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ABSTRACT

Unmanned aerial vehicles (UAVs) provide a versatile and efficient solution for search op-
erations, combining mobility, adaptability, and the ability to cover large areas. This work
presents a methodology for autonomous UAV-based search in complex land and maritime en-
vironments, integrating probabilistic modeling, ergodic search principles, and model predictive
control (MPC). Search missions are guided by a probabilistic model representing uncertainty
in target locations, which adapts according to the UAVs’ achieved search effort. In maritime
scenarios, the model incorporates sea surface dynamics and target drift, allowing the search to
adapt to environmental changes.

The search is governed by the potential field-based ergodic control method. It ensures sys-
tematic and efficient area coverage suitable for solving a probabilistically formulated search
problem. For applications in hilly terrain, MPC is utilized to generate smooth, collision-free
trajectories that maintain the desired search height and balance area coverage with computer
vision target detection. The approach is validated through numerical simulations over varied
terrain and real-world experiments under challenging conditions, demonstrating robustness to
uncertainties in target location, UAV control, and localization errors. Static target search results
demonstrate close correspondence between estimated search performance and actual detections,
confirming the accuracy of the probabilistic model. In dynamic maritime searches, the target
drift and its uncertainties are considered with the advection and diffusion of the probability dis-
tribution, respectively. The results indicate that the probability field evolves consistently with
target movement, improving performance compared to traditional methods.

Overall, the methodology achieves the desired area coverage while adapting to uncertainties
in both target location and UAV operation. The combination of probabilistic modeling, ergodic
search, and terrain-adaptive motion control enables systematic, uncertainty-aware multi-UAV
search operations. This thesis provides a validated framework for autonomous search missions
in both terrestrial and maritime environments, offering a significant improvement in operational

effectiveness for real-world search and rescue applications.
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PROSIRENI SAZETAK

Bespilotne letjelice pruzaju svestrano i ucinkovito rjeSenje za operacije traganja, kombinira-
juéi mobilnost, prilagodljivost i sposobnost pokrivanja velikih podrucja. Ovaj rad predstavlja
metodologiju za autonomno traganje temeljeno na bespilotnim letjelicama u sloZenim kop-
nenim i pomorskim okruZenjima. Metodologija integrira probabilisticko modeliranje, ergodicka
nacela pretrazivanja i modelsko prediktivno upravljanje. Misije traganja vodene su probabilis-
tickim modelom koji obuhvaca nesigurnost u lokacijama meta, a koji se razvija u skladu s
postignutim naporom traganja bespilotnih letjelica. U pomorskim scenarijima, model uzima u
obzir dinamiku morske povrSine i pomicanje meta, omogucéujuci misiji traganja da se prilagodi
promjenama u okoliSu.

Traganje se odvija prema metodi ergodicke kontrole temeljene na potencijalnom polju. Ona
osigurava sustavno i u¢inkovito pokrivanje podrucja i pogodna je za rjeSavanje probabilisticki
formuliranog problema traganja. Za primjene na brdovitom terenu, modelsko prediktivno up-
ravljanje se koristi za generiranje glatkih putanja bez sudara koje odrzavaju Zeljenu visinu leta
s ciljem postizanja ravnoteZe izmedu pokrivenosti podrucja i uinkovitosti detekcije meta racu-
nalnim vidom. Pristup je validiran numerickim simulacijama na raznolikom terenu i eksper-
imentima u stvarnim uvjetima, demonstrirajuci otpornost na nesigurnosti u lokaciji meta, up-
ravljanju bespilotnim letjelicama i pogreSkama lokalizacije. Rezultati potrage za stacionarnim
metama pokazuju blisku podudarnost izmedu procijenjene u¢inkovitosti traganja i stvarnih de-
tekcija, potvrdujuci tocnost probabilistickog modela. U pomorskim traganjima, dinamika meta
1 nesigurnosti u gibanju opisuju s advekcijom 1 difuzijom raspodjele vjerojatnosti. Rezultati
pokazuju da se polje vjerojatnosti dosljedno razvija s kretanjem meta, poboljSavajuci perfor-
manse u usporedbi s tradicionalnim metodama.

U konacnici, metodologija postize Zeljenu pokrivenost podrucja, dok se istovremeno pri-
lagodava nesigurnostima i u lokaciji meta i u radu bespilotne letjelice. Kombinacija probabilis-
tickog modeliranja, ergodickog pretrazivanja i terenski prilagodljive kontrole gibanja omogucuje
sustavne operacije traganja s vise bespilotnih letjelica, uzimajuci u obzir nesigurnosti. Ovaj

doktorski rad pruza provjereni sustav za autonomne misije traganja u kopnenim i pomorskim

I



okruZenjima, nudeci znacajno poboljSanje operativne ucinkovitosti za stvarne primjene traganja

i spasavanja.
Kljucne rijeci: Traganje i spasavanje, Upravljanje viSe bespilotnih letjelica, Ergodicko upravl-

janje, Metode potencijalnog polja, Probabilisticki model pretraZivanja, Detekcija raCunalnim

vidom

v



CONTENTS

1 Introduction

1.1 Hypothesis and Research Goals . . . . . . ... ... ... ... ........
1.2 Scientific Contribution . . . . . . . . ... L L
1.3 Thesis Structure . . . . . . . . . ... e e
2 Literature overview
2.1 UAVsinsearchandrescue . . . .. ... ... ... ... .. ........
2.2 Path planning and area coverage . . . . . . . . . . .. ...
2.3 Multi-agent systems and collision avoidance . . . . . . ... ... ... ....
2.4 Computer vision detection . . . . . . . . . ... e
2.5 Altitude and velocity control . . . . . . ... Lo Lo
2.6 Ergodiccontrol . . . . . . ...
2.7 Dynamic environment search strategies . . . . . . . .. ... ... ...
3 UAV search technology
3.1 Classification of UAVs . . . . . . .. . .
3.2 Control and state parameters . . . . . . . . . ... ..o
3.3 Onboard S€nsors . . . ... L. e e
3.4 Experimental UAV system overview . . . . . . . . . . . . . oo v v
4 Modeling UAV motion, computer vision sensing, and detection
4.1 Motionmodel . . . . . . ... L
42 Theoryofsearch . . ... .. .. .. . .. ...
43 UAVsensormodeling . . . . . . ... .. .. ... ...
4.4 Computer vision detection . . . . . . . . . ...
4.5 Combined sensing effect in static targetsearch . . . . . . . . .. ... ... ..
4.6 Search task and search evaluation. . . . . . . ... ... ... ...

W W N

O o0 N N &

10
11
13

14
14
16
18
20



10

Ergodic control

5.1 Heat Equation Driven Area Coverage —-HEDAC . . . . . . ... ... ... ..
5.2 HEDAC implementation . . . . .. .. ... ... .. .. ...,
5.3 Spectral Multiscale Coverage —-SMC . . . . . . ... .. ... ... ......

Yaw constraints and collision avoidance procedure
6.1 Yawcontrol constraints . . . . . . . . ... L. L
6.2 Collision avoidance optimization problem formulation . . . . . ... ... ..

6.3 Decomposing and solving the optimization problem . . . . . . . . .. ... ..

Uneven terrain exploration

7.1 Problem formulation — UAV control over uneven terrain . . . . . . . ... ...
7.2 Digital elevation model and elevation function . . . . . . ... ... ... ...
7.3  Trial trajectories and control functions . . . . . . . ... ... ... ...
7.4  Optimization problem formulation . . . . . . ... ... ... ... ......
7.5 MPC optimization procedure . . . . . . . .. ... o

7.6 Terrain collision avoidance . . . . . . . . . . . ...

Terrain search simulations

8.1 Simulated search scenarios overview . . . . . . . . ... ...
8.2 Sensing characteristics . . . . . . . . . .. ...
8.3 Plasticworld . . . . ... ...
8.4 Mount Vesuvius . . . . . . . ... e e e
85 Stardunes . . . . . ... e

8.6 Robustnessanalysis . . . . . . . .. ... L

Terrain search experiments
9.1 Experimental validation of UAV motion control . . . . . . .. ... ... ...

9.2 Experimental validation of UAV search methodology . . . . ... ... .. ..

Sea surface exploration
10.1 Problem formulation — Search in maritime environments . . . . . ... .. ..
10.2 Dynamic target probability distribution . . . . . . . ... ... o000

10.3 Numerical implementation . . . . . . . . . .. .. .. ...

VI

34
34
36
37

40
40
41
45

47
47
48
49
51
54
56

58
58
60
62
65
69
72

75
75
81



11 Sea surface search simulations
11.1 Modeling motion and detection of dynamic targets . . . . ... ... ... ..
11.2 Syntheticcase —Cavity flow . . . . . .. .. ... ... ... ... .. ...,
11.3 Realistic search scenario — Unije Channel search . . . . .. ... ... .. ..

11.4 Complex search scenario— MH370search . . . . . ... ... ... .. ....

12 Sea surface search experiments
12.1 Surface flow reconstruction . . . . . . . . . . ...
12.2 Custom sea targets and detectionmodel . . . . . . ... ... ... ...

12.3 Experimental searchmission . . . . . . . .. ... ... ... ...

13 Limitations and discussion

14 Conclusion

Bibliography

List of Figures

List of Tables

Curriculum Vitae

List of Publications

VII

108
108
112
113

119

124

126

138

143

144

145






1 INTRODUCTION

Search and Rescue (SAR) operations are essential for locating lost, missing, or injured individ-
uals, with the primary goal of ensuring their quick recovery while minimizing physical harm,
emotional distress, exposure to environmental hazards, and ultimately saving lives. These mis-
sions often take place in complex and challenging environments such as dense forests, moun-
tainous terrain, remote wilderness regions, collapsed urban structures, and coastal or offshore
marine areas. The search process is often further complicated due to limited visibility, harsh
weather conditions, and dynamic, unpredictable circumstances. The urgency of SAR missions
is emphasized by the fact that any delay in locating victims greatly increases the risk of se-
vere outcomes such as injury, dehydration, hypothermia, or death. Traditional manned search
methods are often slow, require a lot of resources, and are sometimes hazardous for the re-
sponders themselves. Ground-based searches are limited by terrain and visibility, resulting in
slow progress across large areas. Aerial searches offer wider coverage and faster results but
are costly due to reliance on helicopters or specialized aircraft. Furthermore, responders are
exposed to significant risks when operating in disaster-affected environments such as wildfires,
earthquakes, or floods.

In recent years, the integration of Unmanned Aerial Vehicles (UAVs) into SAR operations
has emerged as a valuable technological solution. UAVs can very quickly survey large and
difficult to reach areas at a relatively low operational cost. They also improve mission safety
by keeping responders out of high risk environments as they can be remotely operated. These
factors make them a cost-effective supplement or alternative to traditional search teams. Their
ability to execute predefined or adaptive trajectories, carry a range of onboard sensors such as
RGB, thermal, or multispectral cameras for search tasks, along with additional sensors for col-
lision avoidance, makes them highly effective in time-critical situations that require enhanced
situational awareness. However, they require skilled operators and high levels of concentration
for decision-making during the search process.

The motivation behind this research is to enhance UAV autonomy, allowing them to conduct

search missions with minimal operator intervention. The goal is to further increase efficiency,



safety, and effectiveness of SAR operations. By optimizing and automating the search pro-
cess, it becomes possible to reduce search times, increase detection probability, and lower the
operational risks to human personnel. The need for faster victim location in challenging and

hazardous environments further highlights the importance of advancing this technology.

1.1 Hypothesis and Research Goals

This thesis aims to develop a robust and practical framework for UAV-based search that in-
tegrates autonomous navigation based on ergodic control and computer vision detection algo-
rithms, ultimately aiming to improve outcomes in critical life-saving missions.

In robotics, ergodic methods are widely used to explore unknown environments. They allow
the system to both gather new information and combine previously known with newly collected
data to focus exploration on high-priority areas. They have proven to be a reliable and effi-
cient method for guiding inspection based on a prior probability (or information) distribution,
prioritizing high-probability regions while ensuring coverage across the entire distribution.

Target detection in UAV search missions has traditionally been performed by a human opera-
tor monitoring the UAV camera feed and manually identifying targets. In recent years, advances
in machine learning and computer vision have enabled automatic target detection on collected
images or videos, providing increasingly reliable performance. This allows the system to pro-
cess the visual data, recognize potential targets, and determine whether they are present within
the explored area.

Building on these developments, the research hypothesis is formulated as: effective au-
tonomous multi-UAV search missions in complex natural terrain and maritime environments can
be achieved using ergodic control based on target distribution belief and probabilistic model

acknowledging detection sensor performance.

To confirm the hypothesis, the research is guided by these objectives:

* Constrain the control algorithm to comply with the specific UAVs’ technical parameters

and physical limitations.

* Extend the two-dimensional ergodic control method to account for uneven terrain through

UAV altitude and velocity control.



* Define a probabilistic sensing model based on computer vision detector performance at

varying distances from the object.

* Investigate the dynamics of the target probability density field governed by advection and

diffusion processes to enable search activities at sea.
* Develop an interface linking the control algorithm with physical UAV platforms.

* Conduct numerical and experimental validation of the proposed UAV control and search

methodology.

1.2 Scientific Contribution

The main scientific contributions of this work are threefold. First, an exact probabilistic model
is proposed to update the target probability distribution based on detection sensor performance,
incorporating camera sensor specifications and computer vision detection model metrics. Sec-
ond, a velocity and altitude control framework is designed that accounts for UAV dynamics
and mission constraints, enabling the application of two-dimensional potential-based control
methods in complex terrains. Third, a dynamic probability distribution model is introduced to
represent temporally evolving target distributions driven by sea surface layer velocity, enabling
effective search for drifting targets.

The complete framework is tested in numerical simulations conducted in both synthetically
generated and natural terrains, as well as in maritime environments. The motion control and
robustness to uncertainty are validated in experimental flights conducted over complex natu-
ral terrain using physical UAV platforms. The search methodology is validated in carefully
designed experiments employing custom search targets in terrestrial and dynamic maritime en-

vironments.

1.3 Thesis Structure

This thesis is organized into fourteen chapters with corresponding subchapters. The introduc-
tory chapter presents the hypothesis and research objectives, highlights the scientific contribu-

tions, and outlines the overall thesis structure.



The second chapter provides a literature overview covering UAV applications in search and
rescue, path planning and coverage methods, multi-agent systems and collision avoidance, ve-
locity and altitude control methods, computer vision detection, ergodic search methods, and
search strategies in dynamic environments.

The third chapter provides an overview of modern UAV platforms, including classification,
coordinate systems, key control parameters, and commonly used sensors. It also describes the
UAV equipment employed in the real-world tests.

The fourth chapter introduces the UAV motion and perception models. It characterizes
the control parameters governing UAV trajectories, gives an overview of the theory of search,
describes the spatial and probabilistic properties of the sensor, presents the sensing function that
incorporates computer vision detector performance, and, finally, introduces the ergodic search
task and evaluation metrics.

The fifth chapter presents ergodic control methods. It describes the procedure for calculating
control parameters for a two-dimensional coverage problem using these methods, as well as the
numerical implementation.

The sixth chapter focuses on validating and refining the solution provided by the ergodic
method. It applies system constraints to the calculated control parameters and presents the
formulation of the collision avoidance optimization problem.

The seventh chapter presents the velocity and altitude control procedure for uneven terrain
exploration. It describes the terrain surface topography model, introduces the concepts of trial
trajectories and control functions, and formulates the model predictive control for UAV altitude
and speed.

The eight chapter details the numerical validation of the proposed uneven terrain exploration
methodology. It outlines the specifications of the simulated UAV platforms and the parameters
for three search scenarios. It analyzes the results in terms of search performance and constraint
compliance, and compares them with alternative methods. Additionally, it provides an estimate
of the system’s robustness to uncertainty in practical deployment scenarios.

The ninth chapter describes the real-world experimental tests conducted over terrestrial ter-
rain. It validates the proposed motion control methodology through flights over complex natural
terrain and evaluates executed flight trajectories with respect to simulation results. Furthermore,
it details the training and validation of the custom computer vision detector, and demonstrates

its application in validating the proposed search methodology.



The tenth chapter presents the dynamics of the target probability distribution model used in
maritime search operations. It covers advection-diffusion modeling of sea surface target drift,
introduces the uncertainty compensation procedure, and outlines the numerical implementation
used to solve the governing equations.

The eleventh chapter presents the results of maritime search simulations using the proposed
dynamic probability model. It demonstrates performance across synthetic, coastal, and large-
scale ocean scenarios, examining robustness to parameter selection, effect of different relative
velocities between the UAVs and the flow field, uncertainty compensation, and long search
delay conditions.

The twelfth chapter describes the real-world experimental tests conducted in maritime en-
vironment. It outlines the method used to approximate the flow field and validates the search
methodology under dynamic target behavior in experimental setting.

The thirteenth chapter discusses the limitations of the proposed methodology, possible areas
of improvement and future research possibilities.

The final chapter reflects on the set hypothesis and summarizes core findings in relation to

the defined research objectives.



2 LITERATURE OVERVIEW

This chapter presents a review of the existing scientific studies relevant to UAV applications in
search and rescue, path planning and area coverage methods, multi-agent systems and collision
avoidance, computer vision detection, altitude and velocity control methods, ergodic search,

and dynamic environment search strategies.

2.1 UAVsin search and rescue

The integration of UAVs into SAR missions offers promising opportunities to overcome tra-
ditional limitations in speed and accessibility. By enabling rapid surveying of hard-to-reach
locations and detailed environmental monitoring, UAVs help accelerate victim detection and
improve overall mission effectiveness [1].

UAVs can assist ground searchers in wilderness SAR missions by employing search algo-
rithms to find clues and direct the search toward the missing person [2]. Nonetheless, their in-
tegration changes traditional search roles and introduces new coordination challenges between
UAV operators and ground personnel. An overview of the current use of UAVs in SAR missions
is presented in [3]. The work highlights various real-world deployments of UAVs in disaster
scenarios, including hurricanes, tsunamis, floods and fires.

The first documented case of a successful rescue in open terrain using a UAV equipped with
a camera sensor and an automatic Computer Vision (CV) detector is reported in [4]. The work
outlines guidelines for maximizing the probability of target detection in UAV search missions.
To improve human detection in UAV-based SAR missions, an automatic person detector was
integrated into a UAV smartphone control application to assist in target identification [5].

For effectiveness in certain specialized scenarios, UAVs can be customized and equipped
with additional sensors tailored to the mission. An example is provided in [6], which presents
the design, construction, and validation of a custom UAV platform equipped with an avalanche
beacon for conducting rescue missions in avalanche scenarios. It utilizes pre-programmed cus-

tom missions and updates the current mission based on environmental readings.



In contrast to the experimental applications presented, studies have also focused on UAV
control and path planning in SAR operations. In order to conduct a search guided by the esti-
mate of target location, [7] proposes a UAV path planning method utilizing straight paths and
90-degree turns to cover the target probability distribution in wilderness SAR missions. The
research in [8] proposes a multi-UAV control technique based on domain partitioning and task
distribution to effectively survey a given area. Similarly, [9] demonstrates the deployment of
multiple UAVs to effectively obtain situational awareness following a disaster. It simulates the
performance of the proposed UAV control methods in areas affected by a tsunami.

In the context of maritime SAR missions, [10] proposes an algorithm for the generation
of intelligent maritime response plans and analyzes its performance using real scenarios. The
research presented in [11] introduces a framework for maritime search missions that integrates
automatic onboard detections with advanced object recognition performed at ground stations.
This approach enhances operator decision-making and increases the efficiency of manually con-

ducted UAV searches.

2.2 Path planning and area coverage

The UAVs can perform missions with different levels of autonomy and human intervention [12].
Autonomous operation refers to the capability of UAVs to perceive the environment, make deci-
sions, and execute actions without human intervention. To accomplish missions autonomously,
UAVs rely on path planning algorithms to navigate through the environment. The paths can be
computed in real-time [13, 14] or pre-computed before the mission start [15].

In UAV path planning, heuristic methods inspired by natural processes and human reason-
ing, as well as machine learning and other soft-computing techniques, are widely used as they
can effectively tackle complex multi-objective problems [16]. Commonly used approaches in-
clude the Genetic Algorithm (GA) [21, 22], Particle Swarm Optimization (PSO) [19, 20], and
machine learning methods [17, 18]. Various implementations of PSO for three-dimensional
trajectory generation are compared and experimentally tested in [23]. Similarly, the study in
[24] utilizes PSO in combination with skeletonization and B-spline curves for trajectory gen-
eration over complex topographies. A comparison of PSO and GA for UAV path planning is
presented in [25], with the conclusion that the GA algorithm generally performs better in the

tested implementation. The study in [26] formulates the energy-aware path planning problem



as a traveling salesman problem and solves it using GA. The results show a comparison with
the greedy method, with the GA-based version consuming 2—5 times less energy for UAV op-
erations.

Another common approach for trajectory planning is the Receding Horizon Control (RHC),
also referred to as Model Predictive Control (MPC). The method formulates the path planning or
control problem at each time step as a constrained optimization problem, calculates the solution
over the finite prediction horizon, and applies only the first part of the computed solution [27,
28].

A typical consideration in path planning is achieving a desired inspection performance, of-
ten quantified by area coverage. The study in [15] presents a comparison of different motion
planners executing a coverage task from a fixed altitude. It provides comparison between sim-
ulation results and real-world experiments conducted with fixed-wing UAVs. The study in [29]
presents MPC for exploration of unknown environments or a priori known surfaces with micro
aerial vehicles and validates the method in real-world experiments. A practical search applica-
tion is presented in [7], in which a UAV equipped with a radiation sensor is used to locate a

radioactive source.

2.3 Multi-agent systems and collision avoidance

A multi-agent system refers to the employment of multiple interacting agents such as UAVs or
robots, working together to achieve a collective goal. In such a system, agents can either operate
in groups commanded by a leader agent [30, 31], or perform autonomous actions independently
[9, 32]. Multi-agent or swarm-based strategies are commonly applied to coverage problems,
since they enable more efficient inspection in contrast to single-agent methods [33]. The oper-
ational domain can either be shared among all agents [34, 35] or partitioned into sub-domains,
with individual agents operating independently within their assigned areas [8, 36]. The system
can adopt either centralized [37] or decentralized control [38], each providing specific advan-
tages and disadvantages. In a centralized system, a central unit governs or coordinates the
behavior of all agents, while in a decentralized system each agent determines its actions primar-
ily based on local information, without relying on a central controller. Decentralized systems
generally offer greater scalability, as the computational load is distributed among the agents.

However, they are more complex and face increased challenges in collision avoidance and in



sharing the information required for mission execution. A hybrid solution is proposed in [34],
combining global information exchange with locally computed control actions for each agent.
Surrounding environment and collision avoidance should be considered to ensure safe and
successful task execution. Several strategies for collision avoidance have been explored in
previous studies. In [39], collision avoidance for fixed wing UAVs, controlled using MPC
and an artificial potential field, is achieved using points of repulsion. In order to guide UAVs
traveling at a constant velocity away from static and moving obstacles, [40] proposes a method
utilizing local guidance vector fields. Even greater attention to collision avoidance is required
in multi-agent systems. Collision avoidance method for decentralized multi-agent systems is
detailed in [41], proposing an asynchronous three-dimensional trajectory planner capable of
collision free route generation in environments containing both static and moving obstacles.
In practical implementations, collision avoidance can be supported by environmental sensing

technologies such as sonar and Light Detection and Ranging (LiDAR) sensors [9, 42].

2.4 Computer vision detection

When equipped with camera sensors, UAVs provide an effective and cost-efficient means of
conducting inspection and surveillance operations from an aerial perspective. With the integra-
tion of machine learning—based detection algorithms, these systems can automatically identify
and localize objects of interest. This combination not only improves the speed and accuracy of
detection but also enhances overall operational efficiency while reducing the need for human
operators. Furthermore, UAVs gain the capability to function as autonomous aerial observers,
able to support tasks such as border surveillance [43], wildlife monitoring [44], and search and
rescue [4, 5].

Considering the number of scientific articles published in the UAV domain, Faster Region-
based Convolutional Neural Networks (Faster R-CNN) [45] and You Only Look Once (YOLO)
[46] are among the most commonly employed methods for object detection in UAV images
[47]. Faster R-CNN uses a two-stage process in which candidate objects are identified by
a region proposal network in the first step, followed by a classification step and additional
post-processing. This pipeline often achieves high detection accuracy in aerial imagery [48,
49], but its modular design can complicate optimization, as each component requires separate

training and parameter adjustment. In contrast, YOLO predicts bounding boxes and classifies



objects simultaneously in a single stage by applying a neural network to the entire image in
one pass. Although it can struggle with precise localization, especially for small objects, it can
detect objects in an image very quickly. Typically, YOLO exhibits higher localization error
in comparison to Faster R-CNN, but it tends to produce fewer false positive predictions in
background regions [46]. In general, single-shot methods are more suitable for onboard UAV
detection systems since they require less memory and are faster [50].

Although images captured using onboard UAV cameras are valuable for many applications,
they can introduce various challenges for automatic detection systems. Some of these chal-
lenges arise from high-altitude imaging resulting in small objects [51], wide camera angles
producing high object density [52], and camera motion responsible for image degradation such
as motion blur [53]. However, detection performance on degraded images can be improved if
the model is also trained on such images [54]. Detection performance is further affected by
reduced resolution, which corresponds to less detail captured in the image [55]. The amount of
detail captured is determined not only by the image resolution but also by the altitude at which
the image is taken. Increasing the altitude increases area coverage but reduces the amount of
detail in the image. The amount of detail captured by the image is determined by Ground Sam-
pling Distance (GSD), which reports the ground area captured by a single pixel. A smaller GSD
indicates that more detail is captured. In area mapping, it is used to achieve a specific level of
detail [56], and it directly influences the performance of CV detectors [57]. Similarly, various
research studies have examined the effect of altitude on detection model performance, generally

concluding that detection accuracy decreases as altitude increases [58—61].

2.5 Altitude and velocity control

Efficient UAV area survey can be performed with a proper balance between area coverage and
CV detection model performance. This balance is accomplished by conducting the flight mis-
sion at a carefully chosen height above the terrain. Furthermore, maintaining a safe minimum
distance from the terrain is crucial to avoid potential collisions with natural and man-made ob-
stacles. Therefore, in the presence of uneven terrain, UAV altitude control becomes a highly
significant aspect of conducting an effective area survey.

Altitude control can be achieved by following pre-computed paths, as presented in [23].

10



The study introduces a PSO path generation method producing paths that comply with obsta-
cle avoidance and altitude constraints and demonstrates their performance in real-world ex-
periments. In [62], the authors propose an alternative method for terrain-following trajectory
generation, where neural networks are used to produce two-dimensional paths that satisfy con-
straints including UAV dynamics and flight altitude limits. The study in [63] employs digital
surface models to determine flight altitude when generating low-altitude paths that connect mul-
tiple points of interest. The method is experimentally tested through UAV missions in which
the aircraft followed a sequence of waypoints generated from the computed three-dimensional
trajectory.

Terrain following functionality in unknown terrain can be achieved utilizing sparse point
clouds generated through Simultaneous Localization And Mapping (SLAM), as presented in
[64]. The method generally achieves real-time performance in simulation, but encounters dif-
ficulties in areas with indistinct terrain textures and in steep, cliff-like regions. Anther terrain
following approach is presented in [65], focusing on low-altitude flight achieved by generating
the trajectory based on environmental readings from a laser sensor.

Critical considerations in search missions covering extensive areas are UAV energy expendi-
ture and flight range, particularly for multi-rotor UAVs. Range or endurance maximization can
be achieved at a velocity specific for each UAV, based on its characteristics such as mass, sur-
face area, battery capacity, and propeller size [66]. Considering search performance, an increase
in velocity results in higher area coverage in unit time, but as velocity increases, compliance
to constraints such as collision avoidance becomes increasingly difficult [65]. This highlights
the need for velocity management, allowing UAVs to reduce their velocity during maneuvers
that cannot be executed at the optimal endurance or range velocity. In [67], velocity manage-
ment of a UAV swarm was implemented utilizing mid-field game approach, with the goal of
UAV energy expenditure minimization. A practical application of endurance-aware multi-UAV

planning for coverage of disaster areas is presented in [68].

2.6 Ergodic control

The search for missing targets is generally performed based on a belief of their last whereabouts.
That belief can be represented as a probability distribution throughout the search domain, where

the high probability is assigned to regions that are the most likely to contain the target. With
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the utilization of greedy methods [69] the search can be focused on the high-probability ar-
eas, which can be really effective, but only if the belief is correct. In the case of high uncer-
tainty around the target’s location, these methods tend to fail, as they focus only on the highest-
probability areas while disregarding low-probability regions that may still contain the target. On
the other hand, coverage path planning techniques systematically covering the whole domain
area, such as the spiral or lawnmower path methods [70], are inefficient in the case of a non-
uniform probability distribution. To balance the trade-off between exploration (inspection of
the entire probability distribution) and exploitation (increased focus on high-probability areas),
ergodic methods can be utilized. Over time, they produce a trajectory density corresponding to
a given distribution, in this case the target probability. This results in the complete coverage of
the probability distribution, where each region is inspected for an amount of time that is propor-
tional to the probability assigned to it. The research in [71] presents several benefits of ergodic
methods and demonstrates their robustness to the configuration of initial conditions and better
performance in the presence of distractions when compared to alternative methods. For multi-
agent ergodic search control, the most commonly used approaches are: Spectral Multiscale
Coverage (SMC), MPC, and Heat Equation Driven Area Coverage (HEDAC).

The study in [72] presents a metric for determining the ergodicity of a given trajectory
with respect to a specified distribution, and introduces SMC by utilizing the presented metric
in a closed feedback loop for multi-agent system control. Building on this, [73] introduces
the multiscale adaptive search algorithm by coupling SMC, providing trajectory generation for
the sensor, and applying Neyman—Pearson lemma for decision making. The SMC method was
applied to a complex, dynamic search scenario in [74], where it was used to simulate the search
missions for the MH370 aircraft, lost in the Indian Ocean in 2014.

By incorporating the egodicity metric in the optimization problem cost function, MPC can
also be utilized for ergodic trajectory generation. The overview of MPC methods is presented
in [75], highlighting various applications, recent advancements, and the current state-of-the-art.
The study in [34] utilizes MPC for real-time execution of a coverage and target localization task.
In the implementation, each agent computes its own actions, while the coverage information is
shared across a network. A similar method is presented in [38], incorporating changes to the
control policy to achieve full decentralization of the system.

The HEDAC method, introduced in [76], provides a solution to the multi agent coverage

problem by generating ergodic trajectories through a feedback loop that guides the search agents
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based on the potential field generated by a stationary heat equation. Building on the base
method, [35] introduces agent sensing and detection, while [77] presents the Finite Element
Method (FEM) implementation for numerically obtaining the solution to the heat equation. The
application of the method in diverse contexts serves as a proof of its versatility. For example,
it was employed for multi-agent maze exploration [37], path planning for complex structure
inspection [78], and multi-agent non-uniform crop spraying [32]. The method has also been
applied to real-world robotic manipulators performing tasks such as whole body ergodic explo-

ration [79] and curved surface cleaning [80].

2.7 Dynamic environment search strategies

The search of maritime environments introduces new challenges as a result of dynamic target
behavior governed by the underlying velocity filed of the ocean. A method for oceanic search
utilizing UAVs and dynamically changing target probability maps is presented in [82]. The
approach applies a Gaussian mixture model for evolving the probability map and incorporates
diffusion for velocity field error compensation. A cooperative UAV search framework for dy-
namic targets is presented in [83], utilizing grid-based domain discretization where each cell
is assigned a probability of target presence. The method also accounts for communication im-
perfections and data loss. To facilitate communication, in [84], Unmanned Surface Vehicles
(USVs) and UAVs form a temporary communication network for maritime exploration. The
method performs grid-based domain discretization and executes global path planning based on
sea information maps, while local path planning relies on data collected by onboard sensors.
The research in [85] presents the motion-encoded genetic algorithm with multiple parents
and utilizes it to address the moving target localization problem employing multiple UAVs. The
method is grid-based and models target locations with a probability distribution, updating the
belief map through a Bayesian approach as sensing data is collected. In contrast to maritime
applications, [86] introduces an MPC-based ergodic, multi-agent search strategy that utilizes
dynamic information maps and low-information sensors to locate and track moving targets,

focusing on land-based scenarios.
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3 UAV SEARCH TECHNOLOGY

This chapter provides an overview of modern UAV systems relevant to the context of this thesis.
It covers UAV classification, coordinate systems, and introduces control parameters essential for
flight management. It provides a brief overview of commonly used sensors and concludes with

a description of the experimental UAVs used in the real-world tests.

3.1 Classification of UAVs

The most common way to classify UAVs is by platform type, which refers to their physical
structure and how they generate lift. There are three main categories: fixed-wing, rotary-wing,
and hybrid UAVs.

Fixed-wing UAVs are similar to traditional planes and they use static wings that rely on for-
ward motion to produce lift. They are very efficient in long-range and high-speed missions and
can operate for relatively long periods, making them ideal for inspecting large areas. However,
they are impractical for surveying small areas due to their low maneuverability and inability to
hover in place. One notable drawback of fixed-wing UAVs is that they require a runway or a
catapult for takeoff and a large area to land. A typical example of a fixed-wing UAV is shown

in Figure 3.1.

Figure 3.1: Airmobi Skyeye 2600 fixed-wing UAV [87].

Rotary-wing UAVs utilize rotors, assemblies of rotating blades, to generate downward fac-

ing thrust which enables them to fly. Since the motors provide constant motion of the rotor
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blades, the UAV does not require continuous movement to fly, and can hover in place. How-
ever, that requires the motors to run continuously, which increases energy consumption. They
are highly maneuverable and capable of taking off and landing in confined spaces. They can
execute more complex trajectories when compared to fixed-wing UAVs but they produce more
aerodynamic drag, are less energy efficient, and have lower flight endurance. Rotary-wing
UAVs can be further categorized by the number of rotors they have into: single-rotor UAVs,
which resemble traditional helicopters, and multi-rotor UAVs (quad-rotor, hexa-rotor, etc.). Fig-

ure 3.2 shows examples of single-rotor and multi-rotor UAVs.

Single-rotor Multi-rotor

Figure 3.2: Examples of rotary-wing UAVs: The Rotor single-wing [88]
and DJI Phantom 4 Pro multi-rotor [§9] UAVs.

Hybrid UAVs combine the characteristics of fixed-wing and rotary-wing UAVs. The most
common hybrid-UAV type is the Vertical Take-Off and Landing (VTOL) fixed-wing UAV,
which combines the endurance of the fixed-wing aircraft and VTOL capability of rotary-wing
UAVs. They are essentially a more advanced version of fixed-wing UAVs, but they have a
more complex structure, more parts, and are generally more expensive. An example of a VTOL

fixed-wing UAV used primarily for mapping is shown in Figure 3.3.

7

Figure 3.3: WingtraOne hybrid VTOL UAV [90].
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3.2 Control and state parameters

UAVs can be observed from two different reference frames, or coordinate systems, each serv-
ing a specific purpose and providing distinct information and usefulness. The inertial frame
corresponds to the global or domain coordinate system. It has a fixed origin and is used for
describing UAV’s position and velocity. The body-fixed frame corresponds to the UAV’s local
coordinate system which has its origin at the UAV’s center of gravity and it moves with the
aircraft. It is used to capture UAV’s orientation, forces, and control inputs. Furthermore, an
additional reference frame can be assigned to the sensor, which typically describes the sensor’s
orientation relative to the body-fixed frame.

The attitude of the UAV is defined as the orientation of its local (body-fixed) coordinate sys-
tem relative to the global (inertial) coordinate system, commonly expressed with Euler angles:
pitch, roll, and yaw. Pitch is described as rotation about the lateral axis, roll is rotation about
the longitudinal axis, and yaw is rotation about the vertical axis. The local coordinate system

and attitude angles for fixed-wing and multi-rotor UAVs are illustrated in Figure 3.4.

Vertical axis

Lateral axis

Longitudinal axis

Multi-rotor UAV Fixed-wing UAV

Figure 3.4: Local UAV coordinate system and attitude angles

UAVs are controlled by adjusting thrust levels and the attitude angles. Control of these
parameters differs between multi-rotor and fixed-wing UAV types. Multi-rotor UAVs achive
this by varying the rotational speed of their motors (rotors), adjusting thrust individually or
collectively to control movement and orientation. The rotors generate downward thrust, so
increasing the rotational speed of all motors equally results in a rise in altitude. To move forward
or backward, the UAV adjusts its pitch by increasing the speed of the motors at the back or front,

respectively. For side to side movement, speed of the side motors is increased. For example,
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increasing the speed of the right motors causes the UAV to move left. Standard multi-rotors
have an even number of rotors arranged in pairs, with half spinning clockwise and the other
half counterclockwise. They are configured in a way that no two adjacent rotors spin in the
same direction. To cause yaw rotation, the speed of half the motors rotating in one direction
is increased, while the speed of the other half is decreased. This creates a torque imbalance,
causing the aircraft to rotate about its vertical axis. Due to the rotor configuration, the overall
thrust direction and intensity remain unchanged. Figure 3.5 illustrates a multi-rotor performing

pitch, roll, and yaw adjustments.

Pitch adjustment Roll adjustment Yaw adjustment

Figure 3.5: Multi-rotor motor power distributions during pitch, roll, and
yaw changes. Red arrows indicate motor rotation direction and rotational
speed (thicker arrows = higher speed).

High-level control, referring to pilot or auto-pilot level commands, of a multirotor UAV is
typically achieved by manually adjusting thrust, pitch, roll, and yaw using a remote controller.
When multi-rotor control is handled by a computer, generally, it can be configured in either at-
titude mode, where thrust and attitude angles (pitch, roll, yaw) are directly adjusted, or velocity
mode, where the UAV is commanded to follow specified velocities in the longitudinal, lateral,
and vertical directions, along with an angular velocity for yaw.

The motors of fixed-wing UAVs generally provide backward thrust, propelling the aircraft
forward. By adjusting the motor power, different thrust levels are produced, resulting in varying
forward velocities. Attitude changes in fixed-wing UAVs are achieved by modifying lift and
drag forces at specific control surfaces. These forces are adjusted using the elevator, rudder, and
ailerons, which are shown in Figure 3.6. To increase or decrease altitude, the aircraft’s pitch
is adjusted using the elevator, which changes the lift forces at the tail. This alters the wings’
angle of attack, resulting in changes to the overall lift force. To increase or decrease altitude,
the pitch of the aircraft is adjusted with the elevator changing the lift forces at the aircraft tail,

which changes the wings’ angle of attack resulting in changes to the aircraft lift force. The
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ailerons create a difference in lift between the wings, causing the aircraft to roll. The yaw angle

is changed by adjusting the side force generated on the tail by regulating the rudder.

Ailerons

Rudder

Figure 3.6: Fixed-wing aircraft attitude control components [91].

High level control of fixed-wing UAVs is achieved by adjusting thrust and controlling the

elevator, rudder, and ailerons via joystick inputs or the autopilot.

3.3 Onboard sensors

UAVs carry a variety of sensors which they use to collect data while operating. They can be
split into two groups considering their function into navigation and perception sensors.

By combining information gathered from all the navigation sensors, the UAV flight con-
troller can perform state estimation, determining the UAV’s attitude, position, velocities, and
angular velocities. The state estimate is essential for stabilization, navigation, path planning,
and performing autonomous missions. The most essential navigation sensors include the Iner-
tial Measurement Unit (IMU), Global Positioning System (GPS) receiver, magnetometer, and
barometer. The IMU is a combination of accelerometers, which measure linear acceleration, and
gyroscopes, which measure angular velocity. These measurements are used to estimate UAV’s
attitude and motion. The GPS receiver is used to determine the UAVs global position (latitude,
longitude, and altitude). It typically has a low update rate, when compared to the IMU, and may
be unusable indoors. Standard GPS has an accuracy of a couple of meters while Real-Time
Kinematic (RTK) GPS is accurate to a few centimeters. The magnetometer acts like a digital
compass, which measures the Earth’s magnetic field to determine the UAV’s global heading
(yaw angle) relative to north. It can be sensitive to electromagnetic interference coming from
onboard electronics or external sources. The barometer is used in a barometric altimeter to

measure air pressure, which is used to calculate the altitude relative to a local reference, usually
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the UAV’s takeoff point. It provides a reliable estimate of relative altitude, but its accuracy can
be affected by pressure changes due to weather or nearby airflow.

Perception sensors are used to gather information about the surrounding environment. They
enable obstacle detection and avoidance, navigation, terrain mapping, and object detection.
Common UAV perception sensors include: standard Red-Green-Blue (RGB) cameras, infrared
(thermal) cameras, multispectral and hyperspectral cameras, Light Detection and Ranging (Li-
DAR) sensors, laser rangefinders and ultrasonic sensors. Figure 3.7 illustrates several percep-

tion sensors that can be mounted on UAVs, along with their data outputs.

RGB camera Multispectral camera Thermal camera LiDAR

Figure 3.7: Range of UAV perception sensors [92-95] and examples of
their data outputs [96, 97].

Standard RGB cameras capture images or video in the visible spectrum. Their video feed is
typically transmitted to the pilot as the primary source of visual information for operating the
aircraft, often at reduced quality due to limited bandwidth. The captured data can be used for
visual inspection, mapping, and object detection. Thermal cameras are used to capture the in-
frared radiation, producing images that show the temperature distribution of the observed area.
They are commonly used in night operations, SAR, and fire detection. Multispectral cameras
capture images containing a few discrete spectral bands which are selected to target specific fea-
tures. They are often used in environmental monitoring and agriculture to estimate crop health.
Hyperspectral cameras are similar to mulstispectral cameras, but they capture many more bands
which are narrower and closely spaced. This results in more complex data, which is generally
used in scientific research or for detailed material analysis. LIDAR sensors emit a large amount

of laser pulses which are used to measure distance between the sensor and the surfaces they
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hit. The resulting data forms detailed point clouds that can be used for terrain mapping and
obstacle detection. Due to the high volume of data generated, LiDAR systems typically require
a powerful onboard computer for real-time processing. Laser rangefinders operate on the same
principle as LiDAR systems, but they provide only a single-point measurement. They offer ac-
curate distance measurements and are often used to determine a UAV’s height above the terrain.
Ultrasonic sensors utilize high-frequency sound waves to measure distance of nearby surfaces.
They have low computational requirements and can operate in real-time, but have a limited
range of a couple of meters. They are typically used for indoor obstacle avoidance, low-altitude

altitude hold and assisting with takeoff and landing.

3.4 Experimental UAV system overview

The UAVs used in the experimental part of this thesis are commercially available models man-
ufactured by DJI. Specifically, the models used are the DJI Matrice 210 V2 and the Mavic 2

Enterprise Dual, as shown in Figure 3.8.

DJI Matrice 210 v2 with

DJI Mavic 2 Enterprise Dual
Zenmuse X5S Camera avic ferprise bua

Figure 3.8: Experimental UAVs used in real-world testing [92, 98, 99].

The Matrice 210 v2 UAV is paired with the DJI Zenmuse X5S RGB camera, which cap-
tures images at a resolution of 5280 x 2970 pixels with a 16:9 aspect ratio. The Mavic 2
Enterprise Dual features an integrated RGB and thermal camera, but only the RGB camera is
used in this research. It captures images at a resolution of 4056 x 3040 pixels with a 4:3 aspect
ratio. Table 3.1 summarizes the technical characteristics of the experimental UAVs, based on
manufacturer documentation. It should be noted that the maximum flight times specified by the

manufacturer (Table 3.1) are often calculated considering ideal conditions and likely exclude
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any payload. In realistic operating environments, the actual flight times can be significantly

lower.
Table 3.1: Overview of technical specifications for the UAVs used in field
experiments
Specification DIJI Matrice 210 V2 Mavic 2 Enterprise Dual
Weight (without payload) 4.8 kg 899 ¢
Dimensions 883 x 886 x 398 mm 322 x 242 x 84 mm
Max flight time 34 min 31 min
Max speed (P-mode) 17 m/s 14 m/s
Max ascent speed 5 m/s S m/s
Max descent speed 3 m/s 3 m/s
Max angular velocity (P-mode) 120°/s 100° /s
Obstacle sensing Forward, backward, downward sensors Forward, downward, backward
Payload capability Supports multiple payloads Integrated dual camera (RGB + Thermal)

To enable autonomous control managed by a Ground Control Station (GCS) computer, a
communication system was implemented to handle data exchange between the PC and the
UAVs. For any type of flight, each UAV must be operated with a remote controller and a
smart mobile device running the official "DJI Pilot" or a custom DJI-based application. Com-
munication between the UAV and the remote controller is established via radio signals, while
the remote controller is connected to the tablet through a wired link.

To allow PC-based autonomous control, a custom Android application was developed using
the DJI Software Development Kit (SDK). This application is connected to the GCS, where
commands are computed and then forwarded to the UAV. Likewise, state updates from the UAV
are captured and transmitted back to the PC, enabling real-time bidirectional communication.

The overall communication scheme is illustrated in Figure 3.9.

- Wi-Fi Wired connection =" Radio
socket (DJI SDK) 2.4 GHz, 5.8 GHz
——=_—7)
= > 5 0

& 4

~

¢ ¢
GCS PC Tablet Controller Drone

X Linux, Python / \ Android, Java / \ DJI Cendence / \ DJI Matrice 210 V2 /

Figure 3.9: Overview of the communication scheme between the PC and
the UAVs [100].
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4 MODELING UAV MOTION, COMPUTER
VISION SENSING, AND DETECTION

This chapter presents the components describing the UAV control parameters, along with the
detection and probabilistic model for the search. The UAV motion is first characterized through
a motion model, where the kinematic relationships and control parameters governing its trajec-
tory are defined. This is followed by a summary of search theory and an introduction to the
undetected target probability, which forms the basis of the search. Next, the modeling of a re-
alistic UAV sensor is presented, describing its spatial and detection characteristics as well as its
probabilistic nature. The integration of the computer vision detection model is then presented,
with its detection performance quantified through relevant metrics, incorporated into the sens-
ing function. Following this, the collaborative sensing effect of all search agents in the static
target search scenario is outlined. Lastly, a measure for evaluating search success is defined,

providing a quantitative assessment of the search effectiveness over time.

4.1 Motion model

To conduct the search, multiple UAVs operate within a predefined domain. Each UAV perform-
ing the search is referred to as a search agent. The total number of search agents is denoted by
n, and each agent is identified by a unique index i. They move in a three-dimensional domain

Q3p C R3, and their motion is controlled by regulating the following variables in time ¢:
* velocity intensity p;(t) € [Pmin, 1],
* incline angle @;(7) € [Qmin.i, Pmax,il,
* yaw angular velocity @;(f) € [—@max,i, Omax.i]-

The velocity intensity p expresses the proportion of the maximum absolute velocity that

is currently being utilized. Since fixed-wing UAVs, in contrast to multi-rotor UAVs, require a
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certain amount of horizontal velocity to generate lift and avoid stalling, the minimum horizon-
tal velocity v min 1s introduced. It effectively constraints p to the minimum value of P, =
Vs, min / Vs.max» Where vy mq, denotes the maximum horizontal velocity of the UAV. The minimum
and maximum horizontal velocities must satisfy the conditions: v pin > 0 and v max > Vs min-
In the case of multi-rotor UAVs, which can hover in place, vy ;in = 0, and therefore p;, = 0.

The incline parameter ¢ represents the angle between the horizontal plane and the velocity
vector which is tangential to the UAV’s trajectory. It should be noted that the aircraft pitch
differs from the incline angle ¢ which represents the slope of the resulting trajectory. The pitch
denotes the angle between the horizontal plane and the longitudinal axis of the aircraft. Addi-
tionally, possible lateral motion resulting from multi-rotor roll adjustments is not considered.

To accurately capture the clear differences in velocity characteristics UAVs display during
horizontal flight, ascent, or descent, the limit velocity function v(¢) is introduced. This function
denotes the highest absolute velocity achievable by the UAV at a given incline. It offers a clear
description of the UAV’s velocity characteristics and can be easily experimentally determined
for a given aircraft. To reduce complexity, v(¢) is approximated with an (asymmetric) ellipse
defined by three characteristic velocities: maximum ascending velocity v, max = v(@pax ), maxi-
mum horizontal velocity vy ;4 = v(0), and maximum descending velocity v, min = v(@pin). As
presented in Figure 4.1, the horizontal and vertical velocity components are indicated by the
green and red vectors, respectively, while the total velocity is represented by the orange vector.
The total velocity vector originates from the aircraft’s center of mass and the feasible region for
its tip is represented with area shaded in light blue color, while the velocity limits associated
with various inclines are illustrated with the red line.

Depending on the mission objectives and operating conditions, it may be more beneficial to
use the optimal range or endurance velocity, considering UAV energy constraints [66]. Addi-
tionally, since CV detector performance depends on the flight velocity at which UAV-mounted
camera captures images [101], the UAV velocity can be set up to achieve the best balance be-
tween area coverage and detection performance. In such cases, the parameters v ax, Vz max, and
v,.min can be defined based on the velocities that maximize endurance, range, or detection rather
than the UAV’s performance limits.

Additional constraints are introduced to realistically model the dynamic behavior of various
UAV types. For fixed-wing UAVs, the range of ¢ values is constrained with @,,;, and @4

in order to prevent aircraft stall, which typically happens around 15° ~ 0.26 rad. Assuming
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that the angle of attack (the angle between the wing chord line and the oncoming airflow) is
closely aligned with the aircraft incline, ¢ limits within [—0.25,0.25] can be imposed. Since
the minimum absolute velocity is constrained by P, as ¢ deviates from 0, it is possible to
slightly breach the prescribed minimum horizontal velocity vy ,,;,. However, this is considered
insignificant due to the realistic ¢ limits which ensure that the velocity does not drop more than
4% below vy i, and can be compensated by more conservative value of Py,

In contrast, multi-rotor UAVs are capable of performing purely vertical motion, without
movement in the horizontal plane. Therefore, ¢ limits are imposed with @,,;, = —m/2 corre-
sponding to vertical descent and @, = 7/2 representing vertical ascent. Additionally, multi-
rotor UAVs can fly backward, which potentially adds additional motion and search flexibility.
However, this is not considered due to practical reasons and better awareness of pilots supervis-

ing the autonomous flight.

(A)  [tamas (B)

Usmax

Vzmin

Figure 4.1: Velocity components and constraints for multi-rotor (A) and
fixed-wing (B) UAVs.

Based on this framework, the horizontal and vertical UAV velocity components are formu-

lated as functions of control parameters:
vs,i(Pi, @) = i vi(@;) - cos(@r), 4.1)

v2,i(Pis i) = pi-vi(@;) - sin(@;). 4.2)

The UAV trajectory Y;(t) = [x;(¢),yi(t),zi(t)] C Q3p is obtained by solving the equations of
motion while accounting for the different components of the realized UAV velocity. Accord-

ingly, the relations can be written as:

dx.
d_tl = vs,i(pi, @i) - cos 6,
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dy; .
i vs.i(pi, @i) - sin 6;,

dz;

- v2.i(pi, i),

where 0 is the heading angle governed by the yaw angular velocity

do;
= — wi(1).
dr (1)

The implementation of the @ constraints within the control algorithm is detailed later in Sec-

tion 6.1.

4.2 Theory of search

In the case of continuous observation of a single target, let ['ds represent the probability of
detecting the target in a short time interval d¢. Here, I" represents the instantaneous detection
probability (of the target). According to Koopman [102], the probability of detecting the target

under unchanging conditions, when the target is observed for the time ¢, is given by
plt)y=1—e1 (4.3)

where I" > 0.

The probability that the observed target is not detected during observation time ¢ is given
by ¢(t) = 1 — p(z). Before any observations occur, equation (4.3) implies that the target is
certainly undetected, since p(0) = 0, and therefore ¢(0) = 1. As outlined in [102], ¢ varies with

time according to the differential equation

dg

= TIg. 4.4
ar q 4.4)

In a search scenario, the location of the target is unknown and the search is conducted
based on the belief about the target’s location. Let x represent an arbitrary point in the two-
dimensional search domain Q,p. As given by [35], this belief is represented by the undetected
target probability density field m(x,¢), which describes the spatial probability density of unde-

tected target occurrence over time f. At time t = 0, prior to any observations, the undetected

25



target probability density is denoted by mg(x). Since the target is initially undetected, m repre-
sents the spatial probability density of the target’s presence at any location x. With the assump-
tion that the target is within the search domain at ¢ = 0, the initial target probability distribution
accumulated over the entire domain area ,p must equal 1. Therefore, my is required to satisfy

the condition

/ mp(x)dx = 1. 4.5)
Qop

At time ¢, the undetected target probability density m is obtained by combining the initial spatial
probability density of target presence with the probability of the target remaining undetected.
Since a potential target may be located at any position X, the sensing performance varies across
the domain, making ¢ location dependent. Accordingly, the undetected target distribution is

modeled as

m(x,t) = mo(X)-q(x,t).

Differentiating this expression with respect to time and substituting equation (4.4) yields the

governing equation for the temporal evolution of m, given by

dm(x,1)

= —Tm(x.0). (4.6)

The probability of an undetected stationary target at x after an observation time ¢ is given by the

analytical solution of equation (4.6), expressed as
m(x,1) = mo(x) -e " 4.7)

If T" varies with time, the probability of the target at x remaining undetected after an obser-

vation time 7, according to equation (4.7), is given by
m(x,t) = mo(x) - e~ ST, (4.8)

In a UAV-based search, observations are performed by an onboard sensor. The UAV moves
over a two-dimensional domain, carrying the sensor along with it. Each point x in the domain
can be represented in the sensor’s coordinate system as a vector R(x,7), which varies over time

as the UAV moves. If I"is considered a function of R, the probability that the target at X remains
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undetected over an observation period ¢ is determined from equation (4.8) as
m(x,t) = mo(x) - e~ T RED)dr. (4.9)

Although the equation (4.9) describes the continuous observation, or sensing performance,
the model can also be applied to discrete sensing with the assumption that I' does not vary
significantly during the sensing interval Afy, corresponding to observation time. In the case
of discrete sensing using a camera sensor, images or frames are captured at fixed intervals.
Even video, which appears continuous to the human eye, is fundamentally discretized into
multiple successive frames. To simulate continuous sensing performance, each captured frame
or image is assumed to be observed over the duration of the sensing interval Afg, corresponding
to the time between successive frames. By increasing the number of frames captured within the
same time interval, the instantaneous detection probability function is evaluated more frequently
over shorter periods, while preserving the same overall sensing effect i.e. the total detection

probability.

4.3 UAV sensor modeling

While UAVs operate in three-dimensional space, their main objective is to explore the terrain
or sea surface. Although the terrain is not perfectly flat, the inspection of the terrain surface
can reasonably be treated as a two-dimensional search problem, since the vertical variations
are small compared to the horizontal extent. Consequently, the search problem is reduced to
a two-dimensional horizontal domain Q5 C R?. Let x € Q,p represent an arbitrary point
in the two-dimensional domain. The surface topography is described by a elevation function
zr - Qop = R, x> z7(x). In the case of land-based operations, the terrain function can be
obtained through various sources, such as Digital Elevation Models (DEMs), terrain reconstruc-
tion from images captured at different perspectives (photogrammetry), or LiDAR point clouds.
For maritime search missions, the sea surface is flat, and consequently, z7 = 0.

Inspection is conducted using a sensor mounted onboard a moving UAV. Although they are
generally not identical, for this application it is correct to assume that the origin of the sensor’s
coordinate frame coincides with the UAV position, as defined by Y, representing the origin of
the UAV coordinate frame. The sensor is considered to be mounted on a gimbal that compen-

sates for the UAV’s pitch and roll, ensuring that the sensor direction remains aligned with the
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vertical (nadir) axis. In the case of a camera sensor, this implies taking orthophoto images. Con-
sequently, the sensor maintains a fixed pitch of —90° relative to the global coordinate frame.
The sensor yaw is fixed relative to the UAV body frame, with a value of 0°, meaning that the
sensor heading aligns with the UAV heading 6.

The sensor captures information encompassed inside its Field Of View (FOV) Qpoy C R3.
Two sensor models are considered: a generic sensor represented by a conical FOV and a real
camera sensor modeled by a pyramidal FOV. The conical FOV, employed in several simulated
search scenarios, is characterized only by its apex angle 7., defining the sensor’s angular cover-
age. The pyramidal FOV represents a camera sensor capturing rectangular images. It is defined
by two angles, ¥; and 9», which correspond to the angles between lateral and longitudinal faces
of the FOV pyramid relative to the UAV’s heading, respectively. he y angles for both the conical
and pyramidal FOVs are illustrated in Figure 4.2. Accounting for terrain elevation variability
and flight altitude, the data collected by the sensor is provided for the terrain surface enclosed
within the FOV. The information recorded by the sensor are images of the terrain surface in
the case of a camera, but may also comprise any type of surface information acquired by an
arbitrary sensor.

The apex of the FOV coincides with the origin of the sensor’s coordinate frame, corre-
sponding to Y. Within the sensor’s coordinate system, points are represented by the vector R.
Instantaneous detection probability is zero for all points outside the sensor’s FOV or that are
visually obstructed, as determined via ray tracing. Evaluating the sensing effect of the sensor
located at 'Y on an arbitrary point X € p requires a transformation into the local coordinate

system

cosf; —sinB; 0
R;(x,Yi(t),0;(t)) = |sin6; cos6; 0 (Yi—[xx,XwZT(X)]T)a
0 0 1

involving a three-dimensional translation and rotation in the horizontal plane based on the
UAV’s heading angle 0, with x projected onto the terrain surface using z7(x). Figure 4.2 il-
lustrates the global and local UAV coordinate frames along with an example of the vector R.
In a practical scenario, the instantaneous detection probability I of a target at x depends on
the Euclidean distance between the sensor and the observed point, given by ||R;||. The effect

of I' is limited to the area observed by the sensor through the sensing function y, which is
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Figure 4.2: Representation of the pyramidal and conical FOV angles (7),
along with the global and local UAV coordinate frames and an example of
vector R.

expressed as

FZ(HR,H) ile' c -QFOVJ
ViR = (@.10)

0 otherwise.
A UAV employing a generic ¥ function is illustrated in Figure 4.3. Although the function
operates over the two-dimensional domain Q,p, its effect is shown on the terrain surface to
illustrate how the detection rate changes with distance. The terrain outside the FOV and the

terrain occluded from view (i.e., without a clear line of sight to the sensor) are not affected.

4.4 Computer vision detection

To link the described sensing model with CV detection models used in practice, relevant per-
formance metrics of the detection model are embedded into the sensing framework. In this
context, recall u is used, representing the proportion of correctly detected objects relative to
the total number of objects present in an image. Since recall measures the effectiveness of the
detection model in identifying all objects instances, it is treated as the probability of detecting
an object, such as a missing person.

The CV detection model is usually computed for a set of still images or extracted video

frames, while the defined instantaneous detection probability I" expresses sensing performance
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Figure 4.3: Visualization of sensing function y.

over time. To establish a connection between p and I', the parameter fscp, is introduced, rep-
resenting the duration over which the scene is considered unchanged, or the time required for
significant change to occur. The detection probability that corresponds to the recall value needs
to be accumulated at the sensed point over the duration of #..,. through the application of I".
In the static target search scenario, the scene change is assumed to be the primarily caused by
camera movement rather than object motion within the observed scene. Consequently, fscepe 1S
approximated as the average duration an arbitrary point remains within the camera’s FOV dur-
ing a single flyover. To calculate #.¢y., it is assumed that the UAV operates over a flat surface
at a constant height corresponding to the goal search height /,,,;, while maintaining an average
horizontal velocity vy 4. It can be expressed as
2 hgpali - tan %

tscene,i - - (4-11)

Vs,avg,i

where

Y»,i, for a pyramidal FOV,
’)/i =
Ye,i» for a conical FOV.

With the assumption that the instantaneous detection probability does not vary significantly

over short time intervals, and given that recall varies with altitude [58, 60, 61], recall u can be
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defined from (4.3) as
w(|R||) =1 — e TURI Ascene (4.12)

Based on the known recall values, which depend on the object’s distance from the sensor, the

instantaneous detection probability function is determined from (4.12) as

r(|ry)) = - 20— #URD) @13

tscene

In cases where scene changes result from both camera motion and dynamic elements within
the frame, #,.ene can be adjusted to capture the combined effect of both camera and object

motion.

4.5 Combined sensing effect in static target search

To effectively search the area, information about the most probable location of the search target
is required. This information is represented by the undetected target probability density function
m, as presented in Section 4.2. The function m(x,?) defines the probability that a target exists
at position x and remains undetected at time ¢. Its computation differs depending on whether
a static or dynamic probability model is used. In the static model, m evolves only due to the
effects of sensing and is not influenced by other external factors. The formulation in this section
is presented for the static case, while m will be extended to include external dynamics later in
Chapter 10.

In order to determine the search performance achieved during the mission, the sensing effect
is applied to the domain. For the definition of the sensing process, the UAV trajectories Y;() are
assumed to be known. The combined sensing effect of all UAVs until time ¢, for the static target
case, is assembled as a convolution of sensing ¥ along UAV flight paths. This accumulation is

referred to as coverage density, and defined as:
t n
e(x,1) = /0 Y wi(R:))dr.
i=1

Note that R implicitly depends on the UAV position Y(7) and orientation 6;(t), for every domain

point x. The probability density of undetected stationary target presence at any point X and time
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t is described with undetected target probability density field

m(x,1) = mo(x) - e~<®0),
Here, mo(x) represents the probability that a stationary target exists at x, and e—c(x1) represents
the probability that a target at x has not been detected during time ¢.

The undetected target probability density m at any given time combines the assumed ini-
tial probability density of the target with the probability of detection resulting from the search
conducted up to that point. This constitutes an exact probabilistic model for the search of a

stationary target.

4.6 Search task and search evaluation

The ergodic search system is configured to dynamically regulate @(z) over time in order to
directly minimize undetected target probability density m across the search domain. Since
the search time window is unspecified, in other words, the search continues until the target
is found, the objective corresponds to the asymptotic definition of ergodicity. Accordingly, an
ergodic search task can be defined as minimization of the spatial probability of undetected target
occurrence

lim [ m(x,t)dx =0, (4.14)

t—roo Qop
where the sensing effort asymptotically approaches the initial undetected target distribution over
time.
To asses the overall search performance, the function m is integrated over the entire domain

to compute the survey accomplishment metric

N =1 —/Q m(x,1)dx. 4.15)

The ergodic task, equivalent to (4.14), can also be described as maximization of the survey

accomplishment metric with 7 in time, asymptotically achieving

limn(t) = 1.

1—roo
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It should be noted that, although the search cannot continue indefinitely, its duration can not
be predetermined. Due to this uncertainty, the dynamic exploration of the probability distribu-
tion cannot be formulated as a conventional optimization problem and is instead treated as an

ergodic search task.

33



5 ERGODIC CONTROL

In the context of this thesis, the ergodic methods are employed as a key component in the UAV
control feedback loop. The ergodic method determines how the two-dimensional search space
Qop (a horizontal plane) should be explored by computing the UAVs’ heading direction. Since
the UAVs cannot instantaneously change their orientation due to motion dynamics, the desired
heading is converted into yaw angular velocity @;(¢). The obtained w;(¢) serves as the UAVs’

control parameter, determining the appropriate change in UAV orientation.

5.1 Heat Equation Driven Area Coverage - HEDAC

HEDAC is an ergodic search method that employs the heat equation to guide agents toward an
imaginary heat source. As the agents move along the simulated temperature gradient toward
regions of higher heat, their sensing effectively cools heat source. Essentially, the HEDAC
method aims to minimize the source term in the stationary heat equation.

It was initially introduced in [76], and applied to multi-agent spraying task in [32], where it
was originally formulated to drive the exploration by using the non-negative difference between

the goal density ¢ and the achieved coverage density c,

max (@ (x) — c(x,7),0),

as the source term in the heat equation. However, this formulation is not appropriate for the
direct minimization of m.

The approach was later extended in [35] through the integration of a probabilistic search
model, where the source term was directly defined with the undetected target probability den-
sity m (x,¢). This formulation supports direct ergodic exploration of the underlying probability
distribution, leading to near-optimal search behavior. It is employed throughout the thesis and

directly corresponds to the ergodic search task defined in (4.14).
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Following the approach in [35], the potential field u(x,¢) is used to direct the UAVs toward
regions of the highest undetected target probability. In the context of the heat equation, u repre-
sents temperature. However, to avoid possible confusion with physical phenomena unrelated to
the present study and to align with other methods, it will be referred to as potential throughout

this work. It is obtained by computing the solution to the partial differential equation
o-Au(x,t) = B-u(x,t) —m(x,t), (5.1)

under the imposed Neumann zero-flux boundary condition

du
— =0 5.2
5o =0, (5.2)
with n defined as the outward normal vector on the domain boundary dQ,p. The parameters
o > 0 and B > 0 are used to influence the search behavior. The parameter «, interpreted as a
conduction coefficient, controls the smoothness of the probability field and therefore determines
whether the search focuses on local areas or explores more globally. In contrast, 3 mainly serves
to ensure numerical stability and has little effect on the search behavior.

The heading direction that the UAV needs to follow from any point x to pursue the ergodic
task is defined by the vector field

Vu(x,1)

U(X,t) = W (53)

Following the gradient of the potential Vu, the UAVs, or search agents in general, are guided
towards the higher values of the underlying probability density m. The change in heading over
the interval A¢ is determined by the angle between the current direction vector v;(¢) and the
vector u(y;,7). To change the heading direction, the UAV performs a yaw rotation with the

angular velocity
1 (V,-(t) xu(y; t))
E )
;" = —arccos | ———— |, 5.4
Y [Ivi(o)]

where * denotes the dot product, and y; the current position of the UAV.

35



5.2 HEDAC implementation

When the method was first introduced and in several later works [32, 35, 76], the HEDAC partial
differential equation (5.1) was solved using the finite difference method. In [77], the Finite
Element Method (FEM) was introduced instead, bringing three main improvements. The first
benefit is that FEM makes it possible to solve (5.1) on non-rectangular domains. This removes
the need to embed irregular domains within larger rectangular grids, which was previously
necessary and resulted in unnecessary computation. The second advantage is that FEM enables
strict enforcement of domain boundaries. In earlier implementations, obstacles and regions
outside the area of interest were assigned a search importance of zero by setting m = 0. These
regions were mostly avoided by the UAVs due to no search benefit, but there was no hard
constraint preventing the UAV from passing through them to reach other parts of the domain.
With FEM, the inner domain boundaries can be explicitly defined, allowing the implementation
of constraints that ensure UAVs remain within the domain and do not enter obstacle regions.
Finally, the third benefit is FEM’s built-in calculation of the potential and its gradient at any
point in the domain, eliminating the need for additional interpolation or gradient computation
methods.

Due to its advantages, FEM is chosen to solve for potential « in the search control procedures
within this study. FEM is used to numerically approximate the solution of a given PDE on
the computational domain. In order to solve the PDE (5.1) using FEM, it is multiplied by a
smooth test function w € H' (Q,p) and integrated over Qyp. If the Neumann boundary condition
defined in equation (5.2) is applied, the weak formulation of the PDE is obtained and is given

by equation
/Q aVulr) V() + Buls (w(x) —mx,w(x) 42 = 0.

The continuous domain space Qyp is then discretized into N non-overlapping triangular
elements {T1,...,Ty}. Each element is defined in a local, simplified coordinate system and
is mapped to the domain using an affine transformation, preserving the straight element edges.
Over each node of the element 7', the scalar field of the unknown variable u and the test functions

are approximated by

Npodes

up = Z Njuj (5.5)
j=1
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where N; are the Lagrange polynomial interpolation functions and u; are the nodal values. In
this implementation the second order polynomial degree is used, along with triangular elements
discretized with 6 nodes, three vertices and three mid-edge nodes.
To approximate the solution over the whole domain, the system of linear equations is defined
with
Ku=F.

Because the PDE coefficients do not vary in time, the system matrix K is constant for all time
steps. Consequently, its inverse can be computed once during algorithm initialization, and the

solution at each time step can be reduced to a matrix-vector multiplication given by
u=K'F.

However, matrix inversion is computationally inefficient. Efficiency can be improved by
applying matrix factorization, for example, LU decomposition (K = LU). Solving the resulting
triangular systems proceeds with a forward substitution for n:

Ln=F

Y

and a backward substitution for u:

Uu=n,

Given that K is sparse, the computation can be further accelerated by using specialized frame-

works for sparse linear algebra.

5.3 Spectral Multiscale Coverage — SMC

The SMC method, introduced in [72], computes ergodic trajectories by minimizing the dif-
ference between the achieved coverage density c(x,7) and the goal density ¢(x), using the

weighted Sobolev norm

lex.0) —oX)ll7s = Y AK)|ex(t) — dul®

keZ#ns
where s is the Sobolev index, ny is the spatial dimension, k is the wave-number vector, and

Z*"s =[0,1,2,...]"s. The terms ck(t) and @ are the Fourier coefficients of c¢(x,7) and ¢(x),
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respectively. The term A(k), which weights the contribution of small-scale and large-scale

frequency modes, is given by
1

AR = TRy

In the original formulation of the SMC method [72], for Sobolev space norm of negative index,

exponent s is defined as

ng+1
§=—
2 )
which yields s = —3/2 for a two-dimensional domain.

To calculate the potential field u, Fourier basis functions are defined for a rectangular two-

dimensional domain [0,L;] x [0, L] as

fk(x) = icos (leﬂx] ) cos (kzﬂxz) , (5.6)

Ly

where the wave-number vector is defined as k = [k;, k)7, and

L (L
hy =/ 1/ 2cos2 (]ﬂ) cos? (kﬂn) dxidx;.
0o Jo Ly L,

The cosine basis functions satisfy the condition

Ifc

Pk _
on ’

on the domain boundary dQ,p. The potential field u it then calculated by
uspc(X) = Xk:A(k) (ck(t) = ¢) fic(x),
and the corresponding gradient of u is calculated by
Vugsyc(x) = %,/\(k) (ek(7) = o) V i (x).

The UAVs’ w values are then calculated analogously to the HEDAC method, using equa-
tion (5.3) to obtain the normalized gradient of the potential field and equation (5.4) to compute
the yaw angular velocity.

A variation of the SMC method, called mSMC [74], generally demonstrates improved per-

formance over the original and differs only in the choice of Sobolev index, adopting s = —1/2
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for the two-dimensional case. However, in contrast to SMC, whenever mSMC is used in this
thesis, it is applied in the context of solving the ergodic search task defined in (4.14) by mini-
mizing

Im(x,0)l[7 =Y, Alk) [(0)?

keZx*ns
where my () are the Fourier coefficients of m(x,t). Consequently, the gradient of the potential

field is calculated by
Vitgsuc(x) = Y A(k) (mi(1)) V fie(x).
k

Since the Fourier basis functions (5.6) are inherently defined on rectangular domains, a
limitation of both the SMC and mSMC methods is that they can only be applied to rectangular

domains with no internal obstacles.
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6 YAW CONSTRAINTS AND COLLISION
AVOIDANCE PROCEDURE

Before being applied to the UAVs, the yaw angular velocities ow®

, computed using the ergodic
method via equation (5.4), are validated against UAV motion constraints and checked for poten-
tial collisions. Collision avoidance involves verifying and adjusting the ®” values to guarantee
a collision-free trajectory. The procedure builds upon the technique presented in [77], incor-
porating certain modifications. Despite the ability to adjust UAV altitude, collision avoidance

between UAVs and with domain boundaries is strictly enforced within the two-dimensional

search space, meaning flyovers are excluded from consideration and not allowed.

6.1 Yaw control constraints

A limit angular velocity @y, is defined for each UAV, representing its physical constraint. As a
result, the condition |@| < @j;, must be met. Furthermore, the value of @ is linked to horizontal
velocity and path curvature constraints. The horizontal velocity is computed by evaluating
multiple candidate velocities along a given path segment, as detailed in Chapter 7. To ensure
the UAV can follow the computed path at any selected velocity, a constraint on the UAV’s path
curvature is imposed based on the minimum turning radius R,;,. This curvature restriction
is commonly referred to as the Dubins constraint. Consequently, the maximum @ is required
when the UAV navigates a turn with radius R,,;, at its maximum horizontal velocity. To satisfy

all the previously defined w constraints, maximal yaw angular velocity @, is defined with

. Vs,max
Wppgx = MmN | WOy, R
min

and is enforced through the constraint

‘a)‘ < Opmax- (61)
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6.2 Collision avoidance optimization problem formulation

The collision avoidance strategy is based on the principle that, at any given moment, a UAV
must have at least one collision-free circular trajectory with radius R,,;, available. The adopted
procedure from [77] evaluates the circular escape trajectory only at the final position after a fixed
time interval At, since that position is known for a given ® and a constant moving velocity. The
control approach in this thesis considers variable UAV velocity, and the UAV’s future position
cannot be determined at this stage, as the horizontal velocity is unknown and is calculated later
in the control procedure. To address this, the collision avoidance strategy from [77] was adapted
by defining an enlarged collision-free region that guarantees that all potential future positions —
achieved using horizontal velocities within the operational range [0, vs max] — have at least one
circular escape trajectory free.

Based on the curvature constraint defined in (6.1), two extreme turning maneuvers can be
identified: a maximum-rate right turn with ® = @,,,, and a maximum-rate left turn with @ =
— Wpax- These maneuvers correspond to circular paths of radius R,,;,, centered at points f and
f~, respectively (depicted as blue circles in Figure 6.1). The centers of the escape maneuver

paths can be computed as

o) = | | Ry | O ]
yi(t) —m-cos 6;(t)
where m = %1 indicates the left or the right escape route, with m = 1 corresponding to f* and
m = —1 to . These circular escape paths, or their arc segments, act as emergency turning
options and form the foundation of the collision avoidance strategy in the two-dimensional
domain Q»p.

A clearance distance §; is defined to ensure a safe gap between the i-th UAV search agent
and any static obstacle or a moving UAV. Accordingly, clearance circles C* and C~, each with
radius R; + &; are introduced. They are centered at f* and f~, respectively. In Figure 6.1,
the clearance circles corresponding to the current UAV positions, depicted as green arrows,
are shown as yellow shaded circles, whereas those representing possible future positions at
the next control time step — depending on the horizontal velocity values used — are depicted
as gray circles. Since the horizontal velocity of a given UAV is not predetermined, clearance

must be guaranteed for all supported velocities within the range [0, v, nqy]. To achieve this,
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Figure 6.1: UAVs executing the collision avoidance maneuver.

bounding circles B™ and B~ (depicted as purple circles in Figure 6.1), centered at b+ and b™,
are constructed. These bounding regions encompass all possible clearance circles that may
occur due to variations in speed, and thus ensure that an escape trajectory is always available
regardless of the selected velocity. In the special case where @ = Wy, O ® = — Wy 1S applied
indefinitely, the UAV maintains a steady circular path around f* and f~, respectively. Under
such conditions, the corresponding clearance and bounding circles overlap, and their centers are
identical (as can be seen from the bounding circle B;™ in Figure 6.1). To ensure feasibility of
the maneuver, at least one of the bounding circles, B* or B, must be free of collisions.

It is important to note that the collision avoidance method presented below makes use of the
full range of the allowed values for the yaw angular velocity ® € [—®yax, Omax]- Within this
range, there are typically multiple sub-intervals that provide collision-free movement during the
control step At. However, the goal is not only to ensure feasibility over a single control step, but
also to maintain continuous, safe motion that uses a minimal amount of space and preserves the
ability to consider the full range of alternative directions in future steps.

To ensure collision-free motion it is necessary to verify that a collision-free escape circle will
be available at the end of the current control interval At, regardless of the horizontal velocity
used. Since the horizontal velocity is unknown at this stage, bounding circles representing sets
of escape circles are considered for both @, and — )4y, covering all UAV positions reachable
at the end of the current control interval using @; and velocities within the range [0, vy max,i]-

Therefore, it is necessary to verify whether the yaw angular velocities @; result in at least one
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collision-free bounding circle for each agent. This is completed by evaluating the collision
area generated when applying yaw angular velocities ®; from the UAVs’ current positions and
orientations over the control interval A¢. The vector containing a set of yaw angular velocities
for all UAVs is denoted by @ = (wy, ..., ®,).

To ensure collision-free motion for all UAVs, it is necessary to verify whether the set @
contains @ values that result in at least one collision-free bounding circle for each UAV. The

bounding circle centers, if @; # 0, are computed with

—m- Rmin,i) :

sin (w’TAt> cos 6;(t) — (1 —Cos (“"TA[>> sin 6;(¢) - sign( ;)
sin (“”Tm) sin 6;(¢) + (1 —cos (“"TN» cos 6;(t) - sign( ;)

Vs max,i

b (@) = £°(1) + (

i

where m = £1 indicates the left or the right bounding circle, with m = 1 corresponding to b™
and f7, and m = —1 to b~ and f~. The term sign(;) indicates the turning direction associated
with ;, taking the value +1 for counter-clockwise (left) turns and —1 for clockwise (right)

turns. If @; = 0, the bounding circle centers are computed with

Vs max,i * At | cos 9,'(1‘)

2 sin 6;(t)

The radius of the bounding circle is equal to
Rmin,i + 5i + Hblzn(t) - fm(t)H :

For each agent, there are two possible escape route sets (to the left or the right, corre-
sponding to B~ or BT bounding circles, respectively) leading to 2" possible combinations of
maneuver sets. All possible combinations of escape route sets can be systematically represented
using
B = o

B,if qi(j) =1,
where j €0,...,2" — 1, and the binary vector q(j) of length n represents a unique combination

of escape route sets for all agents.

Any combination is potentially collision-free and IB;; indicates which of the two bounding
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circles, BT or B™, associated with the escape route set, is selected for each agent i. Each escape

route configuration can be checked for safety by computing its associated collision area as

n—1 n
- Z Z |1Bji(@) B (@ |+2”le )\ Qopl| (6.2)
i=1 k=i

where the collision area between UAVs is computed by summing intersections of their bounding
circles in the first term, and the domain collision area is computed by summing intersections
between bounding circles and the domain boundary in the second term. To determine whether

at least one combination is feasible, a minimum intersection area is defined as
Apin(@) = min (Ag(®),A(®D),...,Am_1(®)).
An optimization problem can now be formulated as follows:

minimize J(®) = Z (sz - wi)z
@ i

subject to Ay (@) =0, (6.3)

loy| < oM.

The @ values computed using the ergodic method, via equation (5.4), guide effective inspec-
tion of the area corresponding to m. Accordingly, for each UAV, a feasible yaw angular velocity
is selected to remain as close as possible to this value, denoted by wiE . This is accomplished by
minimizing the sum of squared differences between the trial angular velocities and their ergodic
counterparts, which defines the objective function J. Although the solution obtained using the
ergodic method is optimal in the absence of constraints, enforcing collision avoidance by set-
ting the total collision area A, to zero imposes further requirements. This may necessitate
adjustments to the computed sz values to prevent collisions with obstacles and other UAVs. At
least one feasible solution to (6.3) is always guaranteed because a set containing limit turning
velocities +®,4, Which generate bounding circles free of collisions (A, = 0), was confirmed
in the previous control step. As a result, the solution to (6.3) ensures collision-free UAV motion

in the Q>p domain.
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6.3 Decomposing and solving the optimization problem

With each additional agent, the number of possible combinations in (6.2) increases exponen-
tially. This presents a significant drawback, as the equation is repeatedly evaluated as a con-
straint within the optimization process. This is handled by decomposing the optimization prob-
lem (6.3) into separate sub-problems based on potential collisions and UAV interactions, which
can be anticipated from the distances between the UAVs. Therefore, individual UAVs or groups
that do not interact with others are optimized independently, resulting in significant computa-
tional efficiency gains.

The optimization problem (6.3) is decomposed by forming groups within the UAV swarm.
Interaction groups are formed by evaluating all pairs of UAVs, where each UAV in a pair is

indexed by i; and i», and checking whether they satisfy a distance-based condition
H (xil 7yi1> - (xi27Yi2) H S 2Rmin,i1 + 5i1 + Vs,max,i| * At + 2Rmin.,i2 + 5i2 + Vs, max,ip * At (64)

When the condition in (6.4) is met, agents i; and i, are placed in the same group, isolated
from other groups. This allows the optimization problem (6.3) to be solved independently
for each group, significantly reducing the number of optimization variables and leading to a
considerable speedup of the collision-avoidance procedure.

Each group is optimized independently and in sequence using a modified Cyclic Coordinate
Search (CCS) algorithm, as used in [77]. The modifications include direct integration of con-
straints within the optimization procedure and the replacement of the traditional Line Search in
CCS with the Golden Section Search for one-dimensional optimization. The Golden Section
Search was selected because its bracketing strategy guarantees that feasible solutions, particu-
larly those at the boundaries of the variable @, are preserved during optimization.

Golden Section Search traditionally addresses bounded, unconstrained one-dimensional
problems by comparing objective values at different trial points. When applied to the one-
dimensional coordinate search in CCS for solving the proposed problem (6.3), the collision

area constraint must be incorporated. As a result, the operator used to compare trial solutions
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has been modified to consider both objective metrics and the constraint, as expressed by

if At()tal(@kl) — At(}lal(a)kz) :
J(Oy,) < J(Gx,)
otherwise:

At()tal (E)kl ) < At()ml (@kz )

where the expression f(@y, ) < f(@x,) is used to determine if the trial solution @, outperforms
@, . It is performed for a minimum of 20 iterations or until a feasible solution satisfying A;rq; =

0 is found.
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7 UNEVEN TERRAIN EXPLORATION

When conducting searches over uneven terrain, the UAV’s altitude must be controlled to main-
tain a safe distance from the ground while staying low enough to ensure effective target detec-
tion. This chapter presents how these objectives are achieved. First, it outlines the problem,
highlighting the key considerations and the proposed approach. Next, it describes how the ter-
rain is perceived. Finally, it presents the formulation of the MPC, which enables both altitude

and velocity control.

7.1 Problem formulation — UAV control over uneven terrain

The three-dimensional trajectory of the UAV is determined by the combined influence of its hor-
izontal and vertical motion. The yaw angular velocity @(t), presented in Chapter 5, combined
with a forward velocity defines a two-dimensional trajectory suitable for exploring the search
domain Q,p. While this is sufficient for flight over flat terrain at a constant altitude, exploring
uneven terrain requires dynamic altitude adjustment. To ensure a smooth and efficient trajectory
over obstacles and terrain alterations/variations, both the horizontal and vertical velocities must
be varied. Altitude control allows safe horizontal movement by keeping the UAVs above the
specified minimum height 4,,;, above the terrain, while also aiming to maintain the goal height
hgoal that ensures good area coverage and detection performance. Velocity control ensures the
UAVs can follow the planned three-dimensional path by taking into account both horizontal
and vertical movement, as well as the UAVs’ motion constraints. This is achieved by the MPC
procedure described in this chapter, which is responsible for computing the regimes of p(¢) and
¢(t), and for performing altitude and velocity control necessary for exploring uneven terrain.
The distinction between UAV height and altitude must be clarified to ensure precise under-
standing of flight parameters. Throughout this thesis, the UAV’s height refers to its vertical
distance above the terrain directly beneath it, while altitude denotes the vertical distance above
mean sea level. Additionally, terrain elevation is defined as the height of the ground surface

relative to mean sea level.
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7.2 Digital elevation model and elevation function

To account for terrain, the algorithm requires a method of perceiving the surface topography.
This is achieved through an elevation function, z7, which is generated by interpolating data from
a Digital Elevation Model (DEM), a digital representation of the Earth’s surface topography. It
is typically arranged in a grid format and consists of elevation data that describes terrain height
at specific points. It is usually saved as a grayscale image, where each pixel corresponds to a
real-world location, and the pixel value represents the elevation at that location. An example of

a geographical region and its corresponding DEM is shown in Figure 7.1.

Figure 7.1: Geographical region (left) and the corresponding Digital Ele-
vation Model (right).

There are two types of DEMs: the Digital Terrain Model (DTM), which contains elevations
of the bare-earth surface excluding vegetation and man-made objects, and the Digital Surface
Models (DSM), which includes the elevations of all surface features such as trees, buildings and
other structures.

The DEM files used in this research, specifically EEA-10 DSMs with the resolution of
0.3 arc seconds, are provided by Copernicus [103]. They cover the European Economic Area
(EEA) and include buildings, infrastructure and vegetation. Copernicus provides two more
DEM instances with global coverage: GLO-30 with the resolution of 1 arc second and GLO-90

with 3 arc second resolution. The DEMs are created based on the satellite data collected during
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the TanDEM-X mission [104] funded through a Public Private Partnership involving Airbus

Defence and Space and the German Aerospace Centre (DLR).

7.3 Trial trajectories and control functions

The horizontal control strategy from Chapter 5 is used to generate a two-dimensional path
projected to the horizontal plane, as illustrated in Figure 7.2, or later in Figure 7.3, panel A). The
corresponding terrain elevation profile is then extracted for this path using z7. To meet mission
objectives while satisfying dynamic and environmental constraints, the two-dimensional path
is supplemented with p and ¢ parameters, computed via MPC over the prediction window
[t,f + Tmax|, to generate an optimal three-dimensional flight path. Here, T represents relative

time from the current time ¢, and T;,,4, 1S the duration of the MPC prediction time horizon.

Terrain isolines
= Predicted path
O UAV current position

m]

Domain width [

0 20 40 60 80 100
Domain length [m]

Figure 7.2: Visual representation of the predicted two-dimensional path
generated along the potential field gradient.

Initially, a predicted horizontal path is introduced under the assumption of maximum veloc-
ity (p = 1) and no vertical movement (¢ = 0). Its coordinates and derived variables are denoted

with = . The following equations define this predicted path:

dx; ~
E = Vs,max,i - COS 6,
@ =y ..5in ©;
dz s,max,i iy
@
dt a
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Assuming a constant potential field u over the time interval [0, T4, obtained at time 7, the

UAV5s’ trial yaw angular velocity is calculated using

@i(7) = iarccos (V,-(T) *u(i,-(r),yl-(f)7;)) ,

where * denotes the dot product, and V; represents the heading direction vector. The computed
@;(7) is validated to satisfy constraint (6.1) and ensure collision avoidance over the time interval
[0, Ar] with procedure described in Chapter 6.

Based on the predicted horizontal path, the trial trajectory is introduced to describe the
UAV’s arbitrary three-dimensional flight regime within the predicted time window. The pre-
dicted path length function §(7) is defined based on

ds; .
Fr Vs,max,i
resulting in §; = Vg uay,; - T, Which allows the trial trajectory to be parametrized as ¥;(s;) and
yi(s;). Based on p and @, the trial trajectory length function § is defined by
ds; ~ ~
=i (pi(e), 3(1)). .0
By combining the length-based parametrization of X and y with equation (7.1), the horizontal

components of the trial trajectory over the interval [0, Tpax] are expressed as

Typically, the UAV trial trajectory does not cover the entire predicted path length over
[0, Tyax] due to potential reductions in velocity intensity (p(7) < 1) or flight in climbing or
descending modes (¢(7) # 0). Using the parametrization @;(s), the trial yaw angular velocity
is defined as
ai() = PP gy (2)),

O
Vs,max,i

which guarantees that the trial trajectory follows the predicted path and maintains its curvature,

while allowing variations in trajectory length due to the influence of p and ¢. Employing the
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trial regimes P and @, the vertical component of the trial trajectory is expressed by
dz; <~
d_; = v2,i(Pi; Pi)-
The trail velocity intensity p(7) and trail incline angle @(7) are optimized within the MPC

framework, while the trial yaw angular velocity @(7) is adjusted with trial control functions

p(7) and @(7) to ensure that the resulting trajectory preserves the original curvature.

7.4 Optimization problem formulation

An optimal trial flight regime for the time interval [¢,7 + T4, is required to compute the neces-
sary horizontal and vertical velocity controls, managed by p and ¢. To set up the optimization
problem, the trial control functions p and @ are parameterized using quadratic polynomial in-
terpolation. The interpolation is based on three time points: 7) =0, T| = Tyax/2, and T = Tgx-
Since 7y corresponds to time ¢, the values of the trial control functions at 7, are determined by

the current UAV state

which is known. The optimization vector W € R* is then defined using values of p and  at 7|

and 7 as

Wi = [pi(n1), pi(m), (1), ¢i(n2)]" . (7.2)

The trial control functions, although defined over the relative time variable 7, are also expressed

as functions of the optimization vector W;. For clarity and simplicity, a notation

()L, (7)

is used, meaning that any trial function (-) is simultaneously a function of the optimization
vector W; and relative time 7.

Two primary objectives are established for the flight regime: to maximize the UAV’s veloc-
ity and to maintain its height as close as possible the goal search height hg,,;. Increasing the

UAV’s velocity improves area coverage efficiency and consequently reduces the total inspection
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time. This is achieved by incorporating the first minimization objective

1

Ovi(Wi> =1-

I

Tmax
/0 P LW,- (t)dr.

Tmax

The second objective focuses on maintaining the desired goal search height, which helps achieve
an effective balance between area coverage and sensing performance. It is formulated by intro-

ducing the terrain elevation function

The second objective is now defined as

1 TleX
L ——

hgoal,i * Tmax

Zj Wi(T) _ZT,i LW (T) - hgoal,i‘ dT:

i

and quantifies how closely the trial height function Z — Z7 aligns with the target height Ay,
Since both objectives are normalized they can be summed directly without the need for weight
factors, as they are considered equally important. The optimization goal is now formulated as

the minimization of the objective function
0i(W;) = 0,,i(W;) + 05, :(W;).

Constraints are imposed to ensure adherence to physical and operational limits during flight.
These trial trajectory constraints are formulated as inequality conditions ¢(W) < 0. To ensure

that the UAV maintains a safe flight height, a minimum height constraint

Zilw, (T) = Zrilw,(T) = hoin,i- (7.3)

is imposed, preventing the height from falling below the specified limit 4,,;,. This condition

must hold throughout the full 7 interval, which is verified by

1 Tmax
eni(Wi) = ———— /O max { yini — 7y, (%) + 21y, (1), 0} de.

hmin,i * Timax !
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To comply with the UAVs’ velocity specifications, the following constraints must be met, as

given by
Vs min,i < ﬁs,i LW;(T) < Vs max,i (7.4)
Vomin,i < 17z,i LW,-(T) < Ve max,is (7.5)
where v ; \_WA(’L') is the horizontal trial velocity function and v Lw(r) is the vertical trial ve-

locity function, derived from (4.1) and (4.2). Horizontal velocity limits are checked using

1 Tmax .

Cvs,min,i<wi) = W /O max {Vs,min,i — Vi LW,-(T)’ O} d’l’,
1 Tm[l.x -

Cvs,max7i(wi> = m/() max {Vs,i LW,-(T) — Vs,max,is 0} dr,

and similarly, vertical velocity limits are evaluated using

1 Toax )
Cvz,min7i<wi) = m /O max {Vz,min,i —Vzi LW,-(T)’ O} dT,
1 Tmux -
Cvz,max,i(wi) = —/ max {Vz,i LW(T) — Vzmax,is 0} dr.
Vzmax,i * Tmax JO !

Considering the UAVs’ dynamic limitations, acceleration within trial trajectories is also
constrained to account for thrust capacity, pitch control, and inertia. Horizontal and vertical

accelerations are restricted by basic limits
A min,i < dy,; \_Wi(f) < s max,i (7.6)

Az minyi < Az, \_Wi(f) < Azmax,i; (7.7)

where the trial acceleration functions, denoted by dj LW (t)and d,; Lw (1), are derived through

i

numerical differentiation of the respective trial velocity functions ¥ ; |y, (7) and . ;| (7). The

i i

constraints on horizontal acceleration and deceleration are enforced through

1 Timax B
Cas,min,i<wi> = —/ max {as,min,i — Ay, LW»(T)’ 0} dr,
Qs min,i * Tmax J0 !
1 Tmax -
Casmax,i(wi) = —/ max {asi Lw(f) — s max,i 0} dT?
As.max,i * Tmax JO !
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and in a similar fashion, the vertical acceleration constraints are enforced with

1 Tmax o
Caz,minj(wi) = —/0 max {azmin,i —dazi LW,(T)’ 0} dr,

Az min,i * Tmax

1 TmaX -
Caz,max,i(wi) = —/0 max {az,i Lwi(“f-) — Az max,i> O} dr.

Az max,i * Tmax

For simplicity, the vector notation is introduced to combine all define constraints:

ci(Wi) = [Ch,i(wi)7 Cvs,min,i<wi)7cvs,max,i(wi)7
Cvz,min,i (Wl) y  Cvzmax,i (Wz) 7cas,min,i(wi) )
Cas,max,i(wi)a Caz.,min,i(wi)7Caz,mwc,i(wi) ]T .

Finally, the MPC optimization problem for each agent i can then be formulated as follows:

minimize 0;(W;) = 0,;(W;) + Oh,i(wi)

i

subjectto ¢;(W;) <0,

where < is applied element-wise to all constraints in the vector ¢, while 0 is the null vector.

7.5 MPC optimization procedure

The optimization routine begins with an initial value, Wy, of the optimization vector W, which
is defined by equation (7.2). The initial value is chosen from several possible initialization
options:

Wou = [1,1,0,0]",

Wop = [1,1,1,1]7,

Wi =[0.5,0.5,1,1]".
Candidates from a to ¢ are assessed in order, and the first one yielding a feasible outcome is
designated as W(. The vector Wy, is designed to promote maximum forward velocity along
the horizontal search direction with no change in altitude, while W, and Wy, are configured
to increase altitude with 2 distinct velocity intensities. If no feasible solution is found within
the initialization options, the optimization step is bypassed, and the UAV proceeds with the

collision avoidance procedure, described in Section 7.6.
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Figure 7.3 illustrates the optimization procedure along with a set of candidate initial vec-
tors. Starting from the UAV’s current position, a predicted path is generated by following the
gradient of the potential field # and simulating the maximum attainable horizontal motion over
nps prediction time steps, as illustrated in panel A) of Figure 7.3. Along the predicted path, the
terrain elevation z7 is sampled and used to construct two reference curves: a minimum altitude
(21 + hmin) and a goal altitude (z7 + hg0q) curve. The optimization stage, visualized in panel B)
of Figure 7.3, begins with the first viable candidate among the initial vectors Wo,, Wo,, Wo,.
The objective is to determine an optimal control regime over 7, steps that balances maxi-
mizing velocity with maintaining the goal height, while adhering to velocity, acceleration, and
minimum height constraints. Once the optimal regime is identified, the UAV executes it for a

duration of At, resulting in an updated position from which the entire process is repeated.
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Figure 7.3: Graphical representation of the predicted path (A) alongside
the corresponding MPC optimization process (B).

Optimization is carried out using a modified version of the GPS-MADS algorithm [105],
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referred to as Multi-Scale Grid Search (MSGS), implemented in the Indago Python module
[106]. The optimization process is configured to run for up to 30 iterations, with stopping
criteria defined by a maximum of 10 stalled iterations and a target fitness threshold of 1073. The
resulting optimal vector, Wy, provides the candidate control parameters governing velocity
intensity, incline, and yaw angular velocity denoted as

Popti = pi \_W (Al),

opt,i

Gopti = b \_W (At>7

opt,i
Wopri = o, Lwomﬂi (Al‘),

respectively.

7.6 Terrain collision avoidance

The flight control parameters Popt.i» Qopt,i» and Wop,; computed through MPC optimization do
not inherently guarantee a circular, collision-free trajectory that can be immediately executed
as a collision avoidance escape maneuver. While collisions with other UAVs and the domain
boundary are addressed within the two-dimensional trajectory in €,p, as described in Chap-
ter 5, terrain collisions must also be accounted for in this context. A terrain collision is defined
as a violation of the minimum height constraint 4,,;,, which must be satisfied throughout the
entire collision avoidance escape maneuver. Given the high computational cost, embedding this
constraint in the MPC optimization makes the algorithm unsuitable for real-time UAV control.
Therefore, the flight control parameters from MPC are reviewed and corrected as needed before
execution.

The escape maneuver is a controlled UAV response designed to fulfill the following flight

criteria:

* The escape maneuver may be initiated at any time from arbitrary UAV positions, states,
and control parameters. In this context, the UAV is considered either at time ¢ + Ar with
optimized control inputs or, if necessary, at the present time ¢ with the control parameters

currently in use.
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* The horizontal projection of the escape path is a circular arc (or a complete circle) with a
radius £R,;, ;, achieved by adjusting @,y ; to match one of the escape circles defined in

Chapter 6.
* The UAV engages in the most aggressive deceleration it can performi.e. Pem,i — Pmin,i-
* The UAV climbs at the steepest rate permitted by its dynamic limits, i.€. Qepni — @ma,i-

» The feasibility of the escape route is evaluated based on previously defined constraints:
minimum height (7.3), horizontal velocity (7.4), vertical velocity (7.5), horizontal accel-

eration (7.6), and vertical acceleration (7.7).

* The escape maneuver is evaluated until either zero horizontal velocity is reached or the

entire escape circle is completed.
Provided that a feasible escape maneuver can be performed using the optimal control pa-
rameters at time ¢ 4 At, the optimal control parameters

pi(t +At) = Popt,is

@i(t +At) = Qo i,

are utilized by the UAV. When no valid escape maneuver exists at time # + A¢, implying that the
current control parameters are invalid, the UAV executes the escape maneuver with alternate
control inputs

pi(t+At) = pemJ(t_"At)a
Qi(t +At) = Qem,i(t + At),
(L)i(t+At) = wem,i(t+At)7

which are determined for ¢ + Az based on the escape maneuver verified in the previous compu-

tation step, simulating the regime starting from time 7.
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8 TERRAIN SEARCH SIMULATIONS

This section begins with an overview of three simulated search scenarios used for validating
the proposed control methodology, followed by the introduction of the CV detection model and
its integration into the sensing framework. Each scenario is then described in detail, including
visualizations of the terrain, the UAV trajectories achieved, an evaluation of search performance,
and comparisons with other methods. Finally, a robustness analysis is conducted by introducing

uncertainty into the simulations to approximate realistic real-world operating conditions.

8.1 Simulated search scenarios overview

Each simulated search mission is performed with a specific UAV configuration, composed of
units selected from three available types: UAV A, UAV B, and UAV C. The characteristics of

each UAV type are presented in Table 8.1.

Table 8.1: Motion, vision/sensing and control UAV parameters used in
simulations [107].

UAV parameters UAV A UAV B UAV C  Units
Type Multi-rotor Multi-rotor Fixed-Wing -
Min turning radius R, 25 25 100 m
Min clearance distance & 7 7 60 m
Min search height /i, 30 30 1000 m
Goal search height h404 50 100 300 m
Max horizontal velocity v max 10 10 15 m/s
Min horizontal velocity vs min 0 0 5 m/s
Max ascending velocity v, jmax 5 5 1.2 m/s
Max descending velocity v; jin -3 -3 -1.2 m/s
Max horizontal acceleration dg jqx 2 2 2 m/s?
Min horizontal acceleration ag i, -3.6 -3.6 2 m/s?
Max vertical acceleration dz jqax 2.8 2.8 1 m/s?
Min vertical acceleration a; i, -2 -2 -1 m/s?
Min incline @pn -90 -90 135 °
Max incline @yqx 90 90 135 °
Camera FOV y; 62.8 33.94 23 °
Camera FOV p, 37.9 19.48 13.06 °
Zoom factor Z 1x 2% 3x -
Sensing function I" s I'p I'e -
Prediction time steps 72 25 25 30 time
steps
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UAVs A and B are modeled after the DJI Matrice 210 v2 multi-rotor aircraft. Their velocity
characteristics are derived from technical specifications, with the horizontal velocity set close
to the optimal battery endurance speed for a large UAV, according to [66]. The acceleration
values were obtained through real-world manual flight tests. The minimum search height was
set to 30 m to ensure a safe clearance from potential natural or man-made objects at the terrain.
Although the two UAVs are essentially identical, they operate at different goal search heights
(hgoa1), Which results in different sensing functions (defined in the following section) and FOV.
Both utilize the same camera sensor, with UAV A operating without zoom (1x) and UAV B
employing a 2x zoom. They are configured to cover the same ground area from their respective
altitudes.

UAV C represents a fixed-wing aircraft and is therefore more constrained. Due to its lower
maneuverability, it performs the search at a goal height of 300 m, with a minimum search height
set to 100 m. Its specifications are approximated based on typical operational characteristics
and constraints. Its horizontal velocity is higher, while its other velocities and accelerations are
lower than those of the multi-rotor aircraft. Its sensor covers an area equivalent to that of the
multi-rotor aircraft and is designed to maintain comparable sensing performance by adjusting
the sensing function for the higher search height.

To ensure feasible flight over complex terrain, the MPC horizon for each UAV is tailored to
its specifications, flight parameters, and the terrain complexity. The duration of the prediction
horizon is defined by the number of predicted time steps n,ys, resulting in a total prediction time
window of Ty = 1y - At

Three test cases were designed with varying area sizes and terrain complexity. The UAV

fleet configurations and associated parameters for each case are summarized in Table 8.2.

Table 8.2: Overview of simulated test cases and their parameters [107]

Test case parameters Plastic world Mt. Vesuvius Star dunes  Units
Domain size 0.72 7.44 7.5  km?
Number of mesh nodes 8380 21825 21946
Number of mesh elements 16300 43098 43340 -
Elevation difference 421 608 2214 m
Alpha o 1000 2300 2900

Beta 0.1 1 1 -
Time step At 1 2 2 s
Search duration 30 60 60  min
Number of UAVs A 3 3 0o -
Number of UAVs B 0 2 0
Number of UAVs C 0 0 2
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Multiple methods were employed to compute trajectories for each case, and their perfor-
mance was evaluated using the survey accomplishment metric 7. The proposed HEDAC +
MPC method was compared against: HEDAC without the MPC framework (with UAVs flying
at fixed altitude), the lawnmower method with MPC, SMC with MPC, and mSMC with MPC.
All methods shared the same settings and initial UAV configurations at the start, except for the
lawnmower method, where UAV's were approximately positioned to ensure near-optimal search
performance. Additionally, for the lawnmower method, the MPC acceleration constraints were
relaxed to enable feasible trajectories, as it does not support the collision avoidance method pre-
sented in the earlier chapter. The mSMC and SMC methods were not applied in certain cases
because they do not support inter-domain obstacles or no-fly zones. Finally, the search altitude
for the HEDAC method without MPC was set as the maximum terrain elevation plus the goal
search height.

The simulations were computed on a system equipped with a CPU having a base clock speed
of 3.7 GHz and a maximum boost frequency of 5.4 GHz. All computations were performed
using a single thread. Visualization of flight data and analytical plots were created utilizing

Matplotlib [108] and PyVista [109].

8.2 Sensing characteristics

Parameters such as the zoom factor Z and the respective FOV for each zoom level were defined
for every camera sensor combined with a UAV, as shown in Table 8.1. Corresponding detec-
tion rate functions were constructed for all utilized camera configurations based on detection
metrics provided by the YOLOv4 model in [61]. Although developed for animal detection, the
model reports performance metrics across various altitudes, making it possible to link detection
accuracy to image capture height.

Recall values from [61] were used and reduced by approximately 30% to account for dif-
ferences in the apparent size of objects, specifically between humans and large mammals in
images taken at the same height, as well as other operational factors that may reduce detection
performance, such as image degradation caused by motion blur, focus errors, or haze [55].

The acquired recall-height data was extended by introducing an additional height point
which assumed zero recall, implying that detection is impossible. According to the research

in [110], the detection threshold was established as the minimum number of pixels a person
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must occupy in an image, which was set to 25 pixels. This defines the smallest size at which
humans can reliably recognize objects in images, and because CV models are trained using
human annotations, they typically fail to learn to detect objects below this size. The height at
which recall reaches zero was estimated by assuming that an average person occupies an area
of about 0.5 by 0.25 meters when observed from above. Using this information, the height
corresponding to an individual covering roughly 25 pixels in a 4K image with an aspect ratio of
16:9 was calculated. Based on the FOV and parameters for UAV A, utilizing no magnification
(1x zoom), detection is determined to be impossible when the image is taken from heights
greater than 222 meters. Because altitude control is implemented, the zero-recall point lies
outside the intended sensing height range and is not particularly relevant. Despite this, it is
specified to enable a fair comparison with a method that does not employ altitude control but
uses the same sensing principle. Recall values from [61] and estimated recall values for humans,

both in relation to height, along with the estimated zero-recall point are shown in Figure 8.1,

panel (A).
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Figure 8.1: Dependence of recall on image capture height (A) and detec-
tion rate functions for UAVs used in the simulations (B).

Equation (4.13) was applied to determine the detection rate function, in which the recall
function i (||R||) was produced by quadratically interpolating the measured recall-height points.
It was assumed that ||R|| for the area within the captured image closely corresponds to the
UAV’s height. The value of 7., was computed using equation (4.11), under the assumption
that the average horizontal velocity vy 4, 1s 70% of the maximum horizontal velocity vy jqx.

To ensure equivalent detection performance when transitioning from UAV A to UAVs B and
C, the Ground Sampling Distance (GSD) of the captured imagery must remain constant. GSD

defines the real-world distance represented by a single pixel and it can be used to determine
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the level of detail in the image. When using the same camera sensor at higher flight heights,
optical zoom is employed to maintain the original GSD, ensuring the same coverage area and
detection capability. Optical zoom, in contrast to digital zoom, magnifies the scene through
lens optics without degrading resolution, effectively replicating the effect of lowering altitude
by narrowing the FOV and enhancing image detail. For a zoom factor Z, the recall function is

modified to i (||R]||/Z), and the FOV angles are recalculated with

5 aret tan %’
= 2 -arctan
Yz 7 )

where ¥ denotes the FOV angle with zoom factor 1, while Y7 corresponds to the FOV angle

at zoom Z. The detection rate of all UAV types, together with the interpolated recall-height
functions for human targets across different optical zoom settings, are shown in Figure 8.1.

In each test case, the control interval At is equal to the sensing interval Az;. The undetected
target probability is updated every Ar seconds by applying the sensing effect using y. The func-
tion y, defined in equation (4.10), is essentially the I" function constrained to the visible area
of the sensor. With each application of sensing, the captured snapshot of the area is considered

observed for a duration of Af; seconds.

8.3 Plastic world

The first test case, named "Plastic world", consists of an artificially generated domain that con-
tains key features of natural terrain modeled with simplified shapes. It is deigned to provide a
a controlled environment with enough complexity to evaluate the algorithm’s robustness. The
initial probability of undetected targets is primarily concentrated over the depression and sum-
mit features. Access between these features is restricted by a no-fly zone positioned between
them. In Figure 8.2, the terrain incline of the domain surface is shown together with the initial
target probability distribution.

The domain is explored using 3 identical multi-rotor UAVs of type A, operating at a goal
height of 50 m and a minimum height of 30 m. A detailed analysis of a trajectory flown by one of
the UAVs from 600 s to 1600 s is presented in Figure 8.3. Panel (A) shows a three-dimensional
representation of the terrain and all UAV trajectories, with the analyzed trajectory highlighted

in red. Panels (B), (C), and (D) present the control parameters, velocities, and accelerations
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Figure 8.2: Illustration of terrain incline (A) and initial target probability
density (B) for the Plastic world case.

for the same time window, respectively. Panel (E) depicts the terrain elevation and the UAV
trajectory, with the corresponding goal and minimum flight height plotted in reference to the
terrain elevation profile.

As shown in Figure 8.3, the control method frequently varies the control parameters and
the velocities are adjusted accordingly. The velocities and accelerations are constantly within
the operating limits, which indicates that the constraints are respected. As the terrain elevation
profile becomes more complex, the complexity of the goal trajectory increases accordingly,
since it is defined as an offset from the terrain. However, the UAV’s executed trajectory starts
to slightly diverge from the goal trajectory as complexity increases to create a smoother path,
facilitating flight speed and efficiency (see Figure 8.3, panel (E), around 1200 s, 1300 s, and
1500 s).

The search mission simulation was conducted using three methods: HEDAC and lawn-
mower methods with MPC, and HEDAC without MPC (with UAVs flying at a constant altitude).
The HEDAC + MPC framework achieved the best performance, accomplishing 98% survey
accomplishment by the end of the 30-minute search mission. The lawnmower + MPC method
ranked second, while the plain HEDAC method performed significantly worse. It stalled around
100 seconds into the search because the inspection height was too high for the equipped sensor,
highlighting the importance of altitude control in search missions over hilly terrain. Survey ac-
complishment metrics for all tested methods are presented in panel (A) of Figure 8.4, alongside
computation times for each procedure of the HEDAC + MPC framework over the time steps in
panel (B). The total computation time per time step throughout the search remained more than

50% below the control interval Ar = 1 s, indicating the feasibility of real-time UAV control.
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A) Plastic world
[— HEDAC + MPC ---- HEDAC -— Lawnmower + MPC
. 100
@
>_§ 0.75
[y
2= 0.50
AES
o 025
S
©  0.00+
B)
[- Coverage convolution I Potential field mmm Collision avoidance procedure mmm MPC setup s MPC optimization]
0.4
c
S_03
|
‘g_g 0.2
£% 01
o
0.0
800 1000 1400 1600 1800

Search time [s]
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64



8.4 Mount Vesuvius

This scenario uses real terrain data from Mount Vesuvius located near Naples, Italy. It covers
the area of the summit and the volcanic crater. Due to its popularity as a tourist site, it offers a
realistic test environment for evaluating UAV-based missing person search methods. Figure 8.5

shows the terrain representation with incline and the initial probability distribution.

Terrain incline (deg) Undetected target probability density

E
0.00 450 90.0 Low Medium High

Figure 8.5: Mount Vesuvius terrain slope (A) and undetected target proba-
bility atr = 0 s (B).

The search mission is conducted using 5 multi-rotor UAVs, three of type A and two type B.
While their flight characteristics are identical, they utilize different sensor configurations and
operate at different goal heights. Nevertheless, their sensors cover the same ground area at the
designated heights and maintain identical detection capabilities, as their FOV and detection rate
functions are adjusted accordingly.

The flight trajectories of all UAVs at 1400 s into the search, computed using the coupled
HEDAC MPC framework, are shown in Figure 8.6, panel (A). The trajectory of a type B UAV
between 100 s and 1100 s, operating at a goal height of 100 m, is highlighted in red and ana-
lyzed in detail in panels (B-E), which present the control parameters, velocities, altitudes, and
UAV height relative to the underlying terrain, respectively. The UAV generally maximizes its
velocity intensity p while respecting velocity and acceleration constraints, and adjusts the in-
cline parameter ¢ to follow the goal height. When encountering consecutive terrain elevation
peaks, it prioritizes maintaining its current velocity over strict adherence to the goal height.
This results in a smoother trajectory, with a slight altitude reduction at the peak to maintain
good detection performance in the following valley, before preparing to climb the next peak,

visible in panel (E) around 200 s and 550 s.
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Figure 8.6: UAV trajectories at 1400 s of the Mount Vesuvius survey (A),
with detailed analysis of the red-highlighted trajectory shown in panels
(B-E) [107]

The area survey was performed using multiple methods, and the computed trajectories of
all UAVs at the end of the 60-minute search are shown in Figure 8.7. Their performance was
evaluated using 7, and the results are shown in Figure 8.8, panel (A). The best performance was
achieved with the HEDAC + MPC method, reaching 1 = 96% by the end of the search. The
mSMC method delivered a very similar overall performance, and although the 1(¢) curves for
both methods appear nearly identical, a notable difference is observed when comparing the time
required to reach 1 = 90%, indicated by the vertical lines in the plot. The SMC and lawnmower
methods achieved lower overall performance, while the plain HEDAC method performed the
worst, stalling as in the Plastic World case. The computation time for the HEDAC + MPC
method consistently remained under 0.5 s per iteration, well below the control interval of Az =2

s, further demonstrating the method’s feasibility for real-time UAV control.
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Figure 8.7: UAV trajectories for the Mount Vesuvius survey case across all
compared methods.

An additional variant of this case was created by introducing a no-fly zone within the vol-
cano crater area to demonstrate the capability of the HEDAC + MPC method to handle inter-

domain obstacles and perform collision avoidance. The UAV configuration remained identical
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to that of the original case, with the only modification being the presence of the restricted area.
The scenario analogous to the original case shown in Figure 8.6 is presented for the case in-
cluding the no-fly zone in Figure 8.9. The trajectory highlighted in red corresponds to the same
UAY, and behavioral differences are apparent when comparing the two figures. As seen in panel
(A) of Figure 8.9, all UAVs successfully respect and avoid the no-fly zone. Although the ana-
lyzed trajectory differs, it exhibits similar dynamic characteristics to those in the original case,

as demonstrated in panels (B-E).

8.5 Star dunes

This scenario features a specific desert terrain in Algeria. Due to environmental influences,
the sand dunes develop star-like shapes with several arms branching out from the central peak,
hence the name Star Dunes. The terrain does not have a large elevation difference between
its highest and lowest points, and the slopes are moderate, as illustrated in Figure 8.10, panel
(A). Therefore, this case is used to demonstrate a search operation using fixed-wing UAVs. The
area is similar in size to the Mount Vesuvius case. However, since a different UAV type that can
cover a larger area in the same amount of time is employed, only two UAVs are deployed instead
of five. Both UAVs operate at a target altitude of 300 m, with sensor footprint and detection
performance matched to the previous test cases by adjusting the detection rate function, sensor
zoom level, and corresponding FOV angles. The search simulation is conducted for 60 min,

and the initial undetected target probability is shown in Figure 8.10, panel (B).

Terrain incline (deg) Undetected target probability density

0.00 450 90.0 Low Medium High

Figure 8.10: Star dunes terrain with incline representation (A) and initial
undetected target probability density (B).

The UAV trajectories at t = 1300 s, computed with the HEDAC + MPC framework, are

shown in Figure 8.11, panel (A). As in the previous cases, the red-highlighted trajectory is
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analyzed over a 1000 s period, in panels (B-E) of the same figure. As displayed in panel (B), the
UAV maintains the highest possible velocity intensity p throughout the observed time period,
while adjusting the incline angle ¢ to distribute the velocity between horizontal and vertical
components, as shown in panel (C). The velocity changes are applied gradually, as seen in the
acceleration plot in panel (D), reflecting the lower maneuverability characteristics of fixed-wing
UAVs. Given the UAVs’ dynamic characteristics and the variability of the terrain elevation, the
selected UAV would not be able to maintain the target search height precisely at all times.
However, the optimization within the MPC framework smooths the trajectory, allowing the
UAV to traverse the terrain while utilizing the maximal p, adhering to the minimum height
constraint, and maintaining effective sensing performance by avoiding large deviations from

the target altitude.
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The search simulation was conducted using multiple methods, and the results showing 1(z)
are displayed in Figure 8.12, panel (A). The HEDAC + MPC method again achieved the best
results, while the mSMC method performed comparably. Since the 1(z) curves of the two
best-performing methods are relatively close, vertical dotted lines in the corresponding colors
are plotted to clearly indicate the time difference required for both methods to reach n = 70%.
All other methods showed a notable decrease in performance, as reflected by their 1(¢) curves.
Because the terrain elevation difference is not very large, the search using the HEDAC method
at a constant altitude was able to perform sensing effectively and did not stall, as in the previous
two cases.

The computation times for each time step of the HEDAC + MPC method are displayed in
Figure 8.12, panel (B). It can be seen that the use of fixed-wing UAVs increases the time required
for performing the collision avoidance procedure compared to the multi-rotor UAVs from the
previous test cases, since they cannot reduce their horizontal velocity to zero and must plan the
entire circular escape route. However, this does not pose significant issues because, given the
lower maneuverability of fixed-wing UAVs, they do not require such frequent commands, and
the control time step can be increased if necessary. Considering all of this, with a control time
step of Ar = 2 s, the computation times never exceed 0.4 s, demonstrating that the feasibility of

real-time UAV control is not compromised.
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Figure 8.12: Star dunes case, 1 across methods (A) and HEDAC + MPC
computation time per step (B).
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8.6 Robustness analysis

In practical applications, there are numerous uncertainties that must be accounted for, such
as potential flight control and localization errors. Flight control errors refer to deviations be-
tween the intended flight trajectory and the flight path actually executed by the UAV. They may
occur due to external factors like wind disturbances and/or inaccuracies caused by the flight
controller’s response. On the other hand, localization errors involve discrepancies between the
UAV’s reported state (e.g., position, orientation, and velocity) and its actual state. Sensors, like
GPS, barometers, or compasses are typically the source of those inaccuracies which lead to
incorrect assessments of the UAV’s position and heading.

To estimate the performance of the proposed method in a real-world scenario, the previ-
ously mentioned uncertainties are incorporated into the simulation by introducing error to the
relevant variables. The errors are included in the corresponding control and location variables
as additional random values, sampled from a Gaussian distribution with zero mean value, at
each time step. The error range for each variable is represented by its standard deviation, as
shown in Table 8.3. The minimum and maximum error values for each variable are capped at
three times the standard deviation values.

Table 8.3: Variables’ uncertainty error

Error source Parameter Standard deviation Units
Vg 0.1 m/s
Flight control Vv, 0.05 m/s
0] 1 °/s
X 0.5 m
Localization Y 0.5 m
z 1 m
[°] 1 °

A total of 50 simulations of Mount Vesuvius UAV search simulations with included uncer-
tainties are computed. The results are statistically evaluated and compared with the reference
solution (presented in Section 8.4) in Figure 8.13. Graphs (A-1) and (B-1) showcase 1000 s of
flight time for one UAV within one randomly selected simulated error test case, while the his-
tograms (A-2) and (B-2) are generated using data from all simulated error cases, for all UAVs
across the entire simulation duration. It can be concluded that the UAVs violated the velocity
constraints for less than 10% of the simulation time, with the error consistently remaining below
0.5 m/s. The altitude constraint was violated in less than 0.1% of the time, with the deviation
consistently staying under 5 m. Graphs (C-1) and (C-2) are also computed using data from all

simulated error cases, for UAVs throughout the simulation duration. They display the distance
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of the UAVs’ paths to those from the ideal reference simulation, showing the absolute separa-
tion between the UAVs at each time step, highlighting the method’s sensitivity to error and its
impact on overall path accuracy. However, this has no significant effect on search success, as
evident from the survey accomplishment graphs (D-1) and (D-2). Graph (D-1) was generated
using all simulated error cases over the entire duration of the simulation, while the histogram

(D-2) focused only on the values recorded after the search was completed.

(A-l) [------ Vs e vy —— bounds] (A-Z) [— bounds I v, v
7 10 o - - 5.0 7 5.0 10 7
- £ - —
5= 25 5E 251 g
£> 5 , £3 : [ 5 85
¥ - 400 O& 0.0 =]
85 (e >3 = . 238
g --25 £ -251 ) 0 °
0.00 0.05 0.10 0.15 0.20
(B-1) —-~ Terrain elevation zr -+ Goal altitude z7 + hgoal (B-2)
----- Minimum altitude zr + hmin ~ —— UAV altitude z - Goal height
— i . = + Minimum height
& 900 150
8 800 _ 125
£ S 100
s £
< 700 £ T
< 5 :
(7
2 600 =
z 50
= e
I 500 g5
200 400 600 800 1000 0.00 0.02 0.04 0.06
Search time t [s]
(C-1) (C-2)
3000 3000 A
—_ |
£ =
5= 20004 T
%Y
22
8_15 1000
T
0 |
0.00 0.05 0.10 0.15
(D'1) Simulated error == = Reference (D—2) I— = Reference Simulated error
104 —— 0.97 1
e = - ——
- - < 0.96 |
o 0.5 = i -
4+ - — —
o ,/ T 0954
[
00 ‘_/ T T T T T T T 094 1 T T T T
0 500 1000 1500 2000 2500 3000 3500 0.00 0.05 0.10 0.15 0.20

Search time t [s]

Figure 8.13: Statistical analysis of method robustness demonstrated on the
Mount Vesuvius test case.

As expected, in the simulated error test cases, the UAVs occasionally break the altitude
and velocity constraints. However, this did not significantly impact their flight performance
since they corrected their velocity and altitude in subsequent time steps, converging back to the
specified operational range. The UAVs exhibited dynamic fluctuations in their paths relative
to the corresponding UAVs in the referent simulation, demonstrating the chaotic nature of the

HEDAC method and its sensitivity do disturbances. Yet, this divergence did not adversely
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affect the survey accomplishment metric, indicating the robustness of the method concerning

uncertainty.
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9 TERRAIN SEARCH EXPERIMENTS

This chapter presents the experimental validation of the proposed HEDAC + MPC control
framework over terrestrial environments, chosen both for achieving the best performance in
prior numerical tests and for its capability to operate within irregularly shaped search domains.
First, the motion control strategy is evaluated to verify its ability to satisfy flight constraints and
generate feasible trajectories over complex terrain. Following that, an additional experiment
incorporating the UAV camera sensor, CV detection model, and search targets is conducted to

validate the search methodology in a real-world scenario.

9.1 Experimental validation of UAV motion control

The first real-world flight tests were conducted to evaluate the HEDAC + MPC motion control
in a complex terrain environment. The experiment was carried out in the Rasa River valley in
Istria County, Croatia (45°09'N, 14°03’E), depicted in Figure 9.1. This location was selected
because the flat riverbed area is bordered by steep, rugged slopes, making it a challenging

environment for UAV motion control and navigation.

Figure 9.1: Illustration of the Rasa River valley.

The three-dimensional representation of the terrain at the experimental site, including in-

cline information, is shown in Figure 9.2, panel (A).
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Figure 9.2: Motion control validation case: domain incline (A) and area of
interest encoded in the undetected-target probability density field (B).

The domain is enclosed by an approximately rectangular polygon with an area of about
1.17 km?. The mission aims to systematically fly over a nearly rectangular (top-down view)
area of interest of approximately 0.21 km?, maintaining a uniform trajectory density until the
UAV’s battery is depleted. The area of interest is represented by a polygon with a uniform
undetected target probability density, as shown in Figure 9.2, panel (B). The motion control is
based on the undetected target probability field, and the algorithm models the sensing process
even though no actual inspection is conducted. The UAV’s sensing characteristics, including
camera FOV angles, zoom factor, and sensing function, match those of UAV A (Table 8.1) used
in the simulated test cases Mount Vesuvius and Plastic World.

A total of four single-UAV flight missions were conducted using the DJI Matrice 210 v2
aircraft. The control interval was set to At = 3 s, while the HEDAC parameters were set to
o = 5000 and B = 0.1. All UAV motion characteristics were configured to match those of UAV
A (Table 8.1), except for the maximum horizontal velocity, prediction time steps, and minimum
and goal heights. For safety reasons, the maximum horizontal velocity was reduced to vy jqc = 5
m/s, while the minimum and goal heights were increased to A, = 35 m and hg,, = 55 m. For
additional analysis, two different values of the MPC prediction horizon 7,,,, were tested: 15 s
and 30 s, corresponding to prediction step counts 7,5 of 5 and 10, respectively. For both values
of T4y, simulation results were computed and compared with the executed real-world flights.
All comparisons were performed over a flight duration of 20 minutes, as the actual durations of
the real-world flights slightly exceeded this interval.

A representative flight mission with a prediction horizon of 7, = 30 s is shown in Fig-

ure 9.3. Panel (A) presents the UAV trajectory and the terrain from two views, while panels
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(B-E) show analysis graphs of the trajectory over the full flight duration. As seen in panel (B),
the UAV tends to maintain high velocity intensity p when flying horizontally or descending,
while p decreases during steep ascents. The velocity and acceleration values remain within
the prescribed constraints (panels C and D, respectively), and the absence of sudden, intense
jumps in the acceleration curve indicates that the executed flight trajectory is smooth. Although
the manufacturer specifications state that the Matrice 210 v2 has a maximum flight time of 34
minutes, the mission lasted only about 22 minutes before the UAV reached a critical battery
state and automatically initiated the Return To Home (RTH) procedure. The high energy con-
sumption may be attributed to the ~ 100 m elevation difference within the area of interest and
the UAV’s tendency to follow the goal search height, which resulted in frequent ascents and

descents, as seen in panel (E).
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Figure 9.3: UAV trajectory for a single flight mission during motion-
control validation with prediction horizon 7,,,,, = 30 s (A), and correspond-
ing trajectory analysis (B-E).
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As the UAV moves from its position at time ¢ to the position at # + Az during uninterrupted
flight, the flight regime is simultaneously computed for the next control interval, from ¢ 4 Az to
t + 2At. To perform this computation, the position at ¢ 4+ At is required to sample the potential
field for determining the new heading direction and calculating the yaw angular velocity, as
well as for the MPC procedure and collision avoidance. Since only the current position at time
t is known, the future position at ¢ + At is approximated by simulating movement from the
current position using the commanded control parameters p(¢) and ¢(¢). Since the UAV cannot
perfectly execute the commanded flight regime and external factors such as wind may introduce
deviations, an error arises between the calculated position and the actual position at ¢ 4 At.
This predicted position error is defined as the Euclidean distance between the planned and
achieved positions. Figure 9.4 presents a histogram of these errors computed using data from
all executed flight missions, where each bin represents an error range and the height indicates
how frequently that error occurred. Note that the UAV position is measured using GPS and
a barometric altimeter, both of which are subject to measurement errors. These localization
errors are present both as inputs when calculating the next position and in the reported achieved
position used to evaluate the predicted position error. As shown in Figure 9.4, the predicted
position error is within 1 m for the majority of the time and remains below 3 m in nearly
all cases, which is acceptable considering that the UAV can traverse a 15 m trajectory when
utilizing the maximum horizontal velocity vy ;qr Over the 3 second control interval Az. However,

in some cases the observed error increases to almost 8 m.

[ Tmax = 30 s Tmax = 15 'S

0.12

0.10 A

0.08 A H

0.06 A

Incidence [-]

0.04

0.02 A

HIH_H_l_J—i_l P - - -

0 1 2 3 4 5 6 7 8
Predicted position error [m]

0.00

Figure 9.4: Predicted UAV position errors during all real-world flight ex-
periments.

To assess how the system handles both UAV localization errors and predicted position errors,
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the trajectories from the executed real-world flights were compared to the corresponding sim-
ulated trajectories. The location error is defined as the Euclidean distance between the UAV’s
position in the real-world flight and the position in the simulation, where the simulated trajectory
is considered to have zero location error. Comparisons for both 7, = 30 s and 7, = 15 s with
their respective reference simulations are shown in Figure 9.4. It can be observed that flights
with a shorter prediction window of 7,,,, = 15 s achieve lower errors, and the two real-world
flights are fairly consistent with each other. In contrast, a longer prediction window results in
higher errors, and the corresponding simulations are less consistent. These deviations between
the simulated and real-world trajectories arise from the combination of UAV localization errors
and prediction errors, causing the potential field u to be sampled at different points, which in
turn produces variations in the yaw angular velocities @. However, even though the errors reach
relatively high values (considering the area of interest of 0.21 km?), these errors do not affect
the search performance, as shown in Figure 9.6. In all cases, whether simulated or real-world
and regardless of the prediction horizon, the 1 (¢) curves exhibit similar behavior, indicating the

method’s robustness to localization errors.
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Figure 9.5: Location error between the simulated trajectory (zero error)
and the executed real-world trajectory for both prediction horizon lengths
of 15 s and 30 s.

Additionally, a detailed analysis of flight height for all executed real-world flights, compared
with simulation results, is shown in Figure 9.7. Panel (A) presents the results for 7, = 30 s,
while panel (B) presents the results for 7,,,c = 15 s. The shorter prediction horizon achieved
better results with respect to adherence to the target flight height, both in simulation and in the

real-world tests. Additionally, the total number of instances in which the height constraint was
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Figure 9.6: Survey accomplishment for all simulated missions and real-
world missions, for both prediction horizon lengths of 15 s and 30 s.

breached during the two executed flights was 2, compared to 6 instances for the larger prediction
horizon. Nevertheless, these minor breaches of the height constraint do not pose a significant

issue for real-world operation, as they remained below 2 m.
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Figure 9.7: Flight height analysis and comparison with simulation results
for 7,0 = 30 s (A) and T4 = 15 s (B).

The shorter prediction horizon achieved slightly better results in several of the conducted
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analyses, but reducing the prediction time indefinitely is not a viable option. An excessively
short prediction horizon, relative to the aircraft’s velocity and acceleration limits, may prevent
the UAV from traversing complex terrain or climbing steep obstacles. Therefore, the MPC
horizon must be determined with consideration of both the aircraft’s dynamic characteristics
and the terrain complexity. In practice, selecting a longer prediction horizon is preferable for

safety, as it still provides good search performance, as shown in Figure 9.6.

9.2 Experimental validation of UAV search methodology

In order to validate the implemented search methodology, it is necessary to assess whether the
actual target detection performance aligns with the survey accomplishment metric 1. To achieve
this, search targets and a corresponding detector must be introduced into the experiment.

A total of 100 experimental targets are made from 0.5x0.5 m cardboard sheets. Each of the
100 targets is uniquely patterned marked with two colors selected from the following palette:
white, black, green, orange, red, blue, and yellow. The color combinations were chosen to
simulate the variety of clothing and appearances that real humans may have, aiming to achieve
detection performance comparable to that for actual humans. The targets are practical because
they can be positioned within the area such that their distribution matches the undetected target
probability density, and they remain stationary throughout the experiment. Examples of the

targets are presented in Figure 9.8.

= -

Figure 9.8: Representative custom cardboard targets used in the experi-
ment.
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Target detection is achieved by having the UAVs capture images with the onboard camera.
The acquired images are then processed with a CV detection model to identify which targets
have been successfully detected. Since no detector existed for the custom targets, a model
was specifically trained to enable their detection. The YOLO detection algorithm was chosen
because it provides fast detection and is widely used for UAV imagery [58, 111].

For model training and performance analysis at varying image capture heights, a data set
was collected consisting of 1840 images, containing a total of 34135 target instances. A subset
of 1166 images, containing 27600 object instances, was used to train the model. This subset
was split into training and validation sets in an 80-20 ratio. The YOLOVS architecture was
employed, and training was initialized with the extra-large pre-trained model yolov8x.pt, previ-
ously trained on the COCO dataset. The model was trained for 500 epochs with a batch size of
2, with the original images automatically scaled down to 1280 pixels by the YOLO algorithm.

The remaining images from the data set were grouped into bins corresponding to capture
heights in the range [30, 90] m, with each bin spanning 10 m. For each bin, validation was
performed to compute the recall metric, and the recall value for the bin was assigned to the
mean height of the bin. To obtain recall values for the full operational height range of the
aircraft, a quadratic polynomial regression was performed. The discrete recall values for each
bin and the corresponding recall regression function y are shown in Figure 9.9, panel (A).

Two types of UAVs were used in the experiments: DJI Matrice 210v2 and DJI Mavic 2
Enterprise Dual. Their motion, sensing, and control parameters are listed in Table 9.1. For
each UAV type, the average velocity vy 4, during autonomous flight over the search domain
was experimentally determined. The Matrice achieved an average velocity of 7.515 m/s, while
the Mavic achieved 7.449 m/s. Based on the measured v; 4, the goal search altitude /4,4, and
the camera FOV angle 9, the scene duration ¢, Was computed according to equation (4.11).
The resulting #scepne Was 5.736 s for the Matrice 210v2 and 8.775 s for the Mavic 2 Enterprise
Dual. Finally, the detection rate function I" was computed for each UAV type using the recall
function p and the scene duration fs..p,. according to equation (4.13). The resulting detection
rate functions are illustrated in Figure 9.9, panel (B).

The experiment was conducted on Ucka Mountain, Croatia (45°14’30”N, 14°12'00”E),
and consisted of two search missions. The first mission employed two Matrice UAVs, while
the second mission utilized one Matrice UAV and one Mavic UAV. Both Matrice UAVs were

equipped with the DJI Zenmuse X5S RGB camera, whereas the Mavic UAV used its integrated
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Figure 9.9: Recall values of the cardboard target detection model at dis-
crete heights and the corresponding regression curve (A), along with de-
tection rate functions I" for the UAVs used in the experiments (B).
Table 9.1: Motion, sensing, and control parameters of the UAV used in the
search methodology validation experiment [107].
UAV parameters DIJI Matrice 210 v2 Mavic 2 Enterprise Dual ~ Units
Type Multi-rotor Multi-rotor -
Min turning radius R, 30 30 m
Min clearance distance & 50 50 m
Min search altitude £, 40 40 m
Goal search altitude fgoq 60 60 m
Max horizontal velocity v yax 8 8 m/s
Min horizontal velocity vs min 0 0 m/s
Max ascending velocity v uax 5 3 m/s
Max descending velocity v; sin -3 -2 m/s
Max horizontal acceleration dg 2 2 mis?
Min horizontal acceleration aj i, -3.6 3.6 m/s?
Max vertical acceleration d sy 2.8 2.8 m/s?
Min vertical acceleration a_ iy -2 2 m/s?
Min incline @, -90 90 °
Max incline @pqx 90 90 °
Camera FOV 7y 64.7 725 °
Camera FOV p, 39.2 5758 °
Sensing function I" Twnio Thavicz -
Prediction time Steps 72 5 5  time steps

RGB camera. More detailed specifications of the cameras, as well as the UAV control imple-
mentation, are provided in Section 3.4. Both search missions continued until one of the UAVs

reached its critical battery level. The experimental site on Ucka mountain, along with two

Matrice UAVs, is shown in Figure 9.10.

The control time step At was set to 3 s, which corresponds to the the sensing interval At.
This interval accounts for the time required by the camera to generate an image, including per-
forming auto-focus, capturing the image, and storing it in memory. In case a new image capture
command is issued before the previous command has completed, the command is ignored and

the subsequent image is not recorded. The sensing interval Aty = 3 s allowed successful image
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Figure 9.10: Experimental area on Ucka Mountain including two Matrice
210 v2 UAVs.

captures in most cases. However, if an image was not acquired for any reason, the correspond-
ing sensing effect was not applied to the domain. The values of the HEDAC parameters were
set to o = 5000 and B = 0.1.

The search domain was defined as a circular area with a radius of 550 m, corresponding to an
area of 0.95 km?. The terrain elevation variation within the domain is approximately 100 m, and
the terrain, including incline representation and elevation isolines, is illustrated in Figure 9.11,
panel (A). A total of 100 search targets were distributed across three concentric zones. Within
each zone, the targets were uniformly scattered, and the initial undetected target probability
density mq matched the target distribution. 20 targets were placed in Zone 1 (r,; < 150m), 30
targets in Zone 2 (150 < r;; < 300m), and 50 targets in Zone 3 (300 < r;3 < 450m), where
r, defines the radial limit of each zone. The probability within each zone was uniform and
calculated as the ratio of the number of targets in the zone to the corresponding zone area. The
resulting distribution was then normalized to satisfy the condition defined in equation (4.5). The
initial undetected target probability distribution and the locations of the search targets, shown
as black dots, are illustrated in Figure 9.11, panel (B).

After the images are taken, they are processed with the detection model to determine the
detected targets. The model is trained to detect only one class, named 7Target, which represents
a binary classification problem of object versus background. The detection model can produce

four possible classification outcomes: a True Positive (TP) occurs when the target object is
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Figure 9.11: Ucka experiment terrain (A) and the initial undetected target
probability density with target locations shown as black dots (B).

correctly detected, a False Positive (FP) is the result of the model indicating a target when
none is present, a False Negative (FN) occurs when there is a target present and the model
fails to detect it, and a True Negative (TN) represents the case where no target is present and
no detection is indicated by the model. Examples of classification outcomes on the collected
images from the experiment are shown in Figure 9.12. True positives and false positives are
marked with blue labels produced by the model in panels (A) and (B), respectively. False
negative detections are manually marked in red, while true negatives correspond to regions with
no annotations.

A) True Positive (TP)

¥
<

B) False Positive (FP) C) False Negative (FN)

.Target 0.86

I3 : @Td rge t [o)

3 2y

Figure 9.12: Detection model classification outcomes: true positives (A)

and false positives (B) annotated by the model in blue, and false negatives

(C) manually annotated in red. True negatives are represented by regions

with no annotations in the images. Numbers next to the annotations in
(A,B) indicate the model’s detection confidence.
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Flight trajectories during Mission 1, along with a trajectory analysis for one of the Matrice
UAVs, are shown in Figure 9.13. The search was conducted for 25.26 minutes, and the targets’
detection status and trajectories at the end of the search are displayed in panel (A). The green
dots represent the detected targets, while the black dots represent the undetected targets. Flight
parameters along the blue trajectory are presented in graphs (B—E). All set constraints for flight
parameters (B), velocities (C), accelerations (D), and flight height (E) were respected. The UAV
generally maintained the target height, balancing area coverage and sensing performance, while

executing a relatively smooth trajectory at high velocity.
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Figure 9.13: Mission 1 trajectories and marked targets (A) and flight pa-
rameters graphs (B-E) for the red trajectory executed by the Matrice UAV.

Mission 2 is presented in Figure 9.14. The search was conducted for 19.36 minutes, and
the search trajectories at the end of the mission are shown in panel (A), along with the search
domain containing the targets, which are colored according to their detection status, with green

indicating detected targets and black indicating undetected targets. Some undetected targets
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were never observed by the camera, as the undetected target probability density in their regions
remained the same as at the start of the search. This is visible in the small region in the upper part
of the domain in the top-down view shown in panel (A). Other undetected targets, located within
the observed area, were missed due to limitations of the detection model, which failed to identify
them. The search was performed with one Matrice UAV and one Mavic UAV. The yellow
trajectory in panel (A) and the corresponding flight parameter graphs (B-E) correspond to the
Mavic UAV. Similar to the Matrice trajectory analyzed in the previous mission (Figure 9.13),

the Mavic UAV respected all given constraints (B—E) and maintained good adherence to the

target flight height (E).
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Figure 9.14: Mission 2 trajectories (A) and flight parameters graphs (B-E)
for the yellow trajectory executed by the Mavic UAV.

Finally, to validate the search methodology, the survey accomplishment metric 1 is com-
pared to the achieved target detection rate k. The target detection rate is defined as the ratio

of detected targets to the total number of targets in the experiment. During the search mission,
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multiple images may capture the same target, and the detection model may detect the same tar-
get multiple times. However, only the first detection of each target is counted toward the total
number of detected targets, so repeated detections of the same target do not affect k. Figure 9.15
shows 1 (7), k, and their relative error for both search missions. The 1 parameter is presented
as a continuous curve, while x is plotted discretely as dots. Each dot corresponds to the time
when K increases, caused by the detection of a new target. The mean absolute relative error
over the entire search duration is 0.094 for Mission 1 and 0.073 for Mission 2. Under realistic
field conditions, the achieved relative error is considered acceptable, which suggests that 17 can

serve as a reliable indicator of search performance.
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Figure 9.15: Survey accomplishment 7, target detection rate k, and their
relative error over the duration of both search missions.
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10 SEA SURFACE EXPLORATION

This chapter presents the modifications and enhancements on the static target search method-
ology in order to adapt the method for the search of a dynamic sea surface environment. First,
the problem is defined, detailing the differences between terrain and sea surface exploration.
Then, the behavior of drifting sea targets is discussed, and a dynamic probability model using
the advection-diffusion equation is introduced, along with uncertainty compensation through
diffusion. Finally, the implementation of the dynamic probability model using OpenFOAM is
detailed.

10.1 Problem formulation — Search in maritime environments

With the search focus shifting from land to sea, certain aspects of the methodology can be
simplified, while others present new challenges that require further development. Since the sea
surface is flat, there is no need to account for terrain obstacles, and the search can be executed
at a constant flight altitude. Therefore, the MPC optimization detailed in Chapter 7 can be
omitted, as the UAV flight is effectively conducted in the Q,p domain, which is offset from
the sea surface to the goal flight height /... The velocity intensity and incline parameters
are set to constant values of p =1 and ¢ = 0, respectively. This implies that the UAVs fly
at their maximum velocity intensity, maintaining a constant velocity of v 4y, and the vertical
velocity v, = 0. Since the UAVs maintain a constant velocity, the acceleration constraints are
automatically satisfied. A change in velocity occurs only if the UAVs begin the search from
a non-moving state, in which case the acceleration constraint is not considered. In practice,
this introduces an initial deviation between planned and actual positions. However, since the
method tolerates such errors and corrects them over time, as shown in sections 8.6 and 9.1, this
simplification does not compromise performance.

Given the flatness of the sea surface, the sensing model (detailed in Section 4.3) can be
slightly simplified by omitting the ray-tracing observation check. In the absence of terrain ele-

vation or occluding structures, any point within the field of view is guaranteed to be observable.
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The main challenge this search problem presents is dynamic nature of the search targets,
whose positions evolve due to environmental factors. Targets at the sea surface drift due to the
movement of the surface water layer. This movement is caused by a combination of several
natural effects such as sea currents, tides, wind, and waves. In order to determine the way
that the targets move, the sea surface flow field must be obtained. It can be estimated through
various approaches, such as numerical ocean simulation models, satellite data, high-frequency
radar measurements, or surface drifters equipped with GPS sensors. The appropriate method is
chosen based on the needed spatial resolution, geographic coverage, and real-time data avail-
ability. For the purpose of defining the dynamic target search methodology, the surface flow

field, represented with the vector field w(x,?), is considered known.

10.2 Dynamic target probability distribution

The movement of surface targets can be simulated by the effects of advection in the velocity
field w and diffusion. Advection represents the transport of a substance or target due to the
fluid flow, while diffusion models the spreading of a substance on a molecular level, driven by
differences in concentration. In many real-world problems, both processes occur together. For
example, a pollutant in a river is advected downstream by the current while it is simultaneously
being diffused sideways and vertically. A similar principle applies to a group of people in
the sea: they are carried by the currents through advection, while their individual swimming
movements and other stochastic impacts can be approximated as uncertainty using a diffusive
process.

Advection and diffusion can be modeled using either the Lagrangian and Eulerian approach.
The Lagrangian approach focuses on tracking individual particles and observes how they move
and evolve over time. Advection is in this case captured naturally by the moving particles

effected by the flow field, governed by the Lagrangian motion law

dz

7 =w(z,1), (10.1)
where the particle location is represented with z(z) € Q,p. Diffusion is modeled as a stochastic
process, such as Brownian motion. Brownian motion is represented by a stochastic differential

equation

dz(r) = o d§(2), (10.2)
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where o represents the standard deviation of the Brownian motion and & denotes a stochastic
Wiener process. Both advection and diffusion can be modeled together by combining (10.1)
and (10.2) resulting in

dz(t) = w(z,t)dr + o d§ (1). (10.3)

Numerical implementation of the method is executed by simulating a large number of particle
trajectories. While this approach is well suited for tracking individual particles, it can struggle
to compute smooth field approximations as it requires many particles and can become compu-
tationally expensive, especially for large-scale problems.

In contrast, the Eulerian approach monitors how the field variables, for example pollution
concentration, change at fixed points within the domain. In this case, the observed variable is
the probability of undetected target presence m. The advection, using the example of m(Xx,1), is
modeled with the term w - Vm in the PDE, while diffusion is represented D - V2m, where D is

the diffusion coefficient. The resulting advection-diffusion PDE is given by

%—T:D-Vzm—w-Vm. (10.4)

Since the positions of the targets are uncertain in a search scenario, they need to be repre-
sented by a probability density field. This also enables certain regions to be probabilistically
prioritized based on the constructed field. Due to the need to model both advection and diffu-
sion of the field, the Eulerian approach was chosen. While the Lagrangian approach can also
generate a probability field, by discretizing the domain into a grid and counting the number
of particles in each cell, it requires an additional processing step. Furthermore, incorporating
diffusion in the Lagrangian framework demands a significantly larger number of particles to
provide a statistically representative probability field. The Eulerian model directly computes
the field and diffusion can be included with practically no additional computational cost.

Diffusion is used to model the cumulative uncertainty of the system, which may arise from
the inaccuracies in the advection flow field, initial probability distribution of undetected targets,
UAV localization errors causing sensing inaccuracy, or other sources of uncertainty in the drift
of targets. The diffusion coefficient D is estimated using the mean square displacement formula

for two-dimensional Brownian motion, given by

E*(t)=4-D-1,
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where the variable E denotes the average displacement of a particle over time #. To align the
model with real-world uncertainty, the diffusion coefficient is computed using the estimated
positional drift error E, of targets over time ¢. That estimate can either be measured directly or
computed based on the error in the measured flow field, if that information is available. For the

two-dimensional flow, the diffusion coefficient is defined as
D=—"°%. (10.5)

To conduct an efficient search of the dynamic sea surface area, the drift model for m must be
integrated into the sensing process to account for the influence of sea dynamics on the targets,
and consequently on m. To achieve this, the sensing term, given by equation (4.6), is incor-
porated into the advection-diffusion PDE (10.4). Considering the collective sensing effect of
all search agents, based on the sensing function defined in equation (4.10), the resulting PDE

describing the dynamic behavior of m can be formulated as

om ) 1 .
E_D.V m—w-Vm—m~<1—H(1—l//,(Rl))>. (10.6)

i=1

In practical implementation, given realistic sea surface layer flow velocities, the advection-
diffusion effects can be considered negligible over the duration of a single sensing interval At.

Since the behavior of m is dynamic, it must be modeled starting from the time the initial
probability distribution of the targets is established, at t+ = 0. If the search is delayed, the
probability field needs to be evolved up to the search start time and then continuously modeled
during the search. The undetected target probability density at r = 0, denoted as my, needs to
satisfy the condition (4.5).

The exploration of evolving m is managed by the ergodic search control defined in Chapter 5,
and the resulting search performance is evaluated using equation (4.15). The search agents are
controlled using constant values of p and ¢, while the @ values are computed using the selected
ergodic search method (Section 5.1 or Section 5.3), and later adjusted through the collision

avoidance procedure detailed in Chapter 6.
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10.3 Numerical implementation

The dynamic behavior of m, described by equation (10.6), is implemented by integrating Open-
FOAM with the proposed sensing and ergodic search framework. OpenFOAM is an open-
source software suite for Computational Fluid Dynamics (CFD), capable of modeling various
physical processes such as heat transfer, fluid flow, and scalar transport.

The evolution of the m field at each time step Af, begins with the application of the UAVs’
sensing effects, followed by advection and diffusion. The advection-diffusion effects are mod-

eled using the OpenFOAM solver scalarTransportFoam, which solves the equation

(?9_1’;1 +V.(wm)—V(DVm) =S, (10.7)

where S,, 1s the source of the scalar m. Since the sink/source representing sensing is considered
with the sensing function applied externally, the scalarTransportFoam sink term S, = 0. Addi-
tionally, considering that the flow field w is incompressible (implicating that Vw = 0), and that

the diffusion coefficient D is a constant scalar, the equation (10.7) can be rewritten as

0
—m:D'Vzm—W-Vm,
ot

which relates to the equation (10.6) without the sensing term

m- (1 —fl(1 —1;/,-(R,-))> . (10.8)

i=1

In contrast to the ergodic control framework which employs FEM, OpenFOAM utilizes
the Finite Volume Method (FVM). In FVM, numerical discretization is performed by dividing
the physical domain into non-intersecting control volumes, also known as cells. Although the
proposed problem is two-dimensional (in €;p), a three-dimensional mesh with only a single
cell in the third dimension is required. To lay the groundwork for implementing the governing

equation (10.7) in FVM, it is rewritten in integral form for each cell volume as

d
—de—|— mw-anAv:/ DVm~anAV+/Sde,
\% ot Ay Ay 14

where V is the control volume, Ay is its boundary surface, and ny is the outward normal vec-

tor on Ay. To solve the equation using FVM, each term must be discretized. This involves
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approximating the integrals over control volumes and their boundaries. The time derivative is
typically approximated using finite difference schemes such as the Euler scheme. The fluxes
through each face of the control volume, due to advection, can be approximated using various
interpolation schemes, including upwind interpolation, linear interpolation, quadratic upwind
interpolation, and other higher-order methods [112]. Gradients responsible for diffusion, are
commonly computed using the central difference theorem or the Gauss’s divergence theorem.
The source is treated as constant within each cell, which requires the cells to be reasonably
smaller than the scope of the sensing function.

Using the discretized forms, the explicit Euler scheme can be applied to advance the solution
in time. In this approach, the value of m in each control volume is updated based on the fluxes
and sources evaluated at the previous time step. The surface integrals are replaced by a sum of
fluxes across all faces of the control volume, where the advective flux for each face f is given
by m¢(w-n)sA; and the diffusive flux by —DyA¢(Vm)s-ny. Combining these contributions

yields the explicit finite volume update equation for each cell P, expressed as

p=mp - % ; ((W-n)gAymy—DgAp(Vm)p-ng) + At Sy p,
where j* denotes the advection-diffusion time step, Ay indicates the area of a face f, and ny
represents its unit normal vector. The summation runs over all faces of the control volume P.

The main advantage of the FVM is that it naturally satisfies the conservation laws govern-
ing fluid flow, including mass, momentum, and energy, at both local and global levels [112].
Another advantage is that it can be extended to multi-physics problems, such as solving the
fluid dynamics Navier-Stokes equations and the advection-diffusion equation simultaneously to
model both fluid flow and scalar transport.

Since the coupled methods are discretized differently, they use different numerical meshes.
The FEM method within the HEDAC control framework employs a two-dimensional triangular
mesh, whereas the FVM utilizes a three-dimensional hexahedral mesh with a single cell layer
in the third dimension. Additionally, FEM stores the data at mesh nodes, while FVM stores the
data at cell centers. To avoid the introduction of additional numerical error, the undetected target
probability density field m is handled entirely within the FVM mesh. The UAV control frame-
work reads the OpenFOAM scalar field m and directly applies sensing using the term (10.8),
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via equation
n

m! =l T1(1— i (R),
i=1
where j* denotes the advection-diffusion time step before sensing is applied, and j represents
the same time step after sensing is applied. At time steps when sensing is not executed, y(R) =
0, and therefore m/ = m/". The m field is then projected to the FEM mesh to compute the
potential u, utilizing the nearest neighbor interpolation method. This method is chosen for its
high computational efficiency, and since u is recalculated at each time step from the current
values of m, error does not accumulate through the simulation time. The detailed procedure

for the HEDAC FEM method with dynamic probability field incorporated using OpenFOAM is
provided in Algorithm 1.

Algorithm 1 Procedure for ergodic sea exploration using HEDAC

procedure UAV MOTION CONTROL WITH DYNAMIC PROBABILITY DENSITY FIELD
function INITIALIZATION
Initialize general parameters, UAVs, and FEM system
Normalize and set the m field in the finite element system > Equation (4.5)
Save normalized m field to OpenFOAM case for t =0
Initialize OpenFOAM vector field w
Initialize diffusion coefficient field in OpenFOAM
Set initial time: ¢ <— 0
end function
function PRE-SEARCH ADVECTION-DIFFUSION
Perform scalar transport of m until search start time > Equation (10.4)
t +— search start time
end function
while search not complete do
function COMPUTE TRAJECTORIES
Retrieve scalar field m(r) from OpenFOAM case
fori=1tondo > For all agents
Apply sensing: m (1) < m(t) — y; (R;) -m ()
end for
Save updated m field with applied sensing to OpenFOAM case
Update m field in the finite element system

Compute potential u > Equation (5.1)
Compute UAVs’ yaw angular velocities > Equation (5.4)
Execute collision avoidance procedure > See Chapter 6
Update UAVs’ positions

Perform scalar transport of m in OpenFOAM for time step At > Equation (10.4)

Advance time: t <1+ At
end function
end while
end procedure

A similar procedure is used for the mSMC method, with the primary differences being that

they do not use FEM or a triangular mesh. Instead, the m field is represented on a structured
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rectangular grid. Furthermore, field m is used to compute the UAVs’ yaw angular velocities by
employing Fourier basis functions, as detailed in Section 5.3.

Additionally, in the method’s implementation, UAV motion control is executed with a period
of Az, while the OpenFOAM scalar transport advection-diffusion simulation for the duration of
At is performed with the integration time step of Az /10. Numerical simulations of the advection-

diffusion process are performed using OpenFOAM v2406 [113].
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11 SEA SURFACE SEARCH SIMULATIONS

This chapter presents the results of sea search simulations conducted using the proposed control
methodology for dynamic target search. The first test is performed on a synthetically generated
domain, and the results are compared to a baseline simulation employing the static probability
model. This case is also used to examine the effect of different relative velocities between the
UAVs and the flow field on search performance, as well as the robustness for search parameter
selection. The second case represents a realistic search scenario in a coastal sea region and
demonstrates uncertainty compensation using diffusion. The third case applies the method to
a large-scale ocean search operation, evaluating its performance under long search delays and

complex transient flow conditions.

11.1 Modeling motion and detection of dynamic targets

To evaluate how well the probability distribution reflects search success in a dynamic scenario,
simulated search targets are introduced into all test cases. The sensor simultaneously applies its
sensing effect to the domain and performs target detection using the same detection rate func-
tion. In each test case, 1000 simulated targets are introduced at # = 0, and distributed throughout
the search domain according to the initial target probability density mg. They are advected with
the flow field w according to the Lagrangian motion law given by the equation (10.1), or (10.3)
when considering uncertainties.

Each simulated search scenario is evaluated using two metrics: the survey accomplishment
metric 7, representing the system’s estimate of survey completeness, and the target detection
rate Kk, representing the ratio of detected targets to the total number of targets, providing an

accurate assessment of survey completion.
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11.2 Synthetic case — Cavity flow

The first test case consists of a synthetically generated scaled domain featuring a cavity lid-
driven flow, a common benchmark problem in fluid dynamics. It is very convenient because
the geometry and boundary conditions are simple, but the resulting flow is relatively complex.
The fact that the probability cannot escape the domain makes it ideal for testing the proposed
search methodology with dynamic probability, even over longer durations. The domain is de-
fined by a 1 x 1 m square centered at (0.5,0.5) m, containing an internal rectangular obstacle
described with two opposite corners located at (0.7,0.2) and (0.8,0.6). The flow field is gen-
erated using the simpleFoam, a steady-state solver for incompressible, turbulent flow included
in OpenFOAM. The velocity boundary condition on all surfaces is set to the no slip condition,
implying that the fluid in contact with the boundary has zero velocity with respect to it. The
flow is driven by moving the upper domain boundary at 2- 10~2 m/s, with the kinematic viscos-
ity of the fluid set to 1-107°. The pressure boundary condition is set to zero gradient on all the
boundaries, and the turbulence is modeled with kK — @ Shear Stress Transport (SST) model. The
resulting flow field is shown in Figure 11.1, where the black arrows represent the flow vector
field w and the contour plot represents the velocity magnitude. The average velocity magnitude
of the computed flow is 3 - 10~% m/s, and the flow remains steady during the search simulation.
The simulated targets are distributed across five differently shaped areas within the domain,
according to mg. In the two upper areas, they are scattered following a normal distribution
centered within each respective area, while in the remaining areas the targets are distributed
uniformly. The target distribution is shown in Figure 11.1, where the targets are represented as
red dots.

The search is conducted for 7" = 900 s using three identical search agents moving at a
constant velocity of vy = 0.015 m/s, with a minimum turning radius of R,,;;, = 0.01 m, and a
minimum clearance distance of 6 = 0.01. The control and sensing interval is defined as At = 0.2
s, and the HEDAC parameters are set to & = 5- 1072 and B = 1. Each agent is equipped with
a conical sensor defined by 7. = 90°, and the sensing is executed from a constant height of
hgoat = 0.015 m. The detection probability in one flyover directly below the search agent is
equal to u, = 0.65, and it diminishes laterally relative to the agent’s trajectory, following a

normal distribution with a standard deviation of 0.015. The resulting detection rate function is
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Figure 11.1: Cavity flow field during the simulation and the distribution of
simulated targets at # = 0.

given by

In(1 05<R2h§oaz>
— U2 o012
r— n( ,Lta) e 0.015

Iscene
where fscene = 2 s according to equation (4.11), as constant velocity implies vy gy = Vs.

The search is conducted using the proposed method, which employs a dynamic probability
distribution model, where the probability evolves according to the combined effects of the flow
field w and sensing. The results are compared with a baseline method that utilizes a stationary
probability distribution, in which the probability is influenced solely by the effects of sensing.
Essentially, the baseline method corresponds to the proposed method with w = 0. Figure 11.2
shows the UAVs’ trajectories and the undetected target probability distribution at t = 450 s,
along with the evolution of 1) and k throughout the search for both the proposed and baseline
methods. The undetected targets are shown as red dots, while detected targets are represented
in green. In contrast to the baseline method, the spatial distribution of undetected targets in
the proposed method is in line with the undetected target probability density. This consistency
is further confirmed by the relatively good agreement between the 1 and K metrics through-
out the search. Compared to the baseline, the proposed method achieves approximately 50%
better performance in terms of k. Notably, although the baseline method reports a higher 1,
it substantially overestimates actual performance since it is unaware of the probability density

advection. In contrast, the proposed method not only achieves superior detection performance
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but also provides a more reliable estimate of survey completion, as reflected by the alignment

of n with k.
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Figure 11.2: Undetected target probability field, simulated targets, and
UAV trajectories for both the proposed and baseline methods at ¢ = 450,
together with 1) and « values throughout the search.

To evaluate the influence of search agent speed and flow field velocity on search perfor-
mance, a new parameter, A, is introduced. This parameter represents the ratio between the
search agents’ velocities and the average velocity magnitude of the flow field w. Large A val-
ues indicate that search agents move considerably faster than the flow field, while small values
correspond to cases where the flow field velocity dominates. Specifically, A = 1 represents the
condition in which the average flow field velocity equals the UAV velocity. Different A values
are obtained by scaling the flow field from the original case, while keeping the velocities of the
search agents constant. For reference, A value in the order of 50 would be representative for a
realistic search scenario performed in a coastal sea region. This estimate assumes multi-rotor
UAVs operating at 10 m/s and the average velocity of a submesoscale flow around 0.2 m/s [114,
115].

100



The performance of both the proposed and baseline methods is assessed and compared
across A values in the range [0.25,1000]. Figure 11.3 displays the results at the midpoint of
the search (0.57') and at the end of the search (T'). At very high A values, no significant dif-
ference is observed between the performance of the baseline and proposed methods, as the
influence of the flow field becomes negligible. In this regime, both methods perform similarly
well, and 1 closely corresponds to k. For A < 1, the flow moves faster relative to the search
agents, making it effectively impossible to conduct the search in certain cases, depending on
the flow characteristics. Detections are largely caused by the circulation effect as targets are
transported beneath the search agents and detected. The resulting x is similar for both meth-
ods but the proposed method provides an advantage by accurately estimating k through the n
metric, while the baseline method significantly overestimates it. The primary results of inter-
est correspond to A values around 50, indicated by a black vertical dashed line in the graphs,
which represent realistic operational conditions. The proposed method achieves considerably

higher x, and unlike the baseline method, x aligns with 1, indicating an accurate performance

estimate.
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Figure 11.3: Performance comparison of the proposed and baseline meth-
ods across different A values.

Additional performance analysis of the proposed method was conducted by varying the
HEDAC parameter & and the number of agents performing the search while keeping all other
parameters of the original case unchanged. The results are shown at the midpoint of the search

(0.5T) and at the end of the search (T') in Figure 11.4. The results demonstrate that the method is
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generally robust with respect to the selection of & and achieves slightly better performance with
a lower « than the originally selected value. As expected, search performance improves with
the addition of more search agents. However, beyond a certain point, adding additional agents
yields only marginal gains. Furthermore, at the end of the search (7'), across all combinations of
« and agent count, the mean discrepancy between k and 7 is approximately 3%. This difference
can be considered as a statistical error due to the stochastic nature of the initial distribution of

targets and detection process.
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Figure 11.4: Performance analysis of the proposed method across different
a values and varying numbers of UAV's conducting the search.

11.3 Realistic search scenario — Unije Channel search

The second test case simulates a survey taking place in the Unije Channel, located between
the islands of Unije and LoSinj, Croatia (44°37'N, 14° 19'E). The search domain covers a total
of 95.9 km?. To reflect realistic operational conditions, the start of the search is delayed by
3 hours to account for the travel time of the response team. The mission is carried out using
five identical multi-rotor UAVs over six consecutive search waves. Each wave has a duration
of 25 minutes, corresponding to the approximate duration of one battery charge, followed by a
S-minute pause to simulate battery replacement.

The UAVs operate at a constant velocity of vy = 10 m/s, with a minimum turning radius of

Ryin = 100 m and a minimum clearance distance of § = 50 m. The survey is performed from
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a constant height of 44,, = 100 m using a sensor with a pyramidal FOV defined by y; = 77.3°
and p» = 48.5°. Under this sensing configuration, each image covers a rectangular ground area
of 160 x 90 m, corresponding to an aspect ratio of 16:9. Since the search is performed at a
constant height over the flat sea surface, the recall (representing detection probability) is defined
as a constant value of u; = 0.75. The corresponding detection rate function is obtained using
equation (4.13), resulting in

- Ind _lib>’

Lscene
where fscone = 9 s, as defined in equation (4.11), under the assumption of constant velocity,
implying vy 4y = vy. The sensing interval Az is set equal to the control interval, Ar = 3 s, and
the HEDAC parameters set to o = 10° and = 1.

To represent the realistic behavior of the sea surface flow, this case models a transient flow
field w(x,t). The flow is computed using simpleFoam OpenFOAM solver, and its transient
behavior is introduced following the procedure described in [114]. The velocities of the flow
filed are within the range [0,0.4] m/s, which is consistent with the surface layer velocities mea-
sured in domains with similar characteristics [114, 115]. Snapshots of the flow field at r = 0,
at the start of the search (r = 10800 s), and at the end of the search (+ = 21300 s) are shown in
Figure 11.5.

At t = 0, the undetected target probability density is uniformly distributed within a circular
area of radius 2 km, with 1000 targets scattered uniformly inside the circle. To model realistic
target drift, uncertainty is incorporated into the advection of the targets by introducing Brownian
motion. By extrapolating the measured drift error of buoys on the sea surface reported in [114],
the drift error after 3 h (the midpoint of the simulation) is estimated to be approximately 330
m. To reproduce this effect, the target motion is modeled using the equation (10.3), with the
standard deviation of the two-dimensional Brownian motion 6 = 3.889 m and an advection time
step of 3 s. The positions of the simulated targets at t = 0, at the start of the search (t = 10800
s), and at the end of the search (t = 21300 s) are shown as red dots in Figure 11.5.

To compensate for target drift error, diffusion is introduced into the simulation. The diffu-
sion coefficient, corresponding to a drift error of E, = 330 m over t = 3 h, is calculated using
equation (10.5), yielding D = 2.521. The search simulation is performed both with diffusion (to
account for uncertainty) and without diffusion. The computed results for both cases are shown
in Figure 11.6. The figure illustrates the search domain with UAV trajectories from the final

search wave, target positions and their detection status, the flow field, and the undetected target

103



Flow field and Flow field and simulated Flow field and simulated
simulated targets at t=0 targets at search start targets at search end

0.00 0.08 0.16 0.24 0.32 0.40
Velocity magnitude [m/s]

Figure 11.5: Flow field and target positions at t = 0, at search start t =
10800 s, and at search end r = 21300 s.

probability at r = 21150 s, near the end of the search. The lower plots present the evolution
of n and « for the compensated and the uncompensated cases over the search duration. Both
cases perform similarly in terms of x during the first search wave, but the performance of the
uncompensated method declines over time. This decline is caused by the increased drift error
over time and the lack of error compensation. The uncertainty compensated method achieved
higher performance detecting 941 targets, while the uncompensated method detected 926 out
of the total 1000 targets. An additional advantage of the compensated case is a more accurate
survey accomplishment estimate. The compensated method achieved 11 = 0.944, closely corre-
sponding to Kk = 0.941, while the uncompensated method achieved n = 0.985 and x = 0.926,
overestimating survey performance by 6%. Correct performance estimation is crucial in search
missions, as it ensures that the mission continues until a certain level of certainty is reached that
the target is not within the search domain, which is represented by 1. If the survey competed
with 1 = 0.98, the use of the uncompensated method would result in premature termination
of the search, potentially leaving the target undetected, whereas continuing the survey until the
actual 1) value is reached could result in detection of the target.

The search domain was discretized using a FEM mesh with 18289 triangular elements and
9357 nodes, as well as a FVM mesh with 61340 hexahedral cells and 124628 points. The case
was computed on a PC equipped with a 6-core 2.6 GHz CPU, 16 GB of RAM, and an SSD.

The mean, median, and maximum time step computation times are reported in Table 11.1. As
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Figure 11.6: Unije Channel search at r = 21300, showing UAV trajectories

from the final search wave, target locations and detection status for both

the uncompensated and compensated cases, along with the evolution of n
and K over time.

evident from the table, the majority of the computation time is allocated to coverage convolu-
tion, which involves solving the OpenFOAM advection-diffusion simulation. Additionally, the

maximum computation time does not exceed the control time step Az, indicating the feasibility

of real-time UAV control.
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Table 11.1: Computation time for the Unije Channel search scenario [116].

Computation time Max Mean Median  Units
Coverage convolution 2.0101 1.8141 1.8133 s
Potential field 0.0817 0.0399 0.0404 s
Collision avoidance procedure 0.8688 0.0151 00 s
Total 2.6805 1.8691 1.8573 s

11.4 Complex search scenario — MH370 search

To represent a complex scenario, a search simulation is conducted for the MH370 aircraft that
disappeared in the Indian Ocean in March 2014, replicating the splash area A scenario from
[74]. The complexity of this case arises from the sheer size of the domain, spanning 1000x900
km, combined with a long search delay of 20 days within a complex transient flow field.

The aircraft went missing on March 8, marking the starting point for the diffusion-advection
of mg from the initial splash area. Within this area, 1000 targets are introduced and advected
with the flow, while uncertainty is modeled analogously to the Unije Channel search scenario.
The search began on March 28 and consisted of 3-hour missions conducted on each of the
following five days. The search is performed with search agents flying at constant velocity of
vs = 105 m/s, employing R,;, = 100 m and 6 = 100 m. They perform sensing from a constant
height of /g4, = 1500 m, utilizing a conical FOV defined with ¥ = 90°, which corresponds to
a 1.5 km circular sensing radius as in the original case [74]. The probability of detection in a

single flyover is set to t. = 0.75, and the sensing function is given by

= _ln(]‘ _uC)7

t scene

where #yc.ne = 28.57 s, calculated using vy 4y = Vs and equation (4.11). The control interval
is set to Ar = 10 s, while sensing is performed more frequently, at intervals of Af; =2 s. The
HEDAC parameters are set to o = 10% and = 1.

The search simulation was performed using the HEDAC and mSMC methods, and the com-
puted results are compared. Figure 11.7 shows the UAV trajectories, targets’ positions and their
detection status at the end of the first day search mission (9:00, March 28, 2014) computed
with HEDAC, along with the underlying flow field and the evolution of k and 1 throughout
the search. The methods achieved comparable results at the search end, with mSMC yielding
N =0.739 and k¥ = 0.693, while HEDAC achieved slightly better performance with 1 = 0.748

and ¥ = 0.718. Both methods slightly overestimated the search performance, but the error is
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considered tolerable given the long advection times and the complexity of the flow field.
This test case demonstrates that the method can handle prolonged search simulations in

highly variable flow conditions, delivering fairly accurate performance metrics even under real-

istic large-scale operational conditions.
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Figure 11.7: UAV trajectories, targets’ positions and their detection status

at the end of the first search mission in the MH370 simulation executed

with HEDAC, along with the underlying flow field and the evolution of k¥
and 1 over all five search missions [116].
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12 SEA SURFACE SEARCH EXPERIMENTS

This chapter presents the experimental validation of the sea surface exploration methodology. It
begins by detailing the methodology for obtaining the sea surface flow field and the equipment
used for this purpose. Following this, the custom search targets and the machine vision detec-
tion model used are described. The chapter concludes with a description of the experiment,

including the search area, UAV setup, procedure, and results.

12.1 Surface flow reconstruction

In order to perform the search, the flow field w representing the flow of the sea surface layer
needs to be obtained. There are various ways of obtaining sea surface flow, including High-
Frequency (HF) radars, satellite measurements, numerical ocean circulation models, and GPS-
equipped floating buoys, commonly known as drifters. Each method offers specific benefits and
has its constraints. For example HF radars provide a dense grid of surface flow measurements,
but are expensive and their coverage is limited to specific coastal areas determined by their
location. Satellite measurements provide wide area coverage, but the temporal resolution and
real-time data availability is limited. Numerical models can simulate flows over large domains,
but require numerous input parameters and relatively long computation time. Drifters provide
reliable surface flow point measurements with relatively high frequency in real-time, but their
spatial coverage is limited by deployment logistics and they face limitations in independently
approximating the flow over large areas.

For this application, real-time data availability and area coverage are crucial. Therefore,
drifters are chosen, since they provide measurements immediately after deployment and their
coverage is flexible, as they can be deployed in any location. In this research, custom-made
drifters were used, consisting of a floating buoy equipped with an Alltek Marine Electronics
Corp TB-560 tracking beacon. They provide GPS location and velocity data at 10 s intervals

through radio communication. Figure 12.1 shows a drifter deployed in the sea.
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Figure 12.1: Deployed drifter used in the experiment for obtaining surface
flow velocity measurements.

Since drifters provide velocity values at coarse scattered points, a continuous velocity field
w must be approximated over the entire domain. This is achieved by fitting a surrogate model
that combines optimization and CFD to compute a simulated two-dimensional velocity field
matching the measured values at corresponding points [114]. The procedure is described in this
Section. The advantage of this approach, compared to the interpolation, is that it preserves the
physics of a realistic flow, and the flow field optimization can be completed in a relatively short
amount of time, since the simulated flow field is two-dimensional.

Modeling the sea flow is challenging because the flow can vary significantly across depth
layers and tidal dynamics can lead to significant outflow or inflow of water within the domain.
Therefore, an isolated two-dimensional simulation of the surface layer flow cannot realistically
reproduce the actual state, since it is constrained by mass-conservation laws. To address this
issue, the resulting surface layer flow field is obtained by combining the outputs of two separate
two-dimensional flow simulations. The first flow simulation, referred to as bounded flow wy,
includes the coastline with a no-slip boundary condition and the open sea with an inlet-outlet
boundary condition. The second simulation, referred to as open flow w,, is defined over a
circular domain enclosing the bounded flow domain, with inlet-outlet condition applied along

the entire domain boundary. The resulting fused flow field, representing the surface layer flow,
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is obtained by combining the bounded and open flow simulations

W= W+ W,. (12.1)

The boundary conditions for the bounded and open flow simulations are encoded in the op-
timization vector h, which contains the pressure and tangential velocity values at control points
defined along the inlet-outlet boundaries. The complete boundary profiles are then obtained by
interpolating these values. The size of the optimization vector is twice the number of control
points. In this case, the bounded flow contains three control points, while the open flow contains
four control points.

Using the specified boundary conditions, the bounded and open flow simulations are com-
puted with the simpleFoam solver implemented in OpenFOAM, employing the k — @ SST turbu-
lence model. The fused flow w is then obtained using equation (12.1). The bounded, open, and
fused flow fields are shown in Figure 12.2, along with the defined boundary condition control

points.
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Figure 12.2: Visual representation of the bounded, open, and fused flow

fields, along with the positions of the boundary control points and the

drifter measurement locations. The figure also displays the measured ref-

erence velocity vectors and the optimized velocity vectors within the fused
flow.

The optimization goal is to minimize the error between the point measurements obtained

from the drifters and the corresponding values of the fused flow field. The error is defined as

1 &

Ed(h) = — Z(Wr,i - Ws,i(h))27

na =
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where n; is the number of drifters, w, is the vector containing the reference velocity values
obtained from the drifters, and wj is the vector of simulated velocities obtained from w at the
positions corresponding to the drifter locations.

To ensure numerical stability of the computed flow simulations, optimization constraints
are imposed on the simulation residuals. The pressure residuals are limited to a maximum
of 1-1073, while the velocity components and turbulence variables are constrained to remain
below 1-1074,

The lower and upper bounds of the optimization vector are denoted by h; and h,,, respec-
tively. The limits of the tangential velocity optimization variables are set from -0.5 to 0.5 m/s,
and the pressure bounds are set from -0.05 to 0.05 m?/s?, based on measurements provided in
[115, 117].

An optimization problem is now formulated as follows:

1 &
minimize &4(h) = — Z(Wni — wsﬂ-(h))2
h d ;= (12.2)
subjectto h; <h <h,,.

The solution to the optimization problem (12.2) is obtained through a PSO algorithm, as it
has been proven effective for this class of problems [118]. The PSO implementation used is
provided by the Indago optimization module for Python [106]. The optimization is performed
for 10 minutes or until the defined error satisfies the condition £; < 10™#, representing the mean
squared difference between measured and computed velocities at drifter locations in m/s.

To reproduce the transient behavior of the flow field, a new flow field is obtained trough sur-
rogate model fitting every 10 minutes, which is generally sufficient given the realistic dynamics
of the coastal flow. Within each 10-minute period, the flow is considered constant.

To compensate for the error of the approximated flow field, the diffusion coefficient is cal-
culated using equation (10.5), where E, is calculated as the mean distance error for all drifters
over a 10-minute interval on the constant flow field. It is defined as the difference between
the actual drifter positions and the simulated positions obtained by advecting the drifters using

equation (10.1) on the computed flow field.

111



12.2 Custom sea targets and detection model

In order to conduct the search experiment, four custom identical floating targets were created.
They were constructed from 0.5 x 0.5 m wooden planks painted yellow. Each target featured
marking tape to enhance target visibility for other participants in maritime traffic, attached to a
1 m metal rod mounted at the target center. Figure 12.3 shows an example of a custom target

deployed in the sea.

Figure 12.3: Example of a floating target used in the experiment.

To train the sea target detection model and evaluate its performance, a data set of 522 aerial
images captured at altitudes ranging from 60 to 100 m were collected. The images contained
instances of sea targets, drifters, and boats, with a total of 447 target instances, 45 drifter in-
stances, and 132 boat instances. The data set was uniformly split into training, validation, and
test sets in an 80 : 10 : 10 ratio, taking into account both the number of images and the distri-
bution of target instances. For object detection, the YOLOvVS algorithm was employed. The
training was initialized with the large pre-trained YOLO model yolo8l.pt, pre-trained on the
COCO data set. It continued for 100 epochs, with a batch size of 4 and an image size of 640
pixels. It was trained to detect the three mentioned classes.

The performance of the model was then analyzed on the test data set. The model achieved
the mean average precision of 0.723 with the intersection-over-union (IoU) threshold of 0.5.
For the default detection confidence threshold of 0.001, the model achieves the precision value
of 0.861, and the recall of 0.643 across all classes. Since the focus of the experiment is on sea

target detection, only the performance metrics corresponding to this class are considered when
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constructing the sensing function. The relevant metric is recall, yielding ty; = 0.68 for the tar-
get class, considering the default detection confidence threshold of 0.001. Example detections
of sea targets are shown in Figure 12.4, with the corresponding detection confidence values

displayed next to the class labels.

Ly

/

Figure 12.4: Example detections of sea targets, with detection confidence
indicated.

12.3 Experimental search mission

The search experiment took place on 04 June 2025, in Valun Bay, located on the western coast
of Cres Island, Croatia (44°55’'N, 14°22'E). The team conducting the experiment was divided
into two groups: a sea unit onboard a vessel responsible for target and drifter deployment, and
a land unit responsible for processing drifter data, approximating the flow field, and performing
the UAV search. The land unit was positioned at the UAV base station, located on the central part
of the eastern coastline of Valun Bay at an elevation of 85 m, in order to ensure a good overview
of the search domain and reliable signal coverage for receiving drifter data and controlling the

UAV. Figure 12.5 shows the UAV base station and the surrounding view of Valun Bay.

Figure 12.5: UAV base station overlooking the Valun Bay search domain.
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To conduct the search mission using the current state of the flow field, a custom experimental
search framework was developed to simultaneously approximate the flow field using real-time
drifter measurements and conduct the search based on the computed flow. In the experimental
search framework, drifter measurements are obtained via a laptop connected to a dedicated
radio receiver module. Since the flow field approximation requires significant computational
resources, the drifter data is processed on-site and then forwarded to a remote workstation,
where the flow field and drift error are computed. The resulting flow field is transferred to the
UAV Ground Control Station (GCS), where advection-diffusion of m is performed and UAV
control is executed using HEDAC ergodic guidance. Data sharing between the drifter data
acquisition system, the remote workstation, and the GCS is facilitated through Dropbox file

synchronization. The complete framework is illustrated in Figure 12.6.
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Figure 12.6: Diagram of the experimental dynamic target search frame-
work.

The complete computational domain representing the bay area covers 55.8 km?. The flow

field was approximated using nine drifters distributed throughout the domain. Four drifters
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were evenly scattered around the bay, while the remaining five were placed near or at the target
deployment site to achieve a more accurate approximation of the flow field in that region.

The search was conducted using the DJI Matrice 210v2 UAV coupled with the DJI Zenmuse
XSS camera, presented in Section 3.4. To prevent overexposure from intense sunlight and water
reflections during the experiment, the camera was equipped with an ND16 neutral density filter.
The UAV utilized a constant velocity of vy = 8 m/s, minimum turning radius of R,,;;, = 30 m and
a minimum clearance distance of 6 = 50 m. The search was conducted from a constant height
of hgoqr = 75 m using a pyramidal FOV sensor defined by y; = 64.7° and y, = 39.2°. Utilizing
this configuration, each captured image covered roughly 95 x 53.4 m? of sea surface area. Both
the sensing interval Az; and the control interval Ar were set to 3 s and the HEDAC parameters
were set to & = 5000 and 8 =0.1.

In this mission, for each captured image, the probability of undetected target presence within

the observed area was discretely reduced according to the recall of the detection model, as

_ ml"(x)-(1—py) ifx € Qrov
m!(x) =

m!” (x) otherwise.

The target deployment area was defined as a circular region with a radius of 300 m, located
approximately 1.4 km west of the UAV base station. Four targets were deployed in a plus-
shaped pattern, with each target positioned approximately 120 m from the center. At 10:15,
corresponding to t = 0, the targets were successfully deployed in the search area. Figure 12.7

illustrates the deployment of a sea target.

Figure 12.7: Sea unit deploying the experimental target.
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The undetected target probability density at + = 0 was distributed uniformly within the cir-
cular target deployment area. The search domain at ¢t = 0, including the approximated flow

field, target locations, and the undetected target probability density, is shown in Figure 12.8.

Low High
Undetected target probability

* UAV base staion
e Deployed target location

Figure 12.8: The search domain containing the approximated flow field,
target locations, and the undetected target probability distribution immedi-
ately after target deployment (¢ = 0).

The search mission was delayed 30 minutes from the time of target deployment, and started
at 10:45. The undetected target probability was advected and diffused to account for the delay.
The targets were not equipped with GPS trackers, so their positions were estimated using La-
grangian particle advection given by equation (10.1). Figure 12.9 displays the undetected target
probability, estimated trajectories of the targets during the 30-minute delay and their estimated
positions at the start of the search.

The search was initialized by manually flying the UAV to the start position, after which
the search was conducted autonomously. It continued until the UAV reached a critical battery
depletion level, at approximately 11:45. After the search concluded, the images were processed

using the detection model to identify detected targets. The position of each detected target was
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Situation at the beginning of the search

Low Hilgh
Undetected
target probability

* UAV base staion
----- Estimated target trajectory

ﬁ‘
0 200 400 m @ Estimated target location

Figure 12.9: Undetected target probability and estimated target positions
at the start of the search, including estimated target trajectories during the
30-minute delay.

determined based on the UAV state at the time of image capture and the location of the detected
target label within the image. The situation at the end of the search is shown in Figure 12.10,
illustrating the undetected target probability, UAV trajectory, target detection locations, esti-
mated target positions, and estimated target trajectories starting from # = 0. It is important to
note that the detections and their corresponding positions were recorded at various times during
the search and therefore do not necessarily correspond to the estimated target positions, which
are presented for the search end state. Based on the few rightmost target detection locations, it
is assumed that they correspond to the rightmost target, even though the estimated trajectory of
that target does not fully align with the detections. This indicates that the flow field approxima-
tion exhibits a degree of inaccuracy. Nevertheless, the target was detected multiple times in that
area, as the probability field was diffused to account for errors in the flow field approximation.
Since the targets were not equipped with GPS trackers, detections could not be reliably as-
sociated with specific targets, and therefore an accurate assessment of the target detection rate
could not be obtained for comparison with the estimated survey accomplishment. Moreover,

even if such an assessment is possible, the sample size of four targets would not provide strong
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Situation at the end of the search

Low Hilgh
Undetected
target probability

UAV base staion

R e Estimated target trajectory
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s Target detection

—:|
0 200 400 m UAV trajectory

Figure 12.10: Undetected target probability, UAV trajectory, detected tar-
get locations, and estimated target positions and trajectories at the end of
the search.

statistical significance. Nevertheless, by analyzing the estimated target trajectories and the lo-
cations of detected targets, assuming each detection corresponds to the target with the closest
trajectory, it can be concluded that all targets were detected.

Given the results, the experiment can be considered a successful validation of the method,
as the probability field closely followed the target distribution, and a target was detected out-
side its estimated trajectory, providing a valid confirmation of the uncertainty compensation

methodology.
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13 LIMITATIONS AND DISCUSSION

If the UAV and search control parameters are poorly configured, the UAV can get stuck in an
indefinite circular motion, as shown in Figure 13.1. This usually happens when a relatively large
turning radius is combined with a sensor that has an excessively narrow FOV, or when the search
is conducted from insufficient height. To prevent this, the UAV should be configured such that,
at the operational search height, the lateral coverage of the sensor relative to the UAV’s heading

is at least twice the minimum turning radius.

Figure 13.1: Improper parameter configuration causes the UAV to remain
in constant circular motion [107].

Another limitation of the method is that the minimum clearance constraint is explicitly en-
forced only between multiple UAVs or between the UAVs and the domain boundaries. It is not
directly checked against the terrain within the area because doing so would be too computation-
ally demanding and would hinder real-time control.

Instead, terrain and structure clearance is ensured by considering the worst-case scenario.
By taking into account the desired horizontal clearance d and the minimum height constraint

hmin, the maximum terrain incline that the UAV can safely handle is calculated as

hmin
Or = t .
T = arc an( 5 )

If the UAV satisfies the condition a7 > Br, where By is the steepest terrain slope in the domain,

the minimum clearance is guaranteed throughout the domain. Figure 13.2 depicts the UAV

approaching the area of maximal terrain incline, with the relevant parameters marked.
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Figure 13.2: Illustration of the UAV approaching the area of maximum
terrain slope, with key parameters indicated [107].

The only way to increase the UAV’s maximum supported incline is by raising its minimum
flight altitude. However, this can only be done to a limited extent, as increasing altitude reduces
detection performance. Furthermore, due to the way minimum clearance from the terrain is
ensured, the method cannot handle near-vertical or vertical slopes. To address this, future re-
search could consider overlaying a smoothed terrain model on the real terrain. The UAV could
then conduct searches based on the smoothed surface, maintaining clearance while allowing
operation over steep inclines. In practice, this limitation is not critical for modern UAV plat-
forms, which often include horizontal distance sensors and can maintain the required horizontal
separation with the UAV’s low-level control rather than with the search control.

Another limitation of the method is that, although it operates in three-dimensional space, it
effectively explores only the two-dimensional terrain surface. A key limitation is that it cannot
differentiate between vertical levels, such as flying above or below treetops.

In the effort to test the search framework in a realistic scenario including human targets,
two experiments with volunteers were conducted on Ucka Mountain. The first experiment was
carried out to collect a data set used to train the detection model and validate its performance at
various search heights. Shortly after, a second experiment was conducted with the goal of val-
idating the search framework. The experimental search area was divided into three zones with
uniform probability, where the probability within each zone was determined as the ratio be-
tween the number of people in the zone and the zone area. To encourage participants to remain
in their designated zones, thereby maintaining the intended probability distribution, volunteers
were tasked with finding hidden markers within the area. Each of the three zones contained 50
markers, with each marker serving as a ticket for a chance to win a prize in a tombola held after
the experiment. An example of a marker, the zones with indicated marker locations, and the

volunteers who participated in the experiment are shown in Figure 13.3.
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Figure 13.3: Example of a marker (A), zone layout with indicated marker
locations (B), and volunteers that participated in the second Ucka search
experiment (C).

Although the experiment was successfully executed and some valuable conclusions were
drawn, as presented in [119], the results were not suitable for validating the proposed framework

for several reasons:

* The recall metrics of the YOLO detection did not align with those from the previously
collected training database (where people were mainly on roads, and the background
environment differed significantly due to seasonal changes between early summer and

late autumn).

* The targets (persons), although within the search area, were moving throughout the dura-

tion of the search, whereas the proposed framework assumes stationary targets.

* First detection of each individual could not be accurately determined — required for cal-
culating the target detection rate K — due to similar clothing among participants and some

low-resolution images (good enough for detection, but not for identification).

This led to the design of a new experiment with stationary cardboard targets to validate
the method. However, the results of the previous experiment provided valuable information
for designing this new setup, which was successfully used to validate the proposed method.
Furthermore, the experiment with volunteers highlighted a promising direction for future re-
search, indicating that a proper dynamic probability model describing human movement is such
scenario is needed to further increase search effectiveness.

Another promising direction for future research is to consider multiple camera sensor ori-

entations, which could improve detection performance and provide a better balance between
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detection and area coverage. Additionally, in this study, all objects within the same image were
assumed to be at the same distance from the sensor when validating the machine vision detec-
tion model, and all targets were treated equally regardless of their position within the image.
Future work could account for the target’s relative position in the image and the corresponding
distance from the sensor, since the proposed probabilistic model already allows for this. This
would allow for more accurate evaluation of sensing performance, considering that detection
probability may vary if an object is directly beneath the sensor or at an angle.

During the real-world flights over hilly terrain, the system occasionally breached the min-
imum height constraint, but the violations were minor relative to real-world operational con-
ditions and did not affect overall performance or safety. Additionally, occasional Wi-Fi com-
munication dropouts occurred between the ground station and the android smart device that
sends the flight commands to the UAV, highlighting the need for smooth error handling and the
implementation of appropriate UAV actions under such conditions for practical deployment.
Furthermore, UAV communication cutoffs occurred when the line of sight between the remote
controller and the UAV was obstructed by terrain during autonomous missions in hilly areas.
This demonstrated the importance of accounting for line-of-sight conditions between the UAV
and the ground station. Additionally, a valuable improvement could be achieved by implement-
ing automatic search domain reduction when communication is lost, ensuring that the UAVs
avoid revisiting areas with weak signal.

The UAV signal dropouts also occurred during the testing phase of the sea surface search
experiment. During flights at an altitude of 75 m above sea level, conducted from the UAV
base station situated at an elevation of 85 m, the locations where the UAV began to lose signal
were recorded. Figure 13.4 shows the observed signal coverage across the Valun Bay area, with
the UAV base station also marked on the image. Similar to land-based flights, the UAV lost
signal when the line-of-sight condition was obstructed, as observed in the area south of the base
station, where terrain and vegetation still blocked the signal. The flight range remained reliable
when line-of-sight was maintained, until the critical range limit was reached.

Another limitation is the complexity of the complete sea surface search framework. The
system requires multiple on-site PCs, a central workstation, UAVs, and drifters, all of which
must be coordinated during operations. In addition, substantial logistical support is necessary
for the deployment of drifters and the transport and setup of UAV base station equipment.

This complexity increases the planning effort, operational time, personnel requirements, and
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Figure 13.4: Observed UAV signal range during the Valun Bay sea surface
search experiment.

financial demands associated with conducting the experiments. Furthermore, it is impossible to
provide statistical validation of the dynamic sea target search methodology due to operational
constraints, as there is no feasible way to deploy and recover 100 targets from the sea after each

experiment.
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14 CONCLUSION

UAVs provide a versatile and efficient solution for search operations, combining mobility and
adaptability with the ability to operate in complex terrains and dynamic sea environments. Mo-
tivated by this capability, the research in this thesis undertook a comprehensive approach, in-
cluding the development of theoretical foundations, algorithm implementation, and numerical
and experimental validation for searching both static and dynamic targets.

The search control governed by the potential field has proven to be both flexible and robust,
demonstrating strong performance across distinctly diverse search problems, including hilly ter-
rain and maritime environments. The approach is compatible with the developed enhancements,
allowing for seamless integration of the velocity and altitude control achieved via MPC, and the
probabilistic model supporting dynamic target search. By extending the search algorithm to
account for all environmental and technical conditions, a fully autonomous multi-UAV search
procedure was achieved.

Autonomous multi-UAV search control is implemented through a communication bridge
between the ground station PC and the UAVs, realized using the DJI’s ecosystem. Multi-UAV
motion control is extensively validated in simulations over varying terrain, with the MPC frame-
work generating smooth trajectories that closely follow the target search height while maintain-
ing the desired balance between area coverage and detection performance. The motion control
consistently produces collision-free flights while adhering to specified velocity, acceleration,
and height constraints, and is further validated experimentally over challenging terrain, demon-
strating robustness under real-world conditions with multiple sources of uncertainty.

Numerous manual and autonomous multi-rotor UAV flights are conducted to collect a data
set of aerial images. These images are used to train multiple detection models based on the
YOLO architecture, which are subsequently employed in search missions. The detection models
are validated to assess their performance, confirming the influence of image capture height on
detection effectiveness. The resulting quantitative performance data are then used to define the

detection characteristics for the experimental sensor configurations.
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The presented search missions are conducted based on the belief regarding the targets’ lo-
cations. This belief is represented by a probabilistic model capturing the uncertainty of target
positions and adapts according to the achieved search effort, as reflected by the probabilistic
sensor model. The static target search methodology is experimentally validated in a hilly envi-
ronment. The results show considerable agreement between the estimated search performance
and the actually detected targets. In the dynamic sea target search methodology, the probability
field evolves based on the achieved search effort and additionally accounts for the drift effects
caused by the velocity field of the sea surface layer. Advection describes the impact of the veloc-
ity field, while diffusion compensates for the uncertainties of target drift. The method is tested
numerically, and the computed results show notable agreement between the estimated search
performance and the detected targets, validating the approach both with and without introduced
uncertainty in target drift. Furthermore, compared to a method that does not account for the
dynamic behavior of the sea, the proposed method demonstrates a significant improvement in
performance, particularly within the operational range of realistic sea surface velocities and
UAV flight speeds. The model was validated through a real-world maritime search experiment,
indicating its promising potential to improve SAR operations at sea. The dynamic probabilistic
model accounts for the targets’ drift and UAV sensing, while simultaneously compensating for
errors in the velocity field approximation.

Both the numerical simulations and real-world experiments showcase the benefits of the
ergodic search control. Each search mission attains the desired area coverage as represented
by the probability distribution. Given sufficient time, it achieves complete coverage of the
probability distribution, demonstrating robustness to uncertainties in the targets’ location belief.
Furthermore, the method’s robustness to uncertainty in UAV control and localization errors is
demonstrated both numerically and experimentally.

Overall, the presented numerical and experimental results indicate that the potential field-
based methods can be utilized to conduct effective autonomous multi-UAV area search missions
in both complex natural and maritime environments, thereby confirming the proposed hypothe-

Sis.

125



BIBLIOGRAPHY

[1] M. Lyu, Y. Zhao, C. Huang, and H. Huang, “Unmanned aerial vehicles for search and
rescue: A survey,” Remote Sensing, vol. 15, no. 13, p. 3266, 2023.

[2] M. A.Goodrich et al., “Supporting wilderness search and rescue using a camera-equipped

mini uav,” Journal of Field Robotics, vol. 25, no. 1-2, pp. 89-110, 2008.

[3] R. Ashour, S. Aldhaheri, and Y. Abu-Kheil, “Applications of uavs in search and res-
cue,” in Unmanned aerial vehicles applications: challenges and trends, Springer, 2023,

pp. 169-200.

[4] T. Niedzielski, M. Jurecka, B. Mizinski, W. Pawul, and T. Motyl, “First successful res-
cue of a lost person using the human detection system: A case study from beskid niski

(se poland),” Remote Sensing, vol. 13, no. 23, p. 4903, 2021.

[5] I Martinez-Alpiste, G. Golcarenarenji, Q. Wang, and J. M. Alcaraz-Calero, “Search and
rescue operation using uavs: A case study,” Expert Systems with Applications, vol. 178,

p. 114937, 2021.

[6] M. Silvagni, A. Tonoli, E. Zenerino, and M. Chiaberge, “Multipurpose uav for search
and rescue operations in mountain avalanche events,” Geomatics, Natural Hazards and

Risk, vol. 8, no. 1, pp. 18-33, 2017.

[7] L. Lin and M. A. Goodrich, “Uav intelligent path planning for wilderness search and
rescue,” in 2009 IEEE/RSJ International Conference on Intelligent Robots and Systems,
IEEE, 2009, pp. 709-714.

[8] E.T. Alotaibi, S. S. Algefari, and A. Koubaa, “Lsar: Multi-uav collaboration for search
and rescue missions,” IEEE Access, vol. 7, pp. 55 817-55 832, 2019.

[9] R.D. Arnold, H. Yamaguchi, and T. Tanaka, “Search and rescue with autonomous fly-
ing robots through behavior-based cooperative intelligence,” Journal of International

Humanitarian Action, vol. 3, no. 1, pp. 1-18, 2018.

126



[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

B. Ai, B. Li, S. Gao, J. Xu, and H. Shang, “An intelligent decision algorithm for the
generation of maritime search and rescue emergency response plans,” IEEE Access,

vol. 7, pp. 155 835-155 850, 2019.

M. Messmer, B. Kiefer, L. A. Varga, and A. Zell, “Uav-assisted maritime search and

rescue: A holistic approach,” arXiv preprint arXiv:2403.14281, 2024.

H.-M. Huang, “Autonomy levels for unmanned systems (alfus) framework volume i:

Terminology version 2.0,” 2004.

Z. Xu, D. Deng, Y. Dong, and K. Shimada, “Dpmpc-planner: A real-time uav trajectory
planning framework for complex static environments with dynamic obstacles,” in 2022
International Conference on Robotics and Automation (ICRA), IEEE, 2022, pp. 250—
256.

P. Yao, H. Wang, and Z. Su, “Real-time path planning of unmanned aerial vehicle for
target tracking and obstacle avoidance in complex dynamic environment,” Aerospace

Science and Technology, vol. 47, pp. 269-279, 2015.

A. Xu, C. Viriyasuthee, and I. Rekleitis, “Optimal complete terrain coverage using an
unmanned aerial vehicle,” in 2011 IEEE International conference on robotics and au-

tomation, IEEE, 2011, pp. 2513-2519.

S. Ghambari, M. Golabi, L. Jourdan, J. Lepagnot, and L. Idoumghar, “Uav path plan-
ning techniques: A survey,” RAIRO-Operations Research, vol. 58, no. 4, pp. 2951-2989,
2024.

J. L. Junell, E.-J. Van Kampen, C. C. de Visser, and Q. P. Chu, “Reinforcement learning
applied to a quadrotor guidance law in autonomous flight,” in AIAA guidance, naviga-

tion, and control conference, 2015, p. 1990.

A. Loquercio, A. I. Maqueda, C. R. Del-Blanco, and D. Scaramuzza, “Dronet: Learning
to fly by driving,” IEEE Robotics and Automation Letters, vol. 3, no. 2, pp. 1088—1095,
2018.

Y. Wang, P. Bai, X. Liang, W. Wang, J. Zhang, and Q. Fu, “Reconnaissance mission
conducted by uav swarms based on distributed pso path planning algorithms,” IEEE

access, vol. 7, pp. 105 086-105 099, 2019.

127



[20]

[21]

[22]

[23]

[24]

[25]

[26]

[27]

[28]

J. L. Foo, J. Knutzon, J. Oliver, and E. Winer, “Three-dimensional multi-objective
path planner for unmanned aerial vehicles using particle swarm optimization,” in 48th
AIAA/ASME/ASCE/AHS/ASC Structures, Structural Dynamics, and Materials Confer-
ence, 2007, p. 1881.

H. Shorakaei, M. Vahdani, B. Imani, and A. Gholami, “Optimal cooperative path plan-
ning of unmanned aerial vehicles by a parallel genetic algorithm,” Robotica, vol. 34,

no. 4, pp. 823-836, 2016.

J. D. Silva Arantes, M. d. Silva Arantes, C. F. Motta Toledo, O. T. Junior, and B. C.
Williams, “Heuristic and genetic algorithm approaches for uav path planning under
critical situation,” International Journal on Artificial Intelligence Tools, vol. 26, no. 01,

p. 1760008, 2017.

M. D. Phung and Q. P. Ha, “Safety-enhanced uav path planning with spherical vector-
based particle swarm optimization,” Applied Soft Computing, vol. 107, p. 107 376,
2021.

T.-Y. Sun, C.-L. Huo, S.-J. Tsai, Y.-H. Yu, and C.-C. Liu, “Intelligent flight task algo-
rithm for unmanned aerial vehicle,” Expert Systems with Applications, vol. 38, no. 8,

pp- 10036-10048, 2011.

V. Roberge, M. Tarbouchi, and G. Labonté, “Comparison of parallel genetic algorithm
and particle swarm optimization for real-time uav path planning,” IEEE Transactions

on industrial informatics, vol. 9, no. 1, pp. 132-141, 2012.

R. Shivgan and Z. Dong, “Energy-efficient drone coverage path planning using genetic
algorithm,” in 2020 IEEE 2 st International Conference on High Performance Switch-
ing and Routing (HPSR), IEEE, 2020, pp. 1-6.

Y. Kuwata, T. Schouwenaars, A. Richards, and J. How, “Robust constrained receding
horizon control for trajectory planning,” in AIAA Guidance, Navigation, and Control

Conference and Exhibit, 2005, p. 6079.

J. Bellingham, A. Richards, and J. P. How, “Receding horizon control of autonomous
aerial vehicles,” in Proceedings of the 2002 American control conference (IEEE Cat.

No. CH37301), IEEE, vol. 5, 2002, pp. 3741-3746.

128



[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

A. Bircher, M. Kamel, K. Alexis, H. Oleynikova, and R. Siegwart, “Receding horizon
path planning for 3d exploration and surface inspection,” Autonomous Robots, vol. 42,

no. 2, pp. 291-306, 2018.

G. M. Aung, D. M. Stipanovié, and P. G. Voulgaris, “A swarm-based approach to dy-

namic coverage control of multi-agent systems,” Automatica, vol. 112, p. 108 637, 2020.

S. Garrido, J. Muinoz, B. Lépez, F. Quevedo, C. A. Monje, and L. Moreno, “Fast march-
ing techniques for teaming uav’s applications in complex terrain,” Drones, vol. 7, no. 2,

p. 84, 2023.

S. Ivi¢, A. Andrejcuk, and S. Druzeta, “Autonomous control for multi-agent non-uniform

spraying,” Applied Soft Computing, vol. 80, pp. 742760, 2019.

D. Gkouletsos, A. Iannelli, M. H. de Badyn, and J. Lygeros, “Decentralized trajectory
optimization for multi-agent ergodic exploration,” IEEE Robotics and Automation Let-

ters, vol. 6, no. 4, pp. 6329-6336, 2021.

A. Mavrommati, E. Tzorakoleftherakis, I. Abraham, and T. D. Murphey, “Real-time
area coverage and target localization using receding-horizon ergodic exploration,” IEEE

Transactions on Robotics, vol. 34, no. 1, pp. 62-80, 2017.

S. Ivié, “Motion control for autonomous heterogeneous multiagent area search in un-
certain conditions,” IEEE Transactions on Cybernetics, vol. 52, no. 5, pp. 3123-3135,
2020.

Y. Zheng and C. Zhai, “Distributed coverage control of multi-agent systems in uncertain

environments using heat transfer equations,” arXiv preprint arXiv:2204.09289, 2022.

B. Crnkovié, S. Ivi¢, and M. Zovko, “Fast algorithm for centralized multi-agent maze

exploration,” arXiv preprint arXiv:2310.02121, 2023.

I. Abraham and T. D. Murphey, “Decentralized ergodic control: Distribution-driven
sensing and exploration for multiagent systems,” IEEE Robotics and Automation Let-

ters, vol. 3, no. 4, pp. 2987-2994, 2018.

T. J. Stastny, G. A. Garcia, and S. S. Keshmiri, “Collision and obstacle avoidance in
unmanned aerial systems using morphing potential field navigation and nonlinear model

predictive control,” Journal of dynamic systems, measurement, and control, vol. 137,

no. 1, 2015.

129



[40]

[41]

[42]

[43]

[44]

[45]

[46]

[47]

[48]

[49]

A. Marchidan and E. Bakolas, “Collision avoidance for an unmanned aerial vehicle
in the presence of static and moving obstacles,” Journal of Guidance, Control, and

Dynamics, vol. 43, no. 1, pp. 96-110, 2020.

J. Tordesillas and J. P. How, “Mader: Trajectory planner in multiagent and dynamic

environments,” IEEE Transactions on Robotics, vol. 38, no. 1, pp. 463-476, 2021.

B. Zhou, F. Gao, L. Wang, C. Liu, and S. Shen, “Robust and efficient quadrotor tra-
jectory generation for fast autonomous flight,” IEEE Robotics and Automation Letters,

vol. 4, no. 4, pp. 3529-3536, 2019.

M. J. Igbal, M. M. Igbal, I. Ahmad, M. O. Alassafi, A. S. Alfakeeh, and A. Alhomoud,
“Real-time surveillance using deep learning,” Security and Communication Networks,

vol. 2021, no. 1, p. 6 184756, 2021.

S. Lee, Y. Song, and S.-H. Kil, “Feasibility analyses of real-time detection of wildlife
using uav-derived thermal and rgb images,” Remote Sensing, vol. 13, no. 11, p. 2169,

2021.

S. Ren, K. He, R. Girshick, and J. Sun, “Faster r-cnn: Towards real-time object detection
with region proposal networks,” IEEE transactions on pattern analysis and machine

intelligence, vol. 39, no. 6, pp. 1137-1149, 2016.

J. Redmon, S. Divvala, R. Girshick, and A. Farhadi, “You only look once: Unified, real-
time object detection,” in Proceedings of the IEEE conference on computer vision and

pattern recognition, 2016, pp. 779-788.

P. Mittal, R. Singh, and A. Sharma, “Deep learning-based object detection in low-
altitude uav datasets: A survey,” Image and Vision computing, vol. 104, p. 104 046,
2020.

D.-M. Seo, H.-J. Woo, M.-S. Kim, W.-H. Hong, I.-H. Kim, and S.-C. Baek, “Identifi-
cation of asbestos slates in buildings based on faster region-based convolutional neural
network (faster r-cnn) and drone-based aerial imagery,” Drones, vol. 6, no. 8, p. 194,

2022.

X. Lou et al., “Measuring loblolly pine crowns with drone imagery through deep learn-

ing,” Journal of Forestry Research, pp. 1-12, 2022.

130



[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

A. Ramachandran and A. K. Sangaiah, “A review on object detection in unmanned
aerial vehicle surveillance.,” International Journal of Cognitive Computing in Engi-

neering, 2021.

G.-S. Xia et al., “Dota: A large-scale dataset for object detection in aerial images,” in

Proceedings of the IEEE conference on computer vision and pattern recognition, 2018,

pp. 3974-3983.

K. Levi and Y. Weiss, “Learning object detection from a small number of examples:
The importance of good features,” in Proceedings of the 2004 IEEE Computer Society
Conference on Computer Vision and Pattern Recognition, 2004. CVPR 2004., 1IEEE,
vol. 2, 2004, pp. II-11.

X. Yang, F. Sang, T. Wang, X. Pei, H. Wang, and T. Hou, “Research on the influence of
camera velocity on image blur and a method to improve object detection precision,” in
2021 International Conference on Cyber-Physical Social Intelligence (ICCSI), IEEE,
2021, pp. 1-6.

C. Liu, Y. Tao, J. Liang, K. Li, and Y. Chen, “Object detection based on yolo network,”
in 2018 IEEE 4th information technology and mechatronics engineering conference

(ITOEC), IEEE, 2018, pp. 799-803.

Y. Pei, Y. Huang, Q. Zou, X. Zhang, and S. Wang, “Effects of image degradation and
degradation removal to cnn-based image classification,” IEEE transactions on pattern

analysis and machine intelligence, vol. 43, no. 4, pp. 1239-1253, 2019.

M. Farah and A. Alruwaili, “Optimizing ground sampling distance for drone-based gis
mapping: A case study in riyadh, saudi arabia,” in 2024 9th International Conference

on Robotics and Automation Engineering (ICRAE), IEEE, 2024, pp. 1-5.

J. Shermeyer and A. Van Etten, “The effects of super-resolution on object detection per-
formance in satellite imagery,” in Proceedings of the IEEE/CVF Conference on Com-

puter Vision and Pattern Recognition Workshops, 2019, pp. 0-0.

S. Niu, Z. Nie, G. Li, and W. Zhu, “Multi-altitude corn tassel detection and counting

based on uav rgb imagery and deep learning,” Drones, vol. 8, no. 5, p. 198, 2024.

L. Qingqing et al., “Towards active vision with uavs in marine search and rescue: An-
alyzing human detection at variable altitudes,” in 2020 IEEE International Symposium

on Safety, Security, and Rescue Robotics (SSRR), IEEE, 2020, pp. 65-70.

131



[60] J. Suo, T. Wang, X. Zhang, H. Chen, W. Zhou, and W. Shi, “Hit-uav: A high-altitude
infrared thermal dataset for unmanned aerial vehicle-based object detection,” Scientific

Data, vol. 10, no. 1, p. 227, 2023.

[61] T. Petso, R. S. Jamisola, D. Mpoeleng, and W. Mmereki, “Individual animal and herd
identification using custom yolo v3 and v4 with images taken from a uav camera at
different altitudes,” in 2021 IEEE 6th International Conference on Signal and Image
Processing (ICSIP), IEEE, 2021, pp. 33-39.

[62] A. Kosari, H. Maghsoudi, A. Lavaei, and R. Ahmadi, “Optimal online trajectory genera-
tion for a flying robot for terrain following purposes using neural network,” Proceedings

of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering,

vol. 229, no. 6, pp. 1124-1141, 2015.

[63] C. D. Melita, D. C. Guastella, L. Cantelli, G. Di Marco, I. Minio, and G. Muscato,
“Low-altitude terrain-following flight planning for multirotors,” Drones, vol. 4, no. 2,

p. 26, 2020.

[64] Z. Xia, S. Bu, L. Chen, and P. Han, “A fast reconstruction method based on real-time
terrain following,” in 2022 China Automation Congress (CAC), IEEE, 2022, pp. 1479-
1484.

[65] E.N. Johnson, J. G. Mooney, C. Ong, J. Hartman, and V. Sahasrabudhe, “Flight testing
of nap-of-the-earth unmanned helicopter systems,” in 67th American Helicopter Society

International Annual Forum 2011, 2011, pp. 3180-3192.

[66] L. Bauersfeld and D. Scaramuzza, “Range, endurance, and optimal speed estimates for
multicopters,” IEEE Robotics and Automation Letters, vol. 7, no. 2, pp. 2953-2960,
2022.

[67] H. Gao et al., “Energy-efficient velocity control for massive numbers of uavs: A mean
field game approach,” IEEE Transactions on Vehicular Technology, vol. 71, no. 6,
pp. 62666278, 2022.

[68] H. Song et al., “Multi-uav disaster environment coverage planning with limited-endurance,”
in 2022 International Conference on Robotics and Automation (ICRA), 1IEEE, 2022,
pp- 10760-10766.

[69] L. S. Pitsoulis and M. G. Resende, “Greedy randomized adaptive search procedures,”
Handbook of applied optimization, pp. 168—183, 2002.

132



[70]

[71]

[72]

[73]

[74]

[75]

[76]

[77]

[78]

[79]

J. F. Araujo, P. Sujit, and J. B. Sousa, “Multiple uav area decomposition and cover-
age,” in 2013 IEEE symposium on computational intelligence for security and defense

applications (CISDA), 1EEE, 2013, pp. 30-37.

L. M. Miller, Y. Silverman, M. A. Maclver, and T. D. Murphey, “Ergodic exploration
of distributed information,” IEEE Transactions on Robotics, vol. 32, no. 1, pp. 36-52,
2015.

G. Mathew and 1. Mezi¢, “Metrics for ergodicity and design of ergodic dynamics for
multi-agent systems,” Physica D: Nonlinear Phenomena, vol. 240, no. 4-5, pp. 432-
442,2011.

A. Hubenko, V. A. Fonoberov, G. Mathew, and 1. Mezic, “Multiscale adaptive search,”

IEEE Transactions on Systems, Man, and Cybernetics, Part B (Cybernetics), vol. 41,
no. 4, pp. 1076-1087, 2011.

S. Ivi¢, B. Crnkovi¢, H. Arbabi, S. Loire, P. Clary, and 1. Mezié, “Search strategy in a
complex and dynamic environment: The mh370 case,” Scientific Reports, vol. 10, no. 1,

p. 19640, 2020.

M. Schwenzer, M. Ay, T. Bergs, and D. Abel, “Review on model predictive control:
An engineering perspective,” The International Journal of Advanced Manufacturing

Technology, vol. 117, no. 5, pp. 1327-1349, 2021.

S. Ivié, B. Crnkovié, and Mezi¢, “Ergodicity-based cooperative multiagent area cover-
age via a potential field,” IEEE Transactions on Cybernetics, vol. 47, no. 8, pp. 1983—
1993, Aug. 2017, ISSN: 2168-2267.

S. Ivi¢, A. Sikirica, and B. Crnkovié, “Constrained multi-agent ergodic area survey-
ing control based on finite element approximation of the potential field,” Engineering

Applications of Artificial Intelligence, vol. 116, p. 105 441, 2022.

S. Ivi¢, B. Crnkovi¢, L. Grbci¢, and L. Matlekovi¢, “Multi-uav trajectory planning
for 3d visual inspection of complex structures,” Automation in Construction, vol. 147,

p. 104709, 2023.

C. Bilaloglu, T. Low, and S. Calinon, “Whole-body ergodic exploration with a manipu-

lator using diffusion,” IEEE Robotics and Automation Letters, 2023.

133



[80]

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

C. Bilaloglu, T. Low, and S. Calinon, “Tactile ergodic coverage on curved surfaces,”
IEEE Transactions on Robotics (T-RO), vol. 41, pp. 1421-1435, 2025. por: 10.1109/
TRO.2025.3532513.

T. Low, J. Maceiras, and S. Calinon, “Drozbot: Using ergodic control to draw portraits,”

IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11728-11734, 2022.

Y. Lun, H. Wang, J. Wu, Y. Liu, and Y. Wang, “Target search in dynamic environ-
ments with multiple solar-powered uavs,” IEEE Transactions on Vehicular Technology,

vol. 71, no. 9, pp. 9309-9321, 2022.

L. Li, X. Zhang, W. Yue, and Z. Liu, “Cooperative search for dynamic targets by mul-
tiple uavs with communication data losses,” ISA transactions, vol. 114, pp. 230-241,

2021.

T. Yang, Z. Jiang, R. Sun, N. Cheng, and H. Feng, “Maritime search and rescue based on
group mobile computing for unmanned aerial vehicles and unmanned surface vehicles,”

IEEFE transactions on industrial informatics, vol. 16, no. 12, pp. 7700-7708, 2020.

M. A. Alanezi et al., “Dynamic target search using multi-uavs based on motion-encoded
genetic algorithm with multiple parents,” IEEE Access, vol. 10, pp. 77922-77 939,
2022.

H. Coffin, I. Abraham, G. Sartoretti, T. Dillstrom, and H. Choset, “Multi-agent dy-
namic ergodic search with low-information sensors,” in 2022 International Conference

on Robotics and Automation (ICRA), IEEE, 2022, pp. 1148011 486.

Airmobi. “Skyeye 2600 fixed-wing uav platform.” Accessed: 2025-07-30. (n.d.), [On-
line]. Available: https://www . airmobi . com/product /skyeye - 2600 - fixed -
wing-uav-platform/ (visited on 07/30/2025).

I. Technology. “The galaxy uav.” Accessed: 2025-07-30. (2025), [Online]. Available:
https://innoflighttechnology.com/the-galaxy/ (visited on 07/30/2025).

Aeromotus. “Dji phantom 4 pro+ obsidian edition.” Accessed: 2025-07-30. (2025),
[Online]. Available: https://www . aeromotus . com/product/phantom-4 - pro-
plus-obsidian/ (visited on 07/30/2025).

KOREC Group. “Image of wingtraone uav.” Product image. (n.d.), [Online]. Available:
https://www.korecgroup.com/product/wingtraone/ (visited on 07/30/2025).

134


https://doi.org/10.1109/TRO.2025.3532513
https://doi.org/10.1109/TRO.2025.3532513
https://www.airmobi.com/product/skyeye-2600-fixed-wing-uav-platform/
https://www.airmobi.com/product/skyeye-2600-fixed-wing-uav-platform/
https://innoflighttechnology.com/the-galaxy/
https://www.aeromotus.com/product/phantom-4-pro-plus-obsidian/
https://www.aeromotus.com/product/phantom-4-pro-plus-obsidian/
https://www.korecgroup.com/product/wingtraone/

[91] AMain Hobbies. “Rc airplanes: Understanding transmitter flight controls.” Image re-
trieved from webpage. (n.d.), [Online]. Available: https : //www . amainhobbies .
com/rc-airplanes-understanding-transmitter-flight- controls/cp1090

(visited on 08/01/2025).

[92] DII. “Zenmuse x5s.” Accessed: 2025-07-31. (n.d.), [Online]. Available: https://www.

aviteh.hr/dji-zenmuse-x5s.html (visited on 07/31/2025).

[93] Yusense. “Image of aqg600 pro 5-bands multispectral camera.” Image taken from the
product page, accessed 2025-07-31. (n.d.), [Online]. Available: https://www.ghostysky.
com/product/aq600-pro-5-bands-multispectral-camera/ (visited on 07/31/2025).

[94] DII. “Flir zenmuse xt2 thermal camera - 640x512 30hz 25mm.” Accessed: 2025-07-31.
(n.d.), [Online]. Available: https://www.dronenerds. com/products/dji-flir-
zenmuse-xt2-thermal-camera-640x512-30hz-25mm-zxt2a25fr-dji (visited on

07/31/2025).

[95] ——, “Image of zenmuse 12 lidar camera (2-year coverage).” Image taken from the
product page, accessed 2025-07-31. (n.d.), [Online]. Available: https://dronovishop.
hr/dji-zenmuse-12-1idar-2y/ (visited on 07/31/2025).

[96] J. Hollesen, M. S. Jepsen, and H. Harmsen, “The application of rgb, multispectral, and
thermal imagery to document and monitor archaeological sites in the arctic: A case

study from south greenland,” Drones, vol. 7, no. 2, p. 115, 2023.

[97] M. Sharon. “Image from “demystifying lidar point cloud data”.” Image taken from the
Medium article, accessed 2025-07-31. (2024), [Online]. Available: https://medium.
com/@matt-sharon/lidar-point-cloud-data-guide-62c126101c08 (visited on
07/31/2025).

[98] M. D. Services. “Image of approved used dji matrice 210 rtk.” Image taken from the
product page, accessed 2025-07-31. (n.d.), [Online]. Available: https://munsterdroneservices.

com/product/approved-used-dji-matrice-210-rtk/ (visited on 07/31/2025).

[99] V. Drones. “Dji mavic 2 enterprise dual thermal drone.” Accessed: 2025-07-30. (2025),
[Online]. Available: https://volatusdrones.com/blogs/posts-without-blog/

dji-mavic-2-enterprise-dual-thermal-drone (visited on 07/30/2025).

135


https://www.amainhobbies.com/rc-airplanes-understanding-transmitter-flight-controls/cp1090
https://www.amainhobbies.com/rc-airplanes-understanding-transmitter-flight-controls/cp1090
https://www.aviteh.hr/dji-zenmuse-x5s.html
https://www.aviteh.hr/dji-zenmuse-x5s.html
https://www.ghostysky.com/product/aq600-pro-5-bands-multispectral-camera/
https://www.ghostysky.com/product/aq600-pro-5-bands-multispectral-camera/
https://www.dronenerds.com/products/dji-flir-zenmuse-xt2-thermal-camera-640x512-30hz-25mm-zxt2a25fr-dji
https://www.dronenerds.com/products/dji-flir-zenmuse-xt2-thermal-camera-640x512-30hz-25mm-zxt2a25fr-dji
https://dronovishop.hr/dji-zenmuse-l2-lidar-2y/
https://dronovishop.hr/dji-zenmuse-l2-lidar-2y/
https://medium.com/@matt-sharon/lidar-point-cloud-data-guide-62c126101c08
https://medium.com/@matt-sharon/lidar-point-cloud-data-guide-62c126101c08
https://munsterdroneservices.com/product/approved-used-dji-matrice-210-rtk/
https://munsterdroneservices.com/product/approved-used-dji-matrice-210-rtk/
https://volatusdrones.com/blogs/posts-without-blog/dji-mavic-2-enterprise-dual-thermal-drone
https://volatusdrones.com/blogs/posts-without-blog/dji-mavic-2-enterprise-dual-thermal-drone

[100] L. Lanca, S. Dumenci¢, K. Jakac, and S. Ivi¢, “Experimental validation and robustness
analysis of ergodic uav control,” in 2025 1 1th International Conference on Automation,

Robotics, and Applications (ICARA), IEEE, 2025, pp. 257-261.

[101] L.Lanca, M. Malisa, K. Jakac, and S. Ivi¢é, “Optimal flight speed and height parameters

for computer vision detection in uav search,” Drones, vol. 9, no. 9, p. 595, 2025.

[102] B. O. Koopman, “The theory of search. ii. target detection,” Operations research, vol. 4,

no. 5, pp. 503-531, 1956.

[103] Copernicus, Copernicus digital elevation model product handbook, version 2.1, Cam-
paign ID: GEO.2018-1988-2, European Space Agency, Jun. 25, 2020. [Online]. Avail-
able: https : //dataspace . copernicus . eu/sites/default/files/media/
files/2024-06/ge01988- copernicusdem- spe-002_producthandbook_i5.0.
pdf.

[104] G. Krieger et al., “Tandem-x: A satellite formation for high-resolution sar interferom-
etry,” IEEE transactions on geoscience and remote sensing, vol. 45, no. 11, pp. 3317—-

3341, 2007.

[105] C. Audet and J. E. Dennis Jr, “Mesh adaptive direct search algorithms for constrained

optimization,” SIAM Journal on optimization, vol. 17, no. 1, pp. 188-217, 2006.

[106] S.Ivi¢and S. DruZeta, Indago: Python 3 module for numerical optimization, version 0.4.5.

[Online]. Available: https://pypi.org/project/Indago/0.4.5/.

[107] L. Lanca, K. Jakac, and S. Ivi¢, “Model predictive altitude and velocity control in
ergodic potential field directed multi-uav search,” arXiv preprint arXiv:2401.02899,
2024.

[108] J. D. Hunter, “Matplotlib: A 2d graphics environment,” Computing in Science & Engi-
neering, vol. 9, no. 3, pp. 90-95, 2007. por: 10.1109/MCSE. 2007 . 55.

[109] C. Sullivan and A. Kaszynski, “Pyvista: 3d plotting and mesh analysis through a stream-
lined interface for the visualization toolkit (vtk),” Journal of Open Source Software,

vol. 4, no. 37, p. 1450, 2019.

[110] A. Torralba, “How many pixels make an image?” Visual neuroscience, vol. 26, no. 1,

pp. 123-131, 2009.

136


https://dataspace.copernicus.eu/sites/default/files/media/files/2024-06/geo1988-copernicusdem-spe-002_producthandbook_i5.0.pdf
https://dataspace.copernicus.eu/sites/default/files/media/files/2024-06/geo1988-copernicusdem-spe-002_producthandbook_i5.0.pdf
https://dataspace.copernicus.eu/sites/default/files/media/files/2024-06/geo1988-copernicusdem-spe-002_producthandbook_i5.0.pdf
https://pypi.org/project/Indago/0.4.5/
https://doi.org/10.1109/MCSE.2007.55

[111] C. Chen et al., “Yolo-based uav technology: A review of the research and its applica-
tions,” Drones, vol. 7, no. 3, p. 190, 2023.

[112] J. H. Ferziger, M. Perié, and R. L. Street, Computational methods for fluid dynamics.
springer, 2019.

[113] O. Ltd, Esi opencfd release openfoam® v2406, https://www.openfoam. com/news/
main-news/openfoam-v2406, [Online; Date last accessed 10-March-2025], 2025.

[114] K. Jakac, L. Lanca, A. Sikirica, and S. Ivié, “Efficient data-driven flow modeling for ac-
curate passive scalar advection in submesoscale domains,” arXiv preprint arXiv:2503.07452,

2025.

[115] S. Cosoli, M. Licer, M. Vodopivec, and V. Malacic, “Surface circulation in the gulf of
trieste (northern adriatic sea) from radar, model, and adcp comparisons,” Journal of

Geophysical Research: Oceans, vol. 118, no. 11, pp. 6183-6200, 2013.

[116] L. Lanca, K. Jakac, S. Calinon, and S. Ivi¢, “Ergodic exploration of dynamic distribu-
tion,” arXiv preprint arXiv:2503.11235, 2025.

[117] G. Notarstefano, P.-M. Poulain, and E. Mauri, “Estimation of surface currents in the
adriatic sea from sequential infrared satellite images,” Journal of Atmospheric and

Oceanic Technology, vol. 25, no. 2, pp. 271-285, 2008.

[118] K.Jakac, L. Lanca, A. Sikirica, and S. Ivi¢, “Approximation of sea surface velocity field
by fitting surrogate two-dimensional flow to scattered measurements,” arXiv preprint

arXiv:2401.12746, 2024.

[119] S. Dumencié, L. Lanca, K. Jakac, and S. Ivi¢, “Experimental validation of uav search
and detection system in real wilderness environment,” arXiv preprint arXiv:2502.17372,

2025.

137


https://www.openfoam.com/news/main-news/openfoam-v2406
https://www.openfoam.com/news/main-news/openfoam-v2406

LIST OF FIGURES

3.1
3.2

33
34
3.5

3.6
3.7

3.8

39

4.1

4.2

4.3

6.1

7.1

7.2

7.3

Airmobi Skyeye 2600 fixed-wing UAV [87]. . . . . . .. ... ... ... ... 14
Examples of rotary-wing UAVs: The Rotor single-wing [88] and DJI Phantom

4 Pro multi-rotor [89] UAVSs. . . . . . . . . . 15
WingtraOne hybrid VTOL UAV [90]. . . . . . ... ... ... ... .. ... 15
Local UAV coordinate system and attitude angles . . . . . . ... ... .. .. 16

Multi-rotor motor power distributions during pitch, roll, and yaw changes. Red
arrows indicate motor rotation direction and rotational speed (thicker arrows =
higherspeed). . . . . . . . . . . 17
Fixed-wing aircraft attitude control components [91]. . . . . . . ... ... .. 18

Range of UAV perception sensors [92-95] and examples of their data outputs

[96,97]. . . . . e e 19
Experimental UAVs used in real-world testing [92,98,99]. . . . ... ... .. 20
Overview of the communication scheme between the PC and the UAVs [100]. . 21

Velocity components and constraints for multi-rotor (A) and fixed-wing (B) UAVs. 24

Representation of the pyramidal and conical FOV angles (y), along with the

global and local UAV coordinate frames and an example of vector R. . . . . . . 29
Visualization of sensing function y. . . . . . . ... .. ... ... ... 30
UAVs executing the collision avoidance maneuver. . . . . . . ... ... ... 42

Geographical region (left) and the corresponding Digital Elevation Model (right). 48
Visual representation of the predicted two-dimensional path generated along the
potential field gradient. . . . . . . .. ... Lo 49
Graphical representation of the predicted path (A) alongside the corresponding

MPC optimization process (B). . . . . . . .. ..o 55

138



8.1

8.2

8.3

8.4

8.5

8.6

8.7

8.8

8.9

8.10

8.11

8.12

8.13

9.1
9.2

9.3

94

Dependence of recall on image capture height (A) and detection rate functions
for UAVs used in the simulations (B). . . . . . . ... ... ... ....... 61
[lustration of terrain incline (A) and initial target probability density (B) for the
Plasticworldcase. . . . . . . . . .. . 63
Analysis of a 1000-second trajectory for UAV A during exploration of the Plas-
ticWorldcase. . . . . . . . . . . 64
Survey accomplishment (A) and computation times (B) for the Plastic world case. 64
Mount Vesuvius terrain slope (A) and undetected target probability at =0 s (B). 65
UAV trajectories at 1400 s of the Mount Vesuvius survey (A), with detailed
analysis of the red-highlighted trajectory shown in panels (B-E) [107] . . . . . 66
UAV trajectories for the Mount Vesuvius survey case across all compared meth-
ods. . . L e 67
Mount Vesuvius case 1 across compared methods (A) and computation time
per step for the HEDAC + MPC method (B). . . . . . . .. .. ... ... ... 68
UAV trajectories during the Mount Vesuvius survey with a no-fly zone at 1400
s (A), including a detailed analysis of the red-highlighted trajectory shown in
panels (B-E) . . . . . . . .. 68
Star dunes terrain with incline representation (A) and initial undetected target
probability density (B). . . . . . . . . ... 69
Star dunes survey UAV trajectories at t = 1300 s (A), along with analysis of
flight parameters over the duration of the red-highlighted trajectory (B-E). . . . 70

Star dunes case, N across methods (A) and HEDAC + MPC computation time

perstep (B). . . . . . 71
Statistical analysis of method robustness demonstrated on the Mount Vesuvius

EESECASE. . . . . o e e e e e e e 73
[lustration of the RaSa River valley. . . . . .. .. ... ... ... .. .... 75

Motion control validation case: domain incline (A) and area of interest encoded
in the undetected-target probability density field (B). . . . ... ... ... .. 76
UAV trajectory for a single flight mission during motion-control validation with
prediction horizon 7,,,x = 30 s (A), and corresponding trajectory analysis (B-E). 77

Predicted UAV position errors during all real-world flight experiments. . . . . . 78

139



9.5

9.6

9.7

9.8

9.9

9.10

9.11

9.12

9.13

9.14

9.15

11.2

11.3

Location error between the simulated trajectory (zero error) and the executed
real-world trajectory for both prediction horizon lengths of 15 s and 30 s.
Survey accomplishment for all simulated missions and real-world missions, for
both prediction horizon lengths of 15sand30s. . . . . . ... ... ... ...
Flight height analysis and comparison with simulation results for 7, = 30 s
(A)and Ty =15s(B). . . . o o o
Representative custom cardboard targets used in the experiment. . . . . . . . .
Recall values of the cardboard target detection model at discrete heights and
the corresponding regression curve (A), along with detection rate functions I'
for the UAVs used in the experiments (B). . . . . . . . . ... ... ... ...
Experimental area on Ucka Mountain including two Matrice 210 v2 UAVs.
Ucka experiment terrain (A) and the initial undetected target probability density
with target locations shown as blackdots (B). . . . . ... ... ... ... ..
Detection model classification outcomes: true positives (A) and false positives
(B) annotated by the model in blue, and false negatives (C) manually annotated
in red. True negatives are represented by regions with no annotations in the
images. Numbers next to the annotations in (A,B) indicate the model’s detection
confidence. . . . . . . . . L
Mission 1 trajectories and marked targets (A) and flight parameters graphs (B-
E) for the red trajectory executed by the Matrice UAV. . . . . . . ... ... ..

Mission 2 trajectories (A) and flight parameters graphs (B-E) for the yellow

Survey accomplishment 7, target detection rate k, and their relative error over

the duration of both search missions. . . . . . . . . . . . . . . . . ... ...

Cavity flow field during the simulation and the distribution of simulated targets

Undetected target probability field, simulated targets, and UAV trajectories for
both the proposed and baseline methods at t =450, together with 11 and x values
throughout the search. . . . . . . . ... ... ... ... ... ... . ...,
Performance comparison of the proposed and baseline methods across different

Avalues. . ...

140

79

83
84

86



11.4 Performance analysis of the proposed method across different o values and
varying numbers of UAVs conducting the search. . . . . . .. ... ... ...
11.5 Flow field and target positions at t = 0, at search start t = 10800 s, and at search
endr =21300s.. . . . . .
11.6 Unije Channel search at r = 21300, showing UAV trajectories from the final
search wave, target locations and detection status for both the uncompensated
and compensated cases, along with the evolution of 17 and Kk over time. . . . . .
11.7 UAV trajectories, targets’ positions and their detection status at the end of the
first search mission in the MH370 simulation executed with HEDAC, along
with the underlying flow field and the evolution of k and 1 over all five search

missions [116]. . . . . . . . .. e

12.1 Deployed drifter used in the experiment for obtaining surface flow velocity mea-
SUIEMENES. . . . . . . o o ot e e e e e e e e e e e e
12.2 Visual representation of the bounded, open, and fused flow fields, along with
the positions of the boundary control points and the drifter measurement loca-
tions. The figure also displays the measured reference velocity vectors and the
optimized velocity vectors within the fused flow. . . . . ... ... ... ...
12.3 Example of a floating target used in the experiment. . . . . . . ... ... ...
12.4 Example detections of sea targets, with detection confidence indicated. . . . . .
12.5 UAV base station overlooking the Valun Bay search domain. . . . . . ... ..
12.6 Diagram of the experimental dynamic target search framework. . . . . . . . ..
12.7 Sea unit deploying the experimental target. . . . . . . . . . ... ... .....
12.8 The search domain containing the approximated flow field, target locations, and
the undetected target probability distribution immediately after target deploy-
ment (1 =0). . . . .
12.9 Undetected target probability and estimated target positions at the start of the
search, including estimated target trajectories during the 30-minute delay.
12.10Undetected target probability, UAV trajectory, detected target locations, and

estimated target positions and trajectories at the end of the search. . . . . . ..

13.1 Improper parameter configuration causes the UAV to remain in constant circular

motion [107]. . . . . . . . e

141

117



13.2 Tllustration of the UAV approaching the area of maximum terrain slope, with
key parameters indicated [107]. . . . . . . . . . .. ... L. 120
13.3 Example of a marker (A), zone layout with indicated marker locations (B), and
volunteers that participated in the second Ucka search experiment (C). . . . . . 121

13.4 Observed UAV signal range during the Valun Bay sea surface search experiment. 123

142



LIST OF TABLES

3.1 Overview of technical specifications for the UAVs used in field experiments . .

8.1 Motion, vision/sensing and control UAV parameters used in simulations [107].
8.2 Overview of simulated test cases and their parameters [107] . . . .. ... ..

8.3 Variables’” uncertainty error . . . . . . . . . . ..o e e e

9.1 Motion, sensing, and control parameters of the UAV used in the search method-

ology validation experiment [107]. . . . . . . . . ... ... ... ... .. ..

11.1 Computation time for the Unije Channel search scenario [116]. . . . . . . . ..

143



CURRICULUM VITAE

Luka Lanca was born on April 1, 1998, in Rijeka, Croatia. He completed his Bachelor’s de-
gree in Mechanical Engineering at the Faculty of Engineering, University of Rijeka, in 2019,
and his Master’s degree in Mechanical Engineering at the same university in 2021. Later that
year, he began his doctoral studies in Technical Sciences, focusing on Mechanical Engineering,
Fundamental Technical Sciences, and Interdisciplinary Technical Sciences. Since 2021, Mr.
Lanca has worked as a research assistant at the Faculty of Engineering, specializing in ergodic
and model predictive control, autonomous Unmanned Aerial Vehicle (UAV) systems, machine
learning-based detection models, and computational fluid dynamics. As part of the research
group working on the Autonomous Oceanic Search and Rescue project, he actively contributes
to the development of an autonomous UAV system for both land-based and maritime search and
rescue operations. He has authored or co-authored seven scientific publications, including five

in top-quartile (Q1) journals according to Web of Science.

144



LIST OF PUBLICATIONS

Scientific papers in peer-reviewed journals:

1. Lanca, L., Jakac, K., Calinon S., and Ivi¢, S., 2025. Ergodic Exploration of Dynamic
Distribution. IEEE Robotics and Automation Letters, 1 - 8, 2377-3766.

2. Lanca, L., Malisa, M., Jakac, K., and Ivié, S. 2025. Optimal Flight Speed and Height
Parameters for Computer Vision Detection in UAV Search. Drones, 9(9), 595.

3. Jakac, K., Lanca, L., Sikirica, A. and Ivi¢, S., 2025. Efficient data-driven flow modeling
for accurate passive scalar advection in submesoscale domains. Applied ocean research,
162, p.104699.

4. Dumencié, S., Lanca, L., Jakac, K., and 1Ivi¢, S. 2025. Experimental Validation of UAV
Search and Detection System in Real Wilderness Environment. Drones, 9(7), 473.

5. Jakac, K., Lanca, L., Sikirica, A. and Ivié, S., 2024. Approximation of sea surface ve-
locity field by fitting surrogate two-dimensional flow to scattered measurements. Applied

ocean research, 153, p.104246.
Conference papers:

1. Lanca, L., Dumenci¢, S., Jakac, K. and Ivi¢, S., 2025, February. Experimental Validation
and Robustness Analysis of Ergodic UAV Control. In 2025 11th International Conference
on Automation, Robotics, and Applications ICARA) (pp. 257-261). IEEE.

2. Jakac, K., Lanca, L., Sikirica, A. and Ivié, S., 2025, February. Experimental Validation
of Intelligent Ad Hoc System for Sea Surface Velocity Approximation. In 2025 11th
International Conference on Automation, Robotics, and Applications (ICARA) (pp. 273-
279). IEEE.

145



	Introduction
	Hypothesis and Research Goals
	Scientific Contribution
	Thesis Structure

	Literature overview
	UAVs in search and rescue
	Path planning and area coverage
	Multi-agent systems and collision avoidance
	Computer vision detection
	Altitude and velocity control
	Ergodic control
	Dynamic environment search strategies

	UAV search technology
	Classification of UAVs
	Control and state parameters
	Onboard sensors 
	Experimental UAV system overview

	Modeling UAV motion, computer vision sensing, and detection
	Motion model
	Theory of search
	UAV sensor modeling
	Computer vision detection
	Combined sensing effect in static target search
	Search task and search evaluation

	Ergodic control
	Heat Equation Driven Area Coverage – HEDAC
	HEDAC implementation
	Spectral Multiscale Coverage – SMC

	Yaw constraints and collision avoidance procedure
	Yaw control constraints
	Collision avoidance optimization problem formulation
	Decomposing and solving the optimization problem

	Uneven terrain exploration
	Problem formulation – UAV control over uneven terrain
	Digital elevation model and elevation function
	Trial trajectories and control functions
	Optimization problem formulation
	MPC optimization procedure
	Terrain collision avoidance

	Terrain search simulations
	Simulated search scenarios overview
	Sensing characteristics
	Plastic world
	Mount Vesuvius
	Star dunes
	Robustness analysis

	Terrain search experiments
	Experimental validation of UAV motion control
	Experimental validation of UAV search methodology

	Sea surface exploration
	Problem formulation – Search in maritime environments
	Dynamic target probability distribution
	Numerical implementation

	Sea surface search simulations
	Modeling motion and detection of dynamic targets
	Synthetic case – Cavity flow
	Realistic search scenario – Unije Channel search
	Complex search scenario – MH370 search

	Sea surface search experiments
	Surface flow reconstruction
	Custom sea targets and detection model
	Experimental search mission

	Limitations and discussion
	Conclusion
	Bibliography
	List of Figures
	List of Tables
	Curriculum Vitae
	List of Publications

