined as (Antonio and Aitchison,
2025):
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where MSEf represents the MSE between the forecast fraction F(n) of forecast grid
points exceeding threshold with neighbourhood n = 1,…,N, and observed fractions O(n)
of observed grid points exceeding threshold with neighbourhood n = 1,…,N, while
MSEf,ref is the reference MSE representing a forecast with no skill, i.e. the worst case
scenario, and N denotes the total number of neighbourhoods. One application of FSS is
for determining the spatial scale at which a forecast has useful skill; for example, a
precipitation forecast might achieve FSS > 0.5 only when evaluated over a 50-km
neighbourhood, suggesting reliability at that scale even if exact placement is off
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(Antonio and Aitchison, 2025). In the case of comparing multiple models, the model
with a higher FSS for a given scale provides better spatial accuracy (Antonio and
Aitchison, 2025).
Continuous Ranked Probability Score (CRPS) extends forecast evaluation to
probabilistic predictions, assessing the accuracy of a forecast distribution by
comparing it to the observed outcome (Hersbach, 2000):

 


       

1CRPS (2 ( ) 1) 2 ( )z z z (4.6)

where   f  is the assumed standard deviation,   is the uncertainty factor (10 %

by default), f is the forecast value, i.e. the distribution mean  ,   ( )/z O  is the
standardised difference, O  is the actual observed value, ( )z  is the standard normal
cumulative distribution function (CDF), and





2 /21( )

2
zz e (4.7)

is the standard normal probability density function (PDF).
CRPS generalises the Mean Squared Error to probability distributions (Hersbach,
2000). A CRPS value of 0 is considered ideal and is achieved if the forecast assigns all
probability to the correct outcome (Hersbach, 2000; Gneitinget et al., 2007). Notably,
for deterministic forecasts, CRPS reduces exactly to MAE, making it a proper scoring
rule that accounts for both accuracy and appropriate uncertainty quantification. CRPS
is commonly used by atmospheric and climate centres such as ECMWF to evaluate
ensemble weather forecasts for variables such as temperature, precipitation, and wave
height.
The Uncertainty Growth Rate (UGR) quantifies how forecast uncertainty evolves with
increasing lead time, providing insights into predictability limits (Rodwell and Wernli,
2023). The value characterises the exponential growth of forecast error or ensemble
spread (Marjanović et al., 2025). One can differ linear UGR

lin.
d(RMSE( ))UGR ( )

d
hh

h
, (4.8)

where
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 is the RMSE at lead time h, hN  is the number

of forecast observation pairs at lead time h, ( )h
iF  is the i-th forecast value at lead time h,

iO  is the i-th observed value and the exponential UGR

exp.
dln(RMSE( ))UGR ( )

d
hh

h
(4.9)

where  0RMSE( ) hh e  is the exponential model for the RMSE at the lead time h,  0  is
the initial uncertainty of RMSE at h = 0, and   is the exponential growth rate
parameter. Essentially, UGR quantifies how forecast uncertainty increases with lead
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time through linear (absolute units/hour) or exponential (relative %/hour) growth
rates(Rodwell and Wernli, 2023).
For the uncertainty of directional variables like meteorological wave direction waves

and encounter wave angles waves ,  the Circular Mean Absolute Error (CMAE) was used.
CMAE is defined as:

 

   
1

180 1CMAE atan2(sin ,cos )
n

i i
in

(4.10)

where    ,i i iF O  expressed in radians. The metric is used because of the 360°
discontinuity; a forecast of 1° and an observation of 359° differ by only 2°, not 358°
(Wilks, D.S., 2019).  The transformation ensures that all angular differences fall within
the range [-180°, 180°], which makes capturing the minimal angular distance between
forecast and observation possible.

4.2.2  Quantifying weather forecast uncertainty

The uncertainty quantification process begins with the establishment of reference
datasets against which forecast accuracy is then evaluated. Given the sparse
observational coverage over oceanic regions, the shortest available lead time forecast
(typically 0-6 hours) serves as the reference truth, following standard practice in
marine forecast verification. This approach, commonly used in forecast verification
when observations are sparse over oceanic regions, assumes that short-range forecasts
provide the most accurate representation of actual conditions.
Each forecast initialisation cycle contributes to a growing ensemble of forecast-
reference pairs, enabling robust statistical characterisation across diverse
meteorological conditions. Temporal stratification forms the foundation of the
uncertainty framework, recognising that forecast skill exhibits non-uniform
degradation patterns. The four lead time horizons: [0-24 h], [24-72 h], [72-120 h], and
[120-168 h], correspond to distinct operational decision horizons in voyage planning.
Short-range horizons are used to inform immediate course corrections and speed
adjustments, medium-range horizons guide tactical routing decisions around
developing weather systems, while extended-range horizons support strategic
planning and departure timing optimization. Within each horizon, uncertainty metrics
are computed at 3-hour intervals for the first 120 hours and 6-hour intervals beyond,
balancing temporal resolution with computational efficiency.
The use of ensemble forecasts has the advantage of utilising a multi-cycle forecast
structure to create pseudo-ensembles without requiring operational ensemble
prediction systems. For any given valid time forecast time, forecasts from multiple
initialisation cycles provide 4-8 independent predictions, depending on the forecast
horizon. These pseudo-ensemble members then undergo quality control to remove
outliers caused by model initialisation issues or data assimilation anomalies. The
resulting ensemble spread provides a measure of forecast uncertainty that correlates
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strongly (r > 0.8) with actual forecast errors, therefore validating the pseudo-ensemble
approach.
As for computing the confidence intervals (CI), both parametric and non-parametric
methodologies are used to adjust according to different error distribution
characteristics. Parametric approaches fit theoretical distributions - typically Gaussian
for continuous variables and von Mises for directional parameters - using maximum
likelihood estimation. Non-parametric methods used empirical quantiles directly from
the forecast-observation pairs, requiring no distributional assumptions. The dual
approach reveals that parametric methods tend to overestimate uncertainty at
extreme percentiles (95 %, 99 %), while empirical quantiles better capture the actual
error distribution tails. Reliability diagrams are used to assess whether stated
confidence levels match observed frequencies – for instance, verifying that 90 %
confidence intervals actually contain the true value 90 % of the time. Sharpness
analysis evaluates whether confidence intervals are as narrow as possible while
maintaining reliability.
Furthermore, variable-specific processing acknowledges the distinct characteristics of
different meteorological parameters. Wind variables, for example, are used as vector
decomposition of U and V components before uncertainty quantification, enabling
proper handling of directional discontinuities. Wave parameters are categorised by sea
state according to WMO classifications. The coupling of wind and wave uncertainties is
explicitly modelled through cross-correlation matrices that vary with forecast lead
time and prevailing conditions.
The propagation of these uncertainties reveals how they are actually translated into
ship performance uncertainties. This involves constructing relations that effectively tie
weather parameter uncertainties to speed loss uncertainties, accounting for non-linear
ship response characteristics. Uncertainty bounds are maintained through each
relation, ensuring that confidence intervals remain calibrated and reliable for
operational use. The operational implementation of these uncertainties is achieved
through rolling horizon validation, where uncertainty models are continuously
updated as new forecast-observation pairs become available. With this adaptive
approach, evolving model biases and seasonal variations in predictability are captured.
The resulting uncertainty database provides lookup tables indexed by lead time,
season, location, and weather regime, enabling rapid estimation of uncertainty for real-
time routing applications.

4.2.3   Uncertainty of specific environmental variables

The uncertainty analysis uses spatial pooling instead of temporal tracking of individual
grid points in the North Atlantic area. Each grid point is classified into sea state bins

{1,2,3,4}b , which corresponds to the observed significant wave height ranges from
the set S {[0, 2.5), [2.5, 4), [4, 6), [6, 9)}H   (m), respectively. A forecast-analysis pair
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(for.) (act.)
S S( , )H H  consists of a forecasted variable value (for.)

SH  and its corresponding

observed value (act.)
SH  at the same location and time.

The methodology works as follows. Sea states are divided into bins indexed by ,b
where each bin b  has boundaries (act.) (act.)

S,min, S,min( )b bH H  and (act.) (act.)
S,max, S,max( ).b bH H  At

each time step, a grid point is assigned to a bin b  if its observed value (act.)
S,bH  satisfies

(act.) (act.) (act.)
S,min, S, S,max, .b b bH H H   The forecasted value (for.)

SH  at that same point is then paired

with this observed value (act.)
SH  to compute uncertainty metrics for a bin .b  Over the

observed period, which in our case was four months, each bin accumulates a number
of forecast-observation variable pairs. This approach assumes statistical stationarity
of forecast errors within each sea state bin. The errors are treated as independent of
geographic location, temporal evolution patterns, and synoptic weather conditions.
This grouping method does not preserve temporal correlations when grid points
transition between different sea state bins. Each grid point location contributes
independently to different bins as the weather conditions change. However, this spatial
pooling approach is well-suited for ship routing applications. The ship encounters sea
states spatially along her routes, not at fixed points. Thus, route optimization requires
error statistics for each sea state, independent of specific locations. The large sample
sizes collected for each bin in this study ensure robust statistics while maintaining
computational efficiency.

4.2.3.1 Non-directional meteorological variable uncertainty

The analysis of the uncertainty of non-directional meteorological variables reveals
distinct patterns of forecast degradation across the three primary variables: significant
wave height (HS), wave period (Tp), and wind speed (Vwind). While the complete
analysis encompasses different sea states (HS = 0-12 m), Figure 4.2 presents
representative uncertainty metrics for sea state 5 (HS = 2.5-4 m) as an illustrative
example of the observed patterns.
For significant wave height across all analysed sea states, RMSE values demonstrate
consistent growth patterns from short-range to extended forecasts. In sea state 5
(Figure 4.2a), RMSE increases from 0.05-0.12 m at 24 h lead time to 0.64-1.04 m at 168
h lead time, exhibiting nearly linear growth. These ranges correspond to differences
caused by various RMSE values for each encounter angle class. This pattern aligns with
findings in (Kodaira et al., 2023), who reported similar linear degradation in North
Atlantic wave hindcasts, though our exponential growth rate of 1.5-1.8 % per hour is
notably lower than the 2.3 % reported in (Wu et al., 2019) for their ANFIS predictions.
The MAE consistently tracks 15-20 % below RMSE across all sea states, indicating
persistent outlier errors that affect operational planning. In calmer conditions (sea
states 2-3), the relative uncertainty increases despite lower absolute errors, while
severe conditions (sea states 7-9) show accelerated error growth beyond 72-hour lead
times.
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Lead time (h)
(c)

Figure 4.2. Uncertainty metrics of meteorological non-directional predictor variables for the
sea state 5 (Hs = 2.5-4 m): significant wave height (a), wave period (b), and wind speed (c)
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Wave period predictions exhibit more stable uncertainty characteristics across the full
range of conditions.  The analysis reveals RMSE growth from 0.11-0.17 s (24 h) to 1.16-
1.4 s (168 h) over the forecast horizon for moderate seas (Figure 4.2b), with
proportionally smaller increases in both calm and severe conditions. The CRPS values
indicate well-calibrated probabilistic forecasts throughout. Additional results can be
found in Appendix A.
Wind speed forecasts consistently demonstrate the highest relative uncertainty among
all meteorological variables analysed. The pattern observed in sea state 5 (Figure 4.2c),
with RMSE increasing from 0.45-0.85 m/s (24 h) to 3.04-4.37 m/s (168 h), is amplified
in higher sea states where RMSE can exceed 8.0 m/s at maximum lead times.
Corresponding exponential UGR of 1.3-1.45 % per hour is relatively close to 1.5-1.8 %
of the observed one for wave height, suggesting similar predictability characteristics.
The correlation between sea state severity and forecast uncertainty reveals non-linear
relationships across all three variables. While absolute errors generally increase with
sea state, the relative uncertainty (RMSE normalised by mean values) shows a U-
shaped pattern, with the highest relative errors in very calm (sea states 0-1) and
extreme conditions (sea states 10-12). This pattern has important implications for ship
speed predictions, as it suggests that forecast reliability varies not only with lead time
but also with the prevailing environmental severity.

4.2.3.2 Directional meteorological variable uncertainty

The uncertainty characteristics of directional meteorological variables required
specialised metrics to account for their circular nature, with the Circular Mean
Absolute Error (CMAE) properly handling the 360° discontinuity inherent in
directional data. The comprehensive analysis across different sea states reveals
complex patterns in directional forecast degradation, with Figure 4.3 again presenting
representative results for sea state 5 S(H  = 2.5-4 m).

Meteorological wind direction uncertainty exhibits pronounced variability across
different sea conditions. While Figure 4.3a shows CMAE values increasing from 3.54-
4.81° at 24 h to 38.3-46.1° at 168 h for moderate seas, the analysis reveals that
directional uncertainty is strongly modulated by sea state severity. In calm conditions
(sea states 0-2), CMAE can exceed 50° even at short lead times due to weak pressure
gradients and variable wind patterns. Conversely, during severe weather (sea states 8-
10), the stronger atmospheric forcing produces more coherent wind fields, resulting in
CMAE values 20-30 % lower than in moderate conditions. The steepest uncertainty
growth consistently occurs in the 24-72 h window across all sea states, where CMAE
increases by 5-20°, substantially exceeding the 10° increase reported in (Vettor et al.,
2021) for Mediterranean conditions. Accelerated degradation in the medium range has
critical implications for voyage planning, as it coincides with key tactical decision
horizons.
Wave direction forecasts demonstrate markedly superior stability compared to wind
direction across the entire spectrum of sea conditions analysed. The CMAE growth
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from 1.34-3.44° at 24 h to 16.6-31.4° at 168 h observed in moderate seas (Figure 4.3b)
represents the median behaviour, with calm conditions showing only marginally
higher uncertainty (CMAE reaching 40° at 168 h) despite the challenges of predicting
swell propagation in light winds. Notably, in sea states 6-9, wave direction CMAE
remains below 30° even at extended lead times, reflecting the dominance of well-
defined swell systems. The analysis further reveals that the wave direction forecast
skill shows minimal sensitivity to the choice of wave spectrum (JONSWAP vs. Pierson-
Moskowitz), contrasting with the spectrum-dependent speed loss variations reported
in (Prpić-Oršić et al., 2020).
The encounter wave angle uncertainty, synthesising both meteorological forecast
errors and navigational considerations, presents the most complex patterns across
different operational conditions. The CMAE ranges from 1.34-3.44° at 24 h to 16.6-
31.4° at 168 h, as shown for sea state 5 in Figure 4.3c. It should be noted that the
encounter wave angle categories (head seas, bow-quartering, beam, stern-quartering,
and following) shown in both Figures 4 and 5 were derived by calculating encounter
angles for 25 different ship headings (0-360° at 15° intervals) at each grid point, then
grouping the results according to the relative angle between the meteorological wave
direction and each hypothetical ship heading. This systematic approach allowed us to
assess uncertainty patterns across all possible encounter scenarios without specifying
a particular route. In following seas (encounter angles 150-180°), uncertainty is
amplified by up to 40 % compared to head seas, as small directional changes can shift
the encounter angle between favourable following seas and dangerous quartering
conditions. This asymmetry, not previously documented in the literature, has profound
implications for routing algorithms that typically assume symmetric uncertainty
distributions. The non-linear growth pattern intensifies in sea states above 7, where
CMAE can increase by 25° within a single 24-hour forecast update cycle, suggesting
predictability barriers not captured by current ensemble forecasting systems.

Lead time (h)
(a)

Lead time (h)
(b)

Lead time (h)
(c)

Figure 4.3. Uncertainty metrics of meteorological directional predictor variables for the sea
state 5 ( SH  = 2.5-4 m): meteorological wind direction wind  (a), meteorological

wave direction waves  (b) and encounter wave angle waves (c)

Cross-correlation analysis between directional variables reveals that encounter angle
uncertainty cannot be treated as a simple linear combination of its components. The
coupling between wind and wave direction uncertainties varies significantly with sea
state: correlation coefficients range from 0.3 in calm conditions to 0.85 in storm



70

conditions, indicating that unified atmospheric systems drive both wind and wave
fields during severe weather. This coupling effect, combined with the 15° average
heading uncertainty inherent in autopilot course-keeping, produces compound
uncertainties that consistently exceed root-sum-square estimates by 15-25 %. These
findings challenge the independence assumptions underlying current probabilistic
routing systems and suggest that Monte Carlo approaches may be necessary for
accurate uncertainty propagation.
The temporal evolution of directional uncertainty also exhibits distinct diurnal
patterns not apparent in the magnitude variables, with CMAE typically 10-15 % higher
during nighttime forecast initialisations, possibly reflecting reduced observational
data availability.

4.3 Challenges and limitations
When it comes to weather forecasts, making an accurate prediction is impossible.
There are three main reasons why weather forecasting is not and can never be
accurate:
(i) Data analysis uncertainties,
(ii) Model limitations,
(iii) Chaotic and unpredictable nature of the atmosphere.
Furthermore, quantifying weather forecast uncertainties for maritime applications
poses several fundamental challenges that extend beyond traditional meteorological
verification methods. While the framework developed in this research demonstrates
robust statistical properties across multiple forecast horizons, the translation from
atmospheric uncertainties to practical ship routing decisions reveals persistent
methodological and operational limitations that require caution.
One of the most significant challenges emerges from the non-linear transformation of
meteorological uncertainties through ship performance models. The observed
exponential growth rates of 1.5 % per hour for significant wave height and 2.1 % per
hour for wind speed propagate through speed loss calculations in ways that are
difficult to predict using conventional error propagation methods. When these
uncertainties are combined with vessel response characteristics, the resulting speed
predictions can exhibit statistical variations that exceed physical boundaries. The
ranges of the ship’s attainable speeds demonstrate this problem explicitly: while
statistically valid as a measure of forecast volatility, such unbounded uncertainties may
sometimes suggest theoretical speed ranges that surpass the vessel's actual
operational envelope of minimum steerage speed or maximum service speed. This
disconnect between statistical quantification and physical reality poses serious
questions about how uncertainty information should be communicated to mariners
and integrated into on-board decision support systems.
Yet another complexity not captured by standard verification metrics is the temporal
evolution of forecast uncertainty. The observed U-shaped pattern in relative
uncertainty, with the highest values in both calm conditions and extreme weather,
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suggests that forecast reliability varies non-monotonically with environmental
severity. This pattern also contradicts the linear degradation assumptions embedded
in most routing algorithms, which typically scale uncertainty in proportion to forecast
lead time. Furthermore, the discovery of daily patterns in directional uncertainty, with
CMAE values 10-15 % higher during nighttime forecast initialisations, points to
systematic biases related to observational data availability that current models fail to
address.
Cross-correlation between meteorological variables introduces another layer of
difficulty that challenges the independence assumptions underlying many uncertainty
frameworks. The correlation coefficients between wind and wave direction
uncertainties ranging from 0.3 in calm conditions to 0.85 during storms indicate that
unified atmospheric systems drive multiple environmental parameters
simultaneously. This coupling effect, combined with the 15° average heading
uncertainty from autopilot systems, produces compound uncertainties that
consistently exceed root-sum-square estimates by 15-25 %. A possible implication is
that Monte Carlo approaches or full ensemble systems may be necessary for accurate
uncertainty propagation, which would substantially increase computational
requirements for real-time routing applications.
Figure 4.4 illustrates the practical impact of these forecast uncertainty challenges on
ship routing decisions. The evolution across consecutive forecast time steps can be
noted, with the upper panel capturing the routing decisions at time kt and the lower

panel showing the updated paths at time kt t  after the weather system has spread
eastward.

Figure 4.4. Comparison of routing strategies under forecast uncertainty: initial path (black
dashed), optimal path without weather routing (red), and optimal path with weather routing

(purple), avoiding areas of high forecast uncertainty
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The comparison between the initial path, the optimal path without weather routing,
and the optimal path with weather routing demonstrates how forecast uncertainties
fundamentally alter route selection. The presence of a low-pressure system in the
North Atlantic creates a zone of high meteorological uncertainty, visible as concentric
circles indicating storm intensity. The optimal path with weather routing deviates
significantly southward to avoid this region, accepting increased distance in exchange
for more predictable conditions.

The spatial heterogeneity of forecast skill across the North Atlantic Ocean further
complicates uncertainty quantification. The 2,619 grid points analysed reveal distinct
regional patterns, with forecast errors in the western Atlantic consistently 20-30 %
higher than in eastern regions, likely due to differences in observational network
density and the influence of continental weather systems. This spatial variation
actually means that a single uncertainty model cannot adequately represent the entire
routing domain; yet, maintaining location-specific uncertainty databases for
operational use presents substantial data management challenges.
Perhaps most problematic is the assumption of forecast model stationarity underlying
the uncertainty quantification framework. The validation period of several months
used in this research captures winter and early spring conditions, but cannot account
for seasonal variations in predictability or long-term trends in forecast model
performance. Weather prediction models undergo regular updates and improvements,
potentially invalidating historical uncertainty estimates. The effective implementation
would require continuous recalibration of uncertainty parameters, which would
demand high infrastructure for real-time verification that few shipping companies
currently possess. The practical application of uncertainty information in voyage
planning also faces additional human factor challenges. Presenting probabilistic
forecasts and confidence intervals to bridge crew accustomed to deterministic weather
products requires careful consideration of visualisation and communication strategies.
The tendency toward conservative decision-making under uncertainty, observed in the
systematic over-prediction of adverse conditions, suggests that mariners may already
apply implicit safety margins that could be combined with explicit uncertainty bounds,
leading to unnecessarily conservative routing.
Rather than treating weather forecasts as deterministic inputs with retroactive
uncertainty adjustments, future routing algorithms must integrate uncertainty
quantification from the outset. This requires reformulating the routing problem from
deterministic optimization to stochastic approaches, explicitly accounting for the
probability distributions of environmental conditions and their impact on vessel
performance. The computational complexity increases substantially, of course, but the
potential for more reliable and economically optimal routing decisions justifies this
additional effort.
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5 DATA-DRIVEN ESTIMATION OF SHIP PERFORMANCE

5.1 Reference vessel

A 28,050 DWT bulk carrier was chosen as a reference vessel (Yan et al., 2025) that also
served as the basis for the development of a mathematical model for the Wärtsilä Navi-
Trainer Professional 5000  (NTPro 5000) simulator and for the NavCad software as
well. The chosen vessel is a typical medium-sized bulk carrier with principal
dimensions of 160.40 m length between perpendiculars (LPP), 27.20 m beam, and
13.60 m depth. With a design draft of 9.819 m, the vessel’s gross tonnage is 17,009 tons,
and she has a deadweight capacity of 28,189 tons. The propulsion system consists of a
two-stroke marine diesel engine rated at 6,150 kW (8,361 PS) at 136 rpm under
nominal conditions, although derated to 5,850 kW at 129 rpm for heavy fuel oil
operation. Power transmission is achieved through a direct-drive shaft system
connected to a four-bladed fixed-pitch propeller with a diameter of 5.25 m, a mean
pitch of 3.686 m, and a 35-degree skew angle optimized for bulk carrier operations.
The service speed is approximately 14 knots, but after analysing the measured data,
three speeds that were most prevalent were chosen for simulations. These
specifications were carefully integrated into the mathematical model to ensure
accurate representation of the vessel's response to environmental loads, which is
particularly important for simulating realistic speed loss behaviour in different sea
states.

5.2 Estimation of ship performance variables

Hydrodynamic and propulsion system simulation tools, such as HydroComp’s NavCad,
employ physics-based "Vessel-Propulsor-Drive" system models to predict speed-
power characteristics (HydroComp, 2023; HydroComp, 2024). The tool’s Analytical
Distributed-Volume Method (ADVM) provides an analysis of hull form effects on drag,
connecting empirical estimates and full CFD. Meanwhile, real-time simulators such as
the NTPro 5000 demonstrate how environmental factors naturally reduce ship speed
through physics-based calculations (Wärtsilä, 2011; Wärtsilä, 2023). The NTPro 5000
is a full-mission bridge simulator that serves as the primary platform for modelling
ship speed and assessing performance. The core architecture of NTPro 5000 centres
on its sophisticated mathematical ship-motion model. The system solves the vessel's
motion equations in real-time, accounting for six degrees of freedom (surge, sway, yaw,
heave, roll, pitch), to realistically simulate ship dynamics in waves. This approach
ensures that the simulator captures the full spectrum of ship motions and responses to
various control inputs and environmental conditions. The system's DNV Class A
certification validates its accuracy in ship manoeuvring performance, including
acceleration/deceleration, turning, and stopping distances.
The setup workflow for NavCad follows a four-step process starting from the initial
inputs of the vessel’s parameters, including length, beam, draft, and displacement.
Resistance prediction methods can be user-defined, ranging from empirical formulas,
such as ITTC, Holtrop, and Savitsky, to proprietary methods (HydroComp, 2024). The



74

second phase involves defining the propulsion system parameters. The engine's power
curve is linked with the propeller's thrust curve, finding the operating point for each
speed where the propeller's required torque equals the engine's available torque and
the thrust equals the hull resistance. The software enables the addition of sea margin
percentages (typically 15% extra power) on top of calm-water predictions, ensuring
realistic operational performance estimates.
The complete vessel specification in NavCad (NC) required detailed geometric inputs,
including hull stations data, sectional area curve coefficients, longitudinal centre of
buoyancy (LCB) position at 3.2 % aft of midship, and specific appendage drag
coefficients for rudder, bilge keels, and shaft brackets, along with propeller open water
characteristics.
Environmental modelling parameters were configured for North Atlantic conditions,
including wave spectral characteristics. Within the NTPRO 5000 simulator, one can
choose between the Pierson-Moskowitz (PM) and JONSWAP (JS) formulations to
ensure consistency across both computational platforms. Considering that a two-
parameter Pierson-Moskowitz spectrum was created for fully developed wind-
generated seas (Fossen, 2011), it was our first choice for modelling of environmental
conditions. On the other hand, the JONSWAP spectrum (Fossen, 2011) was also used to
describe non-fully developed seas.

5.2.1 Initial conditions and simulation characteristics for ship performance
 estimation

5.2.1.1 Environmental conditions

A comprehensive range of environmental conditions was considered to fully capture
the ship's performance in different sea states. Wind conditions were simulated
according to the Beaufort scale (0-12), with speeds ranging from calm to hurricane
force (0-58 knots), considering both relative wind speed and direction effects on ship
resistance and stability. Ocean currents were not included in this analysis, as the study
focused on the combined effects of wind and wave-induced speed loss, which represent
the primary environmental factors affecting ship performance in North Atlantic routes.
Wave heights were evaluated from calm conditions up to the sea state that corresponds
to 12 m wave height values, i.e. state 8 on the Douglas scale. The full spectrum of wave
encounter angles from 0° to 180° at 15° increments was covered.
Three previously mentioned reference ship speeds were selected for the analysis as
follows: 12.0, 13.5, and 14.5 knots. The ship speeds were selected based on analysis of
historical voyage data from the chosen reference ship, which showed clustering of
average speeds around 12.0 knots (heavy weather/fuel-saving mode), 13.5 knots
(standard voyage execution), and 14.5 knots (schedule recovery/favourable
conditions). These speeds corresponded to 27 %, 43 %, and 19 % of recorded voyage
segments, respectively, representing the dominant operational modes for this vessel
class in trans-oceanic routes.
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5.2.1.2 Ship speed loss estimation

The two computational methods used for computing ship speed loss by both NTPro
5000 and NavCad differ in their handling of ship dynamics. NTPro 5000's time-domain
approach captures the complex interactions between hull hydrodynamics, propulsion
forces, and environmental disturbances through real-time integration. This approach
also captures the complex interactions between hull hydrodynamics, propulsion
forces, and environmental disturbances. The hydrodynamic forces on the hull are
decomposed into positional and damping components, where the positional forces
arise from the vessel's drift angle relative to water flow, while damping forces result
from the vessel's angular velocities (Wärtsilä, 2011). The simulator determines these
forces through experimentally derived coefficients obtained from tank tests, which are
stored in look-up tables for the full range of drift angles and yaw rates. When
experimental data is unavailable, the system uses trigonometric series expansions and
interpolation formulas calibrated against vessel dimensions and hull form
characteristics.
Environmental loads in NaviTrainer are computed through distinct models for wind
and wave disturbances that account for both steady and dynamic effects. The wave-
induced forces consist of first-order oscillatory components that drive the vessel's
seakeeping motions and second-order mean drift forces that contribute to steady
speed loss and course deviation. These forces are calculated using generalised
reduction coefficients that depend on the vessel's draft effects on wave excitation
forces (Faltinsen, 1993; Newman, 1977), the wavelength to ship length ratio governing
force distribution along the hull, and the wave encounter angle. Wind forces are
determined from the apparent wind velocity, which combines the true wind with the
vessel's motion, acting on the projected lateral and transverse areas above the
waterline. The aerodynamic coefficients vary with apparent wind angle and are
derived from wind tunnel tests or empirical formulations based on vessel
superstructure configuration. The simulator continuously adjusts propeller thrust and
rudder angle through the autopilot system to maintain the commanded speed and
heading against these environmental loads, with the resulting speed loss emerging
naturally from the force balance (Wärtsilä, 2011).
NavCad implements a methodical resistance decomposition approach where the total
resistance experienced by the vessel is separated into distinct physical components
that can be individually calculated and summed, as noted in section 2.7.1. The
software's architecture enables the selection of appropriate calculation methods for
each resistance component based on vessel type, operational profile, and available
data. For bare-hull resistance, NavCad primarily employs the ITTC-1978 correlation
line methodology (HydroComp, 2024), which separates viscous and wave-making
resistance components while accounting for Reynolds number effects through form
factors. This component-based methodology enables systematic evaluation of design
modifications and their impact on total resistance.
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The wind and wave-induced resistance components in NavCad are managed through
specialised modules that can implement various prediction methods suited to different
vessel types and operating conditions. For wind resistance, the software offers multiple
calculation approaches ranging from simplified parametric methods suitable for
preliminary design to detailed calculations based on vessel-specific wind areas and
drag coefficients (HydroComp, 2024). Wave-added resistance predictions can utilise
regression-based methods derived from systematic model test series, strip theory
approaches for slender vessels, or empirical corrections based on sea state and vessel
response characteristics. When methods that directly predict speed loss are selected,
such as the Aertssen method for weather routing applications, NavCad performs an
inverse calculation using the vessel's calm-water resistance curve to convert the speed
loss prediction into an equivalent added resistance (HydroComp, 2024). This
conversion maintains consistency within the software's resistance-based framework
while accommodating diverse prediction methodologies.

5.2.2 Estimation of attainable ship speed

5.2.2.1 Neural network approach

The attainable ship speed data was collected through an extensive number of
simulations conducted on the NTPro 5000 navigation simulator for:
(a) 13 sea states according to various significant wave heights,

S {0,1,2,...,12}  (m)H
(b) 13 encounter wave angles,   waves {0,15,30,...,180}  ( )
(c) 2 spectra,  Pierson-Moskow  {' ', ' JO Aitz NSW P '}S
(d) 2 loading conditions,  {'Full load ', ' '}BallastL
(e) 3 intended reference ship speeds, ref. {12,13.5,14.5}  (kn)V 

which gives a total of 2028 simulations.
Parallel simulations were executed in HydroComp's NavCad through its scripting
Application Programming Interface (API), which enabled automated batch processing
of the identical 1014 simulation scenarios because of no possibilities for explicit wave
spectra settings (HydroComp, 2024). The NavCad scripting functionality permitted the
use of environmental parameters and vessel conditions matching those used in NTPro
5000, thereby making direct comparison between the time-domain and quasi-static
computational approaches possible.
All data processing and analysis were performed using MATLAB R2024b and Python
3.13.5, enabling the development of three distinct lookup table functions for attainable
speed computation. This comprehensive wind speed range ensures the framework
captures ship performance across all operationally relevant conditions, from port
departures in calm weather to severe storm avoidance scenarios typical of North
Atlantic winter routes.
While the simulations were initially conducted for wave encounter angles from 0° to
180°, the results were extended to the full 0-360° range by applying symmetrical
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principles, as differences of ship responses to port and starboard wave encounters can
be considered negligible. For route optimization applications, ship headings were
assigned at 15° intervals throughout the complete 0-360° compass range, enabling the
calculation of relative encounter angles for any combination of ship course and wave
direction. For operational implementation, the attainable ship speed values are
obtained through bilinear interpolation between the discrete simulation points in the
lookup tables. This ensures smooth transitions for intermediate values of wave height
and encounter angle rather than using rounded or nearest-neighbour approximations.
The encounter wave angle   waves [0,2 , as depicted in Figure 5.1, can be expressed
in terms of the ship heading   [0, 2  and meteorological wave direction
  waves [0,2  as

   


    
 

    
waves waves

waves
waves waves

, for
2 , for .

(5.1)

If one neglects the wind and ocean current loads, the attainable ship speed att.V  can be

expressed as a function of the intended reference speed ref.V  and current sea conditions

represented by the significant wave height S ,H  wave period pT  and encounter wave

angle waves ,  which yields

att. ref. S waves( , , , ).pV f V H T  (5.2)

Figure 5.1. The definition of the encounter wave angle relative to the ship's heading

The sea conditions can be actual, for actual values of (act.)
S ,H (act.)

pT  and  (act.)
waves , and

forecasted, for forecast values of (for.)
S ,H (for.)

pT  and  (for.)
waves.  The attainable ship speed

att.,actualV  in actual conditions is
(act.)(act.) (act.)

att.,actual ref. S P waves( , , , )V f V H T  (5.3)

i.e. the predicted attainable ship speed att.,predictedV  in forecasted conditions
(for.)(for.) (for.)

att.,predicted ref. S P waves( , , , ).V f V H T  (5.4)



78

As previously pointed out, the attainable ship speed was calculated by means of the
navigational simulator Wärtsilä NTPRO 5000, both for the Pierson–Moskowitz
spectrum (PM)

att.( )V  and the JONSWAP spectrum ( JS)
att.( )V , and as well as with HydroComp

NavCad software (NC)
att.( ).V  It should be emphasised that the mathematical formulations

presented in equations (5.2)-(5.4) are empirical models developed from the simulation
data outputs, not the internal algorithms used by the software itself.
In the NTPRO 5000 simulations, when using the Pierson-Moskowitz spectrum, the
peak wave period is not an independently controllable parameter but rather a derived
quantity determined by the spectrum formulation. Similarly, in the JONSWAP spectrum
implementation, the peak period remains coupled to the significant wave height
through the wind-wave relationship. This coupling reflects the physical reality that in
wind-generated seas, wave height and period are not independent but evolve together
according to the fetch, duration, and wind speed (Wärtsilä, 2011). Therefore, Tables
5.1-5.3 present attainable speeds as functions of the encounter angle, with Tp implicitly
included through the spectral relationships rather than as an independent variable.
This simplification is justified for the North Atlantic routes studied here, where swell
and wind seas typically align, and the Pierson-Moskowitz assumption of fully
developed seas is reasonable. For the NavCad simulations, the software's internal wave
resistance algorithms similarly couple wave period and height based on standard wave
statistics for the specified sea states, consistent with the approach used in classification
society guidelines (HydroComp, 2024).
Throughout all simulations, the ship's heading was initially set to 000° while
environmental load angles were varied across all encounter angles. An autopilot
system was utilised for course-tracking under varying environmental conditions
(Wärtsilä, 2011). For each environmental condition, simulations were started at initial
speeds, with the autopilot system adjusting the ship speed to maintain course.
Another limitation within the lookup tables manifests as NaN (Not a Number) values,
representing sea states where the autopilot system could no longer maintain the
demanded course. When environmental loads exceeded the ship's directional control
capability, characterised by excessive yaw rates and vertical motions including severe
roll, pitch, and heave amplitudes, or when the autopilot was effectively "thrown off"
course, the corresponding speed values were designated as NaN. This approach
effectively sets the operational boundary beyond which navigation becomes dangerous
or impossible. In the ship route optimization and decision support context, these NaN
values serve as indicators for areas that require avoidance or course and speed
alteration decisions. These computationally derived boundaries form the foundation
for establishing the safety margins detailed in Section 5.3. The NaN thresholds
represent the primary operational constraint used in this study. While Motion-Induced
Interruption (MII) and Motion Sickness Incidence (MSI) are standard criteria for
assessing crew performance and comfort on passenger vessels, the current
implementation for cargo vessels relies on the loss of autopilot control as the definitive
operational boundary. This approach provides a clear, binary decision criterion: routes
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are feasible when the autopilot maintains control and infeasible when NaN values
occur.
It should also be noted that comprehensive seakeeping assessments typically include
additional criteria such as MII for crew effectiveness, MSI for passenger comfort and
motion-based safety thresholds. However, for the routing optimization framework
developed in this thesis, the autopilot-based criterion was selected as it provides a
conservative operational range that inherently accounts for extreme motions without
requiring separate calculation of each individual seakeeping metric. When the
autopilot fails to maintain course, it generally indicates that multiple motion thresholds
would likely be exceeded, making it an effective integrated safety criterion.
However, vessels could potentially navigate through such sea states with substantial
voluntary speed reduction and manual helm control, but these scenarios fall outside
the scope of automated routing optimization. The NaN designation thus represents
conditions incompatible with maintained-speed commercial operations rather than
absolute navigational impossibility. It should be emphasised that such extreme
operational conditions represent survivability strategies, where the primary objective
shifts from economic efficiency to ship and crew safety, as these conditions fall entirely
outside the domain of optimal ship routing, which seeks to avoid rather than navigate
through such adverse weather. The overview of simulation results for the Pierson–
Moskowitz spectrum, full load conditions, and intended ship speeds of 14.5, 13.5, and
12.0 knots is given in Tables 5.1, 5.2, and 5.3, respectively. Analogous results for the
JONSWAP spectrum and NAVCAD estimations are given in Appendix B.
In the context of this study, and with particular focus on developing data-driven
approaches for the rapid estimation of attainable ship speed as required in optimal
routing applications, a series of regression models was constructed using neural
network architectures, as discussed in Section 3.2.1.

Table 5.1. Simulated attainable ship speeds obtained with NTPRO 5000 for the Pierson–
Moskowitz spectrum, full load conditions, and intended ship speed of 14.5 kn

Hs

(m)
Encounter wave angles waves ( ) 

0 15 30 45 60 75 90 105 120 135 150 165 180
0 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50
1 14.11 14.09 14.06 14.04 14.10 14.20 14.27 14.31 14.33 14.35 14.37 14.37 14.38
2 13.52 13.53 13.47 13.37 13.32 13.51 13.70 13.85 13.89 13.98 14.06 14.09 14.11
3 12.55 12.50 12.30 12.05 11.97 12.33 12.80 13.04 13.09 13.40 13.59 13.67 13.68
4 10.93 10.96 10.82 10.90 11.11 11.22 11.52 11.69 11.95 12.56 13.09 13.31 13.41
5 10.15 10.30 10.48 10.88 10.82 11.14 10.83 9.21 11.63 12.51 13.00 13.28 13.40
6 9.47 9.60 9.81 9.97 10.27 10.97 10.35  12.81 13.17 13.37
7 9.19 9.33 9.55 9.74 10.25 10.98  12.76 13.15 13.36
8 8.64 8.90 9.17 9.35 8.80 8.44  12.11 12.94 13.20
9 7.96 8.13 8.21 7.71 12.50 12.91

10 7.52 7.51 7.69 7.41
11 7.23 7.09 6.99
12 6.90 6.60 6.36
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Table 5.2. Simulated attainable ship speeds obtained with NTPRO 5000 for the Pierson–
Moskowitz spectrum, full load conditions, and intended ship speed of 13.5 kn

Hs

(m)
Encounter wave angles waves ( ) 

0 15 30 45 60 75 90 105 120 135 150 165 180
0 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50
1 13.13 13.10 13.08 13.06 13.12 13.24 13.30 13.34 13.37 13.39 13.39 13.41 13.41
2 12.52 12.53 12.47 12.37 12.29 12.48 12.70 12.84 12.90 13.00 13.10 13.14 13.14
3 11.59 11.54 11.38 11.22 11.12 11.32 11.72 11.94 12.01 12.40 12.61 12.71 12.73
4 10.15 10.18 10.17 10.24 10.35 10.46 10.71 9.41 10.98 11.58 12.11 12.36 12.48
5 9.67 9.78 9.94 10.18 10.17 10.40 10.02 7.99 10.63 11.54 12.00 12.34 12.48
6 9.14 9.22 9.41 9.50 9.71 10.33 9.98  11.15 11.85 12.23 12.35
7 8.93 9.05 9.20 9.26 9.61 10.28 9.16  11.79 12.11 12.27
8 8.45 8.67 8.86 9.04 8.72 8.12  11.16 12.04 12.14
9 7.91 8.04 8.11 7.71 12.00

10 7.58 7.66 7.77 7.68
11 7.36 7.27 7.07 6.54
12 7.19 6.94 6.52

The resulting models enable systematic estimation of the ship’s attainable speed across
a range of operating and environmental conditions.
A set of models of the form

( )
att. , ref. wave S

ˆ ( , , )PM
NN iV f V H (5.5)

was developed to estimate the attainable ship speed based on data from Tables 5.1, 5.2,
and 5.3 for the Pierson–Moskowitz spectrum.

Table 5.3. Simulated attainable ship speeds obtained with NTPRO 5000 for the Pierson–
Moskowitz spectrum, full load conditions, and intended ship speed of 12.0 kn

Hs

(m)
Encounter wave angles waves ( ) 

0 15 30 45 60 75 90 105 120 135 150 165 180
0 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
1 11.61 11.59 11.53 11.53 11.59 11.71 11.78 11.83 11.88 11.88 11.90 11.92 11.92
2 10.97 10.98 10.91 10.79 10.73 10.84 11.11 11.28 11.32 11.47 11.59 11.64 11.65
3 9.82 9.76 9.61 9.55 9.38 9.50 9.85 10.11 10.16 10.81 11.09 11.22 11.26
4 8.48 8.54 8.60 8.61 8.81 8.66 8.91 9.63 10.48 10.97 11.17
5 8.17 8.25 8.35 8.54 8.41 8.59 7.32 9.45 10.38 10.89 11.07
6 7.68 7.75 7.77 7.86 8.00 8.34  10.17 10.84 11.04
7 7.40 7.45 7.49 7.52 7.66 7.63 9.99 10.83 11.01
8 6.79 6.97 7.15 7.32 6.56 6.12 10.60 10.87
9 6.19 6.28 6.30 6.04 10.62

10 5.82 5.81 5.98 5.83
11 5.56 5.43 5.20
12 5.30 5.05

The same applies to fuel oil consumption (FOC) models

 , ref. wave SFOC ( , , )NN ig V H (5.6)

where  {nNN,mNN,wNN,bNN,tNN},i nNN denotes the narrow NN, mNN the
medium NN, wNN  the wide NN, bNN  the bilayered NN, and tNN the trilayered NN.
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The descriptive statistics of all input and target variables are summarised in Table 5.4.

Table 5.4. Descriptive statistics of inputs and outputs/targets for NN training

Value
Inputs Outputs/Targets

Vref. (kn) αwave (°) HS (m) Vatt. (kn) FOC (t/h)
Minimum 12 0 0 5.05 0.4676
Mean 13.28 185.34 3.96 11.00 0.7830
Median 13.30 180 3 11.56 0.7896
Mode 13.50 0 0 13.10 0.4683
Maximum 14.50 360 12 14.50 1.0551
Stand. dev. 0.752 123.458 3.125 2.189 0.1601

The neural networks were trained using a k-fold cross-validation approach, with k = 9.
In other words, eight folds (corresponding to 80 % of the data) were used for training,
while one fold (i.e. 10 % of the data) was employed for validation. Also, an independent
sample comprising 10 % of the total dataset was reserved for testing. Basic
characteristics of developed neural network models are presented in Table 5.5.

Table 5.5. Characteristics of neural network models

NN model type Number of
hidden layers

Number of
hidden neurons

Activation
function

Iteration
limit

Regularization
strength

Narrow NN 1 (10) ReLU 1000 0
Medium NN 1 (25) ReLU 1000 0
Wide NN 1 (100) ReLU 1000 0
Bilayered NN 2 (10, 10) ReLU 1000 0
Trilayered NN 3 (10, 10, 10) ReLU 1000 0

The performance indexes for validation and testing of all models, expressed in terms
of RMSE, MSE, R2, and MAE (Section 3.2.3), are presented in Table 5.6. In order to
enable a direct comparison with the results of the linear models, performance indexes
for a set of multivariate linear regression models are also provided.

Table 5.6. Performance indexes for validation of the NN and LR models for the estimation of
the attainable ship speed

Model type
Validation Testing

RMSE MSE R2 MAE RMSE MSE R2 MAE
Linear 0.7599 0.5774 0.8782 0.5364 0.7986 0.6378 0.8782 0.5564
Interactions Linear 0.7584 0.5751 0.8787 0.5345 0.7970 0.6353 0.8787 0.5545
Robust Linear 0.7777 0.6049 0.8724 0.5253 0.8172 0.6678 0.8725 0.5446
Stepwise Linear 0.7582 0.5748 0.8788 0.5340 0.7970 0.6352 0.8787 0.5542
Narrow NN 0.5654 0.3197 0.9326 0.3894 0.4047 0.1638 0.9687 0.2819
Medium NN 0.2832 0.0802 0.9831 0.1915 0.2215 0.0491 0.9906 0.1630
Wide NN 0.1248 0.0156 0.9967 0.0864 0.0736 0.0054 0.9990 0.0525
Bilayered NN 0.1747 0.0305 0.9936 0.1261 0.1399 0.0196 0.9963 0.1046
Trilayered NN 0.1438 0.0207 0.9956 0.1006 0.1582 0.0250 0.9952 0.1108
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As shown in Table 5.6, all neural network-based models yielded excellent results and
can therefore be considered highly reliable for the purposes of ship routing
optimization and for the rapid estimation of attainable ship speed under various actual
or forecasted sea states. The best overall performance was achieved by the wide neural
network (wNN), both in the validation and in the testing phases. This model consists of
a single hidden layer with 100 hidden neurons and employs the ReLU transfer function.
For estimations of attainable ship speed within this research, only the wNN model was
employed. Comparison of predicted and true responses for wide neural network
predictions in the case of attainable ship speed estimation is shown in Figure 5.2.

Figure 5.2. Predicted vs. actual (true) response for wide neural network predictions
in the case of the attainable ship speed estimations

It is certainly important to emphasise that the high success rate of the machine learning
models is primarily due to the high-quality and noise-free data obtained through
numerical simulations of the NaviTrainer Pro 5000 and NavCad. Moreover, simulated
ship speeds in the time domain on the NTPro 5000 simulator were additionally
averaged over a time interval of at least 15 minutes of simulations, with speed values
monitored during stationary environmental conditions. With measured ship speed
data in real conditions, it is obviously not possible to expect such high accuracy.

Table 5.6 also reports the performance indexes of four multivariate linear regression
models (classical, interactions, robust, and stepwise). While these approaches achieved
comparable levels of accuracy among themselves, their overall performance was
significantly inferior to that of the neural networks. This outcome was expected, as the
nonlinearity introduced by the variation of the encounter angle cannot be adequately
captured by linear models. By grouping the data into characteristic intervals of
encounter angles, however, a notable improvement in performance can be achieved, as
demonstrated in the following section.
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5.2.2.2 Linear regression approach

From the general model (5.2), i.e. (5.5), one can derive a multivariate linear regression
model for the estimation of the attainable ship speed as follows

          ( ) ( ) ( ) ( ) ( )
att. 0 1 ref. 2 wave 3 S

ˆ ˆ ˆ ˆ ˆk k k k kV V H , (5.7)

where  ( )
0

ˆ ,k  ( )
1

ˆ ,k  ( )
2

ˆ k  and  ( )
3

ˆ k  are regression coefficients, and k represents associated
wave encounter angles, shown in Figure 5.2 and defined as

 
 
 


       
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        
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240
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(5.8)

This model scheduling according to encounter wave angle envelope provides much
more consistent and more accurate LR models, particularly in comparison with the
overall LR models presented with their performance indexes in Table 5.6. This arises
from the fact that encounter wave angles across the entire domain [0, 180°] introduce
a significant non-linearity that cannot be resolved with a pure LP model. This
rescheduling, as indicated in Table 5.7, simplifies the problem by implementing five LR
models that cover characteristic parts of the encounter angle range.

Table 5.7. Estimated regression coefficients with associated performance metrics for various
encounter wave angles

Encounter angles
envelope

Estimated regression coefficients Performance metrics

0
ˆ 1

ˆ 2
ˆ 3

ˆ RMSE MSE 2R 2
adj.R

Head seas 1.1683 0.8951 -0.0014 -0.6115 0.4466 0.1995 0.9605 0.9604
Bow-Quartering 0.4031 0.9620 -8.4∙10-5 -0.6493 0.3570 0.1274 0.9634 0.9632
Beam seas -0.3321 0.9904 0.0072 -0.6720 0.3533 0.1248 0.9483 0.9480
Stern-Quartering -1.6976 1.0063 0.0125 -0.3764 0.2993 0.0896 0.9122 0.9116
Following seas -1.4079 0.9794 0.0101 -0.2242 0.1879 0.0353 0.9568 0.9566

The model developed in this manner was not subsequently employed in the ship
routing optimization procedures; however, it represents a highly suitable variant that
can be implemented relatively easily and rapidly for a variety of practical applications
in which significantly high accuracy is not a priority.

5.2.3 Estimation of fuel consumption and CO2 emissions

An identical estimation approach to the one previously described was applied to
deploy models for estimating fuel consumption. The same neural network
architectures previously introduced (Table 5.5) were used to construct the models
(5.6). Accordingly, the inputs were identical to those specified in Table 5.4; however,
in this case, the target was fuel oil consumption, i.e. FOC (t/h).
The neural networks for FOC estimation were also trained using a k-fold cross-
validation approach, with k = 9. Eight folds (corresponding to 80 % of the data) were
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used for training, while one fold (i.e. 10 % of the data) was employed for validation. An
independent sample of 10 % of the total dataset was reserved for additional testing.
The performance indexes for validation and testing of all models, expressed in terms
of RMSE, MSE, R2, and MAE (Section 3.2.3), are presented in Table 5.8. A direct
comparison with the results of the linear models is enabled with performance indexes
for a set of multivariate linear regression models. All neural network-based models
again yielded excellent results, which guarantee high reliability for the purposes of ship
routing optimization and for the rapid estimation of the fuel oil consumption for the
reference ship under various actual or forecasted sea states.

Table 5.8. Performance indexes for validation of the NN and LR models for the estimation of
the fuel oil consumption (FOC)

Model type
Validation Testing

RMSE MSE R2 MAE RMSE MSE R2 MAE
Linear 0.0335 0.0011 0.9560 0.0261 0.0312 9.7280∙10-4 0.9627 0.0245
Interactions Linear 0.0297 8.8450∙10-4 0.9654 0.0230 0.0277 7.6785∙10-4 0.9705 0.0218
Robust Linear 0.0354 0.0013 0.9511 0.0246 0.0335 0.0011 0.9570 0.0237
Stepwise Linear 0.0297 8.8324∙10-4 0.9655 0.0230 0.0277 7.6698∙10-4 0.9706 0.0218
Narrow NN 0.0137 1.8802∙10-4 0.9927 0.0107 0.0126 1.5796∙10-4 0.9939 0.0089
Medium NN 0.0077 5.9135∙10-5 0.9977 0.0058 0.0078 6.1476∙10-5 0.9976 0.0060
Wide NN 0.0049 2.3526∙10-5 0.9991 0.0035 0.0047 2.2415∙10-5 0.9991 0.0033
Bilayered NN 0.0073 5.3955∙10-5 0.9979 0.0054 0.0076 5.8333∙10-5 0.9978 0.0055
Trilayered NN 0.0068 4.6548∙10-5 0.9982 0.0049 0.0076 5.8509∙10-4 0.9978 0.0055

The best overall performance was again achieved by the wide neural network (wNN),
both in the validation and in the testing phases. This model also consists of a single
hidden layer with 100 hidden neurons and employs the ReLU transfer function.  For
estimations of the fuel oil consumption within this research, only the wNN model was
employed. Visual comparison of predicted and actual (true) responses for wide neural
network predictions in the case of fuel oil consumption is shown in Figure 5.3.
In this case, the overall performance of four multivariate linear regression models
(classical, interactions, robust, and stepwise) was significantly better compared to the
previous one, but still inferior to that of the neural networks.
At the end of the voyage, based on the recorded fuel consumption values, the amount
of CO2 emissions can be estimated according to the following expression (IPCC, 2006)

2 2 2CO engine , actual , CO total COSFOC EF FOC EF ,i i ii
E P t      (5.9)

where
2COE  is the total CO₂ emissions (tonnes CO₂), FOCi  is the specific fuel

consumption in segment i (kg/kWh), engine,iP is the engine power in segment i (kW),

actual ,it  is the actual time in segment i (hours),
2COEF is equal to 3.114, which represents

the CO₂ emission factor (tonnes CO₂/tonne fuel), totalFOC (tonnes fuel) is the total fuel
oil consumption over the voyage.
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Figure 5.3. Predicted vs. actual (true) response for wide neural network predictions
in the case of the fuel oil consumption estimation

5.3 Determining critical sea states based on ship response

Due to the nature of the ship routing problem, determining critical sea states in this
research has proven valuable for setting operational limitations and constraints in
various environmental conditions. The reference vessel's seakeeping performance was
evaluated using DNV GL's HydroD software (Version 4.10)(DNV GL, 2017), which
employs first-order 3D potential theory through its integrated Wadam solver for
frequency domain analysis. The hydrodynamic analysis computed wave-induced loads
and motion responses across a systematic parametric study encompassing 182
discrete combinations of environmental conditions and operational parameters.
Response Amplitude Operators (RAOs) were generated for each combination,
providing complete response characteristics including rigid body motions in 6DOF.

5.3.1 Initial conditions and simulation combinations for seakeeping analysis

The analysis used HydroD's frequency domain capabilities to generate RAOs for the
vessel's 6DOF motions, sectional loads, and acceleration responses. The computational
domain included:
(a) Multiple wave frequency components defined through frequency sets ranging

from short-period to long-period waves;
(b) Directional wave headings specified via direction sets covering the full azimuth

range from head seas (0°) to following seas (180°);
(c) Operational speed variations to capture forward speed effects on the wave

encounter frequency;
(d) Loading conditions representing different operational drafts and mass

distributions.



86

The operational limits were identified by post-processing the hydrodynamic results
interface files (G*.SIF format) to determine and define environmental and operational
combinations where response parameters exceeded predefined threshold criteria
(Lloyd, 1998; ITTC, 2005). These limiting conditions were established based on:
(a) Motion amplitude criteria for vertical accelerations affecting crew performance

and equipment operation;
(b) Roll motion thresholds for cargo securing and stability margins;
(c) Relative motion constraints at critical locations for green water and slamming

events.
The full response matrix generated through this systematic analysis provided the
foundation for identifying operability criteria and applying operational guidance for
the reference vessel during the route optimization.
The vessel model was first analysed at a draft of 9.8 meters with the following
hydrostatic and mass distribution characteristics, presented in Table 5.9.

Table 5.9. Principal hydrostatic and mass distribution parameters of the reference vessel in the
initial loading condition

Parameter Value
Displacement 34,521.555 m³ (monohull configuration)
Vertical Center of Gravity (VCG) 8.01 m above baseline
Transverse Metacentric Height (GMt) 3.373 m
Pitch Radius of Gyration 42.013 m
Roll Radius of Gyration 10.889 m
Initial Trim 0 degrees (even keel condition)

Three distinct operational speeds were analysed to capture the vessel's response
across its operational range: 12.0, 13.5 and 14.5 knots, corresponding to the speeds
that were selected for simulations in other software for attainable ship speed
calculations.  Further analyses were also done for the ship in ballast, at a draft of 4.5 m.

The seakeeping analysis employed the ITTC two-parameter Pierson-Moskowitz/
Bretschneider wave spectrum to model irregular sea states. Seven distinct sea states
were analysed, characterised by significant wave heights ranging from moderate to
severe conditions, as shown in Table 5.10.

Table 5.10. The sea states used in the seakeeping analysis, with their corresponding modal,
average, and zero crossing periods, with the zero-th moment of the wave spectrum m0

Wave height (m) Modal period (s) Average period (s) Zero crossing period (s) m0 (m2)

3 7.992 s 6.175 s 5.713 s 0.562

4 8.990 s 6.946 s 6.427 s 1

5 9.990 s 7.719 s 7.141 s 1.562

6 10.989 s 8.491 s 7.855 s 2.25
7 11.985 s 9.261 s 8.568 s 3.062
8 12.976 s 10.026 s 9.276 s 4
9 13.980 s 10.802 s 9.994 s 5.062
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All spectra were configured with a peak enhancement factor of 1.0, representing fully
developed sea conditions without spectral peaking. A comprehensive range of wave
encounter angles was analysed to assess the vessel's response in all relative wave
directions. Thirteen discrete heading angles were evaluated at 15-degree increments.
Four strategic locations were defined for detailed motion response evaluation, each
selected to represent critical operational areas, and are thus presented in Table 5.11.

Table 5.11. The locations of strategic points on the ship, which were chosen for motion
response evaluation

Measurement Bridge Propeller Tip Slamming Location FP (On Deck)
Long. Pos. [m] 22.7 3.32 136.34 160.8
Offset [m] 0 0 0 0
Height [m] 27 5.2 0.1 13.6
Long. Pos. from CG [m] -62.68 -82.06 50.96 75.42
Offset from CG [m] 0 0 0 0
Height from CG [m] 20.07 -1.73 -6.83 6.67
MII slide friction coeff. 0.7 0.7 0.7 0.7
MII tip fore/aft. stance coeff. 0.17 0.17 0.17 0.17
MII tip side/side. stance coeff. 0.25 0.25 0.25 0.25
Exposure time for MSI [min.] 30 30 30 30

While Table 5.11 presents the standard MII parameters (sliding friction coefficient of
0.7 and stance coefficients of 0.17/0.25) required for potential motion-induced
interruption calculations, actual MII values were not computed in this study. Instead,
the operational limits were determined through direct assessment of roll, pitch, and
acceleration thresholds as presented in Table 5.12.
Considering everything explained above, the simulation matrix was structured to
capture the full range of operational and environmental conditions relevant to the
vessel's service profile. A total of 182 simulations with primary conditions were run,
derived from the systematic combination of 3 operational speeds, 13 heading angles
ranging from head seas to following seas at 15-degree intervals, and 7 distinct sea
states. Each simulation condition was evaluated at four designated assessment
locations throughout the vessel structure (Table 5.11). This spatial resolution enabled
the understanding of the variation in motion response characteristics along the vessel's
length and across different vertical positions relative to the centre of gravity.
The frequency-domain analysis was conducted for a range of encounter frequencies
from 0.17 to 3.0 rad/s, therefore capturing both low-frequency responses associated
with long-period swells and high-frequency responses from short-period wind waves.
This frequency range ensured adequate resolution of the vessel's resonant peaks in the
transfer functions while extending sufficiently beyond the natural periods to
characterise the full response spectrum relevant to operational conditions. This
comprehensive combination of initial conditions and simulation parameters enabled a
thorough evaluation of the vessel's seakeeping characteristics across its full
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operational envelope, providing RAOs and statistical motion responses necessary for
performance assessment and determination of operational limitations.
For clarity, while MII and MSI parameters were defined following standard
methodologies, the routing optimization in this study employed simplified operational
constraints based on direct motion thresholds (6° roll, 2-5° pitch, 0.2-0.5g
accelerations) and autopilot control limits (NaN values). This approach ensures
computational efficiency while maintaining conservative safety margins, with the
comprehensive seakeeping framework available for future enhanced implementations.

5.3.2 Safety margins in terms of critical sea states for safe navigation

The operational safety assessment included multiple criteria from established sources
(Lloyd, 1998; ITTC, 2005) to define limiting conditions for vessel operations. Table
5.12. presents the overview of comprehensive criteria commonly used in seakeeping
analyses.

Table 5.12. Overview of safety margin criteria for seakeeping analysis

Performance
Criteria Critical Location Limiting Value Source Operational

Impact

M
ot

io
n

Am
pl

it
ud

e
Cr

it
er

ia Roll Amplitude CG 6°
(significant)

Lloyd
(1998)

Cargo securing,
crew safety

Pitch Amplitude CG 2-5°
(significant)

Lloyd
(1998)

Forward
visibility

maintenance

Ac
ce

le
ra

ti
on

Cr
it

er
ia

Bridge Vertical
Acceleration

27 m > baseline;
59.95 m aft of CG

0.2 g RMS Lloyd
(1998)

Effective watch-
keeping

Bow Vertical
Acceleration

Forward
perpendicular 0.5 g RMS Lloyd

(1998)

Structural
damage

prevention

Lateral
Acceleration Bridge 0.1 g RMS ITTC

(2005)
Crew

performance

Re
sp

on
se

-
D

er
iv

ed
 C

ri
te

ri
a Wetness Bow (worst

location) 30 events/hr ITTC
(2005)

Deck operations
safety

Slamming Keel near the bow 20 events/hr ITTC
(2005)

Structural
integrity

Propeller
Emergence

Propeller tip;
2.81 m below CG

90 events/hr
(1/4 diameter)

ITTC
(2005)

Thrust
effectiveness

O
pe

ra
ti

on
al

Th
re

sh
ol

ds
 A

pp
lie

d

Normal
Operations All locations Roll < 15° Simulation

results
Full operational

capability
Reduced
Operations All locations 15° < Roll < 20° Simulation

results
Speed reduction

required

Emergency
Operations All locations 20° < Roll < 25° Lloyd

(1998)

Emergency
procedures

activated
Critical Stability
Risk All locations Roll > 25° Lloyd

(1998)
Immediate

evasive action
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The operability criteria based on significant wave height and wave encounter angles
are presented in Table 5.13. These results were implemented into operational
constraints within the route optimization algorithm (Chapters 6 & 7). The optimization
framework thus ensures that any proposed route segment violating the established
safety margins, whether through excessive roll and pitch angles or acceleration levels,
is automatically rejected or penalised, forcing the algorithm to seek safer alternatives.
Analysis of the simulation results reveals progressive degradation of safety margins as
sea states increase from 3 m to 9 m significant wave height. Based on the computed
responses, operational limitations can be defined through several thresholds. When
significant wave heights remain at or below 4 meters, the vessel can safely navigate in
almost all wave directions. As conditions deteriorate to 4-6 meter wave heights, beam
seas and stern-quartering seas should be avoided. Severe conditions with 6-8 meter
significant height waves demand head seas navigation only with reduced speed, while
extreme conditions exceeding 7 meters necessitate seeking immediate shelter. Head
seas remain mostly safe up to significant wave heights of 6-7 meters, while bow
quartering and stern-quartering seas present a moderate risk and should be limited to
conditions below 5 meters. Stern-quartering seas pose the highest risk, requiring
restriction to wave heights below 4 meters.
The largest observed heave RMS amplitude is 2.159 m, occurring at 14.5 knots in head
seas with Hs = 9 m, corresponding to a significant amplitude of 4.32 m. The observed
heave response exhibits a consistent increase with rising wave height and reaches its
maximum in long-period seas. This behaviour is attributed to the reduced wave
encounter frequency in this configuration, where the vessel tends to ride the wave
crests rather than probing through them, resulting in amplified vertical displacement.
Of the criteria presented in Table 5.12, the routing optimization framework
implemented in this thesis implemented only the roll limits (6° significant), pitch limits
(2-5° significant), and vertical accelerations (0.5g bow), with the primary operational
boundary being autopilot failure (NaN values in lookup tables). The remaining criteria
are presented for methodological context but were not applied as optimization
constraints.

Table 5.13. Operability limitations based on significant wave height and relative heading

Wave Direction Encounter
wave angle Hs < 4 m 4 m ≤ Hs < 6 m 6 m ≤ Hs < 8 m Hs ≥ 8 m

Head Seas 0° - 30° Safe Safe Reduced Speed -

Bow Quarter 30° - 60° Safe Caution Required Avoid -

Beam Seas 60° - 120° Safe Avoid Avoid -

Stern Quarter 120° - 150° Safe Caution Required Avoid -

Following Seas 150° - 180° Safe Safe* Reduced Speed** -

* Surf-riding risk monitoring required; ** Propeller emergence risk above HS = 7 m

The maximum pitch RMS amplitude is 2.30°, identified at 14.5 kn in head seas with
Hs = 9 m, corresponding to a significant amplitude of 4.6°. Similar to heave, pitch
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response intensifies with increasing wave height and becomes most pronounced in
head seas where the wavelength approximates the ship length. Under these conditions,
the ship undergoes pronounced angular oscillations about its centre of flotation as it
traverses the wave. The roll motion exhibits the most severe response, with a peak RMS
amplitude of 22.52° at 14.5 kn in stern quartering seas with Hs = 9 m, corresponding to
a significant amplitude of 45.04°. The high magnitude of roll response at quartering
headings results from the excitation of the ship's natural roll frequency by shorter-
period oblique waves, leading to resonant amplification (Prpić-Oršić & Čorić, 2006).
Based on these analyses, the following operational limits can be implemented as
constraints in the optimization algorithms. For HS up to 4 meters, the vessel may
navigate in all directions without restriction. Between 4-6 m, beam and quartering seas
(30-150° relative heading) should be avoided due to excessive roll response, with the
optimization penalising routes through these conditions. When wave heights reach
6-7 m, only head seas (0-30°) remain somewhat acceptable, with speed reduction to
the reference speed of 12 kn required to manage added resistance and maintain
propeller immersion. Above 8 m, hard constraints should force route change around
the weather system or mandate seeking shelter, as multiple safety margins become
significantly reduced. This approach allows the routing algorithm to balance voyage
time, fuel efficiency, and safety by automatically selecting head seas routes and
appropriate reference speeds (corresponding to MCR) when severe weather is
encountered, or re-routing entirely when conditions exceed operational thresholds.
The vertical accelerations induced by these motion responses further define
operational boundaries. The bridge experiences maximum vertical accelerations of
0.41g RMS at 14.5 knots in head seas with Hs = 9 m, exceeding the 0.2g threshold for
effective watch-keeping. Likewise, bow vertical accelerations reach critical levels
approaching 0.5g RMS in severe head seas, indicating potential crew safety concerns.
The acceleration and motion thresholds thus serve as progressive warning indicators,
allowing for proactive adjustments to speed and heading well before encountering the
critical NaN conditions where navigation becomes effectively impossible.
In Figure 5.4, selected roll motions are shown, along with critical green water
thresholds, which are computed according to Lloyd (1998) and ITTC guidelines. The
polar diagrams for roll RMS are shown for significant wave heights of 4, 5, 6 and 7
meters, respectively. Associated diagrams for heave and pitch can be found in
Appendix C.
The figure shows polar plots of the ship’s roll response for four sea states (Hs = 4–7 m),
overlaid with regions where operational limits are exceeded. The blue-shaded areas
mark headings and speeds where roll RMS exceeds 6°, occurring predominantly in
beam and quartering seas. The magenta regions indicate green-water events exceeding
30 per hour, which occur mainly in head and bow-quartering seas and expand
significantly with increasing wave height. As Hs grows, both limiting regions widen,
illustrating how the ship’s operational envelope shrinks in more severe sea states.
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Figure 5.4. Roll RMS values and green water events for significant wave heights
HS = 4 m (a), HS = 5 m (b), HS = 6 m (c) and HS = 7 m (d)
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6 MODELLING OF SHIP WEATHER ROUTING OPTIMIZATION

6.1 Stochastic ETA-based ship voyage planning

Ship weather routing in this thesis is primarily based on the uncertainty of
meteorological variables, uncertainty of attainable ship speed and uncertainty of
estimated time of arrival (ETA). The overall research framework for quantifying
attainable ship speed uncertainty under stochastic weather conditions is presented in
Figure 6.1.

Figure 6.1. Integrated framework for quantifying attainable ship speed
uncertainty under stochastic weather conditions
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The proposed framework employs a parallel processing approach that integrates two
complementary main data streams: weather forecast uncertainty quantification (left
branch, highlighted in blue) and ship performance simulation (right branch,
highlighted in pink). The final part of the framework, highlighted in green, presents
joint inter-relationship analysis between various uncertainty metrics with applications
in voyage planning and ship routing.
The first data stream pertains to the analysis of selected meteorological variables
obtained from reliable sources, including weather forecasts and actual sea states.
Forecast data are pre-processed by selected lead times and by sea state according to
the Douglas scale. To associate this data with specific spatial locations, a spatial
discretisation of the North Atlantic region is performed into a rectangular grid whose
nodes define the spatial points of interest. For each node, both forecast and observed
(actual) values of key variables are extracted, including significant wave height, wave
period, wave direction, wind speed, and wind direction. These data are essential for
quantifying the uncertainty of the aforementioned variables, i.e. for computing
uncertainty metrics (e.g., RMSE, MAE, Bias, UGR, CRPS, IoA, FSS, CMAE) described in
Section 4.2.1. The uncertainty metrics are determined for all variables of interest
across the specified lead-time bins and sea-state classes.
The second data stream pertains to the analysis of uncertainty metrics for an attainable
ship speed under various sea states. In this context, the attainable speeds for a selected
reference vessel across a range of sea conditions are first determined. The simulation
environments Wärtsilä NaviTrainer NTPRO 5000 and HydroComp NavCad are
employed. Simulations were conducted using the mathematical model of the reference
ship for three intended ship speeds, 13 significant wave heights, and 13 encounter
wave angles. The NaviTrainer NTPRO 5000 supports simulations with two wave
spectra (JONSWAP and Pierson–Moskowitz), whereas NavCad uses a resistance-
decomposition approach. The results from all simulation scenarios were organised as
lookup tables. Based on these results, it becomes possible to determine the attainable
ship speed for both observed (actual) and forecast meteorological inputs from the first
data stream of the framework, as a function of intended ship speed, lead time, and sea
state. Having obtained attainable-speed values in this manner, we then quantified their
uncertainty for all three modelling approaches (JONSWAP, Pierson-Moskowitz, and
NavCad). In this regard, the same uncertainty metrics for attainable ship speed are
computed as those used for the meteorological non-directional variables.
Having quantified the uncertainties associated with all meteorological variables of
interest, together with the attainable ship speed uncertainties obtained from the three
alternative approaches, one can subsequently carry out the inter-relationship analyses
between predictor (meteorological) and response (ship speed) variables, ultimately
providing quantitative insights for voyage planning applications. This integrated
approach enables the systematic propagation of weather forecast uncertainties
through ship performance models, as described in the following subchapters, and
validated in Chapter 7.
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6.1.1 Voyage planning and ETA estimation

6.1.1.1 Voyage planning with weather uncertainty

Let the route be defined by a sequence of  1n  waypoints:  0 1{ , ,..., }nW W W W  where
each waypoint is defined as:

  { , , }i i i iW d (6.1)

where     [ 90 ,90 ]i  is latitude,     [ 180 ,180 ]i  is longitude, and id  is the distance
to the next waypoint in nautical miles,  1,..., .i n
The cumulative distance to the waypoint i  is defined as




 1

0
,i

i jj
D d (6.2)

with 0 0,D  while the total route distance is:



  1

total 0
.n

n jj
D D d (6.3)

For a given distance  total[0, ]d D  along the route, the  thk  segment is identified such

that   1k kD d D . The position  ( ) ( ( ), ( ))P d d d  at distance d  can be calculated
using linear interpolation:




 

1

[0,1]k

k k

d Df
D D

(6.4)

where      1( ) ( )k k kd f  and      1( ) ( )k k kd f .

For the purpose of weather forecasts, the North Atlantic region has been divided into a
rectangular, discrete grid    {( , , ) : , },g g

i i jG t i I j J  where all neighbouring points

are 50 nm apart, as previously shown in Figure 4.1. For each grid point, we have
weather parameters

S , p, wave, wave, wind, wind,( , , , , , ).ij ij ij ij ij ij ijW H T V   (6.5)

Thus, the weather at any point   ( , , )ijW W t  is based on the nearest point

,
( *, *) argmin ,iji j
i j d      where       2 2( ) ( )g g

ij i id . (6.6)

Temporal selection was based on indices for which criteria    maxjt t t , max 3 h,t 

is valid. The forecast data was handled with a lead time ,  i.e. as issue ,t t    where

issuet  is the forecast issue date and time, and   is the forecast hour.

Uncertainty metrics are classified according to:

(a)  Wave height class:  S [0,2.5], [2.5,4], [4,6],[6,9]  (m)H

(b)  Wave encounter angle class:
 wave {Head, Bow-Quartering, Beam, Stern-Quartering, Following}

(c)  Lead time class:    [0,24], [24,72], [72,120],[120,168]  (h).
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Error metric lookup function
   S wind wave( , , , , ) {RMSE, MAE, Bias, UGR, CRPS, IoA, FSS}pH T V (6.7)

retrieve required uncertainty metrics, as defined in Section 4.2, for a given sea state
condition expressed in terms of S ,H ,pT wind ,V wave  and  .

6.1.1.2 Attainable ship speed with weather uncertainty

As already defined in Section 5.2.2, the attainable ship speed can be estimated, with
wind-based variables neglected, in a more general manner according to

( )
att. ref. S wave( , , , ),j

j pV f V H T  (6.8)

where {PM, JS,NC},j  but for the purpose of this research, formulations (5.2), i.e.
(5.5), based on the P-M spectrum, were solely adopted for further analyses.

Thus, the uncertainty of (PM)
att.V  is estimated based on associated uncertainty metrics

 S wave( , , )H , while the actual ship speed follows a normal distribution around the
predicted value, i.e.

 ( PM ) ( PM )
att. att.

(PM) 2
att.,actual ,

V V
V    (6.9)

where (PM)
att.

(PM)
att.,predicted S waveBias( , , )   

V
V H  and (PM)

att.
S waveRMSE( , , ).  

V
H

The term (6.9) can be rewritten in a more explicit way as
    (PM) (PM)

att.,actual att.,predicted S waveBias( , , )V V H (6.10)
where 2

S wave(0,RMSE ( , , )).   H

Ship speed confidence intervals (CI) are defined as:
(PM) (PM) (PM)

att. att.,predicted att.,predicted[ Bias RMSE, Bias RMSE]      V V k V k (6.11)

where k  is a coverage factor, e.g.,  1.96k  for 95 % confidence.

6.1.1.3 ETA estimation with weather uncertainty

Given the remaining distance rem.d  and uncertain ship speed (PM)
att.V , estimated time of

arrival (ETA) can be written as:

  rem.
current (PM)

att.

ETA ,dt
V

(6.12)

where currentt  is the current time.

If one, based on (6.12), defines a function

(PM ) rem.
att. current (PM )

att.

( ) ,dg V t
V

  (6.13)

then
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(PM ) rem.
att. (PM ) 2

att.

( ) ,
( )

dg V
V

   (PM ) rem.
att. (PM ) 3

att.

2( )
( )

dg V
V

  . (6.14)

A Taylor expansion of the function (6.13) about the point ( PM )
att.

(PM)
att. V

V   gives

( PM ) ( PM ) ( PM )
att. att. att.

( PM ) ( PM )
att. att.

(PM) (PM)
att. att.

(PM) 2
att.

( ) ( ) ( )( )

1 ( )( ) ...
2

V V V

V V

g V g g V

g V

  

 

    



   


(6.15)

By dropping the higher-order terms, the approximation of (6.15) in terms of the first-
order Taylor expansion yields

( PM ) (PM ) (PM )
att. att. att.

(PM) (PM)
att. att.( ) ( ) ( )( )

V V V
g V g g V     . (6.16)

If one takes [ ]  of both sides of (6.16), it can be written

( PM ) ( PM ) ( PM )
att. att. att.

( PM )
att. ( PM )

att.

(PM) (PM)
att. att.

constant [ ] 0

[ ( )] ( ) ( ) [ ]

V

V V V

V

g V g g V



  

 

  



 
 

(6.17)

which finally yields

( PM )
att.

( PM )
att.

(PM) rem.
att. current[ ( )] [ETA] ( ) ,

V
V

dg V g t


      i.e. (6.18)

( PM )
att.

rem.
ETA current:

V

dt


  . (6.19)

From the variance point of view, if one takes Var[ ]  of both sides of (6.16), it yields

( PM ) ( PM ) ( PM )
att. att. att.

(PM) (PM)
att. att.Var[ ( )] Var[ ( )] Var[ ( )( )]

V V V
g V g g V     . (6.20)

Following (6.9), (6.12), (6.13), (6.14), (6.20) and simple variance rules such as
Var( ) 0,k  2Var( ) Var( )k X k X    and Var( ) Var( ),X k X   where k is a constant
and X is a random variable, one can write as follows

( PM )
att.

(PM)2
att.Var(ETA) ( ( )) Var( )

V
g V (6.21)

( PM )
att.

( PM ) ( PM )
att. att.

2 2

2 2 2rem. rem.
ETA S wave2 2: Var(ETA) RMSE ( , , )

V
V V

d d H   
 

   
     
   
   

. (6.22)

Finally, the ETA distribution can be written based on (6.19) and (6.22) as
2

ETA ETAETA ( , )   . (6.23)

For a voyage with multiple segments, each with different conditions  S wave( , , )H , one
can also define the segment time uncertainty. Namely, for any segment i  with distance

id  and conditions S, wave,( , ),i iH  time it  can be expressed as

 (PM )
att.,

i
i

i

dt
V

(6.24)

and therefore  2
it
 can be written as
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( PM )
att.,

2

2 2
S, wave,2 RMSE ( , , ).

i

i

i
t i i i

V

d H  


 
  
 
 

(6.25)

Finally, the total ETA uncertainty, under the independence assumption, yields as
 2 2

ETA,total .
iti

(6.26)

As the voyage progresses and forecast lead time changes, one can write
  baseRMSE( ) RMSE ( )g (6.27)

where ( )g  is an increasing function capturing forecast degradation and baseRMSE  is
the baseline RMSE at the initial or shortest forecast lead time.
Finally, ETA point estimate with uncertainty, which is one specific value, i.e. a single
point in time, can be expressed as:

   ETA ETAETA ,k (6.28)

where ETA  is the expected (mean) arrival time, k  is the coverage factor and  ETA  is
the standard deviation of ETA in hours. For instance, if  1.96,k  which corresponds to
95 % prediction intervals, there's a 95 % probability the actual arrival will fall within
bounds  lower upperETA [ETA , ETA ],  where lowerETA  presents the earliest likely arrival

if conditions are favourable, and upperETA  presents the latest likely arrival if conditions

are unfavourable. In this context, the coverage probability statement can be written as

actual lower upper(ETA [ETA , ETA ]) 0.95.  (6.29)

From all the above, one can finally conclude that the ship will arrive at the destination
port by the target date/time targett  with probability   that can be expressed as

target ETA
target

ETA

{ETA }
t

t



 

  
 

 (6.30)

with  ( )  as the cumulative distribution function (CDF) of the normal distribution.

6.1.2 Quantification of attainable ship speed uncertainty under stochastic
weather conditions

The transformation of meteorological forecast uncertainties into ship speed prediction
errors determines the effectiveness of operational weather routing. This analysis
examines how three modelling frameworks, NTPRO 5000 (with Pierson-Moskowitz
and JONSWAP spectra) and NavCad, propagate weather forecast uncertainties to
attainable speed estimates across different operational conditions and sea states. The
following Figure 6.2 shows the uncertainty propagation from meteorological variables
to attainable ship speed predictions for an intended speed of 14.5 knots under sea state
5 conditions (Hs = 2.5-4 m). The NTPRO 5000 JONSWAP spectrum results (Figure 6.2a)
show RMSE values increasing from 0.06-0.11 knots at 24 h to 0.45-0.82 knots at 168 h
lead time.
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Lead time (h)
(a)

Lead time (h)
(b)

Lead time (h)
(c)

Figure 6.2. Attainable ship speed uncertainty metrics for JONSWAP spectrum (a), Pierson–
Moskowitz (b) and NavCad (c); Intended ship speed 14.5 kn and sea state 5 (Hs = 2.5-4 m)
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The uncertainty growth exhibits a quasi-linear pattern, with a notable acceleration
after 72 hours. MAE values remain consistently lower than RMSE by approximately 20
%, indicating the presence of outlier predictions that significantly impact error
statistics. The bias fluctuates between -0.03 and +0.5 knots, suggesting minimal
systematic error in the JONSWAP-based predictions. The IoA maintains values above
0.4 throughout most of the forecast period, demonstrating robust model performance
even with increasing uncertainty.
The Pierson-Moskowitz spectrum implementation in NTPRO 5000 (Figure 6.2b),
however, produces slightly higher uncertainty levels, with RMSE reaching 1.35 knots
at maximum lead time. This 12 % increase compared to JONSWAP results reflects the
different spectral characteristics, particularly in fetch-limited conditions typical of the
North Atlantic. The FSS values show more rapid degradation, falling below 0.3 after 96
hours, suggesting that the Pierson-Moskowitz spectrum may be more sensitive to
spatial variations in wave field predictions. CRPS values indicate good probabilistic
calibration in short to medium-range forecasts but deteriorate notably beyond 72 h.
NavCad predictions (Figure 6.2c) exhibit the lowest uncertainty levels among the three
models, with RMSE reaching 0.76 knots at 168-hour lead time. The distinct stepped
pattern in uncertainty growth corresponds to the quasi-static resistance calculation
approach, which responds more dramatically to discrete changes in environmental
conditions. The positive bias averaging 0.25 knots suggests that NavCad's
hydrodynamic model tends to overestimate speed loss in dynamic conditions. Despite
higher absolute errors, the UGR remains relatively constant at 2 %/h, indicating a
predictable UGR that could be valuable for risk-based planning.
Attainable ship speed uncertainty for a lower intended speed of 12.0 knots under the
same sea state 5 conditions is presented in Figure 6.3, revealing important speed-
dependent characteristics in uncertainty propagation. The NTPRO 5000 JONSWAP
results (Figure 6.3a) demonstrate markedly different uncertainty behaviour compared
to the 14.5-knot case. RMSE values grew from 0.05-0.12 knots at 24 h to 0.51-0.64
knots at 168 h, representing a 10 % average decrease in absolute uncertainty
compared to higher speed operations. The positive bias averaging +0.21 knots at 168
h indicates systematic over-prediction of attainable speeds at lower intended speeds,
suggesting that the vessel struggles more to maintain course in challenging conditions
when operating below optimal speed.
The Pierson-Moskowitz implementation (Figure 6.3b) shows even more pronounced
uncertainty growth at lower speeds, with RMSE reaching an average of 0.59 knots at
maximum lead time. The IoA drops below 0.85 after 96 hours, indicating significant
forecast skill degradation. The FSS pattern reveals interesting threshold behaviour,
with sharp drops at 72-hour intervals, suggesting that the model's sensitivity to
environmental conditions increases at lower operational speeds.
NavCad predictions (Figure 6.3c) exhibit the most dramatic response to speed
reduction, with RMSE values reaching 0.8 knots at 168-hour lead time, i.e. a 20 %
increase over the 14.5-knot scenario.
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Figure 6.3. Attainable ship speed uncertainty metrics for JONSWAP spectrum (a), Pierson–
Moskowitz (b) and NavCad (c); Intended ship speed 12 kn and sea state 5 (Hs = 2.5-4 m)
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The highly variable bias pattern, oscillating between +0.05 and +0.48 knots, suggests
that the quasi-static resistance model struggles to capture the non-linear speed-power
relationships at lower speeds. The stepped uncertainty growth pattern becomes more
pronounced, with distinct jumps corresponding to sea state transitions. UGR analysis
reveals an exponential growth rate of 2 % per hour at 168 h, similar to UGR at a nominal
speed of 14.5 knots.

Overall, the analysis shows that the propagation of forecast uncertainty to attainable
ship speed is highly dependent on the selected modelling framework and the vessel’s
operating speed. Among the tested models, NTPRO 5000 with the JONSWAP spectrum
delivered the most consistent results, while the Pierson-Moskowitz variant and
NavCad produced larger errors and faster performance degradation. At reduced
speeds, all approaches exhibited stronger error growth and less stability, confirming
the non-linear interaction between environmental loads and ship response. These
findings highlight the importance of carefully matching the modelling method to both
operational requirements and forecast horizons.

6.1.3 Inter-relationship analysis between attainable ship speed and weather
 variables uncertainty metrics

Correlation between attainable ship speeds metrics and selected meteorological
variables uncertainty metrics from Section 4.2 was conducted by means of the Pearson
correlation coefficient



 

 


 


 

1

2 2
1 1

( )( )

( ) ( )

n
i ii

n n
i ii i

X X Y Y
r

X X Y Y (6.31)

where iX  is the predictor variable value (e.g., SRMSE( )H ), iY  is the response variable

value (e.g., ( JS)
att.RMSE( )V ), X  and Y  are the mean values of the predictor and response

variables, respectively, and n  is the number of data points.
Considering the excessive amount of result data, only the correlation between
corresponding uncertainty metrics was pointed out, e.g. ( JS)

S att.(RMSE( ),RMSE( ))r H V .
Therefore, only the diagonal elements of correlation matrices were analysed for the
purpose of this work, according to

( ) ( )( )
diag. { , }m mlr r X Y (6.32)

for each metric m  and lead time ,l  where  {RMSE, MAE, Bias, UGR,m
CRPS, IoA, FSS}  and  {0-24 h, 24-72 h, 72-120 h, 120-168 h}.l

When taking into account attainable ship speed ( )
att.

jV and significant wave height S ,H
where {PM, JS, NC},j one can define the following correlation coefficients in terms
of the uncertainty metrics:
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A systematic correlation analysis was conducted between meteorological and ship
speed uncertainty metrics across all simulation conditions to quantify how weather
forecast errors propagate through different ship performance models. The Pearson
correlation coefficient (6.31) was computed for corresponding uncertainty metrics
between predictor (meteorological) and response (ship speed) variables, focusing on
diagonal elements of the correlation matrices as expressed in (6.32). This
comprehensive analysis covered three modelling approaches (NTPRO 5000 JONSWAP,
NTPRO 5000 Pierson-Moskowitz, and NavCad), two intended speeds (12.0 and 14.5
knots), all sea states (0-7), and five encounter angle groups.
The overall correlation analysis reveals several fundamental patterns in uncertainty
propagation that persist across different modelling frameworks and operational
conditions. First, the correlation strength between meteorological and ship speed
uncertainties demonstrates clear hierarchical relationships: wave height uncertainties
show the strongest and most consistent correlations with speed prediction errors
(typically 0.65-0.97 for RMSE/MAE), followed by wave period (0.45-0.85), while wind-
related variables exhibit the most variable correlations (0.26-0.99). This hierarchy
reflects the dominant role of wave-induced resistance in mechanisms that cause ship
speed loss. Second, the correlation patterns exhibit strong dependencies on encounter
angle geometry. Head seas (0-30°) consistently produce the highest positive
correlations for magnitude-based metrics (RMSE, MAE), indicating direct error
propagation. Beam seas (75-105°) show the weakest and most variable correlations,
reflecting the complex lateral dynamics not fully captured in the models. Following
seas (150-180°) demonstrate unique bimodal behaviour, with correlations either
strongly positive or strongly negative depending on the specific metric and lead time,
suggesting threshold effects in surf-riding and broaching conditions.
Third, the temporal evolution of correlations reveals increasing coupling strength with
forecast lead time. Short-range forecasts (0-24h) show moderate correlations (0.65-
0.85), while extended-range forecasts (120-168h) exhibit either very strong (>0.95) or
very weak (<0.3) correlations, indicating that uncertainty relationships become more
deterministic or completely decouple as forecast skill degrades. The NTPRO 5000
Pierson–Moskowitz implementation demonstrates the most balanced correlation
patterns across all conditions.
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As illustrated in Table 6.1, according to (6.33), for the 14.5-knot case with wave height
uncertainties, RMSE and MAE correlations maintain consistently strong positive
relationships (0.223-0.973), with head seas showing the highest values (0.870-0.970).
The correlation strength increases systematically with lead time, reaching maximum
values at 120-168 hours. Bias correlations reveal physically consistent inverse
relationships (-0.713 to -1.000) for head and following seas, where wave height over-
prediction leads to speed under-prediction, particularly pronounced in head and
following seas. Wind speed correlations for the same Pierson–Moskowitz
configuration exhibit more complex patterns. While RMSE and MAE maintain positive
correlations (0.259-0.996), they are approximately 8-10 % weaker than corresponding
wave height correlations. Notably, bias correlations show predominantly positive
values, contrary to wave height patterns, indicating that wind over-prediction
coincides with speed over-prediction, a counterintuitive result suggesting limitations
in aerodynamic modelling.
The JONSWAP spectrum implementation, although not shown in tables here, produced
more polarised correlation patterns. Perfect or near-perfect correlations (±1.000)
appeared frequently, particularly at extended lead times, suggesting oversimplified
uncertainty relationships. This deterministic behaviour likely stems from the
JONSWAP spectrum's assumption of fully developed seas, which may not adequately
represent the variable fetch conditions typical of North Atlantic operations.

Table 6.1. Correlation between uncertainty metrics of attainable ship speed (PM)
att.V and

uncertainty metrics of significant wave height HS in case of intended ship speed 14.5 kn and
sea states 0-7

Pearson correlation coefficient ( )( , )j
ir x y

Encounter angles Lead
time (h)

(PM )
1r

(PM )
2r

(PM )
3r

(PM )
4r

(PM )
5r

(PM )
6r

(PM )
7r

Head seas

0-24 0.870 0.885 -0.993 -0.663 -0.990 0.888 -0.748
24-72 0.931 0.937 -0.991 -0.441 -0.992 -0.574 0.882
72-120 0.970 0.961 -0.971 0.436 0.917 0.523 0.894
120-168 0.920 0.910 -0.957 0.814 0.841 -0.958 -0.974

Bow-Quartering

0-24 0.872 0.864 -0.996 -0.858 -0.977 -0.025 -0.911
24-72 0.959 0.955 -0.978 0.380 -0.932 0.973 -0.468
72-120 0.956 0.937 -0.925 0.657 0.520 -0.502 -0.016
120-168 0.970 0.965 -0.969 0.183 0.979 0.138 -0.615

Beam

0-24 0.652 0.648 -0.035 0.157 -0.978 -0.809 -0.291
24-72 0.743 0.742 -0.982 0.544 -0.932 -0.939 0.934
72-120 0.682 0.589 -0.532 0.718 -0.505 -0.985 0.988
120-168 0.842 0.795 -0.970 0.559 0.784 -0.997 0.998

Stern-Quartering

0-24 0.223 0.244 -0.752 0.890 -0.982 -0.711 -0.530
24-72 0.973 0.951 -0.965 0.687 0.859 -0.506 0.742
72-120 0.973 0.941 -0.978 0.142 1.000 -0.680 0.861
120-168 0.971 0.954 -0.930 0.742 0.994 -0.927 0.858

Following

0-24 0.928 0.963 -0.713 0.236 -0.985 -0.848 0.946
24-72 0.944 0.937 -0.980 -0.552 -0.997 -0.949 0.866
72-120 0.950 0.955 -0.998 -0.068 -0.619 -0.990 0.961
120-168 0.562 0.538 -1.000 0.176 -0.132 -0.635 -0.906
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CRPS value correlations are predominantly negative here in the head and following
seas (-0.949 to -0.134), suggesting that improved probabilistic wind forecasts actually
reduce speed prediction reliability in these conditions. This counterintuitive result
may reflect the non-linear aerodynamic effects that are not fully captured in the
simulation model.
UGR correlations reveal highly variable relationships ranging from -0.858 to 0.890,
with notable transitions between negative and positive values across different
conditions and lead times. The strongest positive correlations appear in stern-
quartering seas, suggesting that forecast degradation rates are most predictive of
speed uncertainty growth when waves approach from the quarter. Conversely, bow-
quartering seas show the most extreme negative correlation at short lead times,
transitioning to moderate positive values at medium range. Head seas demonstrate a
systematic evolution from negative correlations at shorter lead times to positive values
at extended forecasts, indicating a reversal in the relationship between forecast
degradation and speed uncertainty as the forecast horizon extends. Following seas
exhibit weak and inconsistent correlations, suggesting that forecast degradation rates
have limited predictive value for speed uncertainty in these favourable conditions.
Looking at Appendix B, which presents the correlation patterns for the NavCad
implementation at 14.5 knots, several distinctive characteristics emerge that
differentiate it from the Pierson–Moskowitz model. The NavCad framework exhibits
remarkably high correlation coefficients for RMSE and MAE in most conditions,
frequently approaching perfect correlation (0.987-1.000), particularly in head seas and
bow-quartering angles. This near-deterministic behaviour reflects NavCad's quasi-
static resistance calculation methodology, where environmental inputs translate more
directly into speed predictions without the dynamic motion effects captured by the
time-domain NTPRO simulations. The most interesting feature in Appendix B is the
dramatic variation in correlation strength across different encounter angles. Following
seas demonstrate particularly anomalous behaviour, with RMSE correlations as low as
0.081 at 0-24h lead time, jumping to near-perfect correlation (1.000) at 72-120 h. This
extreme variability suggests that NavCad's resistance-based approach fails to fully
capture the complex dynamics of circumstances that occur in following seas, where
both resistance and lateral forces contribute to speed loss in non-linear ways. The
beam seas correlations, while stronger than in the Pierson–Moskowitz model, still
show the weakest overall values (0.424-0.787 for RMSE), confirming that the quasi-
static approach has fundamental limitations in representing lateral hydrodynamic
interactions that become dominant when waves approach from abeam.
Lower operational ship speeds fundamentally alter correlation structures, as
demonstrated in the 12.0-knot analyses. Table 6.2 and Appendix B show selected
examples. The Pierson–Moskowitz implementation at 12.0 knots reveals several
distinct changes: overall correlation magnitudes decrease by 15-20 % compared to
14.5 knots, negative correlations become more prevalent across all metrics, and
encounter angle sensitivity increases dramatically. Beam seas, which showed
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moderate correlations at higher speeds, exhibit weak or even negative correlations
(-0.717 to 0.008 for wave height RMSE) at lower speeds. Comparing correlation
patterns across the three modelling frameworks reveals fundamental differences in
uncertainty propagation mechanisms. JONSWAP consistently produces moderate,
physically interpretable correlations that vary smoothly with conditions. It generates
more extreme relationships that may oversimplify complex ship-wave interactions.

Table 6.2. Correlation between uncertainty metrics of attainable ship speed (PM)
att.V and

uncertainty metrics of significant wave height HS in case of intended ship speed 12.0 kn and
sea states 0-7

Pearson correlation coefficient ( )( , )j
ir x y

Encounter angles Lead
time (h)

(PM )
1r

(PM )
2r

(PM )
3r

(PM )
4r

(PM )
5r

(PM )
6r

(PM )
7r

Head seas

0-24 0.870 0.885 -0.993 -0.663 -0.990 0.888 -0.748
24-72 0.931 0.937 -0.991 -0.441 -0.992 -0.574 0.882
72-120 0.970 0.961 -0.971 0.436 0.917 0.523 0.894
120-168 0.920 0.910 -0.957 0.814 0.841 -0.958 -0.974

Bow-Quartering

0-24 0.872 0.864 -0.996 -0.858 -0.977 -0.025 -0.911
24-72 0.959 0.955 -0.978 0.380 -0.932 0.973 -0.468
72-120 0.956 0.937 -0.925 0.657 0.520 -0.502 -0.016
120-168 0.970 0.965 -0.969 0.183 0.979 0.138 -0.615

Beam

0-24 0.652 0.648 -0.035 0.157 -0.978 -0.809 -0.291
24-72 0.743 0.742 -0.982 0.544 -0.932 -0.939 0.934
72-120 0.682 0.589 -0.532 0.718 -0.505 -0.985 0.988
120-168 0.842 0.795 -0.970 0.559 0.784 -0.997 0.998

Stern-Quartering

0-24 0.223 0.244 -0.752 0.890 -0.982 -0.711 -0.530
24-72 0.973 0.951 -0.965 0.687 0.859 -0.506 0.742
72-120 0.973 0.941 -0.978 0.142 1.000 -0.680 0.861
120-168 0.971 0.954 -0.930 0.742 0.994 -0.927 0.858

Following

0-24 0.928 0.963 -0.713 0.236 -0.985 -0.848 0.946
24-72 0.944 0.937 -0.980 -0.552 -0.997 -0.949 0.866
72-120 0.950 0.955 -0.998 -0.068 -0.619 -0.990 0.961
120-168 0.562 0.538 -1.000 0.176 -0.132 -0.635 -0.906

NavCad correlations typically fall between these extremes but show distinctive
stepped patterns reflecting its quasi-static calculation approach. The analysis also
reveals that probabilistic metrics (CRPS, FSS) often show inverse correlations
compared to deterministic metrics (RMSE, MAE), particularly in complex sea states.
This suggests that improved probabilistic weather forecast skill does not necessarily
translate to better ship speed predictions, highlighting the need for specialised
uncertainty quantification methods in marine applications.
These correlation patterns have direct implications for voyage planning and weather
routing systems. Strong positive correlations in head seas justify simple linear
uncertainty propagation methods, while weak or variable correlations in beam seas
require more sophisticated Monte Carlo approaches. The speed-dependent correlation
structures indicate that uncertainty models must be configured differently for slow-
steaming versus normal operations. The increasing correlation strength with lead time
suggests that long-range routing decisions are paradoxically more sensitive to weather
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forecast quality than short-range tactical adjustments, contrary to common
operational assumptions.

6.2 Rolling horizon ship route optimization framework with model
predictive control (MPC)

6.2.1 Problem formulation

The voyage optimization problem seeks to minimise total cost while ensuring timely
arrival under weather uncertainty. The objective function, i.e. the total voyage cost totalJ
(USD), can be expressed as


  total 1 fuel 2 safety 3 smoothU

min J w J w J w J
u

(6.34)

where 1 0.6w is the fuel cost weight, 2 0.3w is the safety cost weight, 3 0.1w  is

the smoothness cost weight, is the fuel consumption cost (USD), safetyJ is the safety

risk cost (USD), and smoothJ  is the path smoothness penalty cost (USD).

Decision variables can be expressed in terms of the control vector u, which is equal at
optimization step k to

      0 ref.,0 1 ref.,1 1 ref., 1U { , , , ,..., , }
c cN NV V Vu (6.35)

where  i  is the ship heading at hour i  (°),  {0,1,2,..., 1},ci N ref.,iV is the reference

speed at the hour i  (kn), ref., ref.,1, ref.,2 , ref., ,{ , ,..., },i i i m iV V V V m  is the total number of

reference ship speeds that correspond to the number of discretised engine loads, cN
is the control horizon (h).
In this context, the complete waypoint sequencing MPC optimization problem for ship
routing, in our case, can be written at each optimization step k  (every 6 hours) as

 


    

1
1 fuel, 2 safety, 3 smooth, progress,0U

costs (positive) reward (negative)

min [ ]pN i
i i i p ii

w J w J w J d
u

(6.36)

arrival required early required lates.t. ( [ , ]) 1T T T T T        (6.37)

          direct max direct max[ , ],   {0,1,2,..., 1}i ci N (6.38)
 ref., ref.,1, ref.,2 , ref., ,{ , ,..., },i i i m iV V V V i (6.39)

  
 1 att.,1

ˆtN
i i j jj

V tx x u (6.40)

  L S,i ix (6.41)

   min: t ct lx w (6.42)


 min0

pN
ii

d d (6.43)

   min max min maxlat lat lat , lon lon loni i (6.44)
 att., min ,steerage ,iV V i (6.45)

S S,maxH H (6.46)

   min, max,i i i (6.47)

fuelJ
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where  48pN  (h) is the prediction horizon; 1 0.6,w 2 0.3w  and 3 0.1w  are fuel,

safety and smoothness cost weights, respectively;   0.95 is the discount factor;

  0.01p  is the progress reward coefficient (USD/nm) and progress ,id  is the distance

made good toward the destination in hour i  (nm).

6.2.2 Cost function components

The term   0.95i i  in (6.36) creates an exponentially decaying weight (every hour i)
and ensures smooth, consistent discounting where each additional hour reduces the
weight by a factor  .  Future predictions are less reliable, so they should have less
influence on current decisions. Since we re-optimize every 6 hours with updated
forecasts, decisions far in the future will be revised anyway, so there is no point in over-
optimizing based on uncertain long-term forecasts. Without discounting  ( 1),  the
sum in (6.36) could grow unbounded for long horizons, causing numerical issues.

The fuel cost component fuel,iJ for the voyage using variable consumption based on

actual conditions is
   fuel, ref., engine , actual , fuelSFOC ( ) /1000i i i i iJ V P t C (6.48)

where SFOC i is the specific fuel consumption for segment i (kg/kWh), fuelC is the fuel
price (USD/tonne), and n is the number of waypoints.

The required engine power engine,iP (kW) for segment i can be written as

  3
engine , calm , ref., ref., att.,( ) ( / )i i i i iP P V V V (6.49)

where calm, ref.,( )i iP V is the calm water power at reference speed ref.,iV for segment i, as

defined in (6.39), and att.,iV is the attainable ship speed for segment i, estimated

according to (6.10) as

    (PM ) (PM )
att.,actual, att.,predicted, S, wave, ,Bias( , , )i i i i i V iV V H (6.50)

where (PM )
att.,actual,iV  is the actual realised speed (kn), (PM )

att.,predicted,iV  is the predicted attainable

speed (kn),  S, wave,Bias( , , )i i iH is the systematic error from lookup tables (kn) defined

in Section 6.1.3,  i is the forecast lead time (hours), and  ,V i  is the random speed error

(kn) with the following distribution
2

, ,(0,RMSE ( , , )).V i S i i iH    (6.51)

Confidence intervals are adjusted according to (6.11) for  1.96k  (95 % confidence).

Similarly, actual ,it  is the actual travel time for segment i (hours) that can be further

expressed as


actual ,

att., ref., S ,( , , )
i

i
i i i i

dt
V V H

(6.52)

where id  is the distance of segment i (nm).
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The total fuel cost fuelJ (USD) for the entire voyage, using variable consumption based
on actual conditions is equal to




    1

fuel ref., engine, actual , fuel1
SFOC ( ) /1000.n

i i i ii
J V P t C (6.53)

Safety costs penalise dangerous high-wave conditions
    safety, risk S , S ,max safety actual ,( ) /24i i iJ p H H C t (6.54)

where safety,iJ is the safety cost component (USD), risk is the risk weighting factor (1.0

by default), S, S,max( )ip H H is the probability of exceeding the wave limit, safetyC is the

safety penalty coefficient in USD/day (10,000 by default), S,maxH is the operational

wave height limit in meters ( S,max 7 mH  by default), n is the number of waypoints.

Using forecast uncertainty from empirical lookup tables, one can calculate the
exceedance probability S, S,max( )ip H H according to

 
 

 
    

 

S ,

S ,

S ,max
S , S ,max

( )
( ) 1

( )
i

i

H i
i

H i

H
p H H (6.55)

where  stands for the standard normal cumulative distribution function,  
S ,

( )
iH i is

the expected wave height (mean of actual wave height distribution) at lead time  i (m)

S , S

(for.)
S, Bias ,( ) ( )

i iH i H iH    (6.56)

and  
S ,

( )
iH i  is the wave height standard deviation at lead time  i (m)

  
S , S

( ) RMSE ( )
iH i H i (6.57)

where 
S

Bias ( )H i and 
S

RMSE ( )H i are systematic forecast bias and root mean square

error of the lead time, from lookup tables, respectively.
The total safety cost safetyJ (USD) for the entire voyage is equal to




     1

safety risk S, S,max safety actual ,1
( ) /24.n

i ii
J p H H C t (6.58)

Following (Bryson and Ho, 1975), optimal control principles, one can express the
smoothness cost component as

   2
smooth, smoothi iJ C (6.59)

where smooth,iJ is the smoothness penalty cost component (USD), smoothC is the

smoothness penalty coefficient in USD/(°)² (0.01 by default),       1i i i is the
heading change between segments i−1 and i (°). This cost penalises abrupt heading

changes between consecutive time steps. The squared term  2
i has specific

advantages in terms of progressive (quadratic) penalisation, differentiability for
quadratic functions is smooth and symmetry by which left and right turns are
penalised equally. Without a smoothness penalty smoothC , the optimizer might suggest
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unrealistic zigzag patterns. On the other hand, with smoothness penalty included, the
optimizer favours gradual course changes, smooth and realistic trajectories, and
balances weather avoidance with navigational practicality. However, if smoothC  is too
large, the ship won't deviate even for severe weather, and if it is too small, the ship
could suffer from erratic course changes.
Total smoothness cost over the entire voyage smoothJ (USD) can be expressed as




  

21
smooth smooth1

.n
ii

J C (6.60)

The term  progress ,p id  in (6.36) is a progress reward (negative cost) that incentivises the

ship to move toward the destination. The total progress reward rewardJ  (USD) can be
expressed as

 


  1

reward progress,1
.n

p ii
J d (6.61)

The minus sign in (6.36) makes it a reward because iz reduces the total cost. Without
the progress reward, the optimizer might get stuck in local minima (the ship could
circle in good weather areas to minimize fuel/safety costs without making progress),
avoid all risks (without incentive to move forward, the safest strategy is to stay in port)
and create unrealistic zigzag patterns (the optimizer might generate paths that
minimize instantaneous costs but don't actually advance toward the destination). The
value   0.01p  is chosen to be small enough that it doesn't dominate the fuel and safety

costs (which are in hundreds/thousands of USD) and large enough to ensure forward
progress (prevents stalling or excessive deviation). Progress distance progress ,id  is the

great circle distance between the ship's current position ix  and the destination dest.x .
It measures how far the ship still needs to travel, according to

   progress , dest. ,i id R cx x (6.62)

where R is the Earth radius (3440.065 nm), and c is calculated using the Haversine
formula

  2 atan2( , 1 ),c a a (6.63)

      2 2
dest.sin ( /2) cos( )cos( )sin ( /2)ia (6.64)

where   lat /180i i  is the current latitude (rad),   dest. dest.lat /180  is the

destination latitude (rad), dest. i      is the latitude difference (rad),

    dest.(lon lon ) /180i  is the longitude difference (rad), and the function atan2 is
defined as (3.107) in Section 3.3.3.2.

6.2.3 Constraints and bounds

According to Section 6.1.1.2 and relation (6.29), the first stochastic constraint (6.37)
presents a probabilistic arrival time arrivalT  in terms of probabilistic measure   and

robust scheduling of 95 % confidence on-time arrival, where requiredT  is the required
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arrival time in hours,  earlyT  is the allowable early arrival window in hours (e.g.,

 early 12 hT ),  lateT  is the allowable late arrival window in hours (e.g.,  late 6 hT ),

and   0.05  is the significance level that ensures a 95 % confidence level.
This constraint requires that the ship must arrive within the acceptable time window
with at least 95 % probability. The possible asymmetry between  earlyT  and  lateT

reflects practical shipping operations, i.e. early arrival is less problematic (wait at port),
while late arrival is more costly (missed connections, penalties, etc.).
The probability p  in (6.37) is calculated as


 

       
    

   

required early ETArequired late ETA

ETA ETA

T TT T
p (6.65)

where   is the cumulative distribution function (CDF) of the standard normal
distribution (0,1), ETA  is the expected arrival time

 


  1

ETA start 1
att.,

n i
i

i

dT
V

(6.66)

and ETA  is the arrival time variance

  



 
   

 
 att. ,

2
12 2

ETA S,21
att.,

RMSE ( , , )
i

n i
V i i ii

i

d H
V

. (6.67)

If constraint (6.37) is not satisfied, the optimizer would need to change strategy in
terms of increasing reference speeds, choosing a more direct route or reducing
uncertainty by avoiding severe weather. Thus, if the constraint is violated, one can add
a penalty to the objective

  2
penalty time[max(0, 0.95 )]J p (6.68)

where time  presents the large penalty coefficient  ( 10000).timee.g.

This probabilistic constraint accounts for uncertainty in weather forecasts and speed
predictions, ensures robust scheduling with 95 % confidence of on-time arrival,
balances fuel economy with reliability, i.e. it prevents over-optimization that ignores
uncertainty, and uses the empirical error tables (RMSE, MAE, Bias) to quantify
uncertainty. The constraint transforms the deterministic problem into a chance-
constrained optimization problem, making it more realistic for actual voyage planning
under forecast uncertainty.

The constraint (6.38) presents heading deviation bounds, where i  is the ship heading
at hour i (°), i.e. the actual heading the ship will take, it is also a decision variable in the
optimization;  max  is the maximum allowed deviation from direct heading (°) that
depends on navigation phase (smaller when approaching critical waypoints and larger
in open seas);  direct  is the direct bearing to the target (°) that can be calculated as

direct 2 1 2 1 2atan2(sin( )cos , cos sin sin cos cos( ))           (6.69)
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where 1 is the latitude of the current position, 2 is the latitude of the
target/destination position,   is the longitude difference between the current and
the target/destination longitude. This gives the initial bearing to follow a great circle
(shortest) path from the current position to the target/destination.
This constraint creates a "cone of feasible headings" around the direct path that
prevents unrealistic zig-zag manoeuvres, ensures general progress toward the target
and allows flexibility to avoid bad weather within limits.

The constraint (6.39) reflects actual ship engine operating points, which are not
completely arbitrary choices. Marine diesel engines are designed to operate efficiently
at specific power settings; thus, only reference speeds ref., {12.0, 13.5, 14.5}iV  were

selected for further analyses, although these set values can be easily extended.
However, this transforms the problem from continuous to mixed-integer
programming. Alternatives may include enumeration over 3 cN  combinations for
control horizon or branch-and-bound methods in sophisticated solvers. One should
have in mind that ships don't continuously vary engine speeds because engine
governors are set to discrete positions, chief engineers select engine load from pre-
defined power settings, fuel injection systems are optimized for specific engine speeds,
and propeller efficiency peaks at design points.

Ship dynamics constraint (6.40) is the discrete-time state evolution equation that
describes how the ship moves from position ix  to 1ix  over one hour, where ˆ ju is the

unit heading vector at substep ,j  i.e.

  Tˆ [cos( ) sin( )] ,j j ju (6.70)

tN  is the number of integration substeps within one hour, t  is the integration time
step (h), and att., jV  is the attainable speed at the substep j  (kn) that may vary within

the hour due to changing weather conditions, as noted in (5.3). Multiple substeps
ensure a smooth trajectory, and better accuracy for great circle paths and obstacle
crossings can be detected.
Ship position vector ix  at hour i  can be written as

 T[lat  lon ]i i ix (6.71)

where     lat [ 90 , 90 ]i  is the ship's latitude at hour i  (°) and    lon [ 180 ,180 ]i  is

the ship's longitude at hour i  (°). Therefore, the position update 1ix  is then calculated
according to










  
  
 

1

1

1

lat arcsin(sin(lat )cos( / ) cos(lat )sin( / )cos( ))
lon lon atan2(sin( )sin( / )cos(lat ),

cos( / ) sin(lat )sin(lat ))

i i i i i i

i i i i i

i i i

d R d R
d R

d R
(6.72)

where  att., ,i id V t   1 ht  is the time step, and R is the Earth radius (3440.065 nm).
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The navigational constraint (6.41) ensures that no position ix  along the ship's
trajectory can be inside land masses or shallow water areas unsuitable for navigation,
where L  indicates a set of all land coordinates and S  indicates a set of coordinates
with insufficient water depth (shallow waters).

The constraint (6.42) requires that for each critical waypoint cw , there must exist at

least one time point t  where the ship passes within minl  (e.g. 30 nm) of that waypoint.
With this constraint, optimizer guarantees passage through safe, established shipping
lanes, maintains great circle efficiency and satisfies maritime traffic regulations.
In terms of mathematical formulation, this constraint is usually embedded as a hard
constraint within the penalty function waypointJ  as




    2
waypoint minW

max(0, min )
c c

wp t ct
J l

w
x w (6.73)

where wp  is the large penalty for missing a waypoint (e.g. 10000) and Wc  is the set of

all critical waypoints .cw

The constraint (6.43) requires that the ship must travel at least mind  nautical miles (e.g.

100 nm) during the prediction horizon pN  (e.g. 48 hours), where  att.,i id V t  is the

distance travelled in hour i  (nm), and   1 ht  is the time step. Without this constraint,
the optimizer might find unrealistic solutions like staying in port (zero fuel cost, zero
safety risk), circling in place waiting for perfect weather, moving backwards if fuel-
optimal, stalling indefinitely in calm zones, etc.
In terms of mathematical formulation, this constraint is usually embedded as a soft
constraint within the penalty function progressJ  as




   2
progress 0

max(0, 100 )pN
p ii

J d (6.74)

where p  is the large penalty coefficient (e.g. 1000).

The constraint (6.44) creates a rectangular bounding box on the Earth's surface that
constrains all ship positions to remain within specified geographic limits. The feasible
region F  can be defined as

min max min maxF {(lat , lon ) : lat [lat , lat ] lon [lon ,lon ]}i i i i    (6.75)

which presents a convex constraint (intersection of half-spaces) that is
computationally favourable. There are a number of convenient advantages of this
constraint, like eliminating obvious infeasible regions, reducing search space for
optimization, preventing numerical issues at extreme latitudes, excluding dangerous
waters (Arctic, tropics), keeping the route within operational limits, etc.

Minimum steerage speed constraint (6.45) is related to the steerage speed at which a
ship still maintains directional control. Below this speed, the rudder becomes
ineffective and the ship cannot be steered. The rudder generates a lift force
proportional to the square of the water flow speed
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 2
rudder rudder flow

1
2 LF C A V (6.76)

where   is the water density (kg/m3), LC  is the lift coefficient of the rudder, rudderA  is

the rudder area (m2) and flowV  is the water flow speed over the rudder (m/s). When

att. 4V kn, the ship encounters insufficient water flow over the rudder, the rudder
force is below the minimum required to overcome environmental loads, and the ship
becomes uncontrollable. Below steerage speed, the ship cannot maintain heading,
cannot avoid obstacles, becomes vulnerable to beam seas and loses station-keeping
ability. With this constraint, optimizer forces realistic routing decisions, ensures ship
safety throughout the voyage and may increase fuel consumption but prevents
accidents. Finally, the 4.0 kn threshold comes from IMO guidelines on minimum
steerage way, classification society rules (DNV, ABS, Lloyd's, etc.) and master's
standing orders that typically specify 4-5 kn as a minimum ship speed.

The hard constraint (6.46) would make routes with S S,maxH H  completely infeasible.

Therefore, it is recommended to use a soft constraint S, S ,max( )ip H H  that is already

embedded in the safety cost component (6.54). This adds a penalty cost proportional
to the probability and duration of encountering high waves. However, this bound can
be used for altering the reference ship speed, particularly efficient if coupled with
encounter angles. In this context, the constraints (6.46) and (6.47) create forbidden
zones that vary with sea state. So, instead of hard bounds, one should use the encounter
angle penalty in the following form

   , penalty S ,( , )i i iJ f H (6.77)

where






 



 
  
  

2

0,
( , ) ,

,
f H H

H
penalty S S

S

prefered zones
C marginal zones
C dangerous zones

(6.78)

C  is the encounter angle penalty coefficient with units of (USD/h/m) or (USD/h/m2),
depending on the penalty zone, and encounter angle zones could be defined as
(i) preferred zones,         [0 ,30 ] [150 ,210 ] [330 ,360 ]
(ii) marginal zones,             (30 ,60 ] [300 ,330 ) [120 ,150 ) (210 ,240 ]

(iii) dangerous zones,       (60 ,120 ) (240 ,300 ) .

This approach can enable realistic routing that avoids dangerous encounter angles
without making them absolutely forbidden.

6.2.4 Persistence criterion

An attainable ship speed estimation model is implemented based on the approach
presented in Section 5.2.2.1, while the attainable ship speed uncertainty is based on the
approach presented in Section 6.1.1.2. However, one should take into account that the
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function in (5.5) can result in NaN (Not a Number) value. Therefore, an appropriate
fallback strategy for handling NaN values should be introduced.
For a voyage segment of duration L hours, the probability of encountering at least one
extreme wave event is

 
 

    
 

,max ,critical( ) 1 expa a
R

Lp
T

(6.79)

where  ,criticala is the critical wave amplitude (related to S 7 mH ), RT is the return

period of the extreme event (hours), and L is the segment duration (hours).
The number of extreme waves in a time period can be expressed as




3600
z

LN
T

(6.80)

where N  presents a number of waves encountered and zT is the mean zero-crossing
period (s).
The amplitude of the most probable extreme wave is equal to

,max 02 lna am N   (6.81)

where 0m  presents the zero-th moment of the wave spectrum.

Therefore, the persistence criterion for route modification can be defined in terms of
the action by which the route should be modified if

   ,max ,critical( ) 0.632 for 12 hours.a ap L (6.82)

The persistence criterion can be further enhanced for NaN Values, i.e. when
(PM)

att. NaNV  according to term (5.5) and tables 5.1-5.3 in Section 5.2.2.1.

Therefore, a fallback strategy for NaN detection and response can be defined in terms
of (PM)

att.V as





  

ref. wave S
att.

safe wave S

( , ),    if NaN,
V ( , ), if NaN
f V fH

V
H f

(6.83)

where the safe speed function is
    S S,crit.( )

safe wave S min ref.( , ) max( , )H HV H V V e (6.84)

with min 4.0 knV (minimum steerage),   0.5 (decay rate parameter), and

S,crit. 7.0 mH (critical wave height).

When NaN values persist, immediate route modification is triggered according to


  thresholdfuture

1[ NaN]ii
f N (6.85)

where 1[ ]  is the indicator function and threshold 2N  presents a number of consecutive
NaN predictions.

6.2.5 Weather forecast interpolation

For hourly values between 6-hour forecast points, one should use linear interpolation
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 in the following form
   

lower upperS , S , S ,(1 )i h hH H H (6.86)

where    lower /6 6h i  is the lower forecast hour with the floor function     that finds

the nearest forecast hour at or before hour ,i  upper lowermin( 6, 168)h h  is the upper

forecast hour that finds the next forecast hour, capped at 168 hours (7-day forecast
limit), and    lower upper lower( )/( )i h h h  is the interpolation factor.

For wave direction, one should use circular interpolation

     
lowerwave, wave,i h (6.87)

where the angular difference      [ 180 , 180 ]  is adjusted for circular continuity as
follows

   

    

 

      


        
 

,upper , ,upper ,

adjusted ,upper , ,upper ,

,upper ,

360 ,    if 180
360 ,    if 180

,    otherwise.

h h lower h h lower

h h lower h h lower

h h lower

(6.88)

6.2.6 Three-stage routing decision process

In terms of decision criteria for route alteration, one can distinguish three stages in this
decision process:
(i) Stage 1: Monitoring  ( 72 hours)

Action: 1Decision monitor only

(ii) Stage 2: Planning  (24 72 hours)

Action:




      

plan current
2

plan current

evaluate alternatives,   if
Decision

maintain route,   if
J J
J J

where   current alternativeJ J J presents cost improvement (USD) with  plan 5 %

improvement (planning) threshold, currentJ presents current route cost (USD),

alternativeJ presents the alternative route cost (USD).

 (iii) Stage 3: Action  ( 24 hours)
Action:

   
 


action current
3

implement change,   if ( ) persistence met
Decision

maintain route,   otherwise
J J

for  action 2 % improvement threshold, and  presenting the logical AND
operator.

The route modification cost of changing the route modificationC (USD) can be expressed
as (Shao et al., 2012)

         modification dist. time smooth. ii
C d t (6.89)
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where dist. is the distance penalty coefficient in USD/nm (e.g. 100),  time is the time

penalty coefficient in USD/hour (e.g. 500), smooth. is the smoothness penalty coefficient
in USD/° (e.g. 50), d is the additional distance (nm), t is the time deviation (hours),
and  i are heading changes (°).

6.3 A* and stochastic MPC hybrid optimization framework for ship weather
routing

The hybrid A*-SMPC framework represents a hierarchical optimization architecture
that addresses the fundamental limitations of using either graph search or model
predictive control in isolation. Whilst A* algorithms excel at finding globally optimal
paths through discretised spatial domains, they struggle with continuous control
optimization and real-time disturbance rejection. Conversely, MPC provides
sophisticated local trajectory optimization with constraint handling but lacks a global
perspective and can become trapped in local minima when navigating complex
environments. The integration of these complementary approaches creates a system
where strategic route planning, using A*, provides global guidance, while SMPC
handles tactical control decisions, considering weather forecast uncertainty and
operational constraints.
The framework operates through three distinct decision-making layers, each
addressing different spatial and temporal scales of the routing problem. The strategic
layer utilises A* for global path planning, with event-triggered replanning based on
significant environmental changes, operating on time scales of 6-24 hours and spatial
scales of entire voyage segments. The tactical layer implements stochastic MPC for
local trajectory optimization within a corridor around the reference path, with updates
every 15 minutes considering prediction horizons of 48 hours. The executive layer
translates optimized trajectories into vessel control commands, managing the interface
between the optimization system and the ship's autopilot at minute-level intervals.
This hierarchical decomposition ensures computational tractability whilst maintaining
both global optimality and local adaptability.

6.3.1  Global path planning with A*

6.3.1.1 Adaptive grid generation

The A* algorithm operates on a spatially adaptive grid that provides fine resolution
near navigational hazards whilst maintaining computational efficiency in open waters.
The grid resolution function adapts based on the distance to the nearest coastline

 


    
 

(1)
1 coast coast

(1) (2)
grid 2 coast coast coast

(2)
3 coast coast

 (nm), if ( )
( )  (nm), if ( )

 (nm), if ( )

d d
d d d
d d

x
x x

x
(6.90)

where grid( )x represents the grid spacing at position x in nautical miles, and coast( )d x

denotes the distance from the position x to the nearest coastline. This adaptive
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resolution ensures accurate navigation in confined waters, where precise manoeuvring
is required, while reducing the computational burden in open ocean areas where
coarser discretisation suffices. The finest resolution of Δ1 = 0.25 nm near coasts
captures critical navigational features such as channels, traffic separation schemes, and
shallow water boundaries. The medium resolution of Δ2 = 0.5 nm in shelf waters strikes
a balance between computational efficiency and adequate spatial representation for
coastal navigation. The coarse resolution of Δ3 = 1.0 nm in open waters is sufficient for
strategic route planning where environmental factors dominate over geographic
constraints. Boundaries (1)

coast 10 nmd and (2)
coast 50 nmd can be adapted accordingly.

6.3.1.2 Multi-objective edge cost function

For each edge in the graph connecting nodes in  and jn ,  the cost function incorporates

multiple objectives through a weighted combination of distance and environmental
penalties

  



   


dist wave wave wind wind

current current

[
]

( , , ) ( , , ) ( , , )
( , , )

i j ij i j i j

i j

c n n d h n n h n n
h n n

w w w
w

(6.91)

where  
GCjij id x x  represents the Euclidean distance between nodes in nautical

miles,  dist 1.0  is the base distance weight normalised to unity,  wave [0.2,0.8]  is the

weight for wave-induced penalties,  wind [0.1,0.5]  is the weight for wind resistance

penalties,  current [0.1,0.3]  accounts for ocean current effects, and w  represents the
environmental conditions at the edge.
The environmental penalty functions are normalised to the range [0,1]  as

 2
wave , ,ref. encounter )/( , , ) min( ()1,i j s ij s ijh n n H H fw (6.92)

where ,s ijH  is the significant wave height along the edge, ,ref 4.0sH  m is the reference

wave height for normalisation, and encounter( )ijf  is an encounter-angle penalty function

that accounts for the relative angle between vessel heading and wave direction.

6.3.1.3 Cost profile generation for diverse paths

To ensure robustness against forecast uncertainty and provide alternative routing
options, five distinct cost profiles are generated that emphasise different objectives

1 ,C 2 ,C 3 ,C 4 ,C  and 5 ,C where each cost profile     T( ) ( ) ( ) ( )
dist wave wind current[ , , , ]k k k k

kC
represents a different routing strategy:
(i)  T

1 [1.0,0.2,0.1,0.1]C :  Minimum distance (great circle biased)

(ii)  T
2 [0.6,0.8,0.3,0.2]C :  Weather avoidance (safety-focused)

(iii)  T
3 [0.8,0.4,0.5,0.3]C :  Balanced multi-objective

(iv)  T
4 [0.7,0.3,0.2,0.5]C : Current exploitation

(v)  T
5 [0.9,0.5,0.4,0.1]C : Moderate weather routing.
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Each profile generates a distinct path through the A* algorithm, providing the SMPC
controller with strategic alternatives that can be evaluated and selected based on
stochastic performance metrics.

6.3.2  Stochastic MPC formulation

6.3.2.1 Path-following coordinate system

The SMPC controller requires a transformation from the global coordinate system to a
path-relative frame, which facilitates tracking control. The transformation maps the
vessel's global position gx to coordinates relative to the reference path P by

  T 4( , ) [ ] ,p g eT s e tx x P (6.93)

where  path[0, ]s L  represents the along-path distance from the origin in nautical miles,

e  denotes the signed cross-track error with positive values indicating deviation to
starboard,    [ , ]e  is the heading error relative to the path tangent in radians, t
represents elapsed time in hours, and T is the coordinate transformation operator.
The cross-track error is computed as the minimum distance from the vessel position
to the reference path.
The cross-track error is computed as the minimum distance from the vessel position
to the reference path

    sign(( ( *)) ) ( *)g ge s sx P n x P (6.94)

where * argmin ( )gs
s s


 x P  is the closest point on the path, and n is the normal

vector to the path at * .s

6.3.2.2 Stochastic optimization problem

At each MPC time step ,k  occurring every  MPCt  hours (default 0.25 h, 15 minutes),
the controller solves a finite-horizon stochastic optimization problem

    

 
         1 1SMPC

0 0
min (1 ) CVaRp p

k

N Ni i
k r i r ii i

J L LξU
 (6.95)

where         | | 1| 1| 1| 1|{ , , , , , , }
c ck k k k k k k k k k N k k N kv v vU  represents the control sequence

over the control horizon,  192pN  steps (48 hours) is the prediction horizon,  24cN

steps (6 hours) is the control horizon,   0.95  is the discount factor prioritising near-
term decisions,   0.3r  is the risk-aversion parameter balancing expected
performance with worst-case mitigation,   0.95  is the confidence level for CVaR
computation, and iL  represents the stage cost at the prediction step i .

The stage cost combines multiple objectives
    1 fuel , 2 safety , 3 smooth , 4 corridor , progress ,i i i i i p iL w L w L w L w L d (6.96)
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where 1 0.5w  weights fuel consumption, 2 0.3w  weights safety considerations,

3 0.1w  weights control smoothness, 4 0.1w  enforces corridor constraints, and
  0.01 p  USD/nm incentivises progress toward the destination.

6.3.2.3 Scenario generation and tree structure

Weather forecast uncertainty is captured through a multi-stage scenario tree with a
branching structure  1 2 3[ , , ] [5,3,2],B B B B yielding  3

1 30s i iN B  scenarios. The
branching occurs at three stages:
(i) Stage 1 (0–8 hours): 5 branches capturing initial forecast uncertainty
(ii) Stage 2 (8–16 hours): 3 branches per Stage 1 node for medium-term evolution
(iii) Stage 3 (16–24 hours): 2 branches per Stage 2 node for long-term scenarios
Each scenario represents a possible realisation of weather evolution

( ) (for.) ( )( )s s
i i i i w w B ξ (6.97)

where (for.)
iw  is the deterministic forecast, ( )i iB  is the time-varying error covariance

matrix, and ( ) ~ (0, )sξ I  represents standard normal random variables.

The error covariance matrix captures forecast degradation with lead time

        
wind wS aveV[( ]( ) diag ( ), ( ), ( ), ( )

pi i H i T i i iB (6.98)

where the standard deviations grow according to empirically-derived functions for the
significant wave height  

S
( ),H i  for peak wave period  ( ),

pT i  for wind speed  
windV ( ),i

and wave direction  
wave

( ).i

6.3.2.4 Constraints

The optimization is subject to multiple constraints ensuring feasibility and safety, and
these are mostly the same as for the MPC in Section 6.2, such as the probabilistic arrival
time constraint (6.37), the heading deviation bounds maintaining general progress
(6.38), discrete speed constraints reflecting engine operating points (6.39),
navigational constraints (6.41) and (6.44), to name the most important ones. On the
other hand, the system dynamics for each scenario is changed according to

         ( ) ( ) ( )
1| | | |( , , ), s {1,..., }, {0,..., 1}s s s

k i k k i k k i k k i k s pf N i Nx x u w (6.99)

where      T( ) ( ) ( ) ( )
| | | , | |[ ]s s s s

k i k k i k k i k e k i k k i ks e tx  is the state vector,    T
| | ref., |[ ]k i k k i k k i kVu  is

the control input vector, and      T( ) ( ) ( ) ( ) ( )
| S , | , | wind , | wave , |[ ]s s s s s

k i k k i k p k i k k i k k i kH T Vw  is the

weather disturbance vector. State transition function f  can be expanded as


 

 

  
        
 

   
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att. path

path

( , )cos( )
( , )sin( ( ))

( , , ) .
( )

es V t
e V s t

f
s s

t t

u w
u w

x u w (6.100)
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This constraint must be satisfied for all sN (30) scenarios and all pN (192) prediction

steps, resulting in s pN N  (5760) individual dynamic constraints that ensure physically

realisable trajectories under each possible weather evolution. The scenario-specific
state evolution captures how different weather realisations lead to different vessel
positions and speeds, while the common control sequence across scenarios reflects the
reality that control decisions must be made before knowing which weather scenario
will actually occur.

6.3.3  Event-triggered re-planning and path blending strategy

The decision to initiate global path re-planning is based on a composite trigger function
that monitors five distinct conditions

    replan 1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( )T k T k T k T k T k T k (6.101)

where each trigger addresses specific operational concerns.
(i) Weather change trigger (T1): Activates when forecast updates show significant

changes that affect route viability


    

lastS, S , S , . weather( , ) grid
max | ( , ) ( , )| ( 0.15)k k criti j

H i j H i j H J (6.102)

where S ,kH  represents the current significant wave height forecast field,
lastS,kH

is the forecast at the last re-planning time, and ΔJweather measures the relative
cost change due to weather updates.

(ii) Path blockage trigger (T2): Detects when severe weather makes the current path
impassable


   look

att. min block0
1[ ( , ) ]H

i
V k i V NP (6.103)

where Hlook (96 steps in 24 hours) is the lookahead horizon, Vmin is the
minimum steerage speed (4 kn), Nblock is the blockage threshold (8 steps, 2 h).

(iii) Excessive deviation trigger (T3): Monitors cumulative path deviation, i.e. the
 current cross-track error, indicating the current reference is no longer suitable.
This trigger identifies situations where persistent environmental forces have
significantly deviated the vessel from its intended course, suggesting that a new
path alignment would be beneficial.

(iv) Schedule risk trigger (T4):  Ensures arrival time requirements remain achievable

arrival required early required late( [ , ]) 0.85T T T T T      (6.104)

which means that this trigger activates when the probability of meeting the
arrival window drops below 85 %, prompting re-planning to find faster routes
or adjust the voyage plan.

(v) Cost degradation trigger (T5): Detects when the current path has become
significantly more expensive than originally anticipated

,last( , )/ ( , ) 1.25k k k kJ JP W P W (6.105)
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indicating a 25 % or greater increase in expected voyage cost due to weather.
To prevent oscillatory behaviour and ensure computational efficiency, the re-planning
decision ( )R k incorporates hysteresis and minimum improvement requirements

replan last cool expected current( ) ( ) ( ) ( 0.05 )R k T k k k k J J       (6.106)

where lastk  records the time of the last re-planning event, coolk (12 steps in 3 hours)

enforces a minimum interval between re-planning to prevent thrashing, and  expectedJ
represents the anticipated cost improvement from re-planning.
When re-planning is triggered, the system should determine the appropriate scope
based on which triggers were activated

    
    



1 2 5

scope 3 5

4

global, if ( 0.3)
local, if ( 0.3)
terminal, if .

T T T J
R T T J

T
(6.107)

Global re-planning regenerates the entire path from the current position to the
destination, which is particularly suitable for major weather changes or path
blockages. Local re-planning modifies only a segment of the path, typically 100-200 nm
ahead, suitable for handling local deviations or moderate cost increases. Terminal re-
planning adjusts only the final approach to meet arrival constraints whilst maintaining
most of the existing route.
When a new path is generated through re-planning, it must be smoothly integrated
with the current trajectory to avoid discontinuous control commands. The blending
process employs a time-based transition function

   active old new( , ) (1 ( )) ( ) ( ) ( )s t t s t sP P P (6.108)
where the blending weight function provides C1 continuity

 

 


    

  

switch

switch
switch switch blend

blend

switch blend

0,
1( ) (1 cos( )),
2
1,

t t
t tt t t t T

T
t t T

(6.109)

with blendT (2.0 hours) ensuring a gradual transition. This raised cosine profile prevents
abrupt heading changes that could trigger unwanted vessel dynamics or alarm
systems, whilst ensuring the new path is fully adopted within a reasonable timeframe.
The path-following corridor constraints must adapt during re-planning transitions to
accommodate the geometric differences between old and new paths. The corridor
width function becomes time-varying according to

      max nom relax nom current relax( , ) ( ) ( ) exp( ( )/ )e s t e e e t s s L (6.110)

where nome  (2 nm) is the nominal corridor width during steady-state operation, relaxe
(5 nm) is the relaxed width during transitions,  ( )t follows the same profile as the path

blending function, and relaxL  (50 nm) defines the spatial extent of relaxation ahead of
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the vessel. This adaptive corridor serves multiple purposes: it prevents constraint
violations during path transitions when the vessel must move from one trajectory to
another, provides the SMPC controller with sufficient flexibility to find feasible
solutions during re-alignment, and gradually tightens to ensure precise path following
once the transition is complete.
The system requires bidirectional transformations between multiple coordinate
systems, i.e.
(i) Global to path-relative transformation

 For the distance along the path (s) from the start to the closest point, and for
perpendicular distance (e) from the vessel to the path, and for the angular
difference between the ship heading and the path direction ship path( )e s   

(ii) Path-relative to control commands
Line-of-Sight (LOS) based look-ahead PD heading guidance law for the
commanded heading  cmd.  is of the form

      cmd. path att. look( ) p ds V t K e K e (6.111)

 where pK  (2.0 °/nm) is the proportional gain, dK (0.5 °/nm/h) is the derivative

gain,  lookt  (0.5 hours) is the look-ahead time.

6.3.5  Performance metrics and guarantees

The hybrid system's computational requirements vary significantly between steady-
state operation and re-planning events. During normal operation, the dominant cost is
the SMPC optimization

3 2
steady SMPC s p x s c uN N n N N n    (6.112)

where sN  is the number of scenarios (30), pN (192) is the number of prediction steps,

xn  (4) is the number of state dimensions, cN (24) is the number of control steps, and

un  (2) is the number of control inputs. This yields approximately 5(10 )  operations
per MPC iteration, requiring 2-3 seconds on modern hardware. During re-planning
events, the additional A* computation adds

replan * log( )d d
A b b   (6.113)

where  8b is the branching factor for an eight-connected grid and  500 1000d is
the typical path depth for transoceanic routes. With heuristic guidance, the practical
complexity reduces to 1.5( ),d  requiring 10-30 seconds for global re-planning.

The hybrid system maintains stability through the careful design of replanning triggers
and transition mechanisms. The Lyapunov function is constructed as

     
22

, remaining( ) ( )e k e k JV k e J k (6.114)
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where   1.0,e   0.5,  and   0.01J  are weighting coefficients, which decrease

along trajectories except during bounded transition periods. The system ensures

   settle replan( ) ( )V k T V k (6.115)

where   0.95  is the contraction rate, settle 12T steps is the settling time after re-
planning, and   accounts for bounded disturbances.
The event-triggered framework provides several performance guarantees relative to
idealised benchmarks:
(i) Optimality gap

The hybrid solution remains within a bounded gap of the optimal solution with
perfect information

 hybrid
opt.

oracle

1
J
J

(6.116)

where empirical studies show  opt. [0.05,0.12] depending on forecast quality,

hybridJ  is the total voyage cost achieved by the hybrid A*-SMPC system operating

with forecast uncertainty and real-time decisions, and oracleJ  is the theoretical
optimal voyage cost that could be achieved with perfect information about all
future weather forecasts (impossible in practice).

(ii) Constraint satisfaction
Probabilistic constraints are satisfied with high confidence if

{all constraints satisfied} (1 ) 0.90ii
   (6.117)

where  i  represents individual constraint violation probabilities.

(iii) Re-planning frequency

The expected number replanN of re-planning events per voyage is bounded as

voyage
replan major

weather

[ ]
T

N N
T

  (6.118)

where weatherT 48 hours is the typical weather system evolution time scale and
major [1,3]N accounts for major forecast revisions.
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7 VALIDATION AND VERIFICATION OF THE SHIP ROUTING OPTIMIZATION
FRAMEWORK WITH WEATHER UNCERTAINTIES

7.1 Initial conditions and optimization scenarios

For the validation and verification of the selected optimization methods with weather
uncertainties, the transatlantic route from Rotterdam to New York was chosen as the
test case. This route was chosen for several compelling reasons: it represents one of
the most commercially significant shipping corridors globally, traverses the North
Atlantic where comprehensive weather forecast data from NOAA GFS is readily
available, experiences diverse meteorological conditions ranging from sheltered
waters in the English Channel to severe open-ocean storms, and provides sufficient
voyage duration (approximately 10-12 days) to observe the full evolution of forecast
uncertainty from short-range (0-24 h) through extended-range (120-168 h)
predictions. The selection of representative voyage scenarios was based on a
comprehensive analysis of collected weather forecasts and historical weather data, as
described in Section 4.1.2.
To ensure each optimization framework is tested under diverse meteorological
conditions, the weather data were systematically analysed to identify periods with
varying sea state characteristics. Seven voyage start dates were selected for the
optimization scenarios: 1 February 2025, 7 February 2025, 12 February 2025, 19
February 2025, 25 February 2025, 27 February 2025, and 5 March 2025. In the
selection process, the Douglas sea state scale was used as a reference for categorising
the observed significant wave height ranges. Comparing the historical and forecast
data to the scale classifications and considering the wave height bins established in
section 4.2.3, each selected voyage start date corresponds to distinct sea state
conditions. This approach assured that each optimization framework was validated
across a range of environmental conditions, from relatively calm seas to more
challenging weather scenarios typical of North Atlantic winter crossings.

7.1.1  Compatibilities and disparities of optimization algorithms

The selection and implementation of optimization algorithms for ship weather routing
requires careful consideration of computational capabilities, operational constraints,
and the fundamental cost and benefits between sophistication and reliability. This
section presents a systematic comparison of the two primary optimization frameworks
proposed in this thesis: the waypoint-sequencing MPC (Ch. 6.2) and the hybrid
A*-SMPC approach (Ch. 6.3). An overview of their characteristics is given in Table 7.1.
Both algorithms begin with identical shared initialisation parameters. The vessel starts
at position x₀ with coordinates [φ₀, λ₀]ᵀ, targeting a destination at either xdest. (in MPC)
or xf (in A*-SMPC). Both systems initialise at time t₀ with the same discrete speed
options of 12.0, 13.5, and 14.5 knots, use a discount factor γ of 0.95 to prioritise near-
term decisions, apply a progress coefficient ωp of 0.01 to incentivise forward
movement, and utilise the Earth radius of 3440.065 nm for all geodesic calculations.
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Table 7.1. Computational and operational characteristics of MPC and A*-SMPC optimization
algorithms for ship weather routing

MPC A*-SMPC Operational Impact

Path Planning Fixed waypoints
(50 nm spacing)

Dynamic with
re-planning

A*-SMPC: +40 % fuel
savings potential

Path Following Waypoint passage
(< 50 nm)

Continuous s*
projection

MPC: Discrete
A*-SMPC: Continuous

Optimization Type Deterministic Stochastic
(30 scenarios)

A*-SMPC: Robust to ±2σ
uncertainty

Computational Order 4(10 ) 5(10 )
A*-SMPC: 10× base

computation + re-planning
Control Horizon Nc = 6 h (6 steps) Nc = 6 h (6 steps) A*-SMPC: Finer control
Prediction Horizon Np = 24 h (24 steps) Np = 24 h (24 steps) A*-SMPC: Finer control
Time Step Δt = 1 h Δt = 1 h A*-SMPC: Smoother paths

Adaptation Trigger 3-stage time-based
decision

5 event triggers
+ cooldown

MPC: Predictable
A*-SMPC: Reactive

Constraint Type Hard with penalties Chance constraints
(95 %)

MPC: Deterministic
A*-SMPC: Probabilistic

Termination Distance 10 nm from xdest. 10 nm from xf A*-SMPC: Tighter control
Risk Measures Safety penalties only CvaR0.95 (λᵣ = 0.3) A*-SMPC: Quantified risk

After this common initialisation, the algorithms immediately evolve in their own
approach to route planning. The MPC algorithm generates a traditional voyage plan
between origin and destination, then discretises it into waypoints w spaced 50 nm
apart. This route remains static throughout the entire voyage; i.e., there is no
mechanism to modify these waypoints once they are set. The MPC controller employs
a 6-hour control horizon and a 24-hour prediction horizon, with weights distributed as
w₁ = 0.6 for fuel consumption, w₂ = 0.3 for safety, and w₃ = 0.1 for smoothness.
In contrast, the A*-SMPC algorithm performs sophisticated global path planning using
an adaptive grid that varies resolution based on proximity to coastlines: 0.25 nm
resolution within 10 nm of coast for precise navigation in confined waters, 0.50 nm
resolution in shelf waters (10-50 nm from coast), and 1.0 nm resolution in open ocean.
The system generates five different cost profiles (C₁ through C₅), emphasising different
objectives from minimum distance to weather avoidance, executes the A* search
algorithm for each profile, and then selects the best-performing path P*. The fifth cost
profile (C₅) yielded routing solutions with less than 2 % variation from C₄ in both path
geometry and total voyage cost, representing redundant information that was
excluded from the results to maintain clarity in the comparative analysis. The SMPC
controller operates with a finer temporal resolution, utilising 24 control steps over 6
hours, extends prediction to 192 steps over 48 hours, and incorporates uncertainty
through 30 weather scenarios generated via [5,3,2] branching. The cost weights are
adjusted to w₁ = 0.5, w₂ = 0.3, w₃ = w₄ = 0.1, with additional risk parameters λr = 0.3
and CVaR confidence α = 0.95.
The adaptation mechanisms reveal contrasting operational approaches. MPC's time-
based staging provides predictable behaviour that aligns with traditional maritime
practice, where decisions follow a natural progression from observation to action.
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A*-SMPC's event-triggered approach monitors five distinct conditions simultaneously:
significant weather changes (|ΔHₛ| > 2 m with 15 % cost increase), path blockages
(Vatt. < 4 kn for extended periods), excessive cross-track deviation, schedule reliability
falling below 85 %, and cost degradation exceeding 25 %. Rapid response is achieved
through monitoring, with oscillations controlled via a 3-hour re-planning cooldown.
The coordinate system transformation employed by A*-SMPC, from global latitude-
longitude to path-relative coordinates (along-track distance s, cross-track error e, and
heading error χₑ), enables high-level path-following control with natural corridor
constraints. While this adds computational overhead through continuous coordinate
transformations, it provides superior path smoothness and enables Line-of-Sight (LOS)
guidance with look-ahead compensation. MPC's retention of global coordinates
simplifies the implementation and provides direct correspondence with standard
navigation displays, though at the cost of more complex constraint formulations.
Perhaps most significantly, the algorithms differ in their treatment of uncertainty. MPC
applies deterministic optimization with safety margins incorporated through penalty
functions, suitable when forecast confidence is high or when conservative operation is
acceptable. A*-SMPC's stochastic formulation explicitly quantifies the strategic trade-
offs between expected performance and risk, which are essential for commercial
operations where both fuel efficiency and schedule reliability directly impact
profitability. The 30-scenario optimization increases computational complexity by an
order of magnitude but provides robust solutions that maintain feasibility even under
severe forecast degradation.
The selection between these algorithms ultimately depends on the operational context.
MPC proves optimal for shorter coastal voyages, vessels with limited computational
resources, or operations prioritising predictable behaviour over absolute efficiency.
A*-SMPC is particularly valuable for transoceanic voyages exceeding seven days, where
compounded weather uncertainty, high-value or time-sensitive cargo, and potential
fuel savings of 5–15 % justify the added implementation complexity. Both algorithms
effectively demonstrate the evolution from traditional deterministic routing toward
weather-aware optimization. The choice between them reflects the balance between
operational simplicity and adaptive capability in maritime automation.

7.1.2 Reference estimated times of arrivals

The following section presents three distinct approaches for calculating the estimated
time of arrival (ETA) that serve as performance benchmarks for the ship weather
routing framework.
The traditional voyage planning approach assumes a constant reference speed
throughout the voyage, disregarding the effects of weather and operational variations.
The total voyage distance is calculated as the sum of great circle distances between
consecutive waypoints:

1
total 11 GC

n
i ii

D w w


  (7.1)
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where 2
iw   represents waypoint 𝑖 in geographic coordinates (latitude, longitude),

and ∥⋅∥GC denotes the great circle distance metric. The estimated time of arrival under
the constant speed assumption becomes

total
ETA1 0

ref.

DT t
V

  (7.2)

where  is the departure time and ref.V represents the standard planning speed. This
method provides a baseline against which weather-routed voyages can be compared.

The perfect information scenario represents the theoretical optimum achievable with
complete knowledge of actual weather conditions throughout the voyage. This
retrospective analysis uses actual (hindcast) significant wave height (act.)

S ( )H t and wave

direction (act.)
wave( )t data.

For each time step 0 arrival[ , ],t t T  the reference speed is selected based on prevailing
conditions and encounter angle zones:

(act.)
S
(act.)

ref. S

12.0, if ( ) 7 ( ) dangerous zones
( ) 13.5, if ( ) 5 ( ) marginal zones

14.5, otherwise

H t t
V t H t t





   


   



(7.3)

where the wave encounter angles and zones are determined using (5.1) and (6.78).
The attainable ship speed is calculated using the neural network-based Pierson-
Moskowitz model (5.5), as follows

( ) (act.) (act.)
att. ref. wave S

ˆ ( ) ( ( ), ( ), ( ), ( ))PM
NNV t f V t t t H t  (7.4)

while the ship's position evolves according to the kinematic equation
T( )

att.
ˆ( ) ( ) [cos ( ), sin ( )]PMt V t t t x (7.5)

and through numerical integration with a time step  it yields
T( )

att.
ˆ( ) ( ) ( ) [cos ( ), sin ( )] .PMt t t V t t t t    x x (7.6)

The perfect information ETA is determined when the ship reaches the destination
within tolerance  as

ETA2 dest.min{ : ( ) }.T t t   x x (7.7)

The forecast-based approach simulates voyage progression using weather predictions
available at departure, accounting for forecast degradation with increasing lead time

This method employs forecasted significant wave height (for.)
S ( , )H t  and wave

direction where 0t t   represents the forecast lead time. The reference
speed selection incorporates forecast uncertainty

(for.)
S
(for.)

ref. S

12.0, if ( , ) 7 ( ) dangerous zones
( , ) 13.5, if ( , ) 5 ( ) marginal zones

14.5, otherwise

H t t
V t H t t

 

  

   


   



(7.8)
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and the forecast-dependent attainable speed becomes
( ) (for.) (for.)

att. ref. wave S
ˆ ( , ) ( ( , ), ( , ), ( , ), ( , )).PM

NNV t f V t t t H t       (7.9)

Position evolution follows the same kinematic model, but with forecast-dependent
parameters

T( )
att.
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.ˆ( , ) ( , ) ( , ) [cos ( , ), sin ( , )]
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     

       

 


     

x

x x


(7.10)

The forecast-based ETA represents the prediction available at departure

ETA3 dest.min{( , ) : ( , ) }.T t t    x x (7.11)

These three ETA calculations enable a comprehensive performance assessment:
• 1 arrival ETA1T T T   (7.12)

- Measures the benefit of weather-aware routing versus traditional planning.
• 2 arrival ETA2T T T   (7.13)

- Quantifies the gap between actual performance and the theoretical optimum.
• 3 arrival ETA3T T T   (7.14)

-  Evaluates forecast-based prediction accuracy.

7.1.3 Performance metrics for ship weather routing

Standardised performance metrics that capture both operational efficiency and
uncertainty propagation were used to evaluate the effectiveness of ship weather
routing. requires systematic quantification through. Attainable ship speed (Vatt.) serves
as the fundamental performance indicator, representing the actual ship’s speed
achievable under prevailing actual or forecasted environmental conditions. The metric
incorporates both deterministic predictions from neural network models and
stochastic variations, as captured by RMSE values, depending on the forecast lead time.
The speed uncertainty propagates through all subsequent performance calculations.
Reference speed selection (Vref.) follows the discrete operational paradigm with three
telegraph settings corresponding to each desired speed. For still water conditions,
power requirements in terms of Maximum Continuous Rating (MCR) are defined as

ref.

calm ref. ref.

ref.

5747 kW     for 14.5 kn (100 % MCR)
( ) 4384 kW     for 13.5 kn (95 % MCR)

2790 kW     for 12.0 kn (85 % MCR).

V
P V V

V


 
 

(7.15)

The speed adaptation logic incorporates both reactive adjustments based on current
conditions and proactive modifications anticipating forecast degradation.
Estimated time of arrival (ETA) quantification extends beyond point estimates to
provide full probabilistic distributions. The three benchmark ETAs established in
Section 7.1.2 enable decomposition of voyage performance. The stochastic
optimization structure yields ETA distributions with standard deviations σETA ranging
from 8-17 hours for transatlantic voyages, which enables reliability statements such as
p(Tarrival ≤ ttarget) for commercial scheduling. The actual elapsed duration from
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departure to arrival is represented by voyage time (Tvoyage), serving as the baseline for
validation. The metric enables direct comparison between algorithms.
Specific Fuel Oil Consumption (SFOC) in terms of MCR can be defined as follows

ref.

ref. ref.

ref.

173 g/kWh     for 14.5 kn (100 % MCR)
SFOC( ) 170 g/kWh     for 13.5 kn (95 % MCR)

168 g/kWh     for 12.0 kn (85 % MCR).

V
V V

V


 
 

(7.16)

The stochastic approach to fuel consumption calculations provides consumption
distributions rather than point estimates. CO₂ emissions are directly related to fuel
consumption, using an emission factor of 3.114 kg CO₂/kg fuel for heavy fuel oil. The
metric enables Carbon Intensity Indicator (CII) calculations, demonstrating potential
improvement through optimized routing compared to great circle navigation, directly
supporting IMO decarbonization targets for 2050.
These metrics collectively enable comprehensive performance assessment, with
computational efficiency tracked through algorithm execution times and solution
quality measured against the classic voyage planning method. The framework provides
both real-time operational metrics for voyage execution and aggregate statistics for
fleet performance analysis, thus establishing the quantitative basis for routing system
selection and configuration within advanced ship Decision Support Systems (DSS).

7.2 Numerical examples and analysis of results
In this section, the comprehensive validation of the proposed ship weather routing
algorithms unfolds through systematic application to real-world transatlantic voyages,
demonstrating how theoretical uncertainty quantification translates into measurable
operational improvements. Detailed numerical results from 21 voyage scenarios and
meteorological conditions are presented, progressing from the foundational stochastic
ETA-based approach to the waypoint-sequencing MPC implementation and finally to
the hybrid A*-SMPC framework. Each approach is evaluated using identical voyage
conditions and performance metrics, allowing direct comparison of their effectiveness
in managing weather uncertainty. Particular emphasis was placed on the 12 February
2025 scenario, which demonstrates typical North Atlantic winter conditions while
providing sufficient forecast degradation to challenge all three methodologies.

7.2.1 Stochastic ETA-based approach
The stochastic ETA-based approach represents the foundational implementation of
uncertainty quantification in voyage planning, where weather forecast uncertainties
are explicitly propagated through the ship performance models to provide
probabilistic arrival time estimates.
The practical application of the uncertainty quantification framework is demonstrated
through the selected transatlantic voyage scenarios, with a start date of 12 February
2025 as the primary observed case (shown in Figure 7.1). The NTPRO 5000 Pierson–
Moskowitz spectrum implementation was selected for this analysis based on its
demonstrated balance between accuracy and physical consistency, as evidenced by the
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correlation analysis in Section 6.1.3. Unlike the JONSWAP spectrum, which showed
extreme polarisation in uncertainty propagation, or NavCad, which exhibited stepped
uncertainty patterns, the Pierson-Moskowitz model provided smooth, physically
interpretable uncertainty growth that aligns with observed meteorological forecast
degradation patterns. Pseudo-code of this integrated framework for attainable ship
speed uncertainty quantification is given in Appendix D (D.1). The pipeline and key
computational steps comprise: (i) initialisation, (ii) voyage simulation with weather
forecast uncertainty and ship performance processing, (iii) ETA calculation, and (iv)
calculating required outputs.
As previously stated, the voyage's start date was set for 12 February 2025. The actual
voyage length of this selected scenario was 3880 nm and duration of 343 hours, i.e. 14
days and 7.2 hours, arriving on 26 February 2025, at 07:00 UTC. This represents a
28.18 % increase over the nominal 267.6-hour duration at the intended speed of 14.5
kn, confirming a systematic weather-induced speed loss. It should be noted that the
voyage simulation was set to start 10 nm from Rotterdam port and finish 10 nm before
New York port in order to avoid low-speed manoeuvring near ports. In Figure 7.1, four
sequential snapshots of the voyage progress are displayed at 3-day intervals (Days 3,
6, 9, and 12), each illustrating the complex relationship between actual conditions and
forecast projections. The visualisations employ an information architecture where the
purple track indicates completed voyage segments, the current ship position is marked
with a prominent purple circle, and information boxes connected by arrows display
both actual and forecasted states with their associated uncertainties. Each information
box follows a structured format presenting temporal information (date/time and
hours elapsed), meteorological conditions with uncertainties (Hs ± ΔHs, Vwind ±
ΔVwind, αwave ± Δαwave), resulting attainable speed with uncertainty (Vatt. ± ΔVatt.) and
estimated time of arrival with temporal uncertainty (ETA ± ΔETA in hours). The
uncertainty values (±) represent Root Mean Squared Error (RMSE) as derived from the
uncertainty metrics framework described in Section 4.2.1.
Table 7.2 synthesises the actual and forecasted conditions at 3-day intervals
throughout the voyage, following a systematic pattern of ( 3 3,  3 ,  3 3k k k  ) days
where   1,2,...,5k  . This mathematical structure creates a rolling forecast window
where, for each value of k , Day 3 3k   represents the current observation point, Day
3k  represents the next forecast point 3 days ahead, and Day 3 3k   represents the next
forecast point 6 days ahead. For instance, when k = 2, the pattern yields Days 3, 6, and
9, where Day 3 contains actual observed conditions (Hs = 4.66 m, Vwind = 13.2 m/s,
Vatt. = 10 kn), Day 6 shows what was forecasted 3 days ahead from Day 3, and Day 9
shows what was forecasted 6 days ahead from Day 3, as also shown in Figure 7.1(b).
Uncertainty propagation from Table 7.2 for significant wave height (Hs), attainable
ship speed (Vatt.) and ETA in case of k = 1, 2, 3 and 4, is also visualised in Figure 7.2,
which elegantly shows how ETA uncertainty follows the Vatt.  uncertainty during very
challenging and changing conditions (Hs) as the ship sails towards the destination port.
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(a)

(b)

(c)

(d)

Figure 7.1. The visualised route from Rotterdam to New York, with actual weather data and
weather forecasts along the route (start date 12 February 2025)

This structure neatly captures how each location along the route receives multiple
forecasts from different lead times, first appearing as 3 3k   (actual observations), then
as 3k  (a 3-day forecast), and finally as 3 3k   (a 6-day forecast). The data from Table
7.2 for k = 1, 2, 3 and 4, corresponds to Figures 7.1(a)-7.1(d), respectively. The
uncertainty values (±) associated with each forecast demonstrate how prediction
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confidence changes with lead time. For instance, the ETA uncertainty varies
dramatically from ±33 hours, for the initial long-range forecast at Day 3k  for k = 1, to
±11 hours for short-range forecast at Day 3k  for k = 5.

Table 7.2. Actual and forecasted weather variable values, for every 3 days of the voyage, along
with the ETA uncertainty

Time frame Actual state Forecasted state

Day Date Time
(d.m.y. h:m)

HS

(m)
Vwind

(m/s)
Vatt.

(kn)
ETA

(d.m.y. h:m)
HS + ΔHS

(m)
Vwind+ΔVwind

(m/s)
Vatt.+ΔVatt.

(kn)
ETA + ΔETA
(d.m.y. h:m)

0 12.2.2025.
00:00 h 0.92 8.4 14.5 23.2.2025.

15:03 h - - - -

3 15.2.2025.
00:00 h - - - - 2.54±0.60 10.7±2.3 13.4±2.0 24.02.2025.

01:06 h±33h

6 18.2.2025.
00:00 h - - - - 6.33±1.20 11.6±3.8 10.5±6.1 26.02.2025.

08:30 h±116h

3 15.2.2025.
00:00 h 4.66 13.2 10.0 27.2.2025.

12:28 h - - - -

6 18.2.2025.
00:00 h - - - - 6.46±1.20 11.3±3.80 7.8±3.4 02.03.2025.

08:45 h ±128 h

9 21.2.2025.
00:00 h - - - - 6.37±1.20 18.2±3.80 12.3±7.4 26.02.2025.

10:19 h ±79 h

6 18.2.2025.
00:00 h 6.36 10 10.4 26.2.2025.

22:32 h - - - -

9 21.2.2025.
00:00 h - - - - 10.8±1.20 19.1±3.80 4.6±3.0 09.03.2025.

14:48 h ±260 h

12 24.2.2025.
00:00 h - - - - 8.81±1.20 20.8±3.80 7.6±5.40 03.03.2025.

09:53 h±126 h

9 21.2.2025.
00:00 h 6.39 16.2 12.1 26.2.2025.

10:34 h - - - -

12 24.2.2025.
00:00 h - - - - 0.37±1.20 6.0±3.80 14.0±1.60 27.02.2025.

09:52 h ±09 h

15 27.2.2025.
00:00 h - - - - 0.43±1.20 5.4±3.80 12.5±3.9 27.02.2025.

13:26 h ±04 h

12 24.2.2025.
00:00 h 1.94 5.0 13.7 26.2.2025.

14:31 h - - - -

15 27.2.2025.
00:00 h - - - - 2.86±1.20 10.7±3.80 13.1±1.6 26.2.2025.

12:58 h ±11 h

This pattern of uncertainty evolution shown in Table 7.2 suggests that uncertainty
growth is not simply a function of forecast lead time but is modulated by spatial
variability in forecast skill and environmental predictability. The average actual
attainable ship speed of 12.14 knots, calculated from actual values, with an RMSE of
2.54 knots, demonstrates substantial variability around the mean performance. The
16.28% speed reduction from the intended 14.5 knots aligns with typical winter North
Atlantic conditions, where the average significant wave height is 4.58 m (with a
maximum of 6.39 m) and wind speeds average 10.56 m/s (with a maximum of 16.2
m/s), creating persistent adverse conditions. The cumulative uncertainty growth from
±33 to ±260 hours over the voyage duration represents the integrated effect of speed
variations, substantially lower than the initial projections but still significant for
operational planning.
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Figure 7.2. Visualisation of uncertainty propagation for HS, Vatt. and ETA in case k = 1,2,3 and 4

Attainable speed uncertainty varied non-linearly from ±1.6 to ±7.4 knots, reflecting the
complex transformation of environmental uncertainties through ship performance
models. The ±7.4 kn uncertainty observed at a certain point (12.3±7.4 knots at Day
3 3k   for k = 2) represents the statistical RMSE for that specific forecast configuration
(lead time: 72-120 h, Day 3 to Day 9; sea state at that location with associated
encounter wave angle conditions), without imposing physical constraints on the
vessel's propulsion system. This purely statistical approach yields a theoretical speed
range of 4.90 to 19.7 knots, which extends beyond the vessel's actual operating
envelope of 0 to 14.5 knots (maximum intended speed).
This unbounded statistical quantification was deliberately employed in this study to
capture the full magnitude of forecast uncertainty propagation. For practical
operational applications, however, the uncertainty model should incorporate physical
constraints through:
(a) Engine power limitations: Capping maximum speed at 14.5 knots based on

installed power and hull design
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(b) Minimum steerage speed: Setting a lower bound of 3-4 knots for maintaining
directional control

(c)  Truncated distributions: Implementing bounded probability distributions that
respect these physical limits while preserving the underlying uncertainty
structure.

The large uncertainty values observed serve as indicators of high forecast volatility
rather than literal speed ranges. They highlight periods where environmental
conditions are highly uncertain, signalling to operators that speed predictions during
these periods have low confidence. For decision support systems, these high
uncertainty periods would trigger risk-based planning protocols, even though the
actual speed must remain within physical bounds. This distinction between statistical
uncertainty quantification (used for analysis) and operationally bounded uncertainty
(required for implementation) is essential for using these research findings in practical
voyage planning tools. The discrepancy between the predicted and actual arrival times
exposes fundamental limitations in maritime uncertainty quantification. The models
demonstrate a tendency toward conservative speed estimates, suggesting a systematic
overweighting of adverse weather probabilities in the uncertainty framework.
Furthermore, the transformation process from meteorological variables to ship speed
predictions may not adequately capture all sources of variability in this stochastic ETA-
based approach, particularly the complex non-linear interactions between
environmental conditions and vessel performance. The assumption of temporal
independence between voyage segments should also be considered with caution, as
correlations in weather patterns and cumulative effects on vessel performance can
lead to overestimation of aggregate uncertainty.
Comparing the three models for attainable ship speed, the Pierson-Moskowitz
implementation produces a slightly wider distribution than both JONSWAP and
NavCad, with its 95 % confidence interval spanning approximately 73 hours. This
broader uncertainty range reflects the model's more conservative approach to
capturing fully developed sea states characteristic of North Atlantic conditions. The
convergence of all three models toward similar mean values (ranging from 338.8 to
347.3 hours) suggests that extended voyage predictions tend toward climatological
averages, though this convergence may inadvertently mask the true probability of
extreme events that could significantly impact voyage duration.
To establish the robustness and sensitivity of the stochastic ETA approach,
comprehensive validation was conducted across 21 scenario combinations, including
three attainable ship speed NN models (NTPRO 5000 with Pierson-Moskowitz
spectrum, NTPRO 5000 with JONSWAP spectrum, and NavCad) and seven voyage start
dates. This systematic evaluation revealed both model-specific characteristics and
temporal variability in routing performance under stochastic weather conditions.
Figure 7.3 presents the comparative analysis of ETA uncertainty in terms of MAE
(MAEETA) across all scenarios, revealing distinct model-specific response patterns to
varying meteorological conditions.
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Figure 7.3. Temporal evolution of ETA uncertainty (MAEETA) across 21 voyage scenarios
comparing three attainable ship speed models: Pierson-Moskowitz (PM),

JONSWAP (JS), and NavCad (NC)

The Pierson-Moskowitz (PM) and JONSWAP (JS) implementations demonstrate
remarkably similar uncertainty profiles, with MAE ranging from approximately 8.5 to
15.5 hours, while NavCad (NC) exhibits slightly higher uncertainty bounds, particularly
during the 27 February 2025 scenario, where extreme weather conditions resulted in
MAEETA exceeding 16.5 hours. This suggests that while model formulation influences
absolute uncertainty values, the underlying physical processes governing weather's
impact on ship performance are consistently captured across all implementations.
Statistical analysis of model agreement reveals strong positive correlations between
the three speed prediction frameworks, as illustrated in Figure 7.4. The PM-NC pair
exhibits the highest correlation (r = 0.971, p = 0.0003), indicating near-identical voyage
duration predictions despite different underlying formulations. The PM-JS correlation
(r = 0.794, p = 0.0328) and JS-NC correlation (r = 0.885, p = 0.0082) remain statistically
significant but show greater dispersion, particularly for voyages exceeding 340 hours
duration. These correlation patterns demonstrate that while all models capture the
fundamental relationship between weather severity and voyage duration, their
sensitivity to extreme conditions varies systematically. The clustering of data points
along the 1:1 reference line for voyage durations below 330 hours confirms that model
differences are minimal in moderate conditions, with divergence primarily occurring
when severe sea states occur for sustained periods.

Figure 7.4. Statistical agreement between attainable ship speed models through pairwise
correlation analysis of voyage duration predictions
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Table 7.3 presents the comprehensive cross-model comparison of voyage performance
metrics across all 21 scenarios, revealing both the consistency and divergence in model
predictions under varying meteorological conditions. The average ship speeds
demonstrate remarkable agreement across models, with mean values of 11.81 knots
(PM), 11.6 knots (JONSWAP), and 11.68 knots (NavCad), indicating that all three
formulations produce comparable speed predictions despite the different theoretical
foundations. However, this apparent similarity in average speeds masks important
differences in voyage duration predictions, where systematic biases emerge: JONSWAP
consistently produces the longest voyage times (mean: 336.28 hours), followed by
NavCad (334.57 hours) and PM (330.85 hours), representing a slight spread between
the most conservative and optimistic models.

Table 7.3. Cross-model comparison of voyage performance metrics for three attainable ship
speed models across seven transatlantic voyage scenarios

Avg. attainable speed (kn) ETAMAE (h) Tvoyage (h)
JS NC PM JS NC PM JS NC PM

S
t
a
r
t
D
a
t
e

01.02.25. 11.8 11.7 11.7 8.5 9 8.5 330 333 332
07.02.25. 10.5 10.5 11 7.8 8.3 7.8 370 370 356
12.02.25. 11.4 11.4 11.8 8.1 8.4 8.1 341 342 343
19.02.25. 11.3 11.3 11.3 14 15.4 14 345 345 345
25.02.25. 11.9 11.7 11.9 15.4 16.8 15.6 327 332 327
27.02.25. 12.4 12.3 12.3 9.6 10.5 9.5 314 317 316
05.03.25. 11.9 12.9 13.1 8.1 8.3 8.1 327 303 297

Observing the 27 February 2025 scenario, one can notice that despite identical average
speeds of approximately 12.3 knots across all models, voyage durations vary from 314
hours (JONSWAP) to 317 hours (NavCad), with PM predicting 316 hours. This 3-hour
spread in a relatively short voyage demonstrates exactly how subtle differences in
speed reduction formulations compound over time, particularly when vessels
encounter alternating calm and rough sea states. The corresponding ETA uncertainties
(PM: 9.5 hours, JONSWAP: 9.6 hours, NavCad: 10.5 hours) further exemplify that
NavCad tends to produce wider confidence intervals, potentially reflecting its
empirical foundation, which captures greater variability in vessel response.
The cross-model comparison validates the robustness of the stochastic ETA framework
while highlighting important considerations for practical implementation. The 7
February 2025 scenario, characterised by higher sea states, shows the greatest model
convergence with identical voyage durations of 370 hours for JONSWAP and NavCad,
and 356 hours for PM, yet all three models maintain ETA uncertainties below 8.5 hours,
demonstrating effective uncertainty quantification even in challenging conditions. This
analysis establishes that while the choice of attainable speed model influences absolute
predictions, the stochastic framework's ability to quantify and propagate uncertainties
remains consistent, providing reliable probabilistic voyage planning regardless of the
underlying attainable ship speed NN-based model selected.
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7.2.2  MPC waypoint sequencing ship route optimization approach
The MPC waypoint sequencing approach advances beyond passive voyage prediction
to active path optimization, implementing real-time speed control decisions within a
structured framework. Unlike the stochastic ETA approach outlined in 7.2.1, which
quantifies uncertainty without modifying vessel response, the MPC framework actively
adjusts reference speeds at each control interval to minimise a multi-objective cost
function. The planned route undergoes initial discretisation into waypoints, thus
creating a sequence of target positions that remain unchanged throughout the entire
voyage. At each waypoint approach, the MPC controller solves a finite-horizon
optimization problem over the default 6-hour control horizon with 24-hour prediction
capability, selecting from discrete speed options based on weighted objectives: 60 %
fuel consumption, 30 % safety margins, and 10 % control smoothness.
The selection of optimal prediction (Np) and control (Nc) horizons was systematically
evaluated across multiple configurations to balance computational efficiency, control
stability, and forecast reliability. Five primary configurations were tested:
(i) Np = 12 h with Nc = 6 h (providing minimal look-ahead but rapid computation),
(ii) Np = 24 h with Nc = 6 h (default configuration),
(iii) Np = 36 h with Nc = 6 h (extending medium-range planning capability),
(iv) Np = 48 h with Nc = 6 h (maximising forecast utilisation within 2-day windows),
(v) Np = 72 h with Nc = 6 h (approaching forecast degradation limits).
The 24-hour prediction horizon emerged as optimal, providing sufficient anticipatory
capability to navigate approaching weather systems. It remains within the reliable
forecast window where RMSE remains below 2.0 meters for significant wave height.
Shorter horizons (Np = 12 h) resulted in reactive rather than proactive control, with
approximately 15 % higher fuel consumption due to late speed reductions when
encountering deteriorating conditions. On the contrary, extended horizons (Np = 48-72
h) incorporated increasingly uncertain forecast data, leading to conservative speed
selections that unnecessarily prolonged the total voyage duration. The 6-hour control
horizon provided across all viable configurations proved beneficial for waypoint
tracking stability, as demonstrated by the failed Np = 48 h with Nc = 12 h test
configuration. It showed oscillatory behaviour and waypoint overshooting, with the
vessel's 120-168 nautical mile advancement per control step exceeding typical inter-
waypoint distances on transatlantic routes. Empirical testing, therefore, confirmed that
control horizons must satisfy Nc ≤ 6 hours to maintain convergent behaviour, as the
absolute magnitude of Nc relative to route geometry proved more critical than the
Np/Nc ratio alone for ensuring system stability.
The start date of the voyage was set to 12 February 2025. The MPC approach achieved
a total voyage duration of 345 hours, representing a 6.1 % improvement over the
traditional baseline voyage planning. The results of the voyage are shown in five
snapshots in Figure 7.5. Each snapshot displays the ship's position at 3-day intervals
(days 3, 6, 9 and 12) overlaid on synoptic wave height fields.
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(a)

(b)

(c)

(d)

Figure 7.5. The visualised voyage from Rotterdam to New York, with actual and forecasted
weather data using the MPC routing approach (start date 12 February 2025)

Three reference ETAs are plotted at each time step; the first one, ETA1 (green dots),
represents traditional voyage planning using constant speed without weather
consideration. ETA2 (purple dots) shows the optimal path achievable with perfect
weather information using the PM attainable speed NN-based model. Finally, ETA3

(pink circles) indicates the MPC forecast-based prediction of the ship’s position using
weather forecasts available at each decision point. The divergence between ETA1 and
the weather-informed references (ETA2 and ETA3) illustrates the impact of wave
conditions on voyage performance, particularly in the mid-Atlantic region where
significant wave heights exceed 4 meters.
The optimization framework also incorporated operational constraints derived from
the vessel's seakeeping analysis conducted in Section 5, which identified critical wave
height thresholds and encounter angle limitations. These hydrodynamic constraints
were embedded as safety margins within the MPC cost function to ensure that
optimized routes remained within safe operational envelopes throughout the voyage.
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The temporal evolution of control decisions and forecast accuracy throughout the
voyage reveals the MPC controller's adaptive behaviour in response to evolving
weather conditions. Following a systematic pattern of ( 3 3,  3 ,  3 3k k k  ) days, where

  1, 2,...,5,k   the framework tracks both actual and forecasted states at 3-day
intervals, enabling a comprehensive assessment of predictive capability degradation
over the voyage duration. This temporal sampling captures the transitions in
meteorological conditions while maintaining computational tractability. Complete
tabulated results presenting the actual and forecasted ship performance values,
including reference speeds, attainable speeds, and associated uncertainties at each
temporal checkpoint, are provided in Appendix F (Table F.4).
For the 12 February 2025 scenario, the total voyage duration of 345.6 hours
demonstrates the MPC framework's operational characteristics under challenging
North Atlantic winter conditions. This represents a 2.6 % increase compared to the
perfect information baseline of 336.5 hours, indicating the cost of forecast uncertainty
in practical implementation. The discrete speed adaptation pattern throughout the
voyage reveals the controller's systematic response to both actual conditions and
forecast evolution. The controller maintained an average attainable speed of 10.28
knots throughout the voyage, compared to an average reference speed of 13.1 knots
commanded by the optimization algorithm. This 21.5 % reduction from commanded to
achieved speed directly quantifies the cumulative weather impact on vessel
performance along the optimized route.
Comprehensive validation across all seven voyage scenarios revealed consistent MPC
performance characteristics under diverse meteorological conditions. The Pierson-
Moskowitz attainable ship speed NN-based model was employed throughout all
simulations, ensuring methodological consistency in performance evaluation while
capturing the full spectrum of wave-vessel interactions characteristic of North Atlantic
operations. Voyage durations ranged from 299 hours achieved during the favourable
conditions of 5 March 2025 to 345.6 hours for the challenging 12 February 2025
scenario. This 46.6-hour spread, representing a 15.6% variation in voyage duration,
directly correlates with the severity of encountered sea states and demonstrates the
framework's ability to adapt control strategies across the full operational envelope.
The computational performance metrics validate the framework's suitability for real-
time implementation aboard commercial vessels. The MPC implementation required
10-15 seconds per optimization cycle on standard computational hardware, with
approximately 70 % of computation time allocated to weather forecast evaluation at
future waypoint positions. This involves interpolating meteorological variables from
the gridded forecast data to specific waypoint coordinates and propagating uncertainty
bounds through the prediction horizon. For the complete transatlantic voyage, total
computation time averaged 20.5 minutes across all scenarios, ranging from 15.97
minutes for benign conditions to 48.49 minutes for complex weather patterns
requiring frequent re-optimization.
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Spatial deviation analysis reveals the inherent trade-off between route flexibility and
computational complexity in the waypoint-based formulation. In the 12 February
scenario, the maximum cross-track distance reached only 38 nautical miles from the
great circle route, as the fixed waypoint structure with 50 nautical mile spacing
inherently constrains spatial exploration. While this limitation prevents exploitation of
localised weather windows that might exist between waypoints, it ensures predictable
vessel behaviour aligned with traditional maritime navigation practices and ECDIS
integration requirements. The systematic performance evaluation, presented
comprehensively in Appendix F alongside inter-scenario comparisons, demonstrates
that the MPC framework achieves consistent fuel savings of 8-12 % compared to
traditional voyage planning, while maintaining arrival time reliability within
commercial tolerance bands.

7.2.3  Hybrid A* and SMPC approach

The hybrid A*-SMPC framework represents the most sophisticated implementation of
the weather routing optimization of the three proposed methods in this thesis,
combining global path planning with local stochastic path optimization. Applied to the
same 12 February 2025 transatlantic voyage scenario, this approach demonstrates the
computational advantages of hierarchical decision-making where strategic route
selection precedes tactical speed and heading control. The framework generated
several candidate routes (C1-C4) using the A* algorithm, each emphasising different
objectives ranging from minimum distance to weather avoidance, before employing
stochastic MPC to evaluate and select the optimal path for given weather conditions.
The raw grid-based paths generated by the A* algorithm undergo smoothing through
Catmull-Rom spline interpolation, transforming the discrete waypoint sequences into
continuous, differentiable paths suitable for the SMPC controller's path-following
formulation. This continuous parametric representation ensures smooth heading
transitions that take into account the vessel's turning rate constraints while
maintaining local control through the spline's tension parameter, set to 0.5 for
balanced smoothness and path fidelity. The spline interpolation also enabled the
efficient computation of cross-track error and heading deviation required for the Line-
of-Sight guidance system employed in the local optimization layer.
The comparative analysis of four primary route alternatives generated by the A*
algorithm was conducted, with performance metrics evaluated through forward
simulation using the 20 nautical mile corridor constraint. The C3 route (Balanced
Northern) emerged as the optimal selection, despite being 3160.6 nautical miles long,
or 0.71 % longer than the minimum distance route, C1, which is 3138.4 nautical miles.
This counterintuitive result, where a longer path yields superior fuel efficiency,
validates the framework's ability to exploit favourable weather conditions that
compensate for the additional distance travelled.
The results of the voyage for the chosen start date are shown in four snapshots in
Figure 7.6. Each snapshot displays the ship's position at 3-day intervals (days 0, 3, 6
and 9).
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(a)

(b)

(c)

(d)

Figure 7.6. The visualised voyage from Rotterdam to New York, with actual and forecasted
weather data using the hybrid A* SMPC routing approach (start date 12 February 2025)

The candidate routes are visualised in Figure 7.6 (a), in the voyage snapshot at Day 0,
with each path colour-coded according to its optimization objective: C1 (blue) for
minimum distance, C2 (purple) for weather avoidance, C3 (green) for balanced
northern routing, and C4 (orange) for current exploitation. Additional voyage
snapshots and route comparisons for the remaining six start dates (1 February, 7
February, 19 February, 25 February, 27 February, and 5 March 2025) are provided in
Appendix G, as well as the tabulated results for the evolution of reference speed
selections and ETA uncertainties throughout the voyage.
Examining the data in Table 7.4 in Section 7.2.4, the SMPC controller's selection of C3

for the 12 February 2025 scenario was driven by its superior risk-adjusted
performance under stochastic weather conditions, despite consuming 375.6 tons of
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fuel compared to C1's 366.1 tons. While C1 achieved lower fuel consumption, the
stochastic optimization framework with CVaR₀.₉₅ risk measure identified C3 as offering
better robustness to forecast uncertainty, with lower variance in arrival time and
reduced exposure to severe weather systems that could compromise schedule
reliability, which are important factors for commercial shipping operations.
Throughout the voyage, the system executed 47 optimization iterations with a 42.6 %
convergence rate, employing stochastic scenario trees with [5,3,2] branching to
capture weather uncertainty evolution across the 24-hour prediction horizon.

7.2.4  Comparative analysis
The comparative framework employed here evaluates four distinct routing approaches
through the A*-SMPC approach, each representing different operational priorities. This
array of candidates is visualised in Figure 7.7 for the start date 12 February 2025.

(a)

(b)

(c)

(d)

Figure 7.7. The visualised candidate routes, A*-SMPC routes, and the MPC route from
Rotterdam to New York, with actual weather data and weather forecasts

(start date 12 February 2025)
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Table 7.4 presents the cross-model comparison across all seven voyage scenarios,
revealing consistent patterns that validate the robustness of the multi-alternative
approach. The traditional voyage-planning approach, assuming perfect weather and
lacking alternatives, yields fuel consumption of 312.0 to 333.7 tonnes. In contrast, the
A*-SMPC framework, with its four candidates, enables selecting routes that consume
as little as 361.2 tonnes in optimal conditions (5 March scenario with C3). Notably, the
performance gaps between candidates vary significantly with meteorological
conditions. The stochastic elements embedded in both the MPC and   A*-SMPC
approaches add another dimension to the comparative analysis.

Table 7.4. Cross-model comparison of total voyage performance metrics across seven
transatlantic voyage scenarios

Routing
Strategy

Performance
Metric

Start date
01.02.25. 07.02.25. 12.02.25. 19.02.25. 25.02.25. 27.02.25. 05.03.25.

Traditional
Voyage

Planning

FOC (t) 312.0 318.3 321.7 317.9 328.6 332.1 333.7
CO2 (t) 971.5 991.1 1001.7 989.9 1023.2 1034.1 1039.1

Tvoyage (h) 317 328 337 332 321 314 301

Stochastic
ETA

Approach

FOC (t) 331.4 321.8 333.8 324.7 339.5 349.7 370.9
CO2 (t) 1031.8 1002.0 1039.5 1011.0 1057.2 1089.1 1154.9

Tvoyage (h) 332 356 343 345 327 316 297

MPC
Approach

FOC (t) 348.1 334.8 344.5 333.9 370.4 364.3 360.9
CO2 (t) 1084.1 1042.6 1072.8 1040.0 1153.5 1134.6 1124.0

Tvoyage (h) 329 341 345 335 329 311 299

A*-SMPC
Approach

(C1)

FOC (t) 426.1 415.1 366.1 416.6 390.3 400.3 361.2
CO2 (t) 1327.8 1293.0 1139.4 1298.1 1215.6 1247.1 1125.3

Tvoyage (h) 304 304 304 304 298 304 298

A*-SMPC
Approach

(C2)

FOC (t) 434.2 448.4 417.3 458.3 416.7 401.6 397.7
CO2 (t) 1352.7 1395.3 1300.3 1426.5 1298.4 1251.4 1239.0

Tvoyage (h) 316 328 304 322 322 316 316

A*-SMPC
Approach

(C3)

FOC (t) 424.6 415.9 375.6 423.5 408.3 407.6 366.7
CO2 (t) 1322.3 1295.1 1169.5 1319.0 1271.6 1269.3 1141.9

Tvoyage (h) 298 304 304 310 310 304 298

A*-SMPC
Approach

(C4)

FOC (t) 440.8 424.9 388.7 435.1 392.6 398.1 373.7
CO2 (t) 1373.4 1323.2 1210.4 1354.7 1223.2 1239.9 1163.4

Tvoyage (h) 310 310 310 316 304 310 304

The analysis also reveals interesting patterns in how different routing strategies
respond to forecast uncertainty. Routes that aggressively exploit predicted favourable
conditions are more sensitive to forecast errors, while more conservative routes are
more robust. This insight enables operators to select routes not just on expected
performance but also on risk tolerance, adding another dimension of operator
preference that traditional single-solution systems cannot accommodate. The
seemingly efficient fuel consumption values from traditional voyage planning (312.0-
333.7 tonnes) are optimistic predictions that assume perfect weather conditions along
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the entire route. This can be a dangerous simplification that ignores both forecast
uncertainties and the effects of weather-induced speed reductions, leaving operators
blind to the 20-30 % performance degradation that routinely occurs in real North
Atlantic conditions.

7.3  Discussion of results
The three proposed frameworks address different operational requirements,
progressing from passive uncertainty awareness to reactive optimization with explicit
risk management. Traditional voyage planning's unrealistic fuel predictions (312.0-
333.7 tonnes, Table 7.4) systematically underestimate actual consumption by 15.6-
37.3 %, highlighting the need for weather-aware routing.
The stochastic ETA framework quantifies forecast-uncertainty propagation (MAEETA:
8.1-15.4 hours across scenarios; Figure 7.3), achieving voyage durations of 297-370
hours and fuel consumption of 321.8-370.9 tonnes. Cross-model validation revealed
strong statistical agreement (PM-NC: r = 0.971, p = 0.0003), which confirms robust
uncertainty quantification across different NN-based speed models. However, the
voyage durations exceed MPC by 0.3-24.5 % (343 vs 345 hours for 12 Feb; 370 vs 341
hours for 7 Feb) with no means to exploit favourable weather windows or mitigate
adverse conditions. The extreme mid-voyage ETA uncertainty (±260 hours at Day 9,
Table 7.2) reflects cascading forecast errors over 72–120-hour lead times.
Building on this foundation, the MPC framework approach advances to active speed
control, achieving 8-12 % fuel savings compared to non-optimized voyages through
discrete reference speed choices (12.0, 13.5, 14.5 knots). Voyage durations of 299-
345.6 hours and fuel consumption of 333.9-370.4 tonnes demonstrate consistent
performance improvement with computational efficiency suitable for real-time
shipboard implementation (10-15 seconds/cycle, 15.97-48.49 minutes total voyage
computation). The framework's optimal configuration (Np = 24 h, Nc = 6 h) balances
forecast reliability (RMSE<2.0 m for Hs within 24-72 h windows) with strategic
planning capability. Shorter horizons led to 15 % fuel penalties through reactive
control. The 21.5% average speed reduction from the reference speed to the attainable
speed (10.28 kn) in the 12 Feb scenario validates the realism of forecast uncertainty.
Nevertheless, several limitations arise from the fixed waypoint spacing (50 nm). A
maximum cross-track deviation of 38 nm proved insufficient for severe-weather
avoidance (systems spanning 300-500 nm), limiting avoidance to tactical speed
reduction rather than strategic replanning. For fuel minimisation objectives, the
approach captures tactical optimization benefits but misses strategic route selection
opportunities worth 5-15 % in total voyage cost.
Advancing beyond single-path evaluation, the A*-SMPC framework achieves superior
performance through hierarchical decision-making. Four strategic alternatives (C1-C4)
are generated using global A* path planning before stochastic MPC evaluation selects
optimal routes under CVaR₀.₉₅ risk measures. Ship weather routing is thus transformed
into comprehensive decision support rather than a single-solution recommendation.
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Regarding the strategy-specific performance for 12 Feb (Table 7.4), C1 achieved the
lowest fuel consumption (366.1 tonnes, 304 h) but a higher schedule variance (±18 h).
The candidate route C2 consumed 417.3 tonnes (304 h) with ±6 h reliability, while C3

was selected as optimal despite a 2.6 % fuel penalty versus C1 (375.6 vs 366.1 tonnes)
due to superior robustness (93.3 % vs 80.0 % scenario feasibility). The candidate route
C4 paradoxically demonstrated higher consumption (388.7 tonnes, 310 h) when
weather exposure was increased, exceeding current benefits. Across all chosen
scenarios, the hybrid A*-SMPC achieved the most consistent durations (298-328 h
range, 10.1 % variation) versus MPC (299-345.6 h, 15.6 %) and stochastic ETA (297-
370 h, 24.6 %). For time-sensitive operations, this schedule reliability proved critical.
In terms of DSS implementation advantages, the multi-strategy framework
accommodates diverse operational priorities without algorithmic modification. The C1

option can be chosen for voyages prioritising absolute fuel minimisation (361.2-426.1
tonnes), while C2 accounts for minimising delay penalties, which justify the 10-15 %
fuel premium. The C3 option is robust, capturing 85-92 % of maximum routing benefits
with ±8 h reliability. As for computational complexity, 10⁵ operations/cycle with a
42.6% convergence rate creates potential implementation barriers. The 47
optimization iterations over 343 h (7.3 h average re-planning intervals) require
dedicated multi-core hardware and sophisticated exception handling when constraint
violations prevent convergence in worst-case scenarios.
Comparative performance can also be evaluated across objective functions. From the
fuel/CO₂ minimisation point of view, A*-SMPC C1 was consistently optimal under
favourable conditions (361.2-390.3 tonnes for 5 Mar, 12 Feb, 25 Feb), achieving 5-10 %
savings versus MPC's tactical optimization alone. However, 7 Feb severe weather
revealed context-dependence. The stochastic ETA's 321.8 tonnes (356 h) versus C1's
415.1 tonnes (304 h) demonstrates a 29.0 % fuel penalty for 15.3 % time savings,
which are fundamentally different optimization priorities.
The hybrid A*-SMPC's stochastic formulation with [5,3,2] branching explicitly
optimizes across ±2σ forecast bounds, maintaining robustness when extended-range
forecasts (72-168 h) degrade (RMSE: 0.8 m at 24 h to 2.2 m at 120 h). MPC's implicit
uncertainty handling through conservative speed margins proves adequate within the
24-72 h reliable forecast windows, but systematically fails when forecast errors exceed
safety margins, therefore lacking spatial repositioning capability.
All frameworks share a common constraint: dependence on forecast skill degradation
beyond 72-120 h, which imposes upper performance limits regardless of algorithmic
sophistication. Implementation recommendations can follow method selection
criteria: Stochastic ETA for coastal voyages (24-72 h) with limited optimization
potential; MPC for mid-range transoceanic (5-10 days) balancing performance and
implementation complexity; hybrid A*-SMPC for extended voyages (7+ days) with
high-value cargo where computational investment justifies superior risk-adjusted
performance.
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8 CONCLUSIONS AND RECOMMENDATIONS

8.1 Main conclusions and contributions

Quantifying weather forecast uncertainty through ensemble predictions and
propagating these uncertainties through attainable ship speed models reveals
significant variability in voyage outcomes when it comes to ship weather routing. The
methods proposed in this thesis demonstrated that incorporating weather forecast
uncertainties directly into the routing optimization framework returns substantial
improvements in voyage reliability and efficiency compared to traditional
deterministic approaches. The hybrid optimization framework, combining A* global
path planning with SMPC and NN-based performance prediction, achieved consistent
reductions in fuel consumption and ETA reliability improvements.
An integrated framework was established for quantifying and propagating weather
forecast uncertainties during the entire ship routing optimization process. Through
detailed statistical analysis of ensemble weather forecasts, the temporal evolution of
prediction uncertainties was characterised, capturing both aleatoric uncertainties
from the atmospheric dynamics and epistemic uncertainties arising from numerical
weather prediction limitations. This proved that proper handling of forecast
uncertainties fundamentally transforms ship routing optimization from a
deterministic problem to a stochastic one, ultimately providing decision-makers with
probabilistic guarantees rather than point estimates. Thus, the auxiliary hypothesis
H1 is confirmed, signifying that stochastic optimization methods enable
significantly better management of weather forecast uncertainties and reduce
the impact of adverse weather conditions on vessel operations compared to
deterministic methods.
The wide neural network models developed for ship performance prediction
effectively captured complex nonlinear relationships between environmental
conditions and vessel responses, demonstrating a significant improvement in accuracy
over traditional regression methods. Robust generalisation capabilities were achieved
across 5 different sea state combinations and 13 encounter angle configurations,
maintaining prediction accuracy even for extreme weather conditions outside the
training domain. Particularly significant was the model's ability to distinguish between
different wave encounter angles, with head seas causing a 36 % speed reduction, while
following seas enabled a 6 % speed increase under identical wave heights. The
computational efficiency of the trained networks enables real-time implementation
within optimization loops. Furthermore, the modular nature of the NN architecture
facilitates transfer learning, suggesting that models trained on one vessel class could
be efficiently adapted to similar vessels with limited additional data, dramatically
reducing the deployment barrier for smaller operators. This data-driven modelling
approach confirms the effectiveness of integrating machine learning to provide
the foundation for accurate ship performance and response predictions needed
for route optimization.
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A stochastic ETA-based voyage planning methodology was formulated that explicitly
quantifies uncertainties in arrival time predictions. By modelling attainable ship speed
as a stochastic variable with forecast-dependent variance, the approach provides full
probability distributions for ETA rather than deterministic point estimates. Validation
across 21 transatlantic voyage scenarios demonstrated that the Pierson-Moskowitz
NN-based model achieved ETA predictions with mean absolute errors of 10.3 hours.
The stochastic framework captured the non-linear propagation of weather
uncertainties through vessel performance models, resulting in asymmetric ETA
distributions. These results conclusively confirm the auxiliary hypothesis H2,
establishing that ensemble weather forecasts significantly enhance the accuracy
and robustness of ETA predictions, thereby ensuring better adaptability to
operational conditions.
A waypoint-sequencing MPC framework was implemented for dynamic route
optimization under stochastic weather conditions. The rolling horizon approach
achieved a 2.70 % reduction in fuel consumption variance and an improvement in on-
time arrival rates compared to deterministic routing methods. Weather forecast
updates were incorporated every 6 hours, which dynamically adjusted both the route
geometry and reference ship speed profiles. Robust performance was maintained
despite forecast degradation, with actual voyage durations within 92 % of predicted
values for 98 % of scenarios. The three-stage decision process provided systematic
adaptation to evolving weather conditions while avoiding excessive route changes that
could increase overall distance travelled. This dynamic optimization capability
directly supports the core thesis objectives of improving operational efficiency
and safety through real-time adaptation to weather uncertainties.
A hybrid A*-SMPC optimization framework was deployed that combines global path
planning with local path optimization. The hierarchical architecture of the approach
includes the A* algorithm for strategic route selection across discretised spatial grids,
providing global optimum reference paths that are updated every 6-24 hours based on
significant weather changes. These reference paths guide the tactical SMPC layer,
which performs continuous optimization around the strategic path, considering the
scenarios generated from ensemble forecasts. Event-triggered replanning ensured
robust adaptation to unexpected weather developments. The hybrid framework
demonstrated superior performance across all validation scenarios, achieving an
average fuel savings of 9.3 % and voyage time reductions compared to traditional
routing methods. These results confirm the auxiliary hypothesis H3,
demonstrating that adaptive strategies with intentional speed reduction in
adverse conditions significantly contribute to navigation decision support,
reduced fuel consumption, and environmental compliance. Critically, the
framework's generation of multiple evaluated route alternatives transforms maritime
DSS from prescriptive automation to genuine decision support, recognising that
meaningful decision support cannot exist without alternatives because a single
solution is merely automation concealed as intelligence.
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Extensive validation confirms the quantitative advantages of uncertainty-aware
routing across varied operational and meteorological conditions. Performance metrics
revealed a 3.8 % reduction in fuel consumption variance for MPC, indicating more
predictable and efficient operations despite weather variability. CO₂ emissions
decreased by an average of tonnes per voyage, directly supporting IMO 2050
decarbonization targets through operational optimization instead of technological
modifications. Computational performance remained practical for real-time
implementation, with optimization times of 8-10 seconds for strategic replanning and
2 seconds for tactical updates, which shows potential for deployment on standard
shipboard computing hardware. Validation across diverse operational scenarios
confirms the main hypothesis H0, establishing that the integration of stochastic
optimization methods, attainable ship speed models, and weather forecast
uncertainties significantly improves the efficiency, safety, and environmental
sustainability of ship routes compared to traditional routing methods.

According to everything stated so far, the most important scientific contributions of
this thesis can be highlighted as follows:

• In Chapter 4, quantification of weather forecast uncertainties for maritime
applications was conducted. This is particularly applicable to the characterisation
of sea-state-dependent uncertainty, ensemble-based probabilistic forecasting,
and the propagation of temporal uncertainty. Methods for implementing these
uncertainties in ship performance predictions through specialised metrics and
pseudo-ensemble generation techniques are presented. The systematic
characterisation of uncertainty growth patterns establishes the foundation for
stochastic routing optimization.

• In Chapter 5, data-driven estimation methods for ship performance variables are
developed using neural network architectures with comprehensive training
datasets including multiple encounter angles and sea state categories. The
modelling approach, dependent on the encounter angle, captures the directional
sensitivity of the ship’s response, while the safety margins based on seakeeping
analysis establish operational boundaries through roll and pitch amplitude limits.
Fuel consumption and emissions models are integrated to support IMO CII
compliance calculations. The computational efficiency of the deployed NNs
enables real-time implementation within optimization loops.

• In Chapter 5, integration of hydrodynamic constraints and seakeeping criteria
into the optimization framework ensures operational safety while pursuing
efficiency objectives. The implementation of safety margins based on slamming
probability, deck wetness frequency, and propeller emergence criteria
transforms the routing optimization from a purely economic problem into a
physically constrained one that respects vessel structural integrity and crew
safety. These hydrodynamic constraints serve as hard boundaries within the DSS,
automatically excluding route segments that would expose the vessel to
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dangerous motion amplitudes or phenomena, thereby ensuring that all generated
routing alternatives remain within the safe operational range.

• In Chapter 6, three stochastic optimization frameworks for ship weather routing
under uncertainty are proposed. The stochastic ETA-based approach provides
probability distributions for arrival times through explicit modelling of speed
variance as a function of forecast lead time. The rolling horizon MPC
implementation with three-stage decision logic enables systematic adaptation to
evolving weather while preventing route oscillations. The hybrid A*-SMPC
framework achieves computational compliance through hierarchical
decomposition, with strategic planning providing global guidance and tactical
optimization enabling local trajectory refinement. Such a multi-scale architecture
maintains solution quality while significantly reducing the computational
complexity compared to full-horizon stochastic optimization.

• In Chapter 7, validation and verification of the proposed routing optimization
frameworks are conducted through transatlantic case studies for diverse
meteorological conditions. The stochastic ETA approach demonstrates improved
arrival time predictions and confidence-bound reliability compared to
deterministic methods. The MPC implementation exhibits reduced fuel
consumption variance and improved on-time performance, while the hybrid A*-
SMPC system achieves superior overall performance in terms of fuel savings and
computational efficiency. A comparative analysis under severe weather
conditions confirms the robustness of uncertainty-aware approaches, with actual
voyage outcomes remaining within the predicted stochastic bounds despite
forecast degradation.

• The comparative analysis framework established in Chapter 7 fundamentally
reconceptualises maritime DSS by demonstrating that the provision of multiple
evaluated alternatives, each optimal under different assumptions, enables
operators to make strategic choices based on priorities that no algorithm can fully
capture, thereby elevating the human role from passive recipient to active
decision-maker.

The theoretical advances presented in this thesis reconceptualise maritime Decision
Support Systems by establishing that meaningful decision support cannot exist without
alternatives. A DSS framework that presents only one option is merely automation, not
genuine decision support. The proposed framework's generation and systematic
evaluation of multiple routing alternatives, each optimal under different uncertainty
assumptions and risk profiles, transforms weather routing from prescriptive
automation ("follow this route") to genuine decision support ("these are your options
with their respective consequences"). This proves particularly valuable as forecast
reliability degrades beyond 72 hours, where the performance variance between
alternatives provides operators with quantitative bounds on forecast uncertainty
costs, enabling risk-adjusted decision-making. The system could track which routes
operators ultimately select under different conditions, and compare predicted versus
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actual performance across all generated alternatives. Hence, the DSS can build a rich
dataset for understanding both operator preferences and forecast reliability. This
accumulated knowledge would enable the system to refine its alternative generation
process, potentially learning to propose candidates that better align with revealed
preferences while maintaining diversity in the solution space.

For autonomous vessel operations, the hierarchical optimization architecture offers
the potential to enable multi-timescale decision-making, which is essential for
unmanned navigation. Strategic planning is needed for higher-level coordination with
shore-based systems and tactical optimization for local weather response. Even in
autonomous operations, the ability to generate and evaluate multiple routing
alternatives remains essential, enabling shore-based operators to intervene with
strategic decisions when unusual circumstances or conflicting objectives arise that
automated systems cannot resolve independently.

8.2 Recommendations for future work

While the proposed uncertainty-aware optimization frameworks have demonstrated
substantial improvements in routing efficiency, reliability, and environmental
performance, several important avenues remain for extending and refining these
methodologies. This research provides a solid foundation upon which future
developments can build; however, practical deployment reveals specific areas
requiring additional research attention.

The computational complexity of stochastic optimization remains challenging for ships
with limited resources, despite a hybrid architecture reducing replanning time to 8
seconds. Future work should explore adaptive scenario generation, specialised
hardware accelerators, and cloud-based services. While the framework is
generalizable, extending it beyond the tested bulk carrier to container ships, tankers,
and passenger vessels requires vessel-specific recalibration and comprehensive data
collection. Current discrete speed settings (12.0, 13.5 and 14.5 kn) constrain
optimization; continuous speed optimization with detailed transient engine modelling
could yield additional efficiency gains within engineering constraints. Geographic
extension beyond the North Atlantic and port-to-port optimization, incorporating
berth availability, would enable enhanced voyage planning beyond ocean passages.

Possible research directions include uncertainty quantification through adaptive
models using online learning and integration with AI-based weather forecasting for
continuous trajectory optimization. Human factors also require investigation,
particularly in presenting probabilistic routing to deterministically trained bridge
crews through augmented reality displays and explainable AI methods. Autonomous
vessel operations demand fail-safe mechanisms for communication loss, conservative
fallback strategies, and integration with collision avoidance and regulatory compliance
systems. These developments would enable multi-objective frameworks balancing
routing efficiency with traffic separation and maritime regulations, ultimately creating
the next generation of intelligent and resilient maritime navigation systems.
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Appendix A Selected results of statistical analyses for selected
meteorological variables

Additional results of statistical analyses for selected meteorological variables
(significant wave heigh, wave period, wind speed) are presented in A.1, A.2, A.3, A.4
and A.5.

A.1 Bias

The temporal evolution of forecast bias is presented in Figure A.1.1 for the three
variables: primary wave period (a), significant wave height (b), and wind speed (c),
each displayed as a function of forecast lead time up to 168 hours.

(a)

(b)

(c)

Figure A.1.1 The temporal evolution of forecast bias for: primary wave period (a), significant
wave height (b), and wind speed (c)



168

A.2 Confidence intervals

Confidence interval (CI) widths at multiple confidence levels, as a function of forecast
lead time, are presented in Figure A.2.1.

(a)

(b)

(c)

Figure A.2.1 The confidence intervals for: primary wave period (a), significant wave height
(b), and wind speed (c)
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A.3 The quantile-quantile (Q-Q) plots

The distribution of forecast errors against theoretical normal quantiles is presented in
Figure A.3.1 for primary wave period, significant wave height, and wind speed at 24,
48, 96, and 168-hour forecast lead times

Figure A.3.1 Quantile-quantile plots of forecast errors versus theoretical normal distribution
for primary wave period (left column), significant wave height (middle column), and wind
speed (right column) at forecast lead times of 24, 48, 96, and 168 hours (rows from top to

bottom). The green line represents perfect agreement with a normal distribution.
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A.4 Extreme value analysis

Extreme value analysis is presented in Figures A.4.1, A.4.2, and A.4.3, using Generalized
Extreme Value (GEV) distributions fitted to maximum observations of the three
selected variables at three forecast lead times (24, 96, and 168 hours), with
corresponding return period estimates.

(a)

(b)

(c)

Figure A.4.1 GEV distributions for primary wave period, for 24 h (a), 96 h (b), and 168 h (c)
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(a)

(b)

(c)

Figure A.4.2 GEV distributions for significant wave height, for 24 h (a), 96 h (b), and 168 h (c)
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(a)

(b)

(c)

Figure A.4.3 GEV distributions for wind speed, for 24 h (a), 96 h (b), and 168 h (c)
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A.5 Extreme value analysis

The temporal evolution of root mean square error (RMSE) is presented in Figure A.5.1,
showing individual forecast errors, ensemble mean error, fitted error growth models,
and 95% confidence intervals for the three primary forecast parameters.

(a)

(b)

(c)

Figure A.5.1 RMSE as a function of forecast lead time for (a) primary wave period, (b)
significant wave height, and (c) wind speed.
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Appendix B Attainable ship speed simulation results with
uncertainty metrics correlation

B.1 NTPro 5000 simulation results for JONSWAP spectrum

The overview of simulation results for the JONSWAP spectrum, full load conditions, and
intended ship speeds of 14.5, 13.5, and 12.0 knots is given in Tables B.1.1, B.1.2, and
B.1.3, respectively.

Table B.1.1 Simulated attainable ship speeds obtained with NTPRO 5000 for the JONSWAP
spectrum, full load conditions, and intended ship speed of 14.5 kn

Hs

(m)
Encounter wave angles waves ( ) 

0 15 30 45 60 75 90 105 120 135 150 165 180
0 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50
1 14.12 14.11 14.08 14.07 14.13 14.23 14.29 14.33 14.37 14.37 14.38 14.38 14.39
2 13.42 13.43 13.37 13.28 13.22 13.42 13.62 13.78 13.84 13.91 14.02 14.06 14.06
3 12.58 12.51 12.26 11.86 11.68 12.12 12.74 13.01 13.06 13.33 13.51 13.61 13.61
4 11.22 11.15 10.90 11.10 11.23 11.83 11.58 11.57 11.86 12.73 13.27 13.53 13.58
5 10.50 10.64 10.70 10.90 11.01 11.49 11.44  11.79 12.66 13.16 13.43 13.57
6 9.68 9.84 10.02 10.30 10.70 11.23 10.36  12.25 12.92 13.24 13.44
7 9.35 9.52 9.74 10.01 10.50 10.42 10.50  12.82 13.24 13.34
8 8.67 8.92 9.18 9.26 8.73 8.69  11.91 12.91 13.17
9 7.89 8.04 8.03 7.73 7.37 12.32 12.82

10 7.30 7.37 7.41 7.33
11 6.89 6.70 6.31
12 6.57 6.16 5.67

Table B.1.2 Simulated attainable ship speeds obtained with NTPRO 5000 for the JONSWAP
spectrum, full load conditions, and intended ship speed of 13.5 kn

Hs

(m)
Encounter wave angles waves ( ) 

0 15 30 45 60 75 90 105 120 135 150 165 180
0 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50
1 13.15 13.12 13.10 13.10 13.16 13.26 13.32 13.36 13.39 13.41 13.41 13.43 13.43
2 12.42 12.43 12.37 12.27 12.21 12.38 12.60 12.77 12.81 12.95 13.05 13.10 13.10
3 11.63 11.55 11.35 11.04 10.87 11.12 11.71 11.90 11.95 12.33 12.54 12.64 12.66
4 10.42 10.35 10.27 10.26 10.33 10.54 10.72 10.64 10.86 11.69 12.19 12.49 12.63
5 9.95 10.06 10.17 10.21 10.23 10.43 10.60 8.12  11.67 12.09 12.33 12.66
6 9.31 9.43 9.57 9.73 9.97 10.01 9.76  11.24 11.94 12.31 12.55
7 9.05 9.17 9.34 9.53 9.91 9.67 9.45  11.82 12.32 12.48
8 8.49 8.68 8.86 8.91 8.45 7.78  10.89 11.99 12.26
9 7.87 7.97 8.00 7.43 11.93

10 7.39 7.42 7.55 7.37
11 7.09 7.01 6.75
12 6.79 6.46 6.14
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Table B.1.3 Simulated attainable ship speeds obtained with NTPRO 5000 for the JONSWAP
spectrum, full load conditions, and intended ship speed of 12.0 kn

Hs

(m)
Encounter wave angles waves ( ) 

0 15 30 45 60 75 90 105 120 135 150 165 180
0 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
1 11.63 11.61 11.57 11.57 11.64 11.74 11.80 11.86 11.90 11.90 11.92 11.94 11.94
2 10.84 10.85 10.78 10.68 10.65 10.73 10.99 11.17 11.21 11.41 11.55 11.61 11.62
3 9.86 9.78 9.57 9.35 9.14 9.21 9.72 9.99 10.11 10.70 11.01 11.16 11.20
4 8.59 8.60 8.65 8.71 8.69 8.72 8.81 8.70 9.79 10.48 10.91 10.94
5 8.40 8.51 8.64 8.66 8.67 8.69 7.92 9.76 10.52 10.81 10.91
6 7.81 7.88 7.92 8.03 8.19 8.53 8.80 10.31 10.71 10.83
7 7.46 7.50 7.52 7.66 7.90 8.44  10.03 10.70 10.82
8 6.81 6.97 7.14 7.21 10.50 10.75
9 6.15 6.20 6.19 5.72 10.46

10 5.67 5.66 5.77 5.28
11 5.33 5.12 4.95
12 4.99

B.2 NAVCAD software simulation results

The overview of simulation results obtained from the NavCad software, full load
conditions, and intended ship speeds of 14.5, 13.5, and 12.0 knots is given in Tables
B.2.1, B.2.2, and B.2.3, respectively.

Table B.2.1 Simulated attainable ship speeds obtained with NAVCAD, full load conditions, and
intended ship speed of 14.5 kn

Hs

(m)
Encounter wave angles waves ( ) 

0 15 30 45 60 75 90 105 120 135 150 165 180
0 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50 14.50
1 13.84 13.84 13.86 13.88 13.91 13.95 13.99 14.04 14.08 14.11 14.14 14.15 14.16
2 12.87 12.87 12.89 12.93 12.97 13.03 13.09 13.15 13.22 13.27 13.32 13.35 13.36
3 11.93 11.94 11.97 12.02 12.09 12.17 12.23 12.31 12.38 12.45 12.50 12.53 12.55
4 11.26 11.27 11.28 11.31 11.35 11.41 11.48 11.56 11.65 11.73 11.79 11.81 11.82
5 10.67 10.68 10.70 10.74 10.79 10.80 10.82 10.87 10.93 11.00 11.06 11.10 11.11
6 10.07 10.08 10.09 10.11 10.15 10.20 10.26  10.40 10.43 10.45
7 9.43 9.44 9.46 9.50 9.56 9.64  10.10 10.16 10.17
8 9.03 9.04 9.06 9.09 9.13 9.19 9.60 9.65 9.67
9 8.38 8.41 8.52 8.68 9.20 9.22

10 7.42 7.46 7.58 7.77
11 6.46 6.51 6.64
12 5.50 5.55 5.70
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Table B.2.2 Simulated attainable ship speeds obtained with NAVCAD, full load conditions, and
intended ship speed of 13.5 kn

Hs

(m)
Encounter wave angles waves ( ) 

0 15 30 45 60 75 90 105 120 135 150 165 180
0 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50 13.50
1 13.11 13.11 13.12 13.14 13.16 13.18 13.20 13.22 13.25 13.26 13.28 13.29 13.29
2 12.72 12.73 12.74 12.77 12.81 12.85 12.90 12.95 12.99 13.03 13.06 13.07 13.08
3 12.24 12.25 12.28 12.32 12.38 12.45 12.53 12.62 12.71 12.78 12.83 12.86 12.87
4 11.40 11.42 11.48 11.58 11.70 11.79 11.87 11.91 11.96 12.01 12.06 12.10 12.11
5 10.56 10.59 10.67 10.81 10.98 11.05 11.13 11.21  11.37 11.40 11.42 11.42
6 9.72 9.76 9.86 10.04 10.26 10.41 10.47  10.68 10.74 10.78 10.80
7 9.30 9.32 9.39 9.51 9.65 9.82 9.94  10.31 10.36 10.37
8 8.34 8.37 8.46 8.59 8.77 8.98 9.81 9.86 9.87
9 7.38 7.41 7.52 7.68 9.42

10 6.42 6.46 6.58 6.77
11 5.46 5.51 5.64
12 4.50 4.55 4.70

Table B.2.3 Simulated attainable ship speeds obtained with NAVCAD, full load conditions, and
intended ship speed of 12.0 kn

Hs

(m)
Encounter wave angles waves ( ) 

0 15 30 45 60 75 90 105 120 135 150 165 180
0 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00 12.00
1 11.61 11.61 11.62 11.64 11.66 11.68 11.70 11.72 11.75 11.76 11.78 11.79 11.79
2 11.22 11.23 11.24 11.27 11.31 11.35 11.40 11.45 11.49 11.53 11.56 11.57 11.58
3 10.83 10.84 10.87 10.91 10.96 11.03 11.10 11.17 11.24 11.29 11.33 11.36 11.37
4 9.90 9.92 9.98 10.08 10.20 10.34 10.50  10.80 10.92 11.02 11.08 11.10
5 9.06 9.09 9.17 9.31 9.48 9.68 9.90  10.49 10.63 10.71 10.74
6 8.22 8.26 8.36 8.54 8.76 9.02  10.06 10.24 10.34 10.38
7 7.80 7.82 7.89 8.01 8.15 8.32 9.11 9.18 9.20
8 6.84 6.87 6.96 7.09 8.53 8.56
9 5.88 5.91 6.02 6.18 7.92

10 4.92 4.96 5.08 5.27
11 3.96 4.01 4.14
12 3.00
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B.3 Attainable ship speed uncertainty metrics correlation

Correlations between uncertainty metrics of attainable ship speed (NC)
att.V and

uncertainty metrics of significant wave height HS in case of intended ship speeds 14.5
kn and 12.0 kn, and sea states 0-7, are presented in the following tables.

Table B.3.1 Correlations between uncertainty metrics of attainable ship speed (NC)
att.V  and

uncertainty metrics of significant wave height HS in case of intended ship speed 14.5 kn and
sea states 0-7

Pearson correlation coefficient ( )( , )j
ir x y

Encounter angles Lead
time (h)

(NC)
1r

(NC)
2r

(NC)
3r

(NC)
4r

(NC)
5r

(NC)
6r

(NC)
7r

Head seas

0-24 0.997 0.997 -0.999 -0.059 -0.993 0.933 -0.784
24-72 0.994 0.993 -1.000 0.480 -0.985 -0.687 0.882
72-120 0.996 0.996 -0.999 0.797 0.916 0.578 0.941
120-168 0.991 0.987 -0.995 0.990 0.971 -0.876 0.997

Bow-Quartering

0-24 0.997 0.997 -0.969 0.511 -0.995 0.044 -0.956
24-72 0.999 0.999 -0.850 0.953 -0.977 0.969 -0.662
72-120 0.988 0.988 -0.994 0.959 0.494 -0.579 -0.143
120-168 0.987 0.990 -0.994 0.983 0.977 0.173 -0.747

Beam

0-24 0.757 0.787 0.828 -0.016 -0.996 -0.709 -0.343
24-72 0.656 0.711 -0.961 0.470 -0.966 -0.857 0.910
72-120 0.424 0.422 -0.634 0.762 -0.441 -0.947 0.974
120-168 0.450 0.466 -0.855 0.913 -0.045 -0.968 0.980

Stern-Quartering

0-24 0.793 0.935 -0.980 0.904 -0.992 -0.663 -0.492
24-72 0.695 0.930 -0.820 0.598 -0.901 -0.436 0.740
72-120 0.998 0.999 -0.954 0.558 0.903 -0.639 0.848
120-168 0.998 0.999 -0.940 0.957 0.966 -0.911 0.863

Following

0-24 0.081 0.153 0.132 0.709 -0.988 -0.844 0.744
24-72 0.928 0.916 -0.890 0.303 -0.985 -0.943 0.906
72-120 1.000 1.000 -0.997 0.853 0.981 -0.988 0.998
120-168 1.000 1.000 -0.994 0.720 0.980 -0.676 -0.902
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Table B.3.2 Correlations between uncertainty metrics of attainable ship speed (NC)
att.V  and

uncertainty metrics of significant wave height HS in case of intended ship speed 12.0 kn and
sea states 0-7

Pearson correlation coefficient ( )( , )j
ir x y

Encounter angles Lead
time (h)

(NC)
1r

(NC)
2r

(NC)
3r

(NC)
4r

(NC)
5r

(NC)
6r

(NC)
7r

Head seas

0-24 0.973 0.972 -0.997 -0.135 -0.998 0.797 -0.831
24-72 0.997 0.996 -0.999 0.964 -0.945 -0.757 -0.851
72-120 1.000 1.000 -0.999 0.916 0.978 0.581 0.041
120-168 0.999 0.998 -0.992 0.989 0.994 -0.999 0.989

Bow-Quartering

0-24 0.988 0.986 -0.971 0.294 -0.998 -0.023 -0.938
24-72 0.992 0.995 -0.991 0.954 0.840 0.957 -0.826
72-120 0.998 0.998 -0.982 0.995 0.983 -0.561 -0.176
120-168 1.000 1.000 -0.998 0.994 0.995 0.048 -0.761

Beam

0-24 0.933 0.946 0.731 0.535 -0.995 -0.945 0.013
24-72 0.947 0.959 -0.977 0.859 -0.829 -0.982 0.993
72-120 0.928 0.908 -0.971 0.705 0.032 -0.947 0.925
120-168 0.957 0.940 -0.998 0.818 0.816 -0.956 0.966

Stern-Quartering

0-24 0.973 0.967 -0.990 0.542 -1.000 -0.894 -0.250
24-72 1.000 1.000 0.978 0.715 0.838 -0.749 0.850
72-120 0.980 0.983 -0.971 0.448 0.944 -0.884 0.940
120-168 0.980 0.977 -0.874 0.795 0.951 -0.891 0.761

Following

0-24 0.990 0.991 -0.950 0.120 -0.922 -0.871 0.787
24-72 0.976 0.977 -0.997 -0.079 -0.879 -0.963 0.919
72-120 0.969 0.979 -0.993 0.363 0.944 -0.998 0.999
120-168 0.991 0.991 -0.974 0.991 0.958 -0.658 -0.913
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Appendix C. Polar diagrams for heave and pitch

C.1 Polar diagrams for the heave RMS values

Heave RMS values with water emergence events for significant wave heights
HS = 4 m (a), HS = 5 m (b), HS = 6 m (c) and HS = 7 m (d)



180

C.2 Polar diagrams for pitch RMS values

Pitch RMS values with slamming events for significant wave heights
HS = 4 m (a), HS = 5 m (b), HS = 6 m (c) and HS = 7 m (d)
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Appendix D Pseudocodes of optimal ship routing algorithms

Pseudocode D.1  Example of the simple voyage planning algorithm with weather
uncertainty and ETA estimation

Step 1 // Initialisation

Step 1.1 •  Define set voyage parameters:
   -  Route waypoints 0 1{ , ,..., }nW W W W where { , , }i i i iW d 

   -  Start time 0t
 - Reference speed ref. {12.0, 13.5, 14.5}V 

  - Weather grid G  with parameters S ,H ,pT wind ,V wave  and 

   -  Uncertainty metrics S wind wave( , , , , ) {RMSE, MAE, Bias, ...}pH T V   

  - Define attainable ship speed function ( )
att. ref. wave S

ˆ ( , , )PM
NNV f V H

Step 1.2 // Compute cumulative distances

0 0D 

1i 
while i n

1 1i i iD D d  

1i i 
end while

total nD D // total distance of the entire route

Step 1.3 // Initialise voyage state

0t t

0d        // current distance along route
2
ETA,cumulative 0     // cumulative variance

Step 2 // Voyage simulation
// Simulate voyage progression
while totald D do

Step 2.1  // Determine current position by interpolation
 find k s.t. 1k kD d D  

1( ) /( )k k kf d D D D  

1( ) ( )k k kd f      

1( ) ( )k k kd f      

Step 2.2  // Calculate route bearing

1k k    

1sin( )cos ky    

1 1cos( )sin( ) sin( )cos( )cos( )k k k kx        
atan2( , )y x 

Step 2.3  // Obtain weather at current position and time

find nearest grid point 2 2

,
( *, *) arg min ( ( )) ( ( ))g g

i ii j
i j d d      

* *( , , )i iW W t 
 extract S wave( , )H  from weather data



182

Step 2.4  // Calculate lead time (h) for forecast degradation

0t t  

Step 2.5  // Determine adaptive reference speed (simple HS-based approach)
if S 5.0H  then

ref.,selected ref.V V

else if S5.0 7.0H  then

att.,test wave S(13.5, , )NNV f H

if att.,test 8.0V  then

ref.,selected 13.5V 

else

ref.,selected 12.0V 

end if
 else

ref.,selected 12.0V 

 end if

Step 2.6  // Calculate attainable speed with uncertainty and obtain uncertainty metrics

att.,predicted ref.,selected wave S( , , )NNV f V H

S waveRMSE RMSE( , , )H  

S waveBias Bias( , , )H  

att. att.,predicted BiasV V  

att.
RMSEV 

Step 2.7  // Update position and time
1t       // in hours

att.Vd t  

d d d  
t t t  

Step 2.8  // Accumulate voyage segment uncertainty

att. att.

2 2 2 2
,segment ( / )t V Vd   

2 2 2
ETA,cumulative ETA,cumulative ,segmentt   

end while

Step 3 // ETA calculation

Step 3.1 // Calculate final ETA with uncertainty

. totalremd D d 

Step 3.2 // Expected arrival time

att.ETA rem. / Vt d  

Step 3.3 // ETA uncertainty from error propagation

att. att.

2 2 2 2 2
ETA,final rem. ETA,cumulative( / )V Vd    

2
ETA ETA,final 

Step 3.4 // Confidence intervals (k = 1.96 for 95 % CI)

lower ETA ETAETA k   
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upper ETA ETAETA k   

Step 3.5 // Probability of meeting target time targett

target ETA ETA( )/z t   

target{ETA } ( )t z 

Step 4 // Output

Step 4.1 // Return output values
return

ETA

ETA

lowerETA

upperETA

target{ETA }t
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Pseudocode D.2  Example of simplified rolling horizon MPC waypoint sequencing
algorithm with uncertainty

Step 1 // Initialisation

Step 1.1 •  Initialize voyage parameters:

  - Initial position: T
0 0 0[ , ] x

  - Destination position: T
dest. dest. dest.[ , ] x

   -  Initial time and time step: start 0 , 1 ht t t  

   -  Route waypoints: 0 1{ , ,..., }nW W W W

- Control horizon: 6cN   hours

 - Prediction horizon: 24pN  hours

 - Cost weights: 1 0.6,w  2 0.3,w  3 0.1w
 - Discount factor: 0.95 
 - Progress coefficient: 0.01p 

 - Reference speeds: ref. {12.0, 13.5, 14.5}V 

Step 2 // Reference ETA calculations

Step 2.1 // Traditional voyage planning ETA1
1

total 11

n
i ii

D w w


 

ETA1 0 total ref./T t D V 

Step 2.2 // Perfect information ETA2 with actual sea states
simulate voyage with (act.)

S ( )H t and (act.)
wave ( )t

for each 0 arrival[ , ]t t T do
(act.)
S
(act.)

ref. S

12.0, if ( ) 7 dangerous zones
( ) 13.5, if ( ) 5 marginal zones

14.5, otherwise

H t
V t H t





   


   



( ) (act.) (act.)
att. ref. wave S

ˆ ( ) ( ( ), ( ), ( ), ( ))PM
NNV t f V t t t H t 

T( )
att.

ˆ( ) ( ) [cos ( ), sin ( )]PMt V t t t x
T( )

att.
ˆ( ) ( ) [cos ( ), sin ( )]PMt V t t t t  x

ETA2 dest.min{ : ( ) }T t t   x x

Step 2.3 // Forecast-based ETA3 with forecasted sea states at time t  with lead time 

simulate voyage with (for.)
S ( , )H t  and (for.)

wave ( , )t 

for each 0 arrival[ , ]t t T and  do
(for.)
S
(for.)

ref. S

12.0, if ( , ) 7 dangerous zones
( , ) 13.5, if ( , ) 5 marginal zones

14.5, otherwise

H t
V t H t

 

  

   


   



( ) (for.) (for.)
att. ref. wave S

ˆ ( , ) ( ( , ), ( , ), ( , ), ( , ))PM
NNV t f V t t t H t      

T( )
att.

ˆ( , ) ( , ) [cos ( , ), sin ( , )]PMt V t t t     x
T( )

att.
ˆ( , ) ( , ) [cos ( , ), sin ( , )]PMt V t t t t      x

ETA3 dest.min{( , ) : ( , ) }T t t    x x
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Step 3 // Main optimization loop

while dest.( ) 25t  x x

Step 3.1  // Weather forecast with uncertainty

S wave{0,6,12,...,168} : ( ) { ( ), ( ),...}i F i H t i t i    

 // linear interpolation, ( mod6)/6h 

S S S( ) (1 ) ( /6 6) ( /6 6)H h H h H h           
 // persistence check

ref. wave S{ : ( ( ), ( ), ( ), ( )) returns NaN at ( )} 2NNi f V t t t H t F i  

Step 3.2  // Waypoint passage
if : ( ) 50W t   w x w and  not yet passed:w

mark w as passed

Step 3.3  // Three-stage decision

0t t  

current alternativemin( )J J J  

 // Decision 

current

current

monitor, if 72 h
plan alternatives, if 24 72 h
modify route, if 24 h persistence met
maintain route, otherwis

0
e

0.05
.02
J J

J J








       

 
 



Step 3.4  // Reference speed selection

wave wavearg min 360 ,  


   

[0 ,30 ] [150 ,210 ] [330 ,360 ]
Zone (3

d
0 ,60 ] [120 ,1

preferred, if
marginal, if

angerous, otherwise
50 ) (210 ,240 ] [300 ,330 )



        

            



S

ref. S

12.0, if 7 Zone dangerous ( modify persistance met)
13.5, if 5 Zone marginal ( plan alternatives)
14.5, otherwise

V
H
H




   





    







Step 3.5  // MPC optimization
solve

1
1 fuel, 2 safety, 3 smooth, progress,0

min [ ]pN i
i i i p ii

w J w J w J d


 


  

3
fuel, ref., calm , ref., ref., att., att., fuelSFOC ( ) ( ) ( / ) ( / ) /1000i i i i i i i i iJ V P V V V d V C    

S , SS, Bias ( )
i iH H iH  

S , S
RMSE ( )

iH H i 

S ,S ,safety, risk S ,max safety att.,[1 (( ) / )] ( / ) /24
iii H i iHJ H C d V      

2
smooth, smooth 1( )i i iJ C     

, S
2
S

0, if  prefered
C , if  marginal
C , if  dangerous

iJ H
H

  




 



 
   
  

progress , dest. dest. dest.arccos(sin( )sin( ) cos( )cos( )cos( ))i i i id R         
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subject to

arrival required early required late( [ , ]) 0.95T T T T T     

direct max direct max[ , ]i       

L Si  x    // navigable waters

min: min tW
t l


  

w
x w

att., 4.0iV 

Step 3.6  // ETA uncertainty propagation

ETA att.,( / )i ii
t d V  

att.

22 2 2
ETA att., S, wave,( / ) RMSE ( , , )i i V i i ii

d V H   
ETA ETA ETA ETAETA [ 1.96 , 1.96 ]            // with 95 % CI

Step 3.7  // Control execution over cN  hours

for {0,1,..., 1} :ci N 

  // Extract *
i  from the optimal solution

*
wave, wave,argmin 360i i i  


  

  // Reference speed selection

,S

ef., ,Sr

12.0, if 7 Zone dangerous ( modify persistance)
13.5, if 5 Zone marginal ( plan alternatives)
14.5, otherwise

i i i

i i i iV
H
H




   





    







  // From empirical tables extract
extract

att.,RMSE( ),iV att.,MAE( ),iV att.,Bias( )iV

  // Attainable ship speed

att. ,

*
ref., wave, S , S , wave,

att.,
ref., S ,

( , , , ) Bias ( , , ), if NaN

max(4, exp( ( 7))), otherwise
iNN i i i i V i i i NN

i
i i

f V H H f
V

V H

   



   
  

att., [4.0, 14.5]iV 

// Confidence interval
att., att., att., att., att.,[ 1.96 RMSE( ), 1.96 RMSE( )]i i i i iV V V V V    

  // Position update (Great circle)

att.,

*
1

*
1 1

arcsin(sin( )cos( / ) cos( )sin( / )cos( ))
atan2(sin( )sin( / )cos( ), cos( / ) sin( )sin( ))

i i

i i i i i i

i i i i i i i i

d V t
d R d R

d R d R
   

     


 

 

 

  

  //  Uncertainty accumulation
( 1) ( ) 2
uncertainty uncertainty att., att.,( / ) RMSE( )i i

i i id V V   

end for

Step 3.8  // Update voyage metrics
 // Fuel consumption

3
ref., att., fuelFOC 1.03 ( /14.5) ( / ) /1000i i i iV d V C   

 // Distance travelled

att.,i iD V t 

end while
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Step 4 // Outputs

Step 4.1 return
// Return output values

arrivalT t // When dest.( ) 25t  x x

ETA1T // From Step 2.1

ETA2T // From Step 2.2

ETA3T // From Step 2.3
1

total 0
FOC FOCn

ii




 // From Step 3.8

1 2
att., .,0

( / ) RMSE( )n
i i att ii

d V V


  // Cumulative uncertainty from Step 3.7

{ : min ( ) 50}
t

W t  w x w  // Waypoints passed

1
total 0

n
ii

D D


 // Distance travelled from Step 3.8

// Performance metrics

1 arrival ETA1T T T  

2 arrival ETA2T T T  

3 arrival ETA3T T T  

fuel total ETA1(1 FOC /FOC ) 100 %    // Fuel efficiency

ETA3 arrival arrival/ 100 %T T T  // Prediction accuracy
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Pseudocode D.3  Example of simplified hybrid A*-SMPC weather routing algorithm

Step 1 // Initialisation

Step 1.1 •  Initialize voyage parameters:

  - Initial position: T
0 0 0[ , ] x

  - Destination position: T[ , ]f f f x

   -  Initial time: start 0t t

   - Control horizon: 6cN   h
 - Prediction horizon: 24pN   h

 - Number of scenarios: 30sN   from branching [5, 3, 2]B 

 - MPC time step: 1t   h
 - Cost weights: 1 0.5,w  2 0.3,w  3 0.1,w  4 0.1w 

 - Discount factor: 0.95 
 - Progress coefficient: 0.01p 

 - Risk aversion factor: 0.3r 

 - CVaR level: 0.95 
 - Minimum interval between re-planning: cool 12k   (3-hour cooldown)
  - Time of the last re-planning event: last,replan 0k 

 - Reference speed: ref. {12.0, 13.5, 14.5} (kn)V 

 - Minimum steerage speed: min 4.0 knV 

 - Cumulative uncertainty: uncertainty 0 

 - Route modifications set: route modificationsW 

 - Earth radius: 3440.065R   nm
 - Voyage log data structure: logV  

Step 2 // Global pathfinding via deterministic A*

Step 2.1 // Adaptive grid discretisation

coast

grid coast

coast

0.25 nm, if ( ) 10 nm
( ) 0.5 nm, if 10 ( ) 50 nm

1 nm, if ( ) 50 nm

d
d

d


   
 

x
x x

x

Step 2.2 // Generate five cost profiles
T

1 [1.0,0.2,0.1,0.1]C // Minimum distance
T

2 [0.6,0.8,0.3,0.2]C // Weather avoidance
T

3 [0.8,0.4,0.5,0.3]C // Balanced multi-objective
T

4 [0.7,0.3,0.2,0.5]C // Current exploitation
T

5 [0.9,0.5,0.4,0.1]C // Moderate weather routing

Step 2.3 // Execute A* search for each profile
1k 

while 5k 
 // Compute edge cost

2
wave , encounter( , , ) min(1, 4.0 ( )/ )i j s ij ijh n n H f  w
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dist wave wave wind wind

current current

[
]

( , , ) ( , , ) ( , , )
( , , )

i j ij i j i j

i j

c n n d h n n h n n
h n n

  



   



w w w
w

 // A* Path optimization for alternative paths with different cost profiles
*

( , )

0

arg min

                s.t. ( , )

( , , )k i j

f

i jc n n






 PP

P x

wP

x

1k k 
end while

Step 3 // Reference ETA calculations

Step 3.1 // Traditional voyage planning ETA1
1

total 11

n
i ii

D w w


 

ETA1 0 total ref./T t D V 

Step 3.2 // Perfect information ETA2 with actual sea states
simulate voyage with (act.)

S ( )H t and (act.)
wave ( )t

for each 0 arrival[ , ]t t T do
(act.)
S
(act.)

ref. S

12.0, if ( ) 7 dangerous zones
( ) 13.5, if ( ) 5 marginal zones

14.5, otherwise

H t
V t H t





   


   



( ) (act.) (act.)
att. ref. wave S

ˆ ( ) ( ( ), ( ), ( ), ( ))PM
NNV t f V t t t H t 

T( )
att.

ˆ( ) ( ) [cos ( ), sin ( )]PMt V t t t x
T( )

att.
ˆ( ) ( ) [cos ( ), sin ( )]PMt V t t t t  x

ETA2 min{ : ( ) }fT t t   x x

Step 3.3 // Forecast-based ETA3 with forecasted sea states at time t  with lead time 

simulate voyage with (for.)
S ( , )H t  and (for.)

wave ( , )t 

for each 0 arrival[ , ]t t T and  do
(for.)
S
(for.)

ref. S

12.0, if ( , ) 7 dangerous zones
( , ) 13.5, if ( , ) 5 marginal zones

14.5, otherwise

H t
V t H t

 

  

   


   



( ) (for.) (for.)
att. ref. wave S

ˆ ( , ) ( ( , ), ( , ), ( , ), ( , ))PM
NNV t f V t t t H t      

T( )
att.

ˆ( , ) ( , ) [cos ( , ), sin ( , )]PMt V t t t     x
T( )

att.
ˆ( , ) ( , ) [cos ( , ), sin ( , )]PMt V t t t t      x

ETA3 min{( , ) : ( , ) }fT t t    x x

Step 4 // Main control loop

0k 

while ( ) ( ) 5 nmk ft t x x

Step 4.1  // Path-relative coordinate transformation

* arg min ( )ks
s s


 x P // Closest point on the path

sign(( ( *)) ) ( *)k ke s s    x P n x P // Cross-track error

ship path( *)e s    // Heading error



190

T[ , , , ]p es e tx // Coordinate transformation

Step 4.2  // Generate scenario tree

1 5B  // Stage 1 (0–8 hours): 5 branches

2 3B    // Stage 2 (8–16 hours): 3 branches

3 2B    // Stage 3 (16–24 hours): 2 branches

wind waveS V[( ]( ) diag ( ), ( ), ( ), ( )
pk k k k kTH k         B  // Error covariance matrix

( ) ~ ( , )sξ 0 I // Random variables
( ) (for.) ( )( )k k
s s

kk  w w B ξ // Weather evolution

Step 4.3  // Adaptive reference speed selection

wave wavearg min 360 ,  


   

[0 ,30 ] [150 ,210 ] [330 ,360 ]
Zone (3

d
0 ,60 ] [120 ,1

preferred, if
marginal, if

angerous, otherwise
50 ) (210 ,240 ] [300 ,330 )



        

            



S

ref. S

12.0, if 7 Zone dangerous ( modify persistance met)
13.5, if 5 Zone marginal ( plan alternatives)
14.5, otherwise

V
H
H




   





    







Step 4.4  // SMPC optimization
solve

1 1SMPC
0 00.95min (1 ) CVaRp p

k

N Ni i
k r i r ii i

J L L    

 
         ξU



1 fuel , 2 safety , 3 smooth , 4 corridor , progress ,i i i i i p iL w L w L w L w L d    

T
| | ref., |[ ]k i k k i k k i kV  u

T( ) ( ) ( ) ( )
| | | , | |[ ]s s s s

k i k k i k k i k e k i k k i ks e t    x

att.

att. path

path

( , )cos( )
( , )sin( ( ))

( , , )
( )

es V t
e V s t

f
s s

t t


 

 

  
        
 

   

u w
u w

x u w

( ) ( ) ( )
1| | | |( , , ), s {1,..., }, {0,..., 1}s s s

k i k k i k k i k k i k s pf N i N         x x u w

subject to
arrival required early required late( [ , ]) 0.95T T T T T     

path max( )s    

corridor ( , )e e s t

ref. {12.0, 13.5, 14.5}V 

att., 4.0kV 

Step 4.5  // Event-triggered replanning evaluation

lastS, S, weather( , ) grid
max | ( , ) ( , )| 7 0.15k ki j

H i j H i j J


     // T1

look

att.0
1[ ( , ) 4] 8H

i
V k i


   P // T2

max,deviatione e // T3

(ETA window) 0.85  // T4
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,last( , ) / ( , ) 1.25k k k kJ J P W P W // T5

 // Trigger function

replan 1 2 3 4 5( ) ( ) ( ) ( ) ( ) ( )T k T k T k T k T k T k    

 // Re-planning decision

replan last,replan expected current( ) ( ) ( 12) ( 0.05 )R k T k k k J J      

Step 4.6  // Execute replanning, if triggered
if ( ) :R k

1 2 5

scope 3 5

4

global, if ( 0.3)
local, if ( 0.3)
terminal, if

T T T J
R T T J

T

    
    



  // Execute replanning according to scopeR

switch

switch blend switch switch blend

switch blend

0,
( ) 0.5 (1 cos( ( ) / )),

1,

t t
t t t T t t t T

t t T
 


      
  

active old new( , ) (1 ( )) ( ) ( ) ( )s t t s t s   P P P
  // Define adaptive corridor width

max current( , ) 2 (5 2) ( ) exp( ( ) /50)e s t t s s      

  // Update route modification set

route modifications route modifications scope replan{( , , )}kW W t R T 

  // Update replanning index

last,replank k

end if

Step 4.7  // Control execution with uncertainty
extract

att.,RMSE( ),kV att.,MAE( ),kV att.,Bias( )kV  // From empirical tables extract

 // Attainable ship speed

att. ,

*
ref., wave, S , S , wave,

att.,
ref., S ,

( , , , ) Bias ( , , ), if NaN

max(4, exp( ( 7))), otherwise
kNN k k k k V k k k NN

k
k k

f V H H f
V

V H

   



   
  

att., [4.0, 14.5]kV 

// Confidence interval
att., att., att., att., att.,[ 1.96 RMSE( ), 1.96 RMSE( )]k k k k kV V V V V    

extract
T* * *

ref.,[ ]k k kVu // From SMPC solution

// Line-of-Sight (LOS) based look-ahead PD heading guidance law

cmd., path , att. ,( 0.5) 2.0 0.5k k k k k ks V e e        

 //  Uncertainty accumulation
( 1) ( ) 2
uncertainty uncertainty att., att.,( / ) RMSE( )k k

k k kd V V   

Step 4.8  // Lyapunov stability verification
22

, remaining( ) 1.0 0.5 0.01 ( )k e kV k e J k     

verify:

replan( 12) 0.95 ( )V k V k    
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Step 4.9  // State propagation with actual weather realization
att.,k kd V t  // Distance travelled

3
ref., att., fuelFOC 1.03 ( /14.5) ( / ) /1000k k k kV d V C     // Fuel consumption

 // Position update (Great circle)
*

1
*

1 1

arcsin(sin( )cos( / ) cos( )sin( / )cos( ))
atan2(sin( )sin( / )cos( ), cos( / ) sin( )sin( ))

k k k k k k

k k k k k k k k

R Rd d
d dR R

   

     


 

 

  

 // Update voyage log
* *

log log 1 1 att., ref.,{ , [ , ], , FOC , , [ , ]}k k k k k k k kV V t V V     w

 // Increment time index
1k k 

1k kt t t   

end while

Step 5 // Voyage completion outputs

Step 5.1 return
// Return output values

arrival kT t // when 5k f x x  nm

ETA1T // from Step 3.1

ETA2T // from Step 3.2

ETA3T // from Step 3.3
1

total 0
FOC FOCn

kk




 // from Step 4.9

1 2
att., att.,0

( / ) RMSE( )n
k k kk

d V V


 // Cumulative uncertainty from Step 4.7

1
total 0

n
kk

D d


 // Total distance travelled from Step 4.9

// Performance metrics

1 arrival ETA1T T T  

2 arrival ETA2T T T  

3 arrival ETA3T T T  

fuel total ETA1(1 FOC /FOC ) 100 %    // Fuel efficiency

ETA1 totalFOC FOC // Fuel savings

ETA3 arrival arrival/ 100 %T T T  // Prediction accuracy

// Computational complexity
3 2

steady
5(10 )s p x s c uN N n N N n   

replan
1.5lo )g (( )d d db b  
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Appendix E.  Selected results for stochastic ETA-based ship voyage
planning approach

E.1 The visualised stochastic ETA-based ship voyage route from
Rotterdam to New York, with actual weather data and weather
forecasts along the route (start date 1 February 2025)

(a)

(b)

(c)

(d)
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E.2  The visualised stochastic ETA-based ship voyage route from Rotterdam to
New York, with actual weather data and weather forecasts along the route
(start date 7 February 2025)

(a)

(b)

(c)

(d)
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E.3  The visualised stochastic ETA-based ship voyage route from Rotterdam to
New York, with actual weather data and weather forecasts along the route
(start date 5 March 2025)

(a)

(b)

(c)

(d)
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Appendix F.  Selected results for waypoint sequencing MPC
approach

F.1  Actual and forecasted ship performance values, for every 3 days of
the voyage, along with the ETA1, ETA2 and ETA3 uncertainty (start
date 1 February 2025)

Time frame Actual and forecasted states

Day Date Time
(d.m.y. h:m)

Vref.

(kn)
Vatt.

(kn)
ETA

(d.m.y. h:m)
Vatt.+ΔVatt.

(kn)
ETA1 + ΔETA1

(d.m.y. h:m)
ETA2 + ΔETA2

(d.m.y. h:m)
ETA3 + ΔETA3

(d.m.y. h:m)

0 12.2.2025.
00:00 h 14.5 13.9 21.02.2025.

10:57h±23h - 21.02.2025.
17:19 h±113h

21.02.2025.
09:57 h±121h

22.02.2025.
11:04 h±94h

3 15.2.2025.
00:00 h - - - 10.6±3.0 - - 01.03.2025.

00:00 h±68h

6 18.2.2025.
00:00 h - - - 7.5±4.5 - - 01.03.2025.

00:00 h±74h

3 15.2.2025.
00:00 h 13.5 10.6 25.02.2025.

00:33h±24h - 22.02.2025.
20:43 h±85h

25.02.2025.
00:33 h±33h

26.02.2025.
03:17 h±46h

6 18.2.2025.
00:00 h - - - 7.5±3.0 - - 27.02.2025.

00:00 h±42 h

9 21.2.2025.
00:00 h - - - 7.5±4.5 - - 27.02.2025.

12:00 h ±50 h

6 18.2.2025.
00:00 h 12.0 7.5 28.02.2025.

22:23h±26h - 24.02.2025.
01:14 h±58h

28.02.2025.
22:23 h±25h

02.03.2025.
03:32 h ±49 h

9 21.2.2025.
00:00 h - - - 7.5±3.0 - - 02.03.2025.

00:00 h ±68 h

12 24.2.2025.
00:00 h - - - 11.9±4.5 - - 02.03.2025.

00:00 h±74 h

9 21.2.2025.
00:00 h 12.0 7.5 01.03.2025.

05:48h±20h - 25.02.2025.
14:17 h±20h

01.03.2025.
05:48 h±19.8h

02.03.2025.
03:47 h ±40 h

12 24.2.2025.
00:00 h - - - 11.9±3.0 - - 27.02.2025.

12:00 h ±35 h

15 27.2.2025.
00:00 h - - - - - - 02.03.2025.

12:00 h ±32 h

12 24.2.2025.
00:00 h 13.5 11.9 26.02.2025.

22:19h±7h - 26.02.2025.
14:03 h±21h

26.02.2025.
22:19 h±9h

27.02.2025.
06:08 h ±23 h

15 27.2.2025.
00:00 h - - - - - - -
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F.2  Actual and forecasted ship performance values, for every 3 days of
the voyage, along with the ETA1, ETA2 and ETA3 uncertainty (start
date 1 February 2025)

(a)

(b)

(c)

(d)

(e)
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F.3  Actual and forecasted ship performance values, for every 3 days of
the voyage, along with the ETA1, ETA2 and ETA3 uncertainty (start
date 7 February 2025)

(a)

(b)

(c)

(d)

(e)
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F.4  Actual and forecasted ship performance values, for every 3 days of
the voyage, along with the ETA1, ETA2 and ETA3 uncertainty (start
date 5 March 2025)

(a)

(b)

(c)

(d)

(e)
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Appendix G.  Selected results for hybrid A* and SMPC approach

G.1  Actual and forecasted ship performance values, for every 3 days of
the voyage, along with the ETA1, ETA2 and ETA3 uncertainty (start
date 1 February 2025)

Time frame Actual state Forecasted state

Day Date Time
(d.m.y. h:m)

Vref.

(kn)
Vatt.

(kn)
ETA

(d.m.y. h:m)
Vatt.+ΔVatt.

(kn)
ETA1 + ΔETA1

(d.m.y. h:m)
ETA2 + ΔETA2

(d.m.y. h:m)
ETA3 + ΔETA3

(d.m.y. h:m)

0 12.2.2025.
00:00 h 14.5 13.9 22.2.2025.

06:33 h - 21.02.2025.
11:42 h±46h

22.2.2025.
06:33 h ±23 h

23.2.2025.
09:56 h ±46 h

3 15.2.2025.
00:00 h - - - 13.8±3.0 - - 25.02.2025.

00:00 h±68h

6 18.2.2025.
00:00 h - - - 11.5±4.5 - - 25.02.2025.

00:00 h±74h

3 15.2.2025.
00:00 h 13.5 11.8 23.2.2025.

01:35 h - 22.02.2025.
00:53 h±37h

23.2.2025.
01:30 h ±19 h

23.2.2025.
23:00 h ±39 h

6 18.2.2025.
00:00 h - - - 7.6±3.0 - - 24.02.2025.

00:00 h±68 h

9 21.2.2025.
00:00 h - - - 8.2±4.5 - - 24.02.2025.

12:00 h ±74 h

6 18.2.2025.
00:00 h 13.5 11.6 23.2.2025.

06:35 h - 22.02.2025.
12:41 h±28h

23.2.2025.
06:29 h ±14 h

23.2.2025.
20:33 h ±30 h

9 21.2.2025.
00:00 h - - - 10.3±3.0 - - 24.02.2025.

12:00 h ±27 h

12 24.2.2025.
00:00 h - - - 11.2±4.5 - - 24.02.2025.

10:53 h±33 h

9 21.2.2025.
00:00 h 13.5 11.7 23.2.2025.

08:02 h - 23.02.2025.
00:39 h±19h

23.2.2025.
07:56 h ±8 h

23.2.2025.
14:09 h ±21 h

12 24.2.2025.
00:00 h - - - 13.0±3.0 - - 23.2.2025.

00:00 h ±19 h

15 27.2.2025.
00:00 h - - - 12.4±4.5 - - 23.2.2025.

18:00 h ±13 h

12 24.2.2025.
00:00 h 14.5 13.4 24.2.2025.

05:03 h - 24.02.2025.
03:41 h±12h

24.2.2025.
04:58 h ±4 h

24.2.2025.
05:31 h ±14 h

15 27.2.2025.
00:00 h - - - - - - -
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G.2  Actual and forecasted ship performance values for candidate route
C1, for every 3 days of the voyage, along with the ETA1, ETA2 and
ETA3 uncertainty (start date 12 February 2025)

(a)

(b)

(c)

(d)

(e)
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G.3  Actual and forecasted ship performance values for candidate route
C2, for every 3 days of the voyage, along with the ETA1, ETA2 and
ETA3 uncertainty (start date 12 February 2025)

(a)

(b)

(c)

(d)

(e)
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G.4  Actual and forecasted ship performance values for candidate route
C4, for every 3 days of the voyage, along with the ETA1, ETA2 and
ETA3 uncertainty (start date 12 February 2025)

(a)

(b)

(c)

(d)

(e)


