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ABSTRACT

Accurate assessment of the sea surface velocity field is essential for various applications, par-
ticularly for predicting the movement of objects and substances on the sea surface, as well as
for search and rescue (SAR) operations. However, reconstructing the full flow field from sparse
and scattered observations is both difficult and computationally demanding. This challenge is
compounded by the highly dynamic and variable nature of oceanic flows, which makes accu-
rate prediction of surface transport even with advanced measurement techniques such as coastal
radar systems or high-resolution numerical ocean models particularly challenging, especially in
time-sensitive scenarios.

To address these challenges, this thesis proposes a rapid, data-driven approach for recon-
structing sea surface velocity fields from sparsely distributed measurements. The flow field is
represented using two simplified two-dimensional models that together capture submesoscale
dynamics across the entire domain while enabling near-real-time computation. To ensure reli-
able prediction of object trajectories and target probabilities, the framework incorporates model
of passive scalar advection with compensating diffusion, explicitly accounting for flow recon-
struction errors, measurement noise, and other system uncertainties. The central hypothesis of
this work is that realistic sea surface flow patterns can be effectively approximated by iteratively
fitting a steady-state numerical surrogate model to real-time scattered measurements, thereby
avoiding the computational cost of complex oceanic models. This approach enables continuous
updates of the target probability distribution representing its possible location in realistic search
scenarios.

This research introduces several methodological innovations essential for implementing the
proposed concept. The fusion methodology converts scattered velocity measurements into a
coherent flow field using a novel surrogate modeling approach that preserves key flow dynam-
ics while maintaining computational efficiency. Numerical optimization algorithms are em-
ployed to iteratively adjust model parameters and boundary conditions, ensuring that the recon-
structed fields remain consistent with observational constraints. The quasi-steady implemen-

tation captures temporal flow evolution through periodic field updates rather than continuous



time-dependent simulations, substantially reducing computational overhead.

The methodology was systematically validated through simulation tests and real-world field
trials. In these trials, GPS drifters measured sea surface velocities, while purpose-deployed ma-
rine targets served as test objects for trajectory prediction. Unmanned Aerial Vehicles provided
aerial tracking and verification of target movements, based on its advected probability, as well
as searching for and locating custom sea targets based on their estimated trajectories. Validation
was achieved by comparing observed drifter paths with predictions generated exclusively from
the reconstructed flow fields, allowing direct assessment of accuracy under realistic operational
conditions.

The results demonstrate that the proposed concept successfully balances computational ef-
ficiency with the fidelity of the reconstructed flow field. It provides flow and advection recon-
structions that are sufficiently accurate for operational decision-making, while being fast enough
to support real-time or near-real-time applications. These outcomes highlight its potential as a
practical operational tool for time-critical maritime applications, particularly in scenarios where
traditional high-resolution simulations are computationally prohibitive and rapid response is re-
quired.

Keywords: Velocity field reconstruction, Point measurements, Surrogate model, Model fitting,

Advection, Diffusion, Computational Fluid Dynamics
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PROSIRENI SAZETAK

Pouzdana procjena polja brzine morske povrSine kljucna je za brojne primjene, osobito za
pracenje kretanja objekata i tvari na povrSini mora, kao i za operacije traganja i spaSavanja.
Medutim, rekonstrukcija cjelokupnog strujnog polja na temelju rijetkih i prostorno razbacanih
mjerenja istodobno je zahtjevna i raCunalno skupa. Izrazito dinamicna i promjenjiva priroda
oceanskih strujanja dodatno oteZava precizno predvidanje povrSinskog transporta, koje ostaje
izazovno Cak i1 uz napredne tehnologije poput obalnih radara i visokorezolucijskih numerickih
oceanskih modela u vremenski osjetljivim situacijama.

Strujno polje aproksimira se pomocu dva pojednostavljena dvodimenzionalna modela koji
zajedno obuhvadaju submezoskalnu dinamiku na cijelom podrucju, a pritom omogucuju izraCune
gotovo u stvarnom vremenu. Kako bi se osiguralo pouzdano predvidanje putanja objekata
1 vjerojatnosti nalazenja mete, sustav ukljucuje model advekcije pasivnog skalara s kompen-
zacijskom difuzijom, pri ¢emu se eksplicitno uzimaju u obzir pogreske rekonstrukcije polja,
Sum mjerenja i druge nesigurnosti sustava. SrediSnja hipoteza ovog rada jest da se realisti¢ni
obrasci strujanja morske povrSine mogu uc¢inkovito aproksimirati iterativnim prilagodavanjem
stacionarnog numerickog surogat-modela stvarnim prostorno razbacanim mjerenjima, ¢ime se
izbjegava racunalna zahtjevnost sloZzenih oceanskih modela. Ovakav pristup omogucuje kon-
tinuirano azuriranje distribucije vjerojatnosti nalaZzenja mete u realnim scenarijima pretraZi-
vanja.

Ovo istrazivanje uvodi nekoliko metodoloskih inovacija klju¢nih za provedbu predlozenog
koncepta. Metodologija fuzije strujnih polja povrSine mora pretvara razbacana mjerenja brzina
u koherentno strujno polje koriste¢i novi pristup surogatnog modeliranja koji zadrzava klju¢ne
dinamike strujanja, a istovremeno odrZava racunalnu ucinkovitost. Numericki optimizacijski
algoritmi koriste se za iterativno prilagodavanje parametara modela i rubnih uvjeta, osigurava-
juci da rekonstruirana polja ostanu uskladena s dostupnim mjerenjima i fizickim ogranicenjima.
Kvazi-stacionarna implementacija biljeZi vremenski razvoj strujanja kroz periodi¢na aZuriranja
strujnih polja, umjesto kontinuiranih vremenski ovisnih simulacija, $to znatno smanjuje racu-

nalno opterecenje.
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Metodologija je sustavno validirana kroz simulacijske testove i stvarne terenske eksperi-
mente. U tim eksperimentima, GPS drifteri mjerili su brzine morske povrsine, dok su nam-
jenski postavljeni morske mete sluzile kao objekti za predvidanje putanja. Bespilotne letjelice
pruzale su zrano pracenje 1 verifikaciju kretanja meta, temeljeno na advekciji gustoce vjerojat-
nosti njihova nalaska, kao 1 trazenje i lociranje meta na temelju njihovih procijenjenih putanja.
Validacija je provedena usporedbom promatranih putanja driftera s predvidanjima generiranim
iskljucivo iz rekonstruiranih strujnih polja, §to je omogucilo izravnu procjenu to¢nosti u realnim
operativnim uvjetima.

Rezultati pokazuju da predloZeni koncept uspjeSno uravnotezuje racunalnu ucinkovitost i
vjerodostojnost rekonstruiranog strujnog polja. Rekonstrukcije strujnog polja i advekcije do-
voljno su precizne za operativnho donoSenje odluka, a istovremeno dovoljno brze da podrze
primjene u stvarnom ili gotovo stvarnom vremenu. Ovi ishodi istiCu njegov potencijal kao prak-
ticnog operativnog alata za vremenski kritiéne pomorske primjene, osobito u scenarijima gdje

su tradicionalne visokorezolucijske simulacije racunalno zahtjevne, a potrebna je brza reakcija.

Kljucne rijeci: Rekonstrukcija polja brzine, Tockasta mjerenja, Surogat-model, Prilagodba

modela, Advekcija, Difuzija, Racunalna dinamika fluida
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1 INTRODUCTION

Objects and substances floating on the sea surface, such as debris, oil spills, or drifting vessels,
are constantly in motion due to currents, wind, and waves. Understanding and predicting these
movements is crucial for a wide range of applications, including search and rescue (SAR) op-
erations, environmental monitoring, pollution control, and maritime navigation. This physical
phenomenon is known as advection, which in this specific instance refers to the transport of
material/objects by the surface flow. Additionally, floating materials tend to gradually spread
out on the surface over time, moving from areas of higher concentration to areas of lower con-
centration, in a process known as diffusion.

Accurately modeling both advection and diffusion requires insight into the sea surface ve-
locity field, which can be obtained or estimated through various measurement techniques, each
suited to different environments and applications. For instance, fixed systems like coastal radar
provide continuous coverage in nearshore regions, while mobile platforms such as floating sen-
sors (drifters) offer flexibility and precision in open waters. If large-scale areas need to be
monitored, satellite-based observations can provide wide coverage, although they typically of-
fer low resolution and limited accessibility to frequent updates.

While current approaches to surface flow reconstruction are effective in certain respects,
they often lack detail regarding specific flow field characteristics, accuracy, and spatial or tem-
poral resolution. To overcome these limitations, this research proposes a modeling approach in
which numerical simulations from Computational Fluid Dynamics (CFD) are combined with
available point measurements of sea surface velocity. Since point measurements provide ad hoc
data, this approach reduces both the cost and effort associated with data acquisition. Due to the
complexity of oceanic models, a simplified numerical surrogate model is introduced to ensure
near real-time applicability. This flow surrogate model is iteratively adjusted until the resulting
velocity fields align with the measurements. The method not only provides reliable velocity
approximations across the entire domain but also enables predictions of object trajectories and

probability field advection.



1.1 Hypothesis and Research Goals

Earlier studies on velocity field reconstruction, particle and object advection, and scalar trans-
port with diffusion have largely relied on available measurements to derive flow fields. However,
these approaches often required extensive data, while still neglecting important aspects of sea

flow complexity. From these limitations, the research hypothesis emerges:

e A meta-model-based reconstruction of the sea surface flow field using a small number of
drifter measurements is suitable for accurate modelling and prediction of target probabil-

ity density dynamics.
The research goals are:

e Develop a rapid approximation method for sea surface velocity estimation using scattered

drifter measurements.

e Apply the surrogate modeling approach to fit numerical simulations with available data

for efficient flow field reconstruction.

e Analyze and predict the advection of objects or target probability fields based on the

reconstructed velocity fields.

e Assess the applicability of the proposed methodology for mesoscale processes and oper-

ational modeling.

e Perform numerical and experimental validation of the methodology under realistic con-

ditions.

1.2 Scientific Contribution

The scientific contribution of the proposed research lies in the development of a rapid approxi-
mation method for surface flow reconstruction using a surrogate model that replicates realistic
submesoscale flow. This approach enables fast and detailed assessment of the surface velocity
field from a limited number of measurements, reducing both the cost and time associated with
flow reconstruction. Moreover, it provides an adequate velocity field for the entire simulated

domain, including areas not covered with measurements.



The framework is easily extended to incorporate the advection of particles or objects, as
well as passive scalar advection and diffusion, making it suitable for modeling and predict-
ing target probability density dynamics. Additionally, it includes an auto-adaptive mechanism
that compensates for potential measurement errors and flow reconstruction inaccuracies using
a diffusion, enabling dynamic updates of the target probability distribution. The framework has
been validated through numerical simulations in both synthetic and realistic domains. Its per-
formance was further confirmed in carefully designed experiments using custom drifters, which
addressed practical challenges such as drifting dynamics and data transmission, as well as real-
istic search scenarios involving Unmanned Aerial Vehicle (UAV) operations to locate deployed

custom sea targets based on their estimated movements.

1.3 Thesis Structure

This thesis is organised into eleven chapters with corresponding subchapters. The introductory
chapter presents the hypothesis and research goals, outlines the scientific contributions, and
describes the overall thesis structure.

The second chapter provides an overview of scientific literature covering sea surface ve-
locity reconstruction, advection and transport modeling at the sea surface, and applications in
search and rescue.

The third presents the technology behind sea surface velocity measurement techniques. It
covers data collection methods, including floating sensors (drifters), high-frequency radar sys-
tems, and satellite-based measurements, and discusses measurement uncertainties and spatial
resolution, along with a proposal for the effective number of measurements.

The fourth chapter examines the dynamics of sea surface drift. It covers the drift of floating
objects, influence of object shape, environmental factors, and overall complexity of the drift
phenomenon.

The fifth chapter introduces the surrogate modeling approach for surface flow. It covers a
steady two-dimensional model, the fusion model concept, a transient flow estimation method
based on quasi-steady assumptions, and the numerical implementation of the proposed ap-
proach.

The sixth chapter focuses on the formulation of the model fitting and optimization problem,

defining the objective functions and constraints.



The seventh chapter addresses advection—diffusion processes, including the formulation of
the advection—diffusion term, modeling of passive scalar transport, evaluation of advection ac-
curacy, proposal of an adaptive diffusion coefficient, and discussion of applications in search
and rescue.

The eighth chapter presents simulation results from various test cases. It covers the prepara-
tion of synthetic and realistic domains, examines multimodality, compares optimization meth-
ods, analyzes robustness, investigates mesh independence, and validates the results.

The ninth chapter details the experimental results, describing preliminary and search ex-
periments conducted in the areas of Plomin and Cres, Croatia. These experiments validate the
proposed methodology and illustrate a practical application of the developed methods.

The tenth chapter discusses limitations of the current research, reflecting on challenges en-
countered and potential areas for improvement. The final chapter summarizes the main findings

and scientific contributions, and confirms the thesis hypothesis.



2 LITERATURE OVERVIEW

In recent decades, accurately predicting the movement of objects and substances at sea has been
a major challenge, particularly in search and rescue operations and environmental emergencies.
Such incidents make rapid and informed decision-making crucial, especially when events like
hazardous material pollution pose significant risks to marine ecosystems and coastal communi-
ties [1-4]. A variety of numerical models are regularly adopted to simulate the transport and
distribution of probability densities representing the likely location of drifting objects or con-
centrations of pollutants, often serving as the most practical tool for forecasting their movement
at sea. The performance of these models depends heavily on the quality of input data, including
sea surface velocities, wind measurements, and the precise location of the source. Accurate
reconstruction of surface flow is therefore a key prerequisite for reliable transport modeling
and underpins numerous real-world applications, from tracking floating debris and locating lost

objects to supporting search and rescue operations.

2.1 Sea surface velocity reconstruction

Generally, all transport modeling and prediction methods depend on sea surface velocity fields
calculated from a variety of data sources. These sources vary quite a bit in how they measure ve-
locity, how often and where they collect data, and how accurate they are. Knowing the strengths
and weaknesses of each method is important for choosing the right data and building accurate
surface flow maps. The following section reviews common velocity measurement methods and

their roles in ocean surface flow reconstruction.

2.1.1 Acquiring velocity data

Among the different methods for measuring sea surface velocity, satellite-tracked drifters have

become widely used due to their affordability and reliable performance. Over the past two



decades, their use has grown significantly, with many deployments across different ocean re-
gions [5]. These floating devices, designed specifically to record surface current data and to
study circulation patterns, particularly in semi-enclosed seas, have been the subject of extensive
research and analysis [6-9]. They typically use Global Positioning System (GPS) technology to
enable continuous tracking, providing valuable information about ocean surface dynamics and
circulation patterns. However, drifters can sometimes move outside the area of interest, lead-
ing to widely scattered measurements that don’t provide usable data. Moreover, because they
only collect measurements at specific points, they can’t offer a complete view of circulation
throughout the entire domain. Although drifter data provide detailed information on movement
over time and space, researchers often use it not only to study trajectories but also to recon-
struct Eulerian velocity fields. Numerous studies have employed drifter observations for this
purpose [10-12].

To overcome the limitations of drifting in-situ instruments, high-frequency (HF) radar sys-
tems have become an increasingly valuable tool for near real-time monitoring of surface cur-
rents and for validating ocean circulation models [13, 14]. HF radar provides broad spatial
coverage of surface currents, typically interpreted in the Eulerian framework, and primarily
senses the upper meter of the ocean [15]. These systems are particularly suited for coastal
regions, encompassing areas from a few kilometers to over 200 kilometers offshore, and can
operate under nearly all weather conditions due to their ability to propagate radio waves beyond
the horizon [15]. HF radar data have proven especially useful in time-sensitive scenarios such
as Search and Rescue (SAR) operations and oil spill response [16]. However, a single HF radar
station only captures the radial component of surface flow, either toward or away from the an-
tenna. As such, combining data from at least two stations is necessary to reconstruct full vector
current fields [17]. Despite their numerous advantages, high-frequency (HF) radar systems also
come with notable limitations. They typically operate within shallow coastal waters, are prone
to radio interference, offer limited spatial resolution, and demand significant infrastructure and
maintenance efforts.

These observational measurements are often combined with or compared to Acoustic Doppler
Current Profilers (ADCPs), which provide an additional in-situ approach for measuring flow ve-
locities by capturing vertical profiles from surface to bottom using the Doppler shift principle,
as demonstrated in multiple studies [18, 19]. Unlike surface drifters, ADCPs deliver contin-

uous measurements throughout the water column, offering detailed mapping of flow structure



[20]. They can be deployed from vessels, moorings, or autonomous platforms, providing high
temporal resolution and complementing both drifter and HF radar observations, particularly for
understanding vertical shear and validating numerical models.

To address the inherent limitations of traditional in-situ methods, satellite altimetry has
emerged as a powerful tool, offering broader spatial coverage and additional insights into sur-
face flow dynamics. Since the early 1990s, radar altimeters on satellites, which look directly
downward, have provided near-global observations of the ocean surface, offering coverage that
HF radar systems cannot offer. Rather than measuring surface currents directly, these satellites
estimate them indirectly by first measuring Absolute Dynamic Topography (ADT) along one-
dimensional tracks. The data are then interpolated into two-dimensional ADT maps, from which
surface velocities are derived using the geostrophic approximation [21]. This approximation,
which relates sea surface height (SSH) gradients to ocean surface velocity, is widely accepted
for resolving large-scale circulation. This is because geostrophic flow dominates ocean dynam-
ics on spatial scales larger than approximately 10 km and over timescales longer than a few
days [22]. However, despite its utility, this method has inherent limitations. Due to the coarse
spatial and temporal sampling of ADT and the assumptions underlying the geostrophic balance,
satellite altimetry primarily captures mesoscale dynamics, on the order of 100 km and 10 days
[21]. As a result, it struggles to resolve finer sub-mesoscale motions, which are essential for
capturing detailed advection and energy exchange processes [23].

While satellite altimetry has greatly advanced the ability to monitor broad oceanic flows, its
reliance on the geostrophic approximation leaves a gap in observing smaller, faster, or unbal-
anced motions. These include common processes in dynamic coastal zones and within energetic
eddies, which play a key role in sub-mesoscale dynamics. This gap poses a fundamental limita-
tion when it comes to accurately simulating near-surface advection, where finer-scale variability

can have a substantial impact [21].

2.1.2 Reconstruction techniques

To overcome the limitations of sparse observational data and assumptions inherent in geostrophic
approximations, various computational techniques have been developed for reconstructing sea
surface velocity fields. These range from classical interpolation schemes to advanced data as-

similation and machine learning methods [24, 25]. More recently, hybrid approaches combining



physical constraints with data-driven models have shown promise in improving reconstruction

accuracy [26, 27].

2.1.2.1 Spatial interpolation methods

Reconstructing continuous velocity fields from scattered measurements, such as those collected
by GPS drifters, remains one of the central challenges in oceanography. Because ocean currents
are often sampled at irregular locations and times, researchers rely on interpolation techniques to
estimate flow conditions across unsampled areas. A wide range of methods has been explored,
from straightforward geometric approaches to more advanced statistical and physics-informed
techniques [28].

For scalar fields like sea surface temperature or elevation, methods such as Inverse Distance
Weighting (IDW) and Ordinary Kriging (OK) are commonly used [29, 30]. However, vector
fields like ocean currents pose additional challenges, as they involve both direction and mag-
nitude. In these cases, Radial Basis Function (RBF) interpolation methods, especially those
designed to be divergence-free, thereby preserving the incompressibility of ocean flow, have
shown promising results [31-33]. Such methods have demonstrated improved accuracy in re-
constructing realistic coastal circulation patterns from sparse data [34].

While simple geometric methods are computationally efficient, they often struggle to cap-
ture complex flow features, especially in dynamic regions with sharp gradients or rapidly chang-
ing directions. Kinematic interpolation techniques, which take into account the movement be-
havior of particles, tend to perform better under such conditions [35, 36]. Furthermore, methods
that incorporate temporal dynamics, such as spatio-temporal kriging, can improve reconstruc-
tions by leveraging flow evolution patterns over time. However, these approaches often require
more computational resources and careful tuning. Robust handling of measurement noise and
missing data remains an ongoing challenge.

Recently, machine learning-based interpolation models have emerged as a compelling alter-
native [37, 38]. By learning spatial and temporal patterns from large datasets, they can poten-
tially offer more accurate reconstructions, though they require substantial amounts of training
data and computational power to be effective [39]. The trade-off between computational cost
and reconstruction quality remains a key consideration, especially for large-scale or real-time

applications.



2.1.2.2 Data Assimilation

While spatial interpolation techniques estimate flow fields using scattered observations alone,
Data Assimilation (DA) methods improve these reconstructions by optimally combining obser-
vational data with dynamical ocean models. DA effectively merges real-world measurements
and model forecasts to provide a more accurate and comprehensive representation of the ocean’s
current state [24]. By weighting information based on the uncertainties of both data sources,
DA corrects errors and fills in gaps, leading to enhanced estimates of key variables such as
current velocity, salinity, and temperature.

Among the advanced DA techniques, methods like Four-Dimensional Variational Assimi-
lation (4D-Var) and the Ensemble Kalman Filter (EnKF) have become prominent in recent re-
search [24]. While 4D-Var is known for producing smooth and dynamically consistent results,
it tends to be computationally demanding. On the other hand, lighter-weight methods such as
Ensemble Optimal Interpolation (EnOI) can offer practical alternatives with less computational
cost, though sometimes at the expense of some accuracy or detail [40]. Despite their potential,
applying DA effectively remains a complex task as it depends heavily on having high-quality
observational data, precise models, and sufficient computing power, especially when working

with fine-scale, high-resolution ocean simulations [41].

2.1.2.3 Machine Learning and Hybrid approaches

To overcome the limitations of both spatial interpolation and DA, recent research has increas-
ingly explored machine learning (ML) techniques as a complementary or alternative approach
for predicting flow fields [42]. For instance, artificial neural networks (ANNs) have been em-
ployed to learn spatio temporal patterns from drifter trajectories, leading to improved long-term
trajectory prediction and reduced modeling errors [43, 44]. Beyond trajectory analysis, deep
learning (DL) techniques have also been employed to construct surrogate models of fluid flows
[45, 46], allowing rapid and efficient flow predictions while avoiding the computational cost of
conventional fluid dynamics simulations. The accessibility of ML algorithms has driven their
growing use in oceanography, for tasks ranging from estimating chlorophyll concentration to
reconstructing three-dimensional ocean structure and surface current fields [47]. Convolutional
Neural Networks (CNNs) have been widely used to increase the resolution of gridded ocean
datasets, by learning spatial patterns and reconstructing fine-scale velocity structures while re-

specting geostrophic balance [48, 49].



However, ML models still face well-known challenges: they tend to overfit to training data,
struggle with novel or anomalous conditions (known as "distribution shift") [50], and are often
criticized as "black boxes" because the decision-making process can be difficult to interpret.
Nevertheless, ML offers strong potential for classification, regression, anomaly detection, and
integration of diverse data streams through self-supervised and hybrid physics-informed learn-
ing [26]. Therefore, the combination of spatial interpolation, data assimilation, and machine
learning is leading to a major change in modeling ocean surface velocities. Since each method
has its own challenges, a shift is being made away from relying solely on traditional physics-
based models toward more flexible, hybrid data-driven frameworks. Interpolation needs suf-
ficient number of data points, data assimilation can be heavy on computation, and machine
learning sometimes doesn’t perform well outside its training conditions. However, when these
approaches are used together, they can fill in each other’s weaknesses. For instance, machine
learning is increasingly becoming part of data assimilation processes to improve forecast accu-
racy. Meanwhile, physics-informed neural networks help preserve important physical principles
in the models [51, 52].

This integration reflects the reality of modern oceanography’s big data era, characterized
by the collection of vast datasets from diverse sources such as satellites, autonomous underwa-
ter vehicles, and drifters. Effectively processing and assimilating this extensive data demands
advanced analytical tools, with the added challenge of maintaining transparency and trustwor-
thiness in such enhanced models, especially for critical applications like search and rescue
operations [53].

To provide an overview of sea surface velocity reconstruction methods, Table 2.1 com-
pares commonly used observation platforms with advanced techniques. It highlights the main
strengths and limitations of each approach, including traditional methods such as drifters and
HF radar, as well as modern methods like data assimilation, machine learning, and hybrid mod-

els that integrate physical and data-driven components.
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Table 2.1: Overview of observation platforms and reconstruction tech-
niques for sea surface velocity estimation.

Method Cost Spatial coverage = Temporal resolution Accuracy
Drifters Low  Point measurements High Medium
HF Radar High Coastal High High
ADCP Medium-High Vertical profiles High High
Satellite Altimetry High Near-global Low Medium
Spatial Interpolation Low Sparse data Moderate Medium
Data Assimilation High  Observation density High High
Machine Learning Medium-High Training data High  Medium-High
Hybrid (ML + DA) High Obtained data High High

As shown in Table 2.1, different observation platforms provide direct measurements with
varying cost, coverage, and resolution. Reconstruction techniques complement these obser-
vations by estimating velocity fields where measurements are sparse. Spatial interpolation is
simple and low-cost but less accurate in complex flows, while data assimilation and machine
learning can capture detailed flow structures and fill gaps but require accurate models, large

datasets, or high computational resources.

2.2 Advection and transport modeling at the sea surface

The ability to accurately reconstruct sea surface flows is key to simulating how passive scalars,
representing concentration fields of pollutants or nutrients, or probability densities of debris and
objects, spread over time. These transport processes are governed by the combined effects of
advection and diffusion, which determine how a scalar like concentration (s) changes in space
and time without affecting the fluid’s velocity or pressure. This makes passive scalar modeling
particularly useful for studying mixing and dispersion in environmental and engineering flows
[54].

Mathematically, this behavior is described by the advection-diffusion equation. The non-
conservative (advective) form of this equation is often used for its clarity in separating the
effects of advection and diffusion:

ds

E+u-Vs=D-V2s+R—}/-s. (2.1)

Here, s represents a passive scalar, also referred to as a tracer, describing a concentration or
probability density in the domain. The term % represents the temporal change in scalar con-

centration at a fixed location, while u - Vs describes its transport by the surrounding flow field
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u. The term DV?s captures the gradual spreading caused by diffusion, with D denoting the dif-
fusion coefficient. R accounts for any sources introducing tracer or sinks removing it, while y-s
represents decay, which models continuous loss of scalar proportional to its concentration(e.g.
evaporation, degradation) [55].

At the ocean surface, these combined processes interact with wind-driven currents, swirling
eddies, and small-scale turbulence, while also being influenced by changes in depth and tidal
variations, resulting in complex and often unpredictable transport pathways. Capturing these
dynamics through modeling is challenging, largely because they span multiple scales and in-
volve nonlinear interactions. To tackle this complexity, researchers rely on various theoretical
frameworks and computational strategies to approximate the flow field and simulate how tracers
like pollutants or nutrients disperse over time, as discussed in [56].

Two of the most commonly used approaches are the Lagrangian and Eulerian frameworks.
These methods adopt fundamentally different perspectives: the Lagrangian approach tracks
individual particles, whereas the Eulerian approach focuses on changes occurring at fixed lo-
cations. Each approach has its own strengths, and often they are combined to provide a more

comprehensive understanding.

2.2.1 Lagrangian vs. Eulerian approaches

The Lagrangian approach describes fluid motion from the perspective of fluid particles mov-
ing with the flow [57]. In this framework, large numbers of virtual particles are embedded in
three-dimensional, time-evolving ocean velocity fields. This method is particularly powerful
for analyzing pathways, understanding connectivity between regions, and investigating the ori-
gin of water masses through reverse-time analysis [57]. Lagrangian analysis is well-suited for
handling transport barriers, including eddies and currents, which substantially impact dispersal
patterns. It can also yield accurate results in turbulent or complex geometric flow fields by
directly simulating particle movement [58]. However, the Lagrangian approach can be compu-
tationally demanding, especially for large scales, and the resulting complex and unpredictable
paths of individual particles can be more difficult to analyze compared to other oceanographic
techniques.

In contrast, the Eulerian approach describes fluid motion from a fixed point in space, fo-
cusing on the changes in fluid properties (i.e. tracer concentration) at specific locations over

time [58]. For fast, first-order estimates of particle transport and dispersion, particularly in
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environments like vegetated coastal zones, a simplified Eulerian approach is often the more
practical and cost-effective option compared to Lagrangian models, which tend to require more
detailed input data and greater computational resources [59]. Eulerian models are well adapted
for capturing large-scale concentration changes, but they generally offer less insight into in-
dividual particle trajectories and may struggle to represent the full complexity of fine-scale,
unpredictable movements that Lagrangian methods are designed to resolve [58].

To improve model accuracy and make better use of Lagrangian observations, researchers
have explored methods to incorporate such data into predictive frameworks. One approach esti-
mates velocities by tracking changes in observed positions over time and then adjusts the model
predictions accordingly [60]. Another approach uses an observational operator derived from the
particle advection equation to improve the Eulerian velocity field by minimizing discrepancies
between observed and simulated trajectories [61]. Early studies [62] demonstrated that us-
ing basic Euler methods in non-uniform flow fields can produce substantial trajectory errors.
Consequently, modern pollution prediction models often employ more physically grounded
techniques, remaining within an Eulerian framework while calculating slick thickness with
layer-averaged Navier—Stokes equations and modeling pollutant transport through the advec-
tion—diffusion equation [63].

The decision between using a Lagrangian or Eulerian framework largely depends on the
specific objectives of the study and the resources available. In many cases, the two are used
together, as their strengths are complementary. For example, Eulerian models can supply the
velocity fields needed for Lagrangian particle tracking, providing a more complete picture of

ocean transport processes.

2.2.2 Computational models

Computational models represent numerical or mathematical approaches for simulating ocean
dynamics and particle transport. These models vary widely in complexity, from large-scale
circulation simulations to simplified stochastic or particle-tracking approaches, each addressing
different research needs.

Numerical ocean models: Large-scale ocean circulation models, such as ROMS (Regional
Ocean Modeling System) [64], HYCOM (Hybrid Coordinate Ocean Model) [65], and NEMO
(Nucleus for European Modelling of the Ocean) [66], simulate the key physical processes that

govern currents, temperature, and salinity across spatial and temporal scales. These velocity
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fields form the backbone for most transport simulations. To maintain reliability, such models
require continuous updates through data assimilation, blending real-time measurements with
physical constraints. Techniques like 4D-Var are vital for improving the accuracy of short-term
forecasts and capturing dynamic features like eddies [40].

Lagrangian particle tracking: These models are designed to simulate the motion of vir-
tual particles through ocean velocity fields, making them well adapted for studying connectivity,
dispersal, and biophysical interactions [57]. While tracking on structured model grids is compu-
tationally efficient, many coastal ocean applications use unstructured grids to balance nearshore
resolution with offshore efficiency. Historically, particle tracking on unstructured meshes has
been slower, limiting the number of particles and behaviors modeled [67]. However, tools like
OceanTracker (OT) have greatly improved computational efficiency. They include innovations
such as the Short Triangle Walk (STW) method and interpolation weight reuse, which enable
simulation of millions of particle trajectories on unstructured grids at speeds often two orders
of magnitude faster than earlier approaches [67].

Stochastic models: Particle transport in the ocean is affected not only by the main flow but
also by diffusion and unresolved subgrid-scale processes. These are typically modeled using
stochastic terms added to particle trajectories via stochastic differential equations (SDEs) [57].
Such approaches are particularly useful for representing eddy-driven transport and sharp tracer
gradients while avoiding numerical artifacts like negative concentrations [57]. Choosing when
and how to incorporate stochastic terms remains an open question and depends on factors such
as resolution and flow complexity.

Beyond these foundational modeling strategies, recent research highlights the complexity
and unpredictability of passive scalar transport in dynamic ocean environments. For example,
[68] examined how deterministic flows impact the probability density function (PDF) of passive
scalars, emphasizing the challenges of predicting scalar decay in turbulent systems. Similarly,
[69] explored how chaotic advection generates localized ‘hot spots’ in boundary layers, under-
scoring the sensitivity of scalar transport to fine-scale structures. These findings illustrate that
even in seemingly stable conditions, complex internal dynamics can strongly influence tracer
dispersion.

In practical applications, modeling scalar transport often serves urgent societal needs, such
as tracking pollutants, predicting harmful algal blooms, or guiding search and rescue operations.

For instance, [70] proposed reduced-order stochastic models that efficiently approximate the
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statistics of passive tracers in turbulent flows, enabling fast forecasts of extreme events. In
disaster response scenarios, such as oil spills or locating individuals lost at sea, the ability to
predict short-term drift patterns becomes critical. The work of [71] highlights the need for
highly accurate short-term forecasts, especially under rapidly changing atmospheric conditions
and sea states, including the influence of wind waves and their interaction with ocean currents.

Emerging applications are also expanding the role of transport modeling beyond traditional
marine contexts. For example, [72] introduced a novel framework for autonomous search
strategies in dynamic environments. Their approach uses an advection-diffusion-based global
saliency map, where particles originating from visually salient regions are guided toward the
robot’s position.

Altogether, the continuous refinement of computational tools, from high-fidelity circulation
models to efficient particle tracking and stochastic formulations, reflects a broader effort to
accurately simulate the complex, multi-scale nature of ocean transport. Hybrid methods that
combine the strengths of Eulerian and Lagrangian frameworks are increasingly used to capture

both the broad-scale structure and fine-scale variability of oceanic flows [73].

2.3 Applications in Search and Rescue

The accuracy of transport modelling in marine SAR operations strongly depends on the qual-
ity of met-ocean forecast data used to predict object movement in the water [74]. For quick
responses in a variety of changing conditions, SAR operators rely on several forecast products
that deliver near—real-time ocean and wind data. Over time, different modeling methods have
been proposed to improve the precision of predictions, where early approaches focused mainly
on wind-driven drift models that account for specific object characteristics like shape, buoy-
ancy, and how much wind they catch [75-77]. These models, known as leeway models, offer a
simplified but practical way to estimate how objects drift in the water during operations.

More recent efforts focus on integrating high-resolution oceanographic data and numerical
model outputs into ensemble-based prediction systems. These systems account for environ-
mental uncertainty and sub-grid variability, which are especially critical in dynamically active
coastal zones [78]. The use of ensemble trajectory modeling helps mitigate uncertainties in ob-

ject initialization, forcing inputs, and small-scale ocean processes that are often not captured in
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deterministic models [79, 80]. By simulating multiple plausible scenarios, ensemble approaches
can yield more robust predictions and support probabilistic search strategies.

Operational transport forecasting increasingly benefits from the assimilation of near-real-
time observational data, such as those from HF radar systems, ocean drifters, and satellite-
derived wind and current products. These data sources improve the spatial and temporal res-
olution of input fields, enhancing model performance in short-term prediction horizons [74].
However, limitations in data coverage, particularly in remote or offshore regions, continue to
present significant challenges to operational implementation [53].

Efforts to refine such modeling also include the incorporation of wave-induced motion and
stochastic perturbations to simulate unresolved turbulence and variability [81, 82]. Probabilistic
frameworks combining wind, current, and random motion components have shown potential to
produce more realistic trajectories, particularly in high-variability environments. Still, perfor-
mance remains sensitive to both object-specific characteristics and the accuracy of environmen-
tal inputs [83]. Complementary approaches have been proposed to augment trajectory models,
including the use of Lagrangian Coherent Structures (LCS) to identify flow features that influ-
ence material transport. These methods can help define regions of convergence or separation in
the flow, offering additional guidance for narrowing SAR search areas [84]. Such techniques
are especially valuable when traditional trajectory predictions diverge or when direct object
tracking is not available.

While advances in modeling and observation have significantly improved transport predic-
tion capabilities, key limitations persist. The operational usability of models depends not only
on their accuracy but also on their ability to integrate diverse data sources and deliver timely, in-
terpretable output to SAR personnel [85]. Furthermore, large-scale and long-duration transport
events, such as those involving aviation debris, reveal the influence of broad ocean circulation
patterns and highlight the need for multi-scale modeling approaches [86].

Overall, the progression from deterministic wind-transport models to sophisticated ensemble-
based systems reflects a broader shift toward coupling physical realism with probabilistic anal-
ysis. Continued research into submesoscale dynamics, object characterization, and hybrid
observational-modeling frameworks remains essential to further advance SAR effectiveness

[87-89].
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3 TECHNOLOGY OF SEA SURFACE
VELOCITY MEASUREMENTS

Every sea surface velocity reconstruction requires the acquisition of velocity measurements.
The quality and reliability of the reconstruction are directly influenced by the characteristics
of these measurements, specifically their accuracy, spatial resolution, temporal resolution, and
total amount of measurements. The resolution and precision of the obtained data determine the
level of detail that can be resolved in the resulting flow field, while a wider spatial distribution
helps reduce uncertainty in areas far from measurement points. The time available for data
processing, the method of measurement (e.g., drifters, HF radar, remote sensing), and the speed
at which the measurements are obtained all play critical roles in shaping the final reconstruc-
tion. In real-world scenarios, these factors are often constrained by logistical and operational
limitations, requiring a balance between measurement density and timeliness. Therefore, the
effectiveness of any reconstruction method depends not only on the methods employed but also

on the quality, configuration, and interpretation of the collected velocity data.

3.1 Floating sensors

One of the most popular and cost-effective ways to gather sea surface velocity data is through
satellite tracking of drifting sensors, commonly known as drifters. Over the last twenty years,
their use has expanded significantly, with deployments spread across diverse ocean regions [5].
These floating instruments are specifically designed to record surface current information, and
their data have been the focus of extensive research and numerous analyses [6, 7].

While GPS is commonly used for positioning, modern drifters are often equipped with ad-
ditional sensors that can measure salinity, temperature, pressure, and other relevant parameters,
providing improved insight into sea conditions. Such drifters rely primarily on satellite com-
munication for data transmission, where the most widely used communications are Argos and
Iridium. A comparison of their performance, including the advantages of the newer Argos-3

system relative to Iridium, is presented in [90]. In contrast, when velocity measurements are
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collected over smaller spatial domains, data transfer can also be achieved using terrestrial com-
munication technologies such as General Packet Radio Service (GPRS) or Very High Frequency
(VHF) systems.

However, thanks to their ability to move freely with the currents, their trajectories are nat-
urally uncontrolled, which can cause them to drift far beyond the intended monitoring areas.
This characteristic presents both an advantage and a limitation: while it allows for the cap-
ture of natural Lagrangian paths, it also means that coverage can become spatially uneven and
unpredictable.

As illustrated in Figure 3.1, drifters come in various designs, reflecting differences in instru-
mentation, energy sources, and communication technologies. These variations allow them to be

adapted for specific environments or research objectives.

GSM/GPRS - 1 min-24 h

VHF - 10 s - 30 min
Iridium satellite - 5 min - 24 h

Figure 3.1: Examples of surface drifters used in oceanographic studies.
Different models are optimized for various applications and primarily dif-
fer in their communication and data transmission capabilities [91-94].

One of the key factors to consider is the number of available measurements. A larger drifter
deployment can improve spatial coverage and data resolution, but practical constraints such as
cost, deployment logistics, and maintenance limit the number of devices that can be used at
one time [81, 82]. Furthermore, the precision of onboard sensors and the accuracy of position
measurements also influence the quality of the data collected.

A significant advancement in obtaining reliable Lagrangian velocity time series was achieved

by attaching a sea anchor, or drogue, to drifters. A variety of drogue shapes and designs exist,
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each optimized for specific measurement objectives. Some of the designs can be seen in Figure

3.2.

Figure 3.2: Different types of drogues, constructed from various materials
and designed for different deployment conditions [95].

These drogues stabilize the instrument by minimizing the influence of wind and waves, al-
lowing the drifter to follow the water movement more accurately. The choice of drogue depends
on the measurement objectives, drifter design, and environmental conditions. Larger or high-
drag drogues are used to minimize wind influence and accurately track water motion, especially
in rough seas or deeper layers, while smaller drogues are mostly used for near-surface currents
in calm conditions [95]. Material and durability also influence the selection to ensure stability
and reliable measurements over time.

Despite their value, it is important to recognize that drifter data represent discrete, point-
based measurements. As a result, while they offer critical insight into localized flow dynamics,
they cannot provide a complete, continuous map of circulation patterns over an entire area on
their own. Combining drifter data with other observational methods, such as HF radars and
satellite measurements, is often necessary to build a more comprehensive understanding of sea

surface velocities [53, 78, 85].

3.2 High-Frequency (HF) radar systems

In situations where long-term monitoring of surface currents within a fixed coastal area is

needed, HF radar systems offer clear advantages over drifting sensors. Unlike drifters, which
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move with the flow and can quickly leave the area of interest, HF radar provides continuous
measurements over a defined, stationary region. This makes it an ideal solution for observing
dynamic changes in coastal circulation patterns over time without the risk of losing coverage
due to sensor drift.

In general, HF radar operates by emitting electromagnetic waves that interact with the ocean
surface and reflect back information about current velocities. This happens through the analysis
of Doppler shifts in radio waves backscattered by surface gravity waves, a phenomenon known
as Bragg scattering [96]. These systems provide near-real-time data with broad spatial coverage,
often measuring currents over the upper meter of the ocean, making them especially useful for
operational oceanography and model validation [13]. For instance, assimilation of HF radar
data into numerical models has been shown to improve the accuracy of current predictions,
especially in regions with complex circulation where other measurement methods may struggle

[14]. An example of an HF radar system is visible in Figure 3.3.

Figure 3.3: Great Lakes Observing System HF radar providing live snap-
shots of lake surface currents, 24 hours a day [97].
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HF radar systems can cover large coastal regions, as their wide coverage is enabled by
the propagation of radio waves beyond the visible horizon through the “ground wave” effect
over conductive seawater [98]. One limitation is that a single HF radar site only measures the
component of flow directly toward or away from that site (radial velocity). To obtain a full
vector of surface currents, data from at least two sites with a suitable angle (typically between
30° and 150°) must be combined [17]. This is needed to overcome the so-called “baseline
problem” and accurately estimate flow direction and speed. Additionally, the effective range
can be reduced by radio interference, high sea states, or poor ground conductivity near receiving
antennas (i.e., dry rocky terrain that weakens the signal) [17]. It is also important to note that
HF radar measurements represent an integrated flow over a shallow depth rather than a single
point measurement, requiring careful interpretation [96].

Installing and operating HF radar systems comes with logistical challenges. They require
coastal installation sites with suitable terrain, infrastructure, and an unobstructed view of the
ocean surface. Because these systems are fixed installations, they lack portability, which may
leave some coastal regions unmonitored due to geographic or logistical constraints. They pro-
vide high-resolution two-dimensional surface current maps, with spatial resolution from several
hundred meters to a few kilometers and temporal resolution from tens of minutes to about one
hour. However, they cannot capture vertical flow structures and are sensitive to electromagnetic
interference, weather conditions, and noise from nearby infrastructure.

Despite these limitations, HF radar remains one of the most efficient and reliable tools for
maintaining consistent, long-duration surface current observations over specific coastal zones.
Its ability to monitor large areas continuously without deploying sensors directly into the water

makes it a valuable complement to drifters and other mobile platforms.

3.3 Satellite-based surface velocity measurements

When it comes to observing sea surface velocities over vast or remote areas, satellite-based
measurements offer a powerful and unmatched advantage, which is global reach. Satellites can
cover regions that are difficult or impossible to access with ships, radars, or drifters, and they do
so on a regular basis. This makes satellite data especially appealing for large-scale monitoring
efforts, where having at least some level of observation across wide spatial domains is more

valuable than high-resolution, localized measurements [99, 100].
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One of the greatest strengths of satellite systems is that they do not require any deployment
or maintenance on the ocean surface. With a single satellite pass, it becomes possible to gather
data from areas thousands of kilometers away, including open oceans and politically sensitive or
environmentally protected zones. This passive, wide-area access opens the door to comprehen-
sive mapping of oceanic features like eddies, large-scale currents, or even seasonal circulation
patterns [101, 102].

However, this convenience comes with significant trade-offs. A key limitation lies in spatial
resolution. While some satellites can provide measurements at a scale of about 1 km, many
standard products offer coarser resolutions as reported in [102]. This may be sufficient for
detecting broad circulation trends, but if the goal is to understand finer details, such as currents
near the coastline or around small islands where dynamics occur at scales of tens of meters, then
satellite data quickly becomes inadequate [100]. Therefore, when a satellite provides only one
data point per square kilometer, it is unable to capture sub-kilometer-scale features that may be
crucial for navigation, search and rescue, or pollution tracking [103].

Temporal resolution presents another constraint. In many cases, surface velocity estimates
derived from satellite imagery or altimetry are only available every few days or even weekly,
depending on satellite orbits. Additionally, this approach is also limited by the inability to
acquire data during cloudy conditions, which can create significant gaps in monitoring fast-
evolving events such as short-lived eddies or storm-driven currents [101, 104].

Accessing high-resolution satellite data can also come at a cost. While many datasets are
freely available, finer spatial and temporal products often generated by commercial satellites
may require paid access or subscriptions [105]. Even after obtaining the data, the process of
transforming raw satellite observations into usable velocity fields is not straightforward. It
involves complex data processing, including atmospheric correction, image interpretation, and
often the integration of multiple data sources like sea surface height, ocean color, and sea surface
temperature [99, 106]. Without proper algorithms, experience, or computing resources, turning
satellite data into meaningful current estimates can be slow and error-prone. Additionally, data
usage permissions and latency can be a limiting factor in operational scenarios. Some datasets
may be restricted due to national security or commercial licensing, and delays in data delivery

can reduce their value for real-time applications [102].
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3.4 Measurement uncertainty

When comparing how accurately different methods measure surface currents, it’s important to
look at their uncertainties and how often they collect data, as shown in Table 3.1. Drifters can
provide very accurate point-based measurements, with low uncertainty and frequent sampling,
making them ideal for tracking water movement at specific locations. However, their spatial
coverage is limited since they only provide point measurements, and because they move freely
with the currents, they can drift away from the area of interest. In contrast, HF radars cover
extensive coastal regions with good spatial and temporal resolution, though their accuracy can
fluctuate, with root-mean-square-error (RMSE) sometimes reaching up to 16 cm/s. Satellite
altimetry typically delivers lower uncertainty over open-ocean areas, but its coarser spatial and

temporal resolution makes it less suitable for capturing short-term or small-scale changes.

Table 3.1: Measurement characteristics of surface current data collection
methods, including resolution and uncertainty ranges.

Instrument Spatial Resolution = Temporal Resolution  Uncertainty / RMSE  Reference
Drifters Point measurement Smin  RMSEupto19cm/s [107, 108]
HF radar 200 m - 12 km grid 10-60 min RMSE upto 16 cm/s  [109, 110]
Satellite altimetry 25-100 km 7-10 days RMSEupto 12 cm/s  [22, 111]

Overall, each method has trade-offs: drifters excel in precision at specific points, HF radar
balances coverage and frequency nearshore, and satellite altimetry provides broader, less fre-

quent snapshots of surface currents.

3.5 Effective number of measurements

Reconstruction accuracy of the surface flow field depends not only on the amount of available
measurements but also on how they are distributed within the domain. Although increasing the
number of measurements generally improves the stability and accuracy of the reconstruction by
providing more data, this improvement is not always guaranteed. When velocity measurements
are placed too closely together, they tend to capture redundant information about the flow field.
In such cases, the contribution of each additional measurement becomes negligible. To better
assess the scope of measurement placement, the authors of [112] proposed the concept of the ef-
fective number of measurement points, denoted as 7). This represents the number of points that
provide unique and valuable information for the reconstruction of surface flows. Importantly,

7N is based on the criterion of uniform distribution of measurements across the observed area.
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Such an approach is particularly relevant for drifters, as other measurement systems typically
sample on a predefined uniform grid.

The influence area of a single measurement point m; is estimated using a 2D Gaussian
function:

1 (x—m)" - (x—m)

— — 3.1
202 xp 2072 ’ G-

CI),'(X)

where o is the standard deviation, while ﬁ presents the scaling factor which ensures that the
total volume under the Gaussian curve equals 1, regardless of the value of ©.

The objective is to cover the domain with ny;p measurement points such that, ideally, each
point covers a circular area with a radius of three standard deviations, capturing approximately
99.7% of the volume under ®. Assuming all measurement points have equal influence (i.e., o
is the same for all i), in the ideal case, the total influence of all measurement points is equal to

the area of the domain Q:

9621w -nyp = |Q)|. (3.2)

From (3.2), the value of ¢ can be directly calculated. Once the measurement point locations
and the corresponding standard deviation ¢ are known, the Gaussian influence function can be
evaluated around each measurement point within the domain. If some measurements are placed
close to one another, their influence regions will overlap.

To quantify the effective influence of the measurement locations, the maximum value of
the combined influence functions at each point in the domain is used. The effective number of

measurement points, denoted by 7, is then defined as:

n = /Q max (@4 (x), D3 (x), ..., By p (X)) d. (3.3)

The resulting 1 is expected to be a positive real number, bounded by the total number of
measurement points (1 < 1 < nyp). For an ideal configuration where all measurement points
contribute unique information, 1 approaches nyp. A visual illustration of the concept of effec-

tive number of measurement points is provided in Figure 3.4.
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Figure 3.4: Illustration of the effective number of measurement points 7).

As illustrated in Figure 3.4, the measurement points on the figure’s left side are well spaced,
with each covering a distinct portion of the domain. However, due to the rectangular shape,
some corners remain uncovered, so the effective number 7 is slightly less than the total number
of measurement points nyp. In the middle part, the points are clustered too closely, causing
their reach areas to overlap and resulting in redundant information. Consequently, 17 is much
lower than nysp. On the right side, as an illustrative example, two measurement points overlap
and provide identical information. In this case, the effective number reduces to n = 1, even
though nyp = 2.

To illustrate the impact of measurement point placement in a realistic coastal domain, Figure
3.5 shows two configurations of 15 measurement points within a domain featuring a complex
coastline and an inlet-outlet boundary. Although the total number of points is the same, the

effective number of measurements 7 differs depending on their spatial distribution.
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Figure 3.5: Example of measurement point configurations in a coastal do-
main with different effective number of measurements 1.

In the left configuration, the points are well spaced, resulting in n = 12.88, which indi-
cates minimal redundancy. In contrast, the right configuration contains several closely spaced
measurement points, reducing the effective number of measurements to 7 = 10.21 due to over-
lapping areas. This example highlights how clustering of measurement points can decrease
reach efficiency and overall information yield, motivating the use of the proposed concept, 1,

in the analyses of the following chapters.
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4 DYNAMICS OF SEA SURFACE DRIFT

Operational ocean forecasting is primarily concerned with predicting key hydrodynamic vari-
ables, such as sea level, temperature, salinity, and ocean currents. While these parameters are
fundamental for describing the physical state of the ocean, the broader interest often lies in their
practical implications. One particularly relevant application is the transport of floating objects
or substances, commonly referred to as drift [88]. From maritime safety and pollution control to
search and rescue efforts, understanding how materials move across the sea surface represents
a critical link between ocean dynamics and real-world decision-making.

Sea surface drift is governed by a wide range of environmental processes that interact in
complex, often nonlinear ways. These environmental influences are tightly interconnected and
work across a wide range of spatial and time scales, where changing one can propagate through
the entire system. For example, large-scale climate systems can shift wind and temperature
patterns, which then impact local wave generation and current dynamics. At the same time,
small-scale turbulence, wave breaking, and interactions with shorelines further complicate the
movement of drifting objects, especially near coasts.

This multiscale aspect makes it inherently difficult to model sea surface drift in a cohesive
way. The complexity means that predicting drift accurately requires factoring in many interact-
ing variables at once. However, creating and running detailed models that capture all relevant
processes, from global to local scales, demands a lot of computational time and resources. Even
with the use of modern supercomputers, addressing all aspects of sea surface drift for either op-

erational or research purposes remains a significant challenge.

4.1 Drift of floating objects

Historically, knowledge of surface ocean circulation has often been inferred from the observed
drift of floating objects. The movement of these objects across the ocean surface is driven by

a complex combination of forces. Ocean currents, wind stress, and wave motion all act on the
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object’s surface, while internal forces like gravity and buoyancy influence its center of mass
[88]. Together, these factors determine the object’s overall trajectory.
Mathematically, the drift velocity of an object, denoted as ug,f;, can be expressed as the

sum of the ocean current velocity u.,, and the object’s motion relative to the water u,,;:

Ugrift = Weurr + Uyl 4.1)

Here, u.,,, typically includes contributions from various processes such as baroclinic circu-
lation, tidal and inertial currents, wind-driven Ekman flow, and the wave-induced Stokes drift
[88]. This component is usually assumed to affect all floating objects similarly and is often
derived from numerical ocean models, wind parameterizations, or in situ measurements.

The relative component u,,;, on the other hand, is highly dependent on the object’s proper-
ties, including its shape, size, buoyancy, and how much of it is exposed above the water. This
term reflects the wind and wave forces acting directly on the object and often varies significantly
between different types of debris or vessels.

As a result, modeling the drift of objects has been a longstanding research challenge. Early
approaches, such as the Leeway method introduced in [75], provided practical frameworks for
estimating drift by incorporating empirical relationships between wind forcing and object mo-
tion. However, these models rely on simplifications and can struggle to account for real-world
complexities such as irregular object shapes, variable sea states, or uncertain object character-
istics.

The drift behavior of both human survivors and man-made objects ranging from life rafts
and shipping containers to various types of marine debris has been extensively studied, particu-
larly in the context of SAR by [75, 76], as well as more recent advances in modeling uncertainty
and wind-wave-object interactions [82, 83, 86, 89]. Despite progress, predicting the precise
path of drifting objects remains difficult in practice due to the stochastic nature of environmen-

tal forcing and the diversity in object geometries.

4.2 Influence of object shape and environmental factors

The types of objects involved in operational contexts such as SAR, ship drift prediction, and
hazardous material (HAZMAT) tracking span a wide range of shapes and sizes, from small

debris such as life jackets or broken containers to large vessels. Regardless of size, an object’s

28



drift is often characterized by its leeway motion. A comprehensive review by [75] categorized
63 object types relevant to SAR planning, providing empirical values for leeway speed and
divergence angle. From these values, leeway coefficients are derived to quantify the motion of
drifting objects relative to ambient water as a function of wind speed, typically decomposed into
downwind and crosswind components. These coefficients were later expressed as functional
relationships in [76] and remain widely used in operational SAR tools. More recent studies,
such as [77], expanded these models to incorporate wind drag, wave effects, and uncertainty
estimates, improving the robustness and realism of modern drift forecasts [81].

The influence of object shape is not limited to rigid bodies. Oil spills, for example, represent
a dynamic class of drifting objects with evolving physical characteristics. Depending on their
source, oil spills from vessels or leaks at drilling sites behave quite differently, spreading across
the surface, changing in thickness, and partially mixing into the underlying water [113]. While
smaller spills from routine ship operations are frequent and contribute substantially to global
marine pollution, it is the large-scale events that cause the most severe environmental damage.
In most countries, oil spill response, including drift forecasting, is a coordinated government-
administered service.

In both SAR and HAZMAT contexts, an object’s exposure to wind and shape-dependent
drag determines how much it deviates from the current-driven path. Streamlined or submerged
objects tend to follow ocean currents closely, whereas objects with large above-water profiles
are more influenced by wind. Consequently, object trajectories can diverge significantly over
time, especially under variable environmental conditions.

This complexity is not just a technical issue, as it shows the real difficulty of forecasting
movement in a constantly changing marine environment. Models need to balance physical real-
ism with practical feasibility, which often leads to trade-offs between resolution, accuracy, and
speed. Given these challenges, it is clear that traditional modeling methods alone are not al-
ways sufficient. They often need simplifications that reduce realism, or they require computing
power that is not easily accessible. This creates a growing need for alternative, more efficient
strategies like surrogate modeling, which provides a practical way to overcome the limitations

of traditional methods, allowing for more efficient and thorough analyses.
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S SURROGATE MODELING OF SEA SURFACE
DYNAMICS

Simulating how the ocean changes over time can be very demanding, due to multiple factors.
Fully resolving all relevant physical phenomena requires very complex mathematical models,
which demand significant computing power and long simulation times. Additionally, many
necessary inputs, such as precise geometry, boundary conditions, wind forcing, and other envi-
ronmental parameters, are often unavailable as either constant or transient data, further compli-
cating accurate modeling. High-fidelity simulations are also not well suited for data assimilation
based on drifter measurements, as they are computationally too expensive for real-time updates.
Moreover, the necessity of super-precise simulations is questionable, since even highly detailed
models may not realistically capture drifter trajectories or small-scale flow variability. These
limitations motivate the development of surrogate models, which provide sufficient approxi-
mations of sea surface dynamics while remaining computationally feasible. Accordingly, this
thesis adopts a surrogate-based approach employing a steady-state, incompressible flow model.
This simplifies the physical setup by excluding dynamic influences like wind, tides, waves, and
temperature fluctuations in the initial stage. Instead of fully resolving these effects, the surro-
gate model focuses on estimating the drift velocity, uy,;f;, rather than the full current velocity,
u.,. A secondary fusion model can later be applied to provide greater flexibility in accounting
for additional influences, without explicitly including the full physics of wind, waves, or tides.

The proposed approach combines two simplified two-dimensional surrogate models: one
for the realistic coastal region with inlet/outlet boundaries, and another circular open-domain
model to represent the broader offshore influence. Each domain is computed separately before
being fused (added), creating a hybrid solution capable of capturing submesoscale flow behavior
and passive scalar transport, such as pollution or drifting objects.

By avoiding the need for dense measurement data, complex domain setups, and full transient
simulations, this approach greatly improves computational efficiency. CFD simulations still

provide physically meaningful flow fields, while the fusion of surrogates makes it possible to
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reflect wider hydrodynamic behavior with low computational cost. This makes the model ideal
for scenarios that require fast yet reliable drift velocity predictions, particularly in time-sensitive

applications like emergency response or real-time tracking.

5.1 Steady 2D flow model

A steady-state, incompressible flow model is defined over a two-dimensional domain Q C R?.

The flow is governed by the steady incompressible Navier-Stokes equations [114—116]:
p(u-Viu=—-Vp+uviu+pf (5.1)

V.ou=0, (5.2)

where u is the velocity vector, p is the dynamic pressure, p the fluid density, u the dynamic
viscosity, and f represents external forces. The assumption of incompressibility implies that the
density p is constant.

As the approach focuses on two-dimensional surface flows, vertical dynamics are not re-
solved explicitly. Instead, hydrostatic balance is assumed and pressure at the surface is repre-
sented only by the dynamic component as introduced in [117]. This assumption is typical in
surface-flow modeling but may limit reliability where different layers and pressure variations
impact horizontal transport. To realistically simulate interactions between the modeled region
and the surrounding sea, boundary conditions in the form of tangential velocity components and
pressure values are applied. These are not assigned arbitrarily, rather, they are chosen within
physically realistic ranges to reflect plausible ocean dynamics and tuned to the measurements
as described in the next chapters.

In submesoscale regions of the Adriatic Sea, which serves as the primary area of interest,
surface currents exhibit significant variability due to the interaction between mesoscale struc-
tures and smaller-scale processes. Based on HF radar, numerical studies, and satellite imagery,
surface velocities vary from less than 0.1 m/s to more than 0.5 m/s [118-120], with typical
values within the range of 0.1-0.2 m/s. Faster currents, occasionally surpassing 1.0 m/s, are
observed in high-flow regions such as the Strait of Otranto [121], but this study is primarily

concerned with calmer, semi-enclosed coastal basins.
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The flow model is formulated as pressure-driven, making it suitable for situations where the
domain boundaries are known but it is uncertain which segments function as inlets or outlets.
In this setup, inlet and outlet conditions are not prescribed in advance but are implicitly deter-
mined during the solution. Specifically, zero-gradient conditions are applied at outlet bound-
aries, while inlet velocities are inferred from fluxes in the patch-normal direction. This requires
specifying the tangential velocity u; and total pressure py along the boundary. The dynamic

pressure is then calculated depending on whether the boundary behaves as an inlet or outlet:

Po for outlet,
pP= (5.3)
po+0.5p|ul? for inlet.

Assigned tangential velocity and total pressure are interpolated smoothly along the open-sea
boundaries while enforcing zero values at boundary endpoints. This boundary condition setup
allows for flexibility in the placement and strength of inlet and outlet regions, while maintain-
ing a robust and consistent solution. These profiles are iteratively adjusted until the resulting
flow field closely matches the point velocity measurements. The parametrization of boundary

conditions is described in detail in the following chapters.

5.2 Fusion model

The fusion framework combines two steady-state incompressible flows, each defined over a
specific domain with its own boundary conditions. The bounded domain is tailored to a realistic
area of interest and includes features such as coastlines and inlets/outlets. This is enclosed by
an open, fully circular region that encompasses the bounded domain and accounts for broader
environmental influences. Flow fields for each domain are computed separately and then com-
bined, enabling the flexibility of simplified two-dimensional surrogate to better capture real-
world variability. This concept is illustrated in Figure 5.1, where a synthetic scenario called
Simple bay case is used to demonstrate the workflow applied to a representative domain.

To account for external conditions, the open domain employs four control points (contribut-
ing eight variables to the optimization vector) that influence the background flow. The velocity
field fusion is achieved by extracting the velocity values at each node within the bounded do-

main, retrieving corresponding values from the open domain, and summing them point-wise:
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Utysed = Wpounded + Uopen (5.4)

where Wppn404 and u,pe, denote the velocity fields from the bounded and open domains, re-
spectively.

Velocity (m/s)
000 006 012 019 025
-

Bounded flow Open flow Fused flow

mmmm nlet/Outlet mmmm Coastline

Figure 5.1: Illustration of the fusion model methodology. The bounded do-

main, shown on the left, incorporates coastlines and represents the primary

area of interest. The open domain, depicted in the middle, encloses the

bounded domain and reflects broader environmental conditions. The fused

velocity field, obtained by superimposing the two simulations, is displayed

on the right. In the overlapping region, velocity values from both domains
are interpolated and summed at each grid point.

By fusing these velocity fields, the model delivers a more comprehensive and respon-
sive representation of surface flow dynamics. In practical marine scenarios, unusual flow
patterns, such as currents seemingly originating from land, have been documented in high-
frequency radar studies [16, 122, 123]. Such patterns cannot be accurately captured using
conventional two-dimensional CFD methods, which are not capable of representing complex
three-dimensional coastal effects. Since the methodology focuses on reconstructing surface
flow from observational data, the fusion model is deliberately designed to capture both typical
and atypical patterns observed in measurements. This adaptability enables real-time updates of
the flow field, significantly improving the fidelity of passive scalar reconstruction. By incor-
porating dynamic environmental influences, the model offers a more accurate representation of

real-world coastal and marine conditions.
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5.3 Transient flow estimation

Fully transient flow simulations are computationally demanding, often requiring very small time
steps and fine spatial resolution to capture rapid variations accurately. This makes them chal-
lenging to apply in real-time scenarios, particularly when high-resolution meshes or large do-
mains are involved. Such limitations are well documented in studies employing the open-source
toolkit OpenFOAM [124]. To overcome this challenge, the transient flow is approximated us-
ing a quasi-steady approach, in which a sequence of steady flow reconstructions represents the
temporal evolution of the flow.

The quasi-steady approximation relies on the observation that many oceanic flows evolve
gradually rather than abruptly, allowing them to be considered approximately steady over short
time intervals. The flow field is updated at regular intervals, denoted 7§, at which measurements
are obtained. The choice of 7 is based on the expected timescale of flow variations and the
frequency of available measurements, ensuring that each interval is short enough to resolve sig-
nificant changes but long enough to maintain computational efficiency. The impact of different
T; values on flow reconstruction accuracy and efficiency is analyzed in the results section.

The strategy for reconstructing passive scalar advection and diffusion assumes that the flow
remains approximately steady within short time intervals. The scalar is transported and spread
according to the flow field reconstructed at the time of the measurements. Since the scalar
field evolution is highly sensitive to the flow field, small inaccuracies can accumulate over
time, but with frequent measurement updates these deviations are progressively corrected. As
long as measurement updates are frequent enough, this allows us to simulate the evolving flow
effectively by piecing together a series of steady states.

This framework offers a range of advantages. By combining a series of quasi-steady states,
it effectively captures the evolution of transient flows while avoiding the substantial compu-
tational cost associated with fully time-dependent simulations. It naturally represents gradual
changes in the flow, providing a realistic approximation of the evolving dynamics. The method
allows the flow field to be updated continuously as new measurements become available, en-
suring that deviations from the true state are progressively corrected. Moreover, it enables a
clear assessment of how measurement frequency and spatial coverage influence the accuracy of
the reconstruction. This combination of efficiency, adaptability, and informative output makes
the framework well-suited for operational oceanography, environmental monitoring, pollutant

tracking, and other scenarios where timely and reliable flow estimates are essential.
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5.4 Numerical implementation

The governing equations of fluid motion are complex, non-linear partial differential equations.
In many scientific and engineering problems, finding exact solutions is difficult or impossi-
ble. Computational fluid dynamics (CFD) addresses this by discretizing these equations into

algebraic forms that can be solved numerically.

5.4.1 Governing Equations of Fluid Flow

Fluid motion follows the basic conservation laws of mass, momentum, and energy. These laws
are expressed mathematically as partial differential equations. They form the basis of fluid
dynamics and explain how fluids act and change over time [125, 126]. A key assumption in this
field is the continuum hypothesis. This idea suggests that fluids can be viewed as continuous
media, ignoring their separate molecular nature [126, 127]. This perspective allows us to treat
physical properties like velocity (u), pressure (p), density (p), temperature (7'), and viscosity
(i) as smoothly changing field variables at every point within the computational area [128].
This hypothesis holds true for most engineering applications dealt with in CFD.

The thesis adopts the Eulerian perspective for modelling the flow, focusing on fixed spatial
locations to observe changes in fluid properties as the fluid passes through them, rather than
tracking individual fluid particles as in the Lagrangian approach. A key concept in this for-
mulation is the control volume (CV). This is a specific area in space where conservation laws
apply [126]. The general conservation principle for a quantity ¢ within a control volume V

surrounded by surface S is shown by the integral equation:

0
—/p¢)dV+/p¢(u-n)dS:/F¢(V¢-n)dS+/S¢dV, 2.1)
ot 1% S S Vv
where 7 denotes time, n is the surface normal vector, I'y is the diffusion coefficient, and Sy
represents a source or sink term.
5.4.1.1 Conservation of Mass

The principle of mass conservation dictates that the mass within a CV can only change due to
the net flow of mass across its boundaries. For a fixed control volume, the integral form of

the mass conservation equation is derived from the general conservation equation by setting the
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property ¢ = 1, with a diffusion coefficient I'y = 0 and no source terms Sy = 0. This results in:

d
E/Vpdv-k/sp(u-n)dS:O. (5.5)

The term p(u-n) represents the mass flux through the control volume boundary. Applying
the divergence theorem to the surface integral yields the differential form of the mass conserva-
tion equation:

dp

L4V (pu) =0, (5.6)

This equation is applicable to both compressible and incompressible flows. For incompress-
ible flow, where the material derivative of density (p) is zero, the continuity equation simplifies

to:

V-u=0. (5.7

5.4.1.2 Conservation of Momentum

The law of momentum conservation is essentially an application of Newton’s second law to
fluids [125, 126]. It states that the rate at which a fluid particle’s momentum changes is equal
to the net force acting upon it. These forces can be categorized into surface forces, such as
pressure and viscous forces, and body forces, like gravity [125, 126]. By setting ¢ = u in the
general control volume equation, the integral form of the momentum conservation equation is

derived:

i/pudv+/pu(u-n)d5:/c-nds+/pgdv+/fdv, (5.8)
dt Jv S S 1% 14

where o is the stress tensor, g represents gravitational acceleration, and f denotes other body
forces acting per unit volume.

The left side of the equation describes the rate of change of momentum within a control
volume, including both local time variations and momentum transported by the flow itself. On
the right side, the terms represent the forces acting on the fluid: surface forces expressed through
the stress tensor acting on the control volume boundaries, and body forces such as gravity and
other external influences distributed throughout the fluid. The differential form, obtained by

applying the divergence theorem, results in:
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d(pu)
ot

+V.(pu®u)=—-Vp+V-14+pg+f (5.9)

Here, pu is the momentum density, pu ® u represents the convective momentum flux, p is
the static pressure, 7 is the viscous stress tensor, pg denotes gravitational body forces, and f
represents other body forces per unit volume [129, 130].

For an incompressible Newtonian fluid with constant dynamic viscosity pt, the viscous stress

tensor simplifies to:

T=u (Vu+(Va)"), (5.10)

where u is the velocity vector and (-)7 denotes the transpose.

Using this, the Navier-Stokes equation can be written in simplified form as:

Ju

p§+p(u-V)u:—Vp+uV2u, (5.11)

where p is the fluid density, p the pressure, and u the dynamic viscosity. The gravitational term
pg and other body forces f are omitted here, as they are not applied in the present study.

The difficulty in solving the Navier-Stokes equations largely stems from the nonlinear con-
vective term, u - Vu, which causes interaction between velocity components and leads to com-

plex flow features such as turbulence and vortices [127].

5.4.1.3 Conservation of Energy

The fluid energy conservation equation, derived from the first law of thermodynamics, ac-
counts for convection, heat conduction, work performed by surface forces (pressure and viscous
stresses), and heat addition from body forces or internal sources [131]. By substituting ¢ = E
(total energy per unit mass) into the general control volume equation and including appropriate

source terms, the differential form of the energy equation is obtained:

%/‘/pEdV—I—/SpE(U'H)dSZ—/SP(U'n)dS+/g<T'u)'lldS

—/Sq~ndS—i—/Vp(g~u)dV+/VQdV. o
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In this equation, £ = e+ % |u|2, where e is the internal energy, q is the heat flux vector, and 0
represents internal heat sinks or sources. By applying the divergence theorem to convert surface

integrals into volume integrals, the differential form of the energy equation becomes:

d(pE)
Jt

+V-(pEu)=—-V-(pu)+V-(t-u)—V-q+p(g-u)+ 0. (5.13)

5.4.2 Principles of the Finite Volume Method

Numerical discretization approximates continuous derivatives and integrals in the governing
equations at a limited number of points or over finite volumes within the computational domain
[126, 127]. In the Finite Volume Method (FVM), the computational domain is divided into a fi-
nite number of non-overlapping control volumes or cells. The integral forms of the conservation
laws are applied directly to these cells [126].

A key feature of FVM is local conservation. The flux leaving one control volume through a
shared face is exactly equal in amount and opposite in direction to the flux entering the adjacent
volume. This ensures global conservation of quantities such as mass, momentum, and energy,
regardless of mesh resolution [132, 133]. The general semi-discrete form of the FVM for a
scalar quantity s in cell i can be expressed as:

dS,‘

AV,-E = Zf:Ff+R,-, (5.14)

where AV; is the volume of cell i, Fy represents the flux through face f of the cell (which may
depend nonlinearly on the state of neighboring cells), and R; accounts for source terms within
the cell. This formulation shows that the time rate of change of s in a cell is governed by the
net flux through its faces and any internal or external sources. Upon discretization in both space

and time, these equations are transformed. For a scalar s, the resulting fully discrete form is:

dsgﬂ)
dt

—apsy) + Y ansy +R, (5.15)
N

where s;,“ is the value at the center of cell P at the new time step, s% are the neighboring

cell values, ap and ay are coefficients derived from flux and source term discretization, and R
accounts for contributions from sources and boundary conditions.
This conservation property remains valid regardless of mesh resolution, making the FVM

robust and reliable even on coarse grids.
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5.4.3 Turbulence

Turbulence is a chaotic regime of fluid motion characterized by irregular velocity and pressure
fluctuations, in contrast to the smooth and orderly behavior of laminar flow [126]. The shift
from laminar to turbulent conditions typically occurs near a critical Reynolds number, where
turbulence may intermittently appear within an otherwise laminar flow. This transition is highly
sensitive to factors such as surface roughness, background turbulence, pressure gradients, and
geometric features that promote instabilities. Once established, turbulence is inherently un-
steady, three-dimensional, and rotational, spanning a broad range of time and length scales that
make its exact prediction virtually impossible. Since resolving all turbulent motions with Direct
Numerical Simulation (DNS) is computationally impractical for most applications, turbulence
is generally modeled. Common strategies include Reynolds-averaged Navier-Stokes (RANS),
which captures the averaged effects efficiently, and Large Eddy Simulation (LES), which re-
solves larger structures while modeling the smaller scales [126, 127].

In this thesis, turbulence is modeled using the k-@ Shear Stress Transport (SST) model
[134], which integrates the benefits of the k- and k-& models to improve the accuracy and
stability of complex turbulent flow simulations. Using this approach, the computational domain
is separated into near-wall regions and outer regions. Near the walls, a dedicated wall function
is applied to effectively resolve turbulence behavior close to solid boundaries. In the free-stream
outer region, the model operates as a k-€ model, providing stable and reliable results away from

the wall [135]. In this thesis, the turbulence variables are initialized using:

3
k=2 (| 1)?, (5.16)
k0.5

Here, k denotes the turbulence kinetic energy, I the turbulence intensity, @ the specific

dissipation rate, C;; a model constant (set to 0.09), and L the turbulent length scale.
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5.4.4 Numerical simulations in OpenFOAM

In this thesis, OpenFOAM was employed to numerically solve the governing equations using
the Finite Volume Method (FVM). OpenFOAM is a C++ toolbox for computational contin-
uum mechanics, providing core libraries for meshing, discretization, and turbulence model-
ing, along with application-specific solvers and utilities [136—138]. Several significant forks of
OpenFOAM exist, including those from the OpenFOAM Foundation, ESI-OpenCFD, and the
community-driven foam-extend project, which may differ in syntax and solver behavior [136,
139]. For the purposes of this thesis, OpenFOAMv2306 from ESI-OpenCFD was used.
OpenFOAM is built in a modular, object-oriented way, where core libraries handle tasks
such as mesh operations, numerical calculations, linear solvers, and turbulence modeling. On
top of these libraries, the software provides applications that make simulations easier to set up

and run, divided into solvers and utilities:

e Solvers: Programs that solve specific types of flow problems, like:

— simpleFoam for steady turbulent flows
— pisoFoan for transient flows

— interFoam for multiphase flows

e Utilities: Tools for preprocessing, postprocessing, and general case management, such as
blockMesh (mesh generation), mapFields (field mapping between cases), setFields

(initializing fields), and foamToVTK (exporting data for visualization)
A typical OpenFOAM project is organized into three main folders:

e constant: Contains data that usually remains unchanged, including:

— Mesh in polyMesh

— Dictionaries for material properties, e.g., physicalProperties, momentumTransport,

thermophysicalProperties

— Files for dynamic mesh operations, e.g., dynamicMeshDict
e system: Holds configuration files controlling the simulation, such as:

— controlDict for overall execution
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— fvSchemes for numerical discretization
— fvSolution for solver settings, linear solvers, and relaxation factors

— Additional optional dictionaries for parallel computing or specialized settings

e time directories: Store field data at different simulation times. The initial folder (usually

0) defines starting and boundary conditions for all variables.

The typical workflow in OpenFOAM starts with creating the computational mesh, which
can be generated using built-in tools like blockMesh, snappyHexMesh, cfMesh(in some Open-
FOAM distributions), or imported from other sources. After the mesh is prepared, the physical
properties of the fluid and case-specific parameters are defined within the constant folder. The
initial state of the simulation, including boundary conditions and field values, is set in the 0 di-
rectory. Next, numerical schemes, solver options, and other runtime settings are specified in the
system directory. Once the configuration is complete, the chosen solver is launched to perform
the simulation.

In the context of scalar transport phenomena, OpenFOAM includes dedicated solvers such
as scalarTransportFoam, which model the passive advection and diffusion of scalar quanti-

ties without influencing the underlying velocity field [136].

5.4.5 Boundary conditions

At the coastline, a no-slip condition (Dirichlet) is imposed on the velocity, ensuring that fluid
motion vanishes at solid walls. For boundary faces where the fluid exits the domain, a Neumann
condition is applied, allowing velocity to be extrapolated from the interior solution. On the
open-sea boundary, where fluid enters the domain, a Dirichlet condition is used where velocity
is determined from the prescribed flux in the direction normal to the boundary. Additionally,
tangential velocity components are set to accommodate flow directions that are not perfectly
perpendicular to the boundary, enabling a more realistic representation of rotational or oblique
inflow.

At the open boundary, pressure is prescribed via a Dirichlet condition constrained to phys-
ically realistic values, while a Neumann condition is enforced along the coastline. To ensure
numerical stability and resolve pressure gradients consistently, one internal reference cell is
chosen and set to a fixed pressure of zero. The pressure field is then computed relative to this

reference.
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Initial estimates of turbulent kinetic energy and specific dissipation rate are obtained from
(5.16) and (5.17), with appropriate wall functions applied at boundaries where required. Ta-

ble 5.1 summarizes the boundary conditions applied for all test cases.

Table 5.1: An overview of the OpenFOAM boundary condition type em-
ployed in flow simulations for surrogate model.

Field Inlet/Outlet Coastline
u pressurelnletOutletVelocity noSlip
P totalPressure zeroGradient
k fixedValue kqRWallFunction
o fixedValue  omegaWallFunction

To simulate quasi-steady flow conditions in this study, the simpleFoam solver from the
OpenFOAM suite was employed, as it is designed for steady-state incompressible flow. Al-
though the solver is inherently steady, a sequence of short, steady simulations was carried out
to approximate transient-like behavior. The pressure—velocity coupling was handled using the
SIMPLEC (SIMPLE-consistent) algorithm, a variation of the classic SIMPLE method origi-
nally proposed by [140]. This algorithm was controlled by setting a fixed number of iterations
along with convergence criteria based on the residuals of velocity, pressure, and turbulence
variables.

In terms of discretization, second-order accurate gradient and Laplacian schemes were ap-
plied to maintain solution accuracy, whereas first-order upwind schemes were used in regions
with sharp gradients to ensure numerical stability, particularly for divergence terms related to
convective transport. The meshWave method was used to compute wall distances required for
turbulence modeling.

All simulations across test cases were configured using consistent boundary conditions and
solver settings. For this pressure-driven flow, the initial conditions for velocity specified tan-
gential velocity components using the pressureInletOutletVelocity boundary condition,
along with total pressure, turbulent kinetic energy, and specific dissipation rate, while the in-
ternal field values were set to zero. The boundary conditions were specified in a non-uniform
manner, with each boundary cell assigned a pair of values (u,p) representing the tangential
velocity and total pressure, respectively. This treatment allows tangential velocity components
to be prescribed, accounting for possible misalignment of the inflow with the inlet boundaries

and providing more realistic conditions that capture swirl and tangential fluid motion.
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Further implementation details, including grid structure, cell distribution, discretization
schemes, and complete numerical setups for both bounded and open-domain cases, can be found

in the repository on the Open Science Framework: https://osf.io/wjsb2/.
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6 MODEL FITTING FRAMEWORK

The proposed methodology addresses a model fitting problem in which the objective is to match
measured and simulated flow measurements. On one side, measurements provide velocity vec-
tors at specific locations in the domain, while on the other, the numerical model simulates a
flow field whose behavior can be adjusted by modifying the boundary conditions. The goal is
to identify boundary values that yield a simulated flow matching the measurements as closely
as possible at the measurement locations. This fitting problem is solved using an optimization
algorithm, which iteratively updates the boundary values in order to minimize the error between
the simulated and the referent flow.

To set boundary cell values, a user-defined number of control points is uniformly distributed
along the boundary, with each point specifying a pair of (u;,p). Cubic spline interpolation
is then applied to generate smooth velocity and pressure profiles across all boundary cells,
ensuring continuity while allowing the boundary conditions to be controlled with a reduced
number of variables. Because of this, the quality and fidelity of the flow reconstruction rely
heavily on the optimization vector b, which contains the tangential velocity and pressure values

at the boundary control points:

b:(ul,lapla"'7ut,ncpupnCP)T7 (61)

where ncp stands for the number of boundary control points. An illustration of the velocity
profile resulting from the components of the optimization vector can be seen in Figure 6.1.

To realistically represent surface flows and account for natural fluctuations in surface cur-
rents, especially at submesoscale levels, the bounds of the optimization variables were set be-
tween —0.5 and 0.5 m/s for tangential velocity, and between —0.05 and 0.05 m?/s” for pressure
at the boundary points (in OpenFOAM for incompressible flow, pressure is expressed as p/p).
These ranges were chosen to maintain computational stability, with initial candidates randomly
placed within these limits. It should be noted that the final total pressure and tangential veloc-

ity values at the boundaries may slightly differ from the initially assigned ones, as they adjust
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Figure 6.1: Figure depicts the parametrization of boundary conditions by

placing control points along the boundary, each specifying a pair (4, p),

with cubic spline interpolation used to generate the tangential velocity and
pressure profiles.

through through the solution of the Navier-Stokes equations in the domain.

6.1 Objectives

During each evaluation, a full OpenFOAM simulation is run to compute the velocity field across
the entire domain. Velocity vectors are then extracted at measurement points corresponding to
drifter positions and treated as referent data that the simulation aims to match. To measure
how well the simulation matches these references, the cost function calculates the drifter error,
E,, defined as the root mean square of the velocity differences at these points (in meters per
second). The optimization objective is to minimize E;, ensuring the simulated velocities match

the referent measurements as closely as possible:

| "wp
minimize E;(b)=,/— Y (u,; —u,;(b))?
b d( ) nMP,g{( ) s,:( )) 62)

subjectto b;< b <b,.

Here, nyp is the number of measurement points, u,; is the referent velocity, and uy; is the
simulated velocity at measurement point location. This approach is presented on Figure 6.2).

To evaluate the quality of the reconstructed flow field, a global error measure, denoted as Ev,
is additionally defined. This metric quantifies the overall discrepancy in the velocity field, anal-

ogous to (6.2). The velocity vectors at selected field points are considered solely for assessing
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Figure 6.2: This figure illustrates the objective of adjusting the optimiza-

tion variables at control points (green dots) until the red arrow (represent-

ing the current simulated velocity vector) aligns with the grey arrow (rep-

resenting the referent velocity vector) for every measurement point (yellow
Cross).

the reconstruction performance and are not included in the optimization process:

1 nEp

Ef(b) = — Zl(un i—ug (b)), (6.3)
=

where npp is the total number of field points, u,. ; denotes the reference velocity vector, and uy ;

represents the simulated velocity vector at the field point location.

6.2 Constraints

To ensure the solutions found are feasible within this simulation-driven optimization, it is es-
sential to enforce certain constraints. These constraints relate to simulation residuals and help
steer the optimization toward solutions that are both accurate and numerically stable. Both sim-

ulation and optimization residuals are included in the optimization process and must remain
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below the defined thresholds for the constraints to be considered satisfied; otherwise, penalties
are applied.
The pressure residual constraint

rp(b) <1073, (6.4)

helps keep pressure values consistent throughout the optimization, avoiding unrealistic pressure
imbalances. Velocity residuals, which guarantee physically plausible fluid behavior, are defined

individually for each velocity component:

ru,(b) <107 (6.5)

ru,(b) < 107, (6.6)

The turbulent kinetic energy residual

re(b) <1074, (6.7)

maintains the turbulence energy at acceptable levels. Likewise, the specific dissipation rate

residual

ro(b) <1074, (6.8)

limits the turbulence dissipation rate to maintain physical accuracy.
Taken together, these constraints guide the optimization process, promoting stable, realistic,
and physically meaningful fluid flow representations. All five constraints are checked for both

bounded and open flow simulations, in a single optimization candidate b evaluation.

6.3 Progressive field initialization and search narrowing

The optimization routine works by iteratively adjusting the values in the optimization vector
to minimize the cost function. Initially, all cases begin with internal field values set to zero,

while the boundary conditions vary according to each candidate solution. However, certain
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combinations of boundary values can lead to slow or failed convergence, thereby extending the
duration of the optimization.

Since the flow field is anticipated to vary only slightly between consecutive periods, the full
range of optimization variable bounds is used only for the initial flow reconstruction. For all
subsequent reconstructions, the bounds are narrowed to focus the search within 60% of initial

range around the best solution for the previous quasi-steady time iteration, i.e:

b} = b,y — 0.3(b, —by) ©9)
b = by +0.3(b, —by),

where, by and b;; are the updated lower and upper bounds, respectively. This reduction in
search space focuses the optimization toward the most suitable parameter ranges in each period,
enhancing convergence efficiency and reducing the computational cost of the fitting process.
To further accelerate convergence, a field initialization strategy is introduced, in which the
internal field from the currently best-performing simulation is used as the starting point for new
simulations. This approach is motivated by the observation that as optimization progresses,
many candidates begin to resemble the best solution, resulting in similar flow fields. By initial-
izing new simulations with a flow field already close to the expected final result, convergence
can be achieved more rapidly, often in fewer iterations, leading to shorter simulation times.
In practice, this method has been shown to reduce simulation time by up to 20%. While this
improvement may not be noticeable for small domains or simulations that already converge
quickly, it becomes particularly beneficial for larger domains with more complex flow dynam-
ics. In such cases, convergence is more demanding, and the time savings are more substantial.
The effectiveness of this field initialization approach is demonstrated in Figure 6.3, which
shows results from 300 pairs of optimization runs for the Simple bay test case. Each pair in-
cludes one run with field initialization and one without, using identical initial conditions, target
flow fields, and randomly selected measurement points. The same optimization seed is applied
to ensure a fair comparison. The figure clearly shows that field initialization leads to a reduction
in computational time across iterations. While the advantage is minimal in early stages, after
around 100 iterations, the time savings become significant, reaching up to 20%. Similar trends
were observed in other test cases as well. These results show that, although the benefit is small
during the early iterations, it increases over time, reaching up to 20% improvement by the 100th

iteration.
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Figure 6.3: Computational improvements from using field initialization in

simulations. Colored bands represent simulation durations per iteration,

bounded by the average minimum and maximum run times. Dotted lines

show the average minimum, and dashed lines indicate the average maxi-
mum simulation times.

6.4 Modeling drifter advection

In real-world conditions, drifters are carried by the currents across the domain while contin-
uously emitting measurements. To simulate both their motion and the timing of measurement
updates, a quasi-steady advection approach was used. In this approach, the reconstruction of the
flow field is not controlled by a fixed number of optimization iterations. Instead, it runs within a
predefined time limit 7§, corresponding to the expected interval between real-time measurement
updates. This setup allows the system to regularly update the velocity field and trajectory pre-
dictions, assimilate new data as it becomes available, and treat the flow as steady within each
update cycle. At each interval Ty, a drifter’s displacement is computed based on the velocity

field from the previous reconstruction, where the updated position is calculated using:

dx
— =u(x,1). 6.10
=) (6.10)
Here, x(7) denotes the position of a drifter at time 7, and u(x,?) is the velocity at that position
and time. This ensures that simulated drifter positions evolve consistently with the reconstructed

flow field, enabling their trajectories to be tracked over time. Over consecutive intervals, this

produces a realistic and adaptive approximation of transient drifter behavior, supporting fast
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and field-ready decision-making.
The approach of advecting drifter positions also provides an additional assessment of the
accuracy of the reconstructed flow. This is achieved by calculating a positional error between

the referent and simulated drifter locations, defined as

Xi(’?ferent (t) - Xgi'l)nulated (t) ’ (61 1)

which measures the deviation of the simulated drifter positions from their expected locations
and provides an indication of how well the reconstructed velocity field reproduces the actual
drifter motion. However, it should be noted that this was only used in the simulation frame-
work. In real deployments, drifters naturally follow the currents, and no explicit advection of
measurement points is needed.

This process of updating the velocity field in real time allows the system to keep accuracy
in scalar transport modeling and meet the demands of operational time scales. Along with pro-
viding reliable performance, this ability supports the overall aim of the framework, which is de-
signed to work as a useful decision-support tool that gives quick feedback. This responsiveness
is particularly important in field operations where timely information can support operational

choices and enhance the effectiveness of interventions.
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7 ADVECTION DIFFUSION PROCESSES

A significant aspect of this work involves modeling the dispersion of pollutants, tracers, and
hazardous materials that may be released into the marine environment, as well as modeling the
dynamics of probability distribution in maritime SAR operations. These scenarios typically
require methods that can simulate how substances evolve over time and space, often driven by
ocean currents across broad domains. In such cases, the passive scalar transport framework
based on the advection—diffusion equation is widely used due to its simplicity, adaptability, and

effectiveness in rapid-response applications.

7.1 Passive scalar transport

A pollutant concentration, represented as a scalar field, evolves through advection by the surface
velocity field, usually obtained from ocean circulation models. Since these substances are con-
sidered to have little or no influence on the flow itself and typically do not decay or react rapidly,
this approach offers an efficient and reasonably accurate way to estimate how they spread. This
simplification has been successful in various marine studies, including early models that tracked
conservative tracers in large-scale ocean basins [141, 142].

The passive scalar approach plays a key role in many oceanographic and environmental
applications. For instance, it forms the basis of biogeochemical and ecological models that
monitor the distribution of nutrients and other tracers, transported by oceanic velocity fields
and influenced by complex biological interactions [143, 144]. These models often rely on flow
fields from hydrodynamic simulations, and to manage the high computational cost of simulating
numerous tracers over large areas, efficient numerical techniques such as multigrid solvers have
been developed [145]. Regional studies in the Mediterranean, for example, have combined
passive advection with particle tracking to map plastic accumulation zones [146]. Similarly,
high-resolution CFD tools have been employed to study microplastic dispersal in nearshore

regions, where small-scale turbulence significantly impacts particle movement [147].
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Here, the advection—diffusion equation introduced in Section 2.2, is adapted for a scalar

field s advected by the fused velocity field ug,eq Without source or sink terms which results in:

d
a—:+ufused-vs—z)v2s:o. (7.1)
While it does not resolve the exact shape or detailed dynamics of individual floating objects,
it provides sufficiently accurate results for rapid decision-making and emergency response. For
scenarios requiring greater physical detail, the framework can be extended to include effects

such as turbulent diffusion, buoyancy, biofouling, decay, or reactive transport, allowing it to

address a broad range of environmental modeling needs.

7.2 Assessment of passive scalar field advection accuracy

The reliability of passive scalar advection is evaluated by comparing advection-diffusion pro-
cesses within a synthetic benchmark case. A simulated referent flow is used to generate a
baseline passive scalar field, representing the ground truth for advection. The referent flow is
inherently unsteady, and its dynamics are driven by time-varying boundary conditions. Eval-
uation of advection accuracy is only possible when the reference flow is known, as this setup
allows assessment of whether the quasi-steady reconstructed flow provides an adequate approx-
imation. Advection of the passive scalar field is then performed using the reconstructed flow,
which is approximated by solving a series of steady-state flow fields at discrete intervals of Tj.
The resulting scalar field is compared to the baseline to quantify reconstruction accuracy. Both
scalar fields are initialized identically, and advection is simulated using the same numerical
model and mesh to ensure a fair comparison. The only difference between the two simulations
is the underlying velocity field.

To assess passive scalar field advection accuracy, two metrics are introduced. The first is
the intersection metric, which quantifies how much of the referent scalar field overlaps with the

reconstructed one. It is defined as:

/ Ssim dQ
Ql'ru‘fsc

I =
/erefd.Q

, (7.2)
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where Q;,s 1s the intersection region between the referent and simulated scalar fields, and
s denotes the scalar values. An intersection value of 1 indicates perfect overlap, meaning the
reconstructed flow accurately captures the referent advection. Lower values indicate increasing
discrepancies due to reconstruction limitations.

The second metric is the coverage metric, which evaluates how well the simulated scalar
field is encompassed by the referent field. This is particularly important in applications where it
is crucial that the reconstructed scalar covers the region of possible presence of the target, simi-
lar to probability distributions. Even if the reconstruction is not perfectly accurate, ensuring that
the simulated field includes the relevant area provides confidence that the target or phenomenon

is captured. The coverage metric is therefore defined as:

/ Ssim d€2
Qimrsc
)l
L/nsSmldgz
Q

where a value of 1 indicates that the referent field fully encompasses the simulated scalar dis-

C= (7.3)

tribution, while a lower value suggests that parts of the reconstructed scalar field deviate from
the expected transport path under the referent flow. In practice, a slight overestimation of the
covered area is acceptable if it ensures that the target remains within the reconstructed field. A
visualization of the intersection region between the referent and simulated scalar fields, from

which these metrics can be obtained, is presented in Figure 7.1.
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Figure 7.1: Visualization of the intersection between referent and simu-
lated scalar fields, showing uncovered areas of referent scalar field and
overestimated areas of the simulated scalar field.
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7.3 Adaptive diffusion coefficient

To complement the coverage metric C and account for reconstruction errors in the velocity field,
the diffusion coefficient is adjusted using the concept of mean squared displacement (MSD),
denoted S2. The MSD is based on the drifter location error defined in (6.11) and provides a
measure of the typical displacement caused by inaccuracies in the reconstructed flow. This ad-
justment increases the spread of the advected scalar, improving the possibility that the scalar
field encompasses the target even when the reconstructed velocity field deviates from the refer-

ent flow. For a Brownian particle, the MSD is expressed as:

S?(t) =2 -ngim-D-t, (7.4)

where ng;,, = 2 is the number of spatial dimensions, D is the diffusion coefficient, and ¢ is time.
Here, the measured drifter positional error S(¢) from (6.11) can be used to estimate an effective
diffusion coefficient for the passive scalar field, improving the possibility that the scalar field
covers the relevant regions.

Therefore, an additional compensating diffusion term can be calculated as:

SZ

D, = .
c 4-T,

(7.5)

Here, S? represents the average displacement caused by the error over the interval 7. The
compensating diffusion coefficient D. accounts for the extra uncertainty introduced by the im-
perfect flow reconstruction. An adaptive diffusion coefficient is then defined for the recon-

structed flow:

Dadp = Dpase + Dc, (7.6)

where Dy, is the diffusion coefficient of the referent flow.

This adaptive diffusion approach ensures that the advected scalar field more reliably covers
regions where the target is likely to be found, even in the presence of unavoidable inaccuracies
arising from both measurements and flow reconstruction. By accounting for these uncertainties,
D4, enhances the robustness of scalar transport predictions and improves the overall reliability

of the reconstruction for practical applications.
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7.4 Application in dynamic search scenarios

Despite significant advances in marine technology, accidents at sea remain a serious challenge,
keeping SAR operations essential. These efforts are inherently difficult due to the vast search
areas and the constantly changing ocean conditions [53]. Time is one of the most critical factors
in SAR, as survival rates drop rapidly with delays in finding missing persons.

Unmanned aerial vehicles (UAVs) have evolved into a viable solution for SAR [148, 149].
Path planning, multi-agent coordination, probability field generation, and dynamic target track-
ing are among the many topics examined. Work by [150], for instance, provides a technique
for developing intelligent marine reaction plans, shown to be successful in actual contexts. Ad-
ditionally, [151] dives deeply into the topic in his thorough investigation of target detection in
maritime SAR aerial images and camera sensing systems. A dynamic probabilistic search algo-
rithm is introduced in [148] to include Gaussian mixture models and fluctuating ocean current
data. It employs grid-based spatial discretization, which is also found in the method outlined
in [152]. Even if the target probability combines environmental data and sensor readings for
path planning, its dynamic development is limited. Another example is presented in [153],
where USVs were employed to carry out lawnmower-pattern searches, neglecting changes in
the underlying probability domain.

A common objective in maritime SAR operations is to prioritize regions where the probabil-
ity of locating a target is highest. Among the many methods developed for SAR, ergodic search
strategies are particularly useful as they allow for precise exploration of areas based on complex
and dynamically evolving probability fields. These methods ensure that the search trajectory
statistically covers regions in proportion to their likelihood of containing the target. The most
widely adopted ergodic search techniques include Model Predictive Control (MPC), Spectral
Multiscale Coverage (SMC), and Heat Equation Driven Area Coverage (HEDAC). The SMC
technique, originally introduced in [154], employs smoothed Fourier basis functions to generate
trajectories that match the spatial distribution of target probability. Its adaptation for dynamic
environments is discussed in [155], and further extended in [156] for the search of MH370, us-
ing Lagrangian particles to represent dynamic probabilities. MPC-based ergodic control, which
frames trajectory generation as an optimization problem, is investigated in [157] and used for
dynamic exploration and object detection tasks in [158]. Another promising method is HEDAC,
initially proposed in [159]. Its FEM-based version has been shown to work on irregular do-

mains and supports obstacle avoidance [160]. In addition to its spatial coverage capabilities,
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the HEDAC framework was further extended to integrate probabilistic sensing, as discussed in
[161]. However, its application to searching for drifting or dynamically behaving targets has

not yet been demonstrated.

7.4.1 Dynamic probability distribution field

In real-world search scenarios, the domain is explored by multiple agents over the time interval
t. These agents can represent unmanned aerial vehicles (UAVs), manned aircraft, or other search
platforms, and the search is defined by their trajectories. It is assumed that the positions z;(t)
and orientations 6;(¢) of the agents are known, where i = 1,...,n indexes the individual agents
and 7 is the total number of agents involved in the exploration. The search process relies on the
probability density s(y,?) : (Q x t) — R, which represents the likelihood of a target remaining
undetected at position y and time ¢. Its initial distribution, defined at r = 0, is given by so(y) and

satisfies the normalization condition:

/ soy) dQ = 1. (7.7)
Q

Each agent contributes to the exploration of the domain, and its sensing influence is modeled
through a sensing function %;(r), where r(¢) corresponds to coordinates in the agent’s local

reference frame. A visual illustration is provided in Figure 7.2
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Figure 7.2: Absolute and local coordinate systems, along with the agent’s
sensing function ;.
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The cumulative sensing effect exerted by all agents, expressed in the global coordinate sys-

tem, is defined as

I(y.1) = ;y R(6()) - (1) — ). 1.8)

with the rotation matrix R given by

cos@ —sinf
R(0) = . (7.9)

sin@ cosf
The evolution of the search targets is determined by the vector field w(y,?) : (Q x ) —
R?, representing the fluid flow which drives the dynamics of s. An advection-diffusion partial
differential equation is employed, incorporating a sink term that models the impact of agents’

sensing. The probability of a target remaining undetected, s(y, ), evolves according to

P)
a—::D-st—w-vs—r-s, (7.10)

where D denotes the diffusion coefficient. The diffusion term accounts for the overall uncer-
tainty in the system, which may arise from inaccuracies in the flow field, errors in initializing
the undetected probability field, or localization errors affecting sensing. To incorporate this un-
certainty, D is determined according to the adaptive formulation introduced in (7.1), ensuring
consistency with the reconstruction error compensating approach used in the scalar transport
model. Since the primary objective of the search is the rapid and sustained reduction of unde-

tected targets, the ergodic search task can be formulated as

lim [ s(y) dQ =0. (7.11)

t—o o

It should be noted that the search cannot be continued indefinitely, and its duration is not
predetermined. Consequently, since the total search time is unknown, the exploration of the
dynamic probability distribution cannot be formulated as a conventional optimization problem

and is instead treated as an ergodic task.

7.4.2 Search agent motion model

The motion of each agent is described using the Dubins model, where a constant speed v; is

assigned to the agent while its heading angle 6; is allowed to vary. Accordingly, the trajectory
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of each agent is expressed as

dz; v; - cos 6;
R a8 (7.12)
dr v; - sin 6;

The evolution of the heading angle is dictated by the yaw angular velocity @;(¢) = d6;/dr,
which is limited by |@;| < @™**. This constraint also defines the minimal turning radius of the
agents as @nin = v;/@™**. It should be noted that, since the search is conducted using aerial
robotic agents, the flow field w does not influence their motion.

The agents’ motion is directed by the HEDAC algorithm [160], which determines the @(t)
from a potential field ¢ (y, ). This potential is obtained by solving the partial differential equa-

tion:

av>e(y,1) — o(y,1)+s(y,1) =0, (7.13)

where o > 0 is a tuning parameter that controls the trade-off between local and global explo-
ration. On the domain boundary B and any internal obstacles, Neumann boundary conditions

are applied:

g—z . =0, (7.14)
with n denoting the outward normal to the boundary B.
The normalized gradient of the potential field ¢ is then computed to guide the exploration
agents:
Vo(y)

v(y) = Vo (7.15)

Based on the gradient v, the agents’ yaw angular velocities are determined by

W = —(A(Oi,v(zl-))>, (7.16)

where the yaw rate @; may take positive or negative values, corresponding to the turning direc-
tion: positive @; denotes a counterclockwise turn, whereas negative @; indicates a clockwise

turn.
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7.4.3 Implementation of the integrated search framework

The proposed methodology is implemented by combining solvers for the advection, diffusion,
and sensing of the probability density in (7.10), the potential field described by (7.13), and
the agents’ motion model in (7.12). The advection and diffusion components in (7.10) are
computed using the Finite Volume Method (FVM) through the scalarTransportFoam solver in
OpenFOAM. Sensing is applied directly to the probability field s at each time step, based on the
agents’ positions z; and their corresponding sensing functions 7. The potential field equation
is solved using the Finite Element Method (FEM) with the Netgen/NGSolve library [162, 163],
which also provides the gradient of the potential for motion guidance. The integration of the
motion model, collision avoidance, utility calculations, visualization, and overall coordination
of all components is carried out using the Python programming language.

In the implementation, motion control and sensing are updated at intervals of Az, whereas
the advection and diffusion simulations are computed using a finer time step of Az/10 over the
course of each control interval Atr.

The two coupled approaches operate differently, as OpenFOAM relies on FVM, while
HEDAC employs FVM. To accommodate their respective tasks, the underlying meshes are
structured differently. OpenFOAM applies a three-dimensional hexahedral FVM mesh with a
single element along the third dimension to handle the two-dimensional advection-diffusion
problem, whereas HEDAC uses a two-dimensional triangular FEM mesh. Furthermore, FVM
stores field values at cell centers, while FEM stores them at the mesh nodes, necessitating data
transfer between meshes.

The integration of the methods is performed such that agents’ sensing effects are directly ap-
plied to the FVM scalar field, after which the probability field s is projected onto the FEM mesh
for the potential field computation. The projection is implemented using the nearest neighbor
interpolation method due to its computational efficiency. Only the probability field s accumu-
lates errors, as the potential field ¢ is recomputed from the updated values of s at each time
step. Consequently, the use of the nearest neighbor interpolation and its associated coarseness
is considered acceptable.

The integration of the two computational methods is achieved by directly updating the FVM
scalar field with the effects of agents’ sensing. After this, the probability field s is projected to
the FEM mesh to calculate the potential field ¢. This is done with nearest neighbor interpo-

lation, chosen for its computational simplicity. Only the probability field s is subject to error
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accumulation, since the potential field ¢ is recomputed from the updated s values at each time
step. The minor coarseness introduced by this interpolation method is therefore considered
acceptable for the intended computations.

The complete workflow of the proposed methodology is outlined in Figure 7.3.

/ INITIALIZATION \ / CALCULATE UAV TRAJECTORIES \

Initialize general parameters, UAVSs, and FEM system Retrieve scalar field s(t) from OpenFOAM
| cafe
Normalize and set s field in the finite element system
Equation (7.7) I Fori=1tondo
(For all UAVS)

Save normalized s field to OpenFOAM case for t = 0

v

Apply sensing to s(t) using i
Initialize OpenFOAM vector field w
Initialize diffusion coefficient Sensing in Eguaﬂ‘on (7.10)

\ Set Initial time: t = 0 ‘// %

Save updated s field with applied sensing
to OpenFOAM case

‘ Update s field in the finite element system

‘ Compute potential
Equation (7.14)

‘ Compute UAVS' yaw angular velocities
Equation (7.15)

‘ Update UAVS' positions

Perform scalar transport of s in OpenFOAM
Advection-difiusion in Equation (7.10)

\‘ Advance time: t =1 + At /

Figure 7.3: UAV navigation procedure based on dynamic probability
fields.
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8 SIMULATION RESULTS

This chapter presents the outcomes of the proposed methodology, structured to demonstrate its
performance under various conditions and validation scenarios. The results are divided into
three main parts. First, the preparation of test cases is outlined, providing the foundation for
subsequent analyses. Second, the steady reconstruction approach is examined, focusing on
multimodality, optimization benchmarks, mesh independence, and validation based on realistic
measurements. Finally, the transient flow reconstruction is analyzed, including robustness test-
ing with determination of the optimal sampling period 7§, followed by validation of different

approaches for transient flow approximation and the associated passive scalar advection.

8.1 Preparation of test cases

The simulation domains used in the test cases are either synthetic, designed for controlled ex-
perimentation, or based on real-world geography to support practical applications. For synthetic
domains, the mesh was generated in OpenFOAM using the blockMesh utility. This tool allows
the user to create a structured grid by defining the computational domain as a set of blocks.
Each block is specified by its corner vertices, the number of cells along each edge, and the way
edges are shaped or curved. By combining multiple blocks, complex geometries can be approx-
imated, and the resulting mesh defines the spatial resolution for simulations. The example of a
numerical mesh generated using blockMesh is presented in Figure 8.3.

For realistic domains, coastline shapes were extracted using the Sentinel Hub [164] plat-
form, which provides satellite-derived products such as the Level-2A NDWI (Normalized Dif-
ference Water Index), and generates the corresponding computational mesh in OpenFOAM.

The NDW1I is a spectral index commonly used to identify surface water features by enhanc-
ing the contrast between water and land. It is computed using the surface reflectance values

from the green and near-infrared (NIR) spectral bands, as introduced in [165]:

Green — NIR

NDWI= ——|
Green + NIR

8.1
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where water bodies typically yield positive values, while land and vegetation result in zero
or negative values. The calculation of (8.1) helps isolate water bodies in satellite imagery by
enhancing their spectral signature.

The NDWI data is then retrieved from georeferenced TIFF images, which include both
the pixel-wise NDWI values and the spatial metadata necessary for geolocation. Using this
metadata, each pixel in the image is mapped to geographic coordinates (latitude and longitude).
After normalizing the NDWI image to an 8-bit range, a threshold is applied (e.g., NDWI > 0.25,
corresponding to 165 in the 0-255 scale) to segment water bodies from land. The difference

between water bodies from land is visible on the TIFF image presented in Figure 8.1.

mmmmm Extraction polygon
mm—— \\Vater
s Land

Figure 8.1: The figure illustrates the coastline extraction polygon derived

from the NDWI image. Blue colors represent water surfaces, while green

areas correspond to land. The clear contrast between these regions reflects

the NDWI value distribution, enabling accurate delineation of the coastline
for mesh generation.

Contours are extracted from the binary image using standard image processing techniques,
and the largest contour is selected to represent the coastline. This raw coastline is initially de-
fined in pixel coordinates, then transformed to geographic coordinates using the image’s bound-
ing box and resolution. To improve the accuracy and smoothness of the coastline, a moving
average is applied along the contour before it is exported in both global and local coordinates.

This process is visible on Figure 8.2.
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Figure 8.2: Figure depicts the process of coastline extraction from the

NDWI image. The largest constour representing raw coastline contour

(blue) is smoothed (red) and prepared for conversion from pixels to geo-
graphic coordinates.

The refined coastline polygon is used to generate a stereolithography (STL) surface model,

which provides the geometric basis for creating the computational mesh. STL model is used

with the cfMesh meshing library [166] to generate a two-dimensional mesh, which is subse-

quently imported into OpenFOAM. This workflow enables accurate representation of coastal

geography and supports physically consistent simulations of surface flows in real-world en-

vironments. Examples of mesh generation using both blockMesh and cfMesh are shown in

Figure 8.3.
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(A) Synthetic domain mesh with coastline generated with

blockMesh. (B) Synthetic domain mesh without coastline generated with
blockMesh. (C) Realistic domain mesh generated with cfMesh.

To validate the proposed methodology, six distinct test cases were developed, each repre-

senting a different domain type: a synthetic domain, five realistic domains with distinct features,
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and two domains incorporating experimental field measurements. The selected domains vary
in size, geometry, boundary complexity, and the presence of coastal features or islands. The
key characteristics of each test case are outlined in Table 8.1, providing an overview of the

computational and physical properties considered during the simulations.

Table 8.1: Characteristics of the simulation test cases.

Case characteristics Simple bay  Gulf of Trieste Vis Unije Plomin bay Valun bay
Test case type Synthetic Realistic ~ Realistic ~ Realistic =~ Experimental =~ Experimental
Domain area [km?] 24.6 498.94 2273.9 96.49 3.37 55.62
Number of boundaries 1 1 5 4 1 1
Total boundary length [km] 9.4 20.52 120.97 9.63 3.74 7.22
Coastline length [km] 9.1 86.64 197.61 57.12 8.34 31.74
Number of boundary control points 5 5 14 6 3 3
Max velocity in the domain [m/s] 0.25 0.2 0.35 0.4 0.4 0.5
Number of cells 4625 8262 12856 7530 5676 15833
Average cell size [m] 73.02 245.74 412.41 113.21 24.36 59.28

8.2 Analysis of steady flow reconstruction approach

Validation of the steady flow reconstruction methodology serves as the foundation for the quasi-
steady approach used in the transient flow replication. The primary objective is to evaluate the
effectiveness and limitations of the steady flow fit process by analyzing its performance across
different test cases. The section includes a benchmark of optimization outcomes to illustrate
potential convergence scenarios, as well as validation results in a realistic domain where real-
world drifter measurements were used. These analyses are essential for confirming that the
reconstructed steady flow fields achieve sufficient accuracy and that the optimization process is

effective, thereby ensuring reliable transient reconstruction in the subsequent stages.

8.2.1 Multimodality

Given that proposed reconstruction processes are at their core optimization problems, a con-
ventional test case, lid-driven cavity, was chosen to determine the best optimization approach.
This configuration consists of a square cavity with an area of 1m? filled with fluid, where flow is
generated by moving the top lid, controlled through three designated points. The induced mo-
tion leads to the development of recirculation zones and vortices, which were the focus of the
reconstruction process. A total of 100 different measurement setups were tested, each involving

100 measurement points, with tangential inlet velocities ranging from -2 m/s to 2 m/s, resulting
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in Reynolds numbers up to 200, assuming a kinematic viscosity of 1072. To accurately capture
the complex flow patterns, a structured mesh of 40000 cells was used. Steady-state simulations
were employed to investigate the influence of varying Reynolds numbers on the stability, scale,
and behavior of the resulting vortical structures.

The findings revealed that identical velocity vectors at specific measurement points can
arise from multiple distinct boundary condition combinations. As a result, optimizing to match
a target velocity at a single location does not ensure that the overall flow field is accurately
represented. This phenomenon is illustrated in Figure 8.4. Given this ambiguity, local search

strategies are considered inadequate for the optimization framework adopted in this study.
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Figure 8.4: Analysis of the multimodal characteristics of the flow fitting
task. (A) shows the cavity lid scenario at Re = 160 with two marked obser-
vation points. (B) presents overlapping velocity profiles at point 48 (left
marker), indicating identical local velocities from different boundary con-
ditions, with another example shown in (C) at point 73 (right marker).

Analysis of all measurement positions throughout the parameter range confirmed that mul-
tiple optimization inputs can yield the same velocity at specific points in the domain. This
behavior reflects the multimodal nature of the problem, indicating that different boundary con-

figurations can produce indistinguishable flow characteristics at certain locations.

8.2.2 Optimization methods and benchmark

In all optimization tests, the objective function is defined using the root mean squared velocity
difference at measurement locations, denoted as E;. Convergence is considered achieved once
the measurement velocity error, E4, falls below the threshold of 1072, equivalent to a drifter

velocity error of 1 cm/s. In addition, the accuracy of the reconstructed velocity field is assessed
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using a separate metric, E 7, with a threshold set at 2 - 102, which translates to a drifter velocity
error of 2 cm/s. It is important to note that E is not incorporated into the optimization process
itself, but is instead just monitored to provide a more comprehensive evaluation of flow field
reconstruction quality. This metric is calculated for all test cases to ensure consistency in as-
sessing the spatial accuracy of the reconstructed fields. Based on conducted tests, setting E
to be three times larger than the drifter-based error E; has proven effective in confirming that
the reconstructed flow adequately matches the reference field. All results satisfying both error
thresholds are considered acceptable.

Using the computed values of E; and E, the optimization outcomes can be categorized into

four distinct groups:

e £;>0,Ef > 0 (red region)
This represents cases where the optimization did not satisfy both the drifter and field error
thresholds.

e E;>0, Ef =0 (gray region)
A less frequent outcome in which the field error falls within the acceptable limit, but the
drifter error remains above the defined threshold.

e £;~0, E; > 0 (orange region)
Cases where the drifter error meets the target, but discrepancies remain in the recon-
structed velocity field compared to the referent one.

e £;~0, Ef ~ 0 (green region)

The ideal outcome, where both drifter and field errors fall below their respective thresh-

olds, indicating a successful reconstruction of the surface velocity field.

Figure 8.5 presents a visual representation of the four distinct groups according to optimiza-
tion error, obtained during the initial testing phase using the Particle Swarm Optimization (PSO)

algorithm.
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Figure 8.5: (A) The referent flow that needs to be reconstructed. (B) Ve-

locities matched locally but field error threshold not met. (C) Main vortex

captured, but northern flow diverges. (D) Distribution of optimization out-

comes. (E) Both drifter and field errors are within limits. (F) Field error
threshold met, but drifter error not met.

Since reconstruction accuracy depends on the placement of measurement points, the fig-
ure confirms the hypothesis that the orange scenario (E; =~ 0, Ey > 0) will progressively move
toward the green region (E; ~ 0, Ey ~ 0) as the number of measurements increases. Con-
versely, the red scenario (E; > 0, Ef > 0) represents a poorly resolved case where adding more
measurements does not improve the solution due to insufficient information in critical areas
for the optimization algorithm. The grey scenario (E; > 0, Ef =~ 0) yields a flow field closely
resembling the referent one, with minor velocity deviations at measurement locations. Such in-
stances are uncommon and likely caused by numerical inaccuracies, consistently hovering near
the threshold. Although this scenario is very similar to the referent flow, slight differences in
measurements can prevent meeting the error threshold. These results emphasize the importance
of drifter placement, suggesting that a more uniform distribution could enhance reconstruction
accuracy. While varying the error thresholds might produce slightly different outcomes, the
current thresholds depicted in the figure appear appropriate for flow reconstruction, given that

the absolute error remains below 0.03 cm/s.

67



To identify the most suitable optimization algorithm for the proposed flow field reconstruc-
tion, various methods available in the Python optimization library Indago [167] were assessed.
Only the most promising approaches are presented here. The focus was on global search al-
gorithms, as local search methods were excluded due to the multimodal characteristics of the
problem discussed in Section 8.2.1. In addition to the PSO algorithm, initially chosen for testing
due to its widespread use and proven efficiency in solving complex optimization tasks [168],
the Fireworks Algorithm (FWA) was also employed for its potential advantages over PSO, par-
ticularly in terms of faster convergence and improved global search capabilities [169]. The
Artificial Bee Colony (ABC) algorithm was also considered due to its strong performance in
complex search spaces across a variety of optimization problems [170]. To contrast global and
local search strategies, the MSGS algorithm [167], a variant of the GPS-MADS method [171],
was used to represent local search approaches. Unlike the stochastic global algorithms, MSGS
employs a deterministic mesh-based strategy that systematically refines the search space.

Ten distinct Simple bay test cases were randomly generated, each serving as a referent
case. Each optimization algorithm was executed 10 times per reference case, utilizing 10 mea-
surement points for flow field reconstruction, resulting in a total of 100 optimization runs per
algorithm. The corresponding results are presented in Figure 8.6.

It is clear that, on average, all algorithms met the defined threshold successfully, with 6.5%
of results falling in the red region, 5.75% in orange, 3.25% in gray, and the remaining 84.5% in
green. The local search method MSGS exhibited notably fast convergence but achieved higher
fitness values compared to the global search algorithms. Moreover, as highlighted in the cav-
ity lid test case, MSGS is susceptible to becoming trapped in a local optimum. Consequently,
global search techniques were favored for the modeling approach, with Particle Swarm Opti-
mization (PSO) identified as the most effective among them. Despite its effectiveness, PSO
converges more slowly than MSGS.

Given the differences in complexity and size among the test cases, PSO was selected as
the preferred method, allowing for better capture of complex flow features while avoiding lo-
cal minimum. This approach was further validated with 50 optimization runs per algorithm,
revealing less than 2% variation in results. These findings align with previous observations and

support the conclusions drawn.
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Figure 8.6: Overview of optimization algorithms for flow field reconstruc-
tion. Colored squares denote four outcome categories, while the lower
panel shows average convergence trends.

8.2.3 Impact of available measurements on flow reconstruction accuracy

The accuracy of surface flow field reconstruction is influenced not only by the total number
of measurements but also by their spatial distribution within the domain. In this context, the
concept of the effective number of measurements (17) was examined, representing the number
of points that provide unique and informative data for reconstructing the flow field.

Figure 8.7 presents the influence of 1 on the reconstruction results, based on 100 optimiza-
tion runs for each configuration using 1 to 20 measurement points randomly placed within the
Simple bay domain. When only a few measurement points are used (e.g., between 1 and 3),
the drifter error E; often meets the convergence threshold, yet the corresponding field error E¢
remains high (represented in orange), indicating insufficient domain information for accurate
flow reconstruction. As the number of measurement points increases, the optimization algo-
rithm gains access to more spatially informative data, resulting in improved field reconstruction
performance (shown in green).

The orange region should not be interpreted as a failure of the optimization itself, but rather
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as a consequence of limited spatial coverage, where the available measurements do not ad-
equately capture the full complexity of the flow. This becomes more evident in the second
plot, where the orange region vanishes as the availability of unique measurement information
improves.

The second and third plots offer complementary perspectives: the second highlights the
proportion of successful reconstructions relative to 1, while the third shows the absolute number
of optimization runs associated with each 1 value. Notably, very few runs correspond to higher
values of 1, reflecting the limitations imposed by random measurement sampling. In some
cases (e.g., 1 = 19 or n = 20), no data is available due to insufficient domain coverage under

random configurations.
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Figure 8.7: Results of 100 optimization runs with 1-20 randomly dis-
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8.2.4 Mesh independence

Given that the method is intended for near-real-time use, when computationally expensive nu-
merical simulations are impractical, a coarse numerical mesh for the CFD model is required.
To evaluate the accuracy of simulation results under this constraint, a mesh convergence anal-
ysis was carried out using a standard meshing approach. For the synthetic Simple bay test
case, three meshes were generated: coarse (4625 cells), medium (10564 cells), and fine (23296
cells), maintaining a uniform refinement ratio of 1.5. The Grid Convergence Index (GCI) was
calculated based on vorticity values at all mesh points, following the procedure from [172],
which applies Richardson extrapolation to estimate the convergence order. As summarized in
Table 8.2, the results indicate that the solution lies within the asymptotic convergence range.
Further evidence is provided by an estimated order of convergence of p = 1.79 and an average
correction factor ¢, = 0.976, which exceeds the standard threshold of 0.95, indicating consistent

error behavior with mesh refinement.

Table 8.2: Mesh characteristics and Grid Convergence Index (GCI) values
for the synthetic Simple Bay case. Vorticity values were evaluated at all

grid points.
Mesh Number of Cells  Refinement Ratio ()  Relative Error (%)  GCI (%)
Coarse 4625 1 — —
Medium 10564 1.5 1.53 1.09
Fine 23296 2.25 0.76 1.34

8.2.5 Case studies of Steady Flow Fit

Datasets with detailed, simultaneous surface current measurements were selected to validate
the method and assess the impact of different observations on reconstruction accuracy. One key
dataset originates from the TOSCA experiment in April 2012 [173], containing simultaneous
HF-radar and drifter measurements for the Gulf of Trieste. This makes it an excellent test case
for seeing how well this approach works with different measurement types.

The method was further validated with HF-radar measurements from the Ston¢ica-RaZzanj
stations near the island of Vis. This data, collected in October 2019 and provided by the Institute
of Oceanography and Fisheries [174], helps validate this method in a region with complex

coastal features, despite the radar stations no longer being active.
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The method’s reliability under sparse data conditions was tested by reducing the number of
measurements and observing the impact on flow reconstruction accuracy. This allows assess-

ment of the method’s performance in realistic scenarios with limited observational data.

8.2.5.1 Gulf of Trieste

The Gulf of Trieste, located at the northernmost edge of the Adriatic Sea, is a shallow bay
spanning over 500 square kilometers. Surface flow patterns in this region have been the subject
of detailed investigation, particularly in [118], where a combination of high-resolution outputs
from the Northern Adriatic Princeton Ocean Model (NAPOM), HF-radar data, and measure-
ments from ADCPs was employed. This study highlighted a wide range of surface velocities,
typically from below 0.1 m/s up to over 0.5 m/s, and reported that the RMSE between radar-
based and model-derived currents mostly fell within 8.6 to 11.2 cm/s for 80% of the dataset.

In a related study, [16] performed a targeted validation of HF-radar surface velocities by
comparing them to Lagrangian data obtained from CODE drifters. They found an RMSE of ap-
proximately 10 cm/s for the radial velocity component, aligning well with commonly accepted
HF-radar accuracy thresholds in the 5-15 cm/s range [109, 175-177].

In a comparable effort, [120] applied the MIKE3/21 hydrodynamic modeling system in con-
junction with localized measurements of wind, waves, currents, and sea level to analyze current
patterns in the northern Adriatic region. Their work involved a detailed sensitivity analysis,
testing various model parameterizations and configurations. The model outputs were compared
with in-situ measurements such as wave height, current velocity, water level, and temperature,
along with results from a high resolution implementation of the COAWST modeling framework
applied in the same area. During a year-long simulation, the MIKE3/21 model demonstrated
good agreement with observational data, performing similarly to COAWST. Specifically, the
RMSE in surface current velocities, validated using observations from the “Acqua Alta” plat-
form, was approximately 13 cm/s.

Together, these studies highlight the complex and varied nature of surface circulation in the
Gulf of Trieste. The validation of the Gulf of Trieste surface flow was carried out using data
obtained as part of the TOSCA experiment in April 2012 [173], with available measurements
shown in Figure 8.8. This visualization outlines the measurement sources, with HF-radar veloc-
ity vectors available at 225 locations throughout April 2012, and 44 drifters deployed between
April 23 and May 4, 2012.
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Figure 8.8: (A) Gulf of Trieste location. (B) HF-radar velocity vectors
available at 225 locations for April 2012. (C) Positions of 44 drifters de-
ployed between April 23 and May 4, 2012.

To assess the influence of measurement data on flow reconstruction from drifter and HF-
radar sources, a fixed evaluation time was selected. Drifter data collected at 4:00 AM on April
24, 2012, provided 15 drifter positions, which were relatively clustered. Further examination
of the HF-radar measurements revealed inconsistencies with the continuity principle, as several
flow vectors pointed toward the coastline, as visualized in Figure 8.9. These inconsistencies are
likely due to strong wind effects on the sea surface, which alter the current direction and drive
flow toward the shore. This phenomenon has also been acknowledged in earlier studies [118,
178], highlighting the substantial role of local atmospheric conditions in modulating surface
currents. Consequently, wind forcing was included by adding the wind vector field to the x
and y components of the domain-wide velocity. While mass flux conservation is preserved,
the resulting vectors are biased toward the coastline, providing a more realistic match to the
observed data.

For both the drifter and HF-radar cases, three control points were used, corresponding to six
optimization parameters. While the drifter dataset was relatively sparse, the HF-radar measure-
ments offered a much denser spatial coverage. Sensitivity analyses were conducted by reducing
the available measurement data to evaluate the robustness of the reconstruction method. A
reduction of x% indicates that (100-x)% of available data points are used for reconstruction
as nyrp, while the remaining x% are reserved for observation as npp. Specifically, the drifter
data points were reduced by 7% and 30%, while the HF-radar data points were reduced by 10%,
50%, and 90%. Reconstruction accuracy was then evaluated using the full dataset as a reference
for field error. Representative flow reconstructions for the 30% drifter data points reduction and

50% HF-radar data points reduction are shown in Figure 8.9.
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Figure 8.9: (A) Combined drifter and HF-radar data at 4:00 AM on April

24, 2012. (B) Flow reconstruction based on a 30% reduction of drifter

measurements. (C) Flow reconstruction based on a 50% reduction of HF-
radar measurements.

To generate meaningful results across different data availability scenarios, 50 independent
optimization runs were performed for each case. The outcomes of these assessments, along

with the corresponding data reduction levels, are summarized in Table 8.3.

Table 8.3: Data coverage and reconstruction performance for the Gulf of

Trieste.
Data Source Available measurements ~ Reduction [%]  nyp npp  Eg4[cmis]  Ej [cm/s]
Trieste drifters 15 7 14 ! 8.2 36
15 30 10 5 7.9 7.6
225 10 202 23 10.1 9.9
Trieste HF radars 225 50 112 113 9.7 10.2
225 90 23 202 8.5 11.2

* 7 is average across 50 optimization runs.

The comparison of flow fields reconstructed using drifter and HF-radar measurements re-
veals distinctions stemming from differences in measurement principles. In the vertical di-
mension, HF-radar data represent depth-weighted averages influenced by radar frequency and
vertical current shear [179, 180], while drifter data represent near-surface motion at a discrete
depth. Horizontally, HF-radar values are spatially averaged over large grid cells spanning sev-
eral kilometers, whereas drifter data capture movement at a much finer scale, typically on the
order of 1 meter [177].

Despite methodological differences, the reconstructed velocity fields from both data sources
exhibit similar spatial patterns, with some expected variations. The dominant flow features,
their directions, magnitudes, and associated RMSE values indicate that the proposed meta-
model fitting approach delivers consistent performance, particularly in capturing non-physical

currents directed normal to the coastline/shoreline.
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8.2.5.2 Visisland

The region surrounding the island of Vis, located in the central Adriatic near the Croatian coast,
spans over 2200 square kilometers. This area serves as a comprehensive test case due to its
complex geography, which includes numerous islands, inlets, and outlets, which are features
that encompass a wide range of potential modeling challenges. The dataset used for this analysis
was provided by the Institute of Oceanography and Fisheries [174], and consists of HF-radar
measurements collected in October 2019 from two radar stations, which are now inactive. The
study area was intentionally defined to be broader than the direct coverage of the HF-radar
system, in order to capture the flow development leading into the radar-observed region, as

illustrated in Figure 8.10.
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Figure 8.10: (A) Study area around Vis island, with over 2200 km?. (B)
Spatial distribution of 555 HF-radar velocity measurements, including four
islands and parts of the mainland coastline.

As shown in Figure 8.11, the reconstructed surface flow closely resembles the general flow
structure captured by the HF-radar measurements, although finer details such as small-scale
vortices are not fully resolved in some areas. These discrepancies may stem from the resolution
used in the simulation setup, which prioritized computational efficiency over fine-scale accu-
racy, or from the limited density of measurements in certain regions. To assess the impact of
measurement availability on reconstruction quality, data subsets corresponding to 10%, 50%,
and 90% reduction were used. The results demonstrate that even with significantly fewer input
measurements, the main flow patterns are still recognizable. Examples of flow reconstruction
under 50% and 90% data reduction are shown in Figure 8.11, highlighting the method’s ability

to maintain structural consistency despite limited observational data.
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Figure 8.11: (A) HF-radar measurement locations with velocity vectors

colored by magnitude. (B) Reconstructed flow using 277 measurements

and 278 field points (50% data reduction). (C) Reconstruction with 55
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Furthermore, as shown by the average RMSE values over 50 optimization runs in Table 8.4,
results confirm that even with significant reductions in measurement points, the flow reconstruc-

tion remains highly accurate.

Table 8.4: Data availability for the Vis case.

Data Type Available data points ~ Reduction [%]  nyp npp  Eg4lcmis]  Ej [em/s]
555 10 500 55 5.7 5.8
Vis HF radars 555 50 277 278 5.4 5.5
555 90 55 500 5.0 6.0

* 7 is average across 50 optimization runs.

These results validate the robustness and effectiveness of the simulation-based optimization

method for surface flow reconstruction.

8.3 Analysis of transient flow reconstruction

The transient reconstruction approach extends the flexibility of the discussed methodology by
addressing the unsteady flow dynamics using a series of short steady-state simulations, per-
formed at regular intervals. During each interval, boundary conditions are updated based on
reference measurements, allowing the system to adapt to gradual flow changes without the need
for computationally intensive full transient simulations. This approach reduces temporal com-
plexity, while the fusion model addresses spatial complexity by integrating information from
both domains. Through this iterative process, the resulting passive scalar transport better cap-
tures real-world behavior, particularly in situations where temporal variations strongly influence
advection. In order to clarify the iterative process of the method, the complete optimization-

simulation loop for each measurement interval is shown in Figure 8.12.
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Figure 8.12: Schematic of the optimization—simulation workflow initiated
at time 7 for evaluating scalar transport over interval [¢,7 + Tg].

The workflow consists of measuring velocity fields, performing dual-domain simulations
in OpenFOAM, optimizing boundary conditions, fusing velocity fields, evaluating errors, and
iteratively minimizing the drifter-based error E;. This cycle is repeated for each subsequent

time step incremented by 7, reconstructing the transient flow field in stages.

8.3.1 Robustness analysis of quasi-steady period

Choosing an appropriate value for 7§ is essential. Choosing an appropriate value for T is es-

sential. While a longer 7; provides the optimization more time to improve the reconstruction,
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excessively long 7T can lead to errors due to temporal changes in the flow affecting passive
scalar transport. The accuracy of scalar advection is directly influenced by the quality of the
reconstructed velocity field, and any discrepancies tend to accumulate over time. The effect of
T; was investigated by evaluating reconstruction accuracy through the RMSE of the full veloc-
ity field (E¢) over a range of T values from 300 to 1500 seconds in the Simple Bay test case.
For each selected T, 10 separate optimization runs were conducted to account for algorithmic
randomness, and the median Ey was calculated. The outcomes of this evaluation are illustrated

in Figure 8.13.
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Figure 8.13: Reconstruction error (Ey) of the velocity field obtained for
five different values of 7.

Faded lines on Figure 8.13 correspond to individual optimization runs, while the bold dotted
line denotes the median E for each set. The inset in the top-right corner shows the average of
median E; values, highlighting the balance between reconstruction time and error introduced
by flow evolution. From these results, 75 = 900 s is chosen as the optimal interval. Decreasing
T; makes the optimization more difficult, while increasing it enhances transient effects. This
chosen value therefore provides a balance between accurate flow reconstruction and minimal

error due to temporal variations.

8.3.2 Case studies of Transient Flow Fit

The proposed quasi-steady approach was evaluated using two test cases: the familiar synthetic

scenario called Simple Bay, and the realistic domain, the Unije Channel near the island of
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LoSinj. The goal was to achieve accurate reconstruction of passive scalar advection to assess
the method’s suitability for such applications, with the level of accuracy primarily depending on
the quality of the flow reconstruction. Based on the results presented in Section 8.3.1, a T value
of 900 seconds was used in both cases. To assess the method’s performance, passive scalar
advection was compared across four different approaches: steady flow reconstruction, transient
flow reconstruction without the fusion model (using only the bounded domain), transient flow
reconstruction with the fusion model, and transient flow reconstruction with the fusion model
combined with an adaptive diffusion coefficient to compensate for measurement and reconstruc-

tion errors.

8.3.2.1 Simple bay

Since the objective was to evaluate the methodology under highly dynamic flow conditions, a
synthetic scenario was designed with an evolving flow over a period of 9 hours (32400 seconds),
featuring significant variations in both direction and magnitude to challenge the reconstruction
accuracy. Therefore, Figure 8.14 presents the temporal evolution of this referent flow during
this period, highlighting the complexity of the flow patterns that the reconstruction seeks to
replicate. Although such pronounced flow changes are unlikely to occur over short timescales
in natural environments, the synthetic scenario allows for testing the method’s robustness and

adaptability under evolving boundary conditions.

A Velocity (m/s) B Velocity (m/s)
000 006 0.12 0.19 025
]

000 006 012 019 025
|

mmmm CoOsTline\ A
mmmm  nlet/Outlet \\«:‘\t\ 7 mmmm Nnlet/Outlet &0

Figure 8.14: Figure shows one example of the evolving referent flow in the
synthetic Simple Bay case after 9 hours (32400 seconds), comparing the
initial flow state (A) with the final state (B).
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A comparison of already mentioned reconstruction approaches and their influence on pas-
sive scalar advection is presented in Figure 8.15. Given the time-dependent nature of the referent
flow, the steady fit approach (B), which uses only the initial 15 drifter measurements to recon-
struct the flow and then advects the passive scalar over 32400 seconds without further updates,
results in substantial inaccuracies, yielding zero percent overlap with the referent scalar field.
Similarly, the bounded domain transient fit approach (C), based on reconstructing the referent
flow at each T interval using repeated steady state optimizations, also fails to capture the com-
plexity of the evolving referent flow, mainly due to limitations imposed by the bounded domain.
This approach also results in zero percent intersection. Furthermore, after 32400 seconds, only
four drifters remain within the domain, limiting the availability of data and further reducing
reconstruction performance.

To address this issue, the fusion model was included in the fitting procedure (E), signif-
icantly improving flow accuracy and achieving an 86% intersection. Additional refinement
using an adaptive diffusion coefficient (F) with the fusion model further improved the result,
reaching 90% intersection with the referent scalar field by the end of the simulation.

The success analysis (D) illustrates the effectiveness of each approach in capturing the pas-
sive scalar field. Moreover, the most effective approach, which integrates the fusion model with
adaptive diffusion, achieved the highest intersection percentage while maintaining a balanced
tradeoff between coverage and overestimation, resulting in the most accurate reconstruction of

the passive scalar field.
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Figure 8.15: (A) Referent flow after 32400 seconds. (B) Steady recon-
struction from 15 drifter measurements. (C) Reconstruction with periodic
measurement updates without fusion model. (D) Analysis of proposed
metrics for passive scalar advection. (E) Reconstruction with measure-
ment updates and a fusion model. (F) Reconstruction with measurement
updates, fusion model, and adaptive diffusion compensation.

8.3.2.2 Unije Channel

To test the proposed methodology in a real-world setting, the Unije Channel near the island of

Loginj, covering an area of 96.5 km?, was selected. The domain contains four separate inlet and

outlet regions, which contribute to complex and variable flow behavior. Unlike the synthetic

case, the realistic domain captures naturally occurring variations driven by environmental in-

fluences, offering a more demanding scenario for testing flow reconstruction accuracy. These

spatial and temporal variations in surface flow can be observed in Figure 8.16.
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Figure 8.16: Evolution of the referent flow in Unije Channel after 10 hours
(36000 seconds), showing the initial (A) and final (B) states with four inlet
and outlet areas.

To showcase how well the method performs in realistic domains, Figure 8.17 presents a
comparison of four different flow approximation techniques and their corresponding passive
scalar advection results. Similar to the synthetic scenario conducted in 8.3.2.1, both the steady
fit (B) and bounded domain transient fit (C) struggled to accurately reproduce the movement of
the referent passive scalar. Interestingly, the bounded domain transient fit in this case produced
even less accurate results than the steady fit, highlighting that optimization can sometimes lead
to incorrect outcomes. By integrating the fusion model (E) into the transient fitting process, the
reconstruction accuracy improved substantially, reaching nearly 93% overlap with the referent
passive scalar field after 10 hours (36000 seconds). Introducing an adaptive diffusion coefficient

(F) further enhanced the results, achieving a 94% intersection and full coverage of the scalar

field.
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Figure 8.17: (A) Referent flow after 36000 s. (B) Steady reconstruction

from 15 drifters with no overlap of the passive scalar. (C) Transient re-

construction showing an even larger mismatch. (D) Analysis of proposed

metrics for passive scalar advection. (E) The fusion model achieves high

accuracy. (F) The fusion approach and adaptive diffusion closely match
the referent passive scalar field.

The success analysis (D) shows a modest improvement with the addition of the adaptive dif-
fusion coefficient and an unexpectedly better result from the steady fit compared to the transient
fit. Additionally, the top-performing approach, which combines the fusion model and adaptive
diffusion, includes some overestimated areas. Nevertheless, the coverage metric suggests that
this excess region contains only a negligible amount of passive scalar, likely due to numerical

errors, and can therefore be ignored when predicting the main passive scalar distribution.
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9 EXPERIMENTAL RESULTS

After validating the approach in a simulation environment, additional experimental validation
in a real environment was carried out in multiple field experiments in the Kvarner region near
Rijeka, Croatia. To enable this, suitable and reliable equipment was first acquired to match
the requirements of the methodology. This included setting up a complete system for sensor
deployment, data acquisition, flow reconstruction, and finally, advection simulation based on
the reconstructed surface flow derived from point measurements.

This chapter is divided into the following sections: Section 9.1 describes the selection and
configuration of the measurement and transmission system used in conducted deployments.
Section 9.2 presents the preliminary sea experiment conducted in a small bay, aimed at vali-
dating steady flow reconstruction and evaluating the system’s velocity, GPS, and drifting ac-
curacy. Section 9.3 addresses transient flow reconstruction in a larger domain, focusing on
how the measurement period impacts reconstruction accuracy. Lastly, Section 9.4 demonstrates
an integrated scenario combining transient flow reconstruction with autonomous UAV search,

highlighting the framework’s practical application in a search task.

9.1 Equipment and preparation

For experimental validation of the proposed methodology, in-situ sea surface velocity measure-
ments were obtained using commercially available equipment, as described in Section 3. To
support near-real-time reconstruction of flow fields across multiple submesoscale domains, the
measurement system was required to provide accurate and frequent data under varying spatial
and temporal conditions. Standard technologies, such as HF radar systems, are effective in fixed
coastal areas but lack mobility and are very expensive, while satellite-based alternatives offer
wide spatial coverage but come with high costs and insufficient temporal resolution for frequent
updates.

To tackle these issues, GPS-tracked drifters were chosen. These devices are floating buoys

that are equipped with sensors, which record and transmit surface velocity. Floating buoys are
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equipped with sensors that measure and transmit surface velocity data. This method offers a
mobile, scalable, and relatively low-cost solution for dynamic marine environments. Among
various options available, drifters that use GSM/GPRS communication stood out as especially
beneficial due to their easy deployment, accessible infrastructure, and affordable data plans.
However, the selection of these drifters is limited by availability and vendor-specific features.
Therefore, to address these limitations, particularly for reliable offshore communication in real
time, the Automatic Identification System (AIS) was selected as the primary method for ob-
taining measurements. This system is originally created for maritime navigation and vessel
tracking, but is now commonly used in many oceanographic applications [181]. AIS is actually
a mandatory maritime transponder network that continuously broadcasts vital vessel informa-
tion, such as identity, position, course, and speed, to nearby ships and shore stations. Its primary
purpose is to enhance safety, prevent collisions, and support vessel traffic management and mar-

itime domain awareness [182]. An example of possible AIS messages is shown in Table 9.1.

Table 9.1: Overview of AIS message types.

Message Description Example Applications
Type 1 Position Report Class A Live location data for Class A vessels
Type 5 Static and Voyage Information Identification and voyage specifics
Type 8 Binary Broadcast Message ~ Custom data transmissions for specialized uses
Type 18 Standard Position Report Class B Live location data for Class B vessels
Type 22 Channel Management AIS frequency and channel coordination
Type 24 Static Data Key vessel identification details
Type 27 Long-Range Position Report Extended distance position updates

Although such AIS transponders are primarily designed as fixed-mounted equipment for
small vessels, they were repurposed for buoy-based oceanographic monitoring in this research.
Therefore, 14 units of the Alltek Marine Electronics Corp (AMEC) TB-560 [94] tracking bea-
con model were acquired and mounted on custom floating buoys. The combination of these
TB-560 beacons with the buoys created custom drifters equipped with GPS and surface veloc-
ity sensors. This method of monitoring sea surface velocity allows for analyzing drift patterns,
forecasting trajectories of drifting objects or persons, and identifying the most promising search
areas. Such information is particularly suitable for experimental validation of the proposed
methodology.

It should be noted that each tracking beacon is paired with a specific mounting bracket and
was therefore labeled sequentially from 1 to 14, as shown in Figure 9.1. Once a TB-560 beacon

is activated with a clear view of the sky, it typically obtains a GPS fix within one minute.
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Figure 9.1: Labeled AMEC TB-560 tracking beacons (left) and AMEC
Cypho-150 AIS receiver with VHF antenna (right), used for receiving AIS
transmissions.

Configuring the AMEC TB-560 involves programming parameters to tailor its operation for
the study. This includes setting the transmission frequency, vessel identification (MMSI and
name), and other settings to ensure accurate AIS broadcasts using AMEC software.

The last step in the equipment setup procedure involves receiving and decoding the AIS
signals broadcast by the AMEC TB-560 tracking beacons through an AIS receiver. For this
purpose, the AMEC Cypho-150 receiver was employed, as illustrated on the right side of Fig-
ure 9.1. It comes equipped with a VHF antenna and dedicated software. This receiver allows
us to accurately capture AIS transmissions from vessels within a range of approximately 40-50
nautical miles (70-90 km). Before deploying the tracking beacons at sea, it was essential to
confirm their signal transmission and verify reception with the receiver. Therefore, an initial
field test was conducted on land. The left part of Figure 9.2 shows AIS messages received from
multiple vessels within range, containing coded information including vessel position, identity,
course, speed, and other relevant data.

The decoding of these messages was performed using the Python library pyais [183], which
supports both encoding and decoding of AIS data, enabling the extraction of essential informa-

tion from the received messages. As the receiver captured AIS signals from vessels beyond the
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purchased tracking beacons, a Python-based filtering script was implemented to extract only

messages with MMSI numbers corresponding exclusively to the deployed beacons (lower part

of Figure 9.2).
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To adapt the AIS tracking beacons for monitoring sea surface velocity, custom buoy plat-

forms were developed to accommodate the mounting of the AMEC TB-560 devices. This

required procuring appropriate floating buoys, adding concrete weight to ensure stability, and

designing a drogue system aimed at reducing wave- and wind-induced motion. The necessary

materials for drifter construction, including mounting brackets and vertical support rods, were

acquired. A dedicated ground station was established, consisting of a laptop connected to the

AMEC Cypho-150 receiver to capture and process AIS signals from the beacons. After integra-

tion of all components, operational drifters capable of recording surface current velocities were

successfully assembled. The full workflow for drifter preparation, from initial planning to final

configuration, is illustrated in Figure 9.3.
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Figure 9.3: Overview of drifter setup: from design and acquisition to final
assembly

After the custom drifters were completed and their AIS communication settings configured,
buoyancy tests were conducted to verify that each unit floats stably and transmits positional
data reliably. Once these verifications were successfully completed, the system was ready for

deployment, marking the final step before initiating the first sea experiment.
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9.2 Plomin Bay flow experiment

For the preliminary sea experiment and drifter deployment, Plomin Bay, situated in the north-
ern Adriatic Sea on the east coast of the Istria peninsula, was selected. The bay covers ap-
proximately 3.5 km? and was chosen for its relatively low maritime traffic and favorable study
conditions. Its sheltered waters provide a controlled environment that minimizes the effects of
external disturbances such as strong currents and heavy vessel movement, which could other-
wise interfere with data quality. Moreover, the bay’s compact size facilitates easier tracking and
retrieval of the drifters.

The experiment took place on April 15, 2024, and involved deploying drifters at specific
locations within the bay. Navigation followed a predefined route to ensure accurate placement
of the drifters. Figure 9.4 shows the actual deployment process, along with the workstation setup
consisting of a laptop and the AMEC Cypho-150 receiver. This receiver, equipped with a VHF

antenna and dedicated decoding software, allowed us to capture the AIS signals transmitted by

the tracking beacons.

Figure 9.4: Dirifter deployment and AIS message reception using the
AMEC Cypho-150 receiver

To collect measurements from multiple locations within Plomin Bay, several drifters were
manually retrieved and redeployed at different positions. This method enabled us to analyze
spatial variations in the data and evaluate the effects of operating with fewer than the full set of
drifters. A total of eight drifter deployment configurations were carried out, each differing in

duration and the number of active drifters. A summary of the collected AIS messages is given in
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Table 9.2. Throughout all deployments, no issues occurred, such as loss of signal transmission

or drifters or colliding with the coastline.

Table 9.2: Overview of received AIS messages.

Configuration Active drifters  Duration [min]  AIS messages
1 8 40 1516
2 8 13 423
3 5 8 112
4 6 12 212
5 8 60 2538
6 5 3 108
7 7 11 470
8 5 21 525

Since drifter configuration 5 had the longest AIS transmission and produced the highest
number of received AIS messages, it was selected for a more detailed analysis. Figure 9.5 shows
the outcomes of this deployment. On the left side, the figure presents the AIS messages received
from each individual drifter, offering a clear view of their spatial distribution and the area they
covered within Plomin Bay at that time. On the right side, a steady flow field is reconstructed
from one representative time step during the same deployment. The flow inside the bay appears
streamlined, with no evident vortex structures. This outcome is expected given the shape of
Plomin Bay, which has a narrow and enclosed inlet where lateral movement is constrained.
The bathymetry also lacks significant features that typically promote eddy formation, further

contributing to the absence of vortices in the reconstructed flow field.
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Figure 9.5: Results from deployment configuration 5 with 8 drifters in
Plomin Bay. Left: drifter trajectories with final positions marked. Right:
reconstructed steady surface flow from a single time step.
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It should be noted that, although the drifter trajectories inside the bay are longer than those
toward the open sea, the reconstructed velocities appear reversed. This is because the recon-
struction represents a single snapshot, while the trajectories correspond to moving drifters, high-
lighting the limitations of a steady-fit approach for that measurement instance.

Based on the reconstructed flow field shown in Figure 9.5, a comparison was made between
the observed drifter trajectories and those generated through Lagrangian particle advection us-
ing the steady surface velocity field. The goal was to assess how well a single time step recon-
struction can predict drifter motion over time. The outcome of this comparison is illustrated in
Figure 9.6, where darker colored lines represent the experimental drifter trajectories, while the
corresponding simulated trajectories advected on the reconstructed flow are shown in the same

colors with increased transparency for distinction.

Rt Lowri¢

A Rt Magnjak

Figure 9.6: Comparison of real and simulated drifter trajectories in Plomin
Bay, with dark lines showing observed paths and transparent lines showing
60-minute simulated paths from reconstructed flow.

As shown on Figure 9.6, a notable discrepancy exists between the real and simulated trajec-
tories, further confirming the transient nature of surface dynamics in the bay. A single steady
flow reconstruction cannot fully capture the evolving flow field over an extended period, such as

60 minutes. Nevertheless, the reconstruction visually aligns well with the drifter measurements
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at that specific time step, indicating that the approximation is satisfactory in the short term.
This suggests that employing more frequent flow reconstructions, for example, every 10 to 15
minutes, would likely improve the accuracy of simulated drifter trajectories. While the flow
is not expected to vary significantly within such short intervals, substantial changes do occur
over the course of an hour. Based on these findings, the next step in the experimental validation
was to conduct a deployment in a larger and more dynamic domain, where vortex formation
could occur and where high-frequency flow updates would more effectively improve trajectory

prediction.

9.3 Valun Bay flow experiment

Based on the findings from the first sea experiment, a second deployment was conducted to
further test the reconstruction algorithm’s predictive performance. This experiment took place
in Valun Bay on the island of Cres, located in the Kvarner region of the northern Adriatic
Sea. It involved more frequent flow field reconstruction over a significantly larger domain
capable of supporting mesoscale phenomena such as vortex formation. The area, spanning
approximately 5 km by 10 km, was chosen for its moderate and stable environmental conditions.
While it is more open and exposed than smaller enclosed bays like Plomin Bay, it still provides
sufficient natural boundaries to ensure safe deployment and retrieval operations, while enabling
the development of more complex and dynamic surface flows.

Given that velocity measurements are recorded every 10 seconds using satellite-based GPS,
a certain level of inaccuracy is inevitable due to signal noise and positioning limitations. These
short-term fluctuations and GPS noise can distort the drifter trajectories and result in misleading
velocity estimates. To reduce the impact of this error, a moving average filter was used on
the raw velocity data. For each drifter, the velocity was averaged over 1-minute windows.
This method smoothed out high-frequency noise and highlighted consistent movement patterns
caused by the underlying flow field.

Before initiating the deployment, it was necessary to design a strategy that would maximize
drifter coverage and provide a more complete depiction of surface circulation in Valun Bay.
For this purpose, the Halton sequence was employed, a low-discrepancy quasi-random method
that provides better spatial uniformity than purely random placement. This enabled a more

deliberate distribution of drifters throughout the domain, effectively reducing clustering and
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enhancing the mapping of flow patterns. Deployment timing was also planned in advance by
considering the vessel’s speed and the time required to release each drifter, enabling a well-
paced and efficient process. The finalized deployment coordinates obtained using this approach
are shown on the left side of Figure 9.7 while the right side of the figure illustrates the actual
deployment process, beginning with the loading of drifters at Cres Marina and continuing with
the departure toward the predefined release locations in Valun Bay.

v vuvala Stanovisica

Trajekin
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Figure 9.7: Selected deployment locations across Valun Bay, generated us-

ing the Halton sequence for improved spatial uniformity (left). Field pho-

tos showing the preparation and release of drifters during the experiment
(right).

The deployment took place on September 22, 2024, with drifters distributed across the
55 km? bay. The entire deployment process lasted around 1 hour and 30 minutes, with each
unit placed at a predetermined location. During the observation period, surface current and
wind forecasts were monitored using publicly available sources such as Windy [184], DHMZ
[185], and Windfinder [186]. The left side of Figure 9.8 shows the predicted surface flow direc-
tions based on these sources, which initially indicated southeastward movement.

However, shortly after deployment, the drifters began to move in a direction opposite to
what was forecasted. The right side of Figure 9.8 presents the recorded drifter trajectories.
Each path is colored individually to differentiate between units, with dots marking received

signal positions and balloon-shaped icons denoting the last known locations.
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Figure 9.8: Forecasted surface flow direction from publicly available pre-

diction sources (left). Drifter trajectories recorded during the September

22, 2024, deployment where colored lines indicating individual drifter
paths.

Although certain segments of the bay exhibit missing data, the general movement trends
of the drifters remain evident. These data gaps are likely caused by temporary signal interrup-
tions. Since the receiver AMEC Cyptho-150 with antenna was placed on a boat, potential issues
include signal loss due to increased distance between drifters and the receiver, as well as the
influence of sea conditions. In particular, waves may have intermittently obstructed the line of
sight between the antenna and the drifters, further contributing to reduced signal reliability. De-
spite these limitations, the deployment yielded valuable insights into drifter behavior and flow
conditions within the bay.

To replicate the observed drifter trajectories, a representative 2-hour segment of the total
4.5-hour experiment was analyzed. Out of the 14 deployed drifters, 12 were used in this analy-
sis since the remaining two emitted signals while still on the boat, which would have negatively
influenced the flow reconstruction. Based on robustness analysis from 8.3.1, drifter positions
were sampled every 900 seconds, assuming relatively stable flow conditions during each inter-
val.

As a first step, the method presented in [112] was applied, which considers a spatially uni-

form wind field superposed on a CFD-based flow model. However, this approach revealed
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discrepancies in the southern bay region, where the presence of the surrounding coastline con-
strains flow and reduces surface velocities. The artificially imposed wind led to overestimated
velocities in this semi-enclosed area, producing simulated trajectories that diverged significantly
from those recorded during the experiment.

To improve prediction accuracy within this complex flow environment, a fusion-based mod-
eling approach was adopted. The model incorporated new drifter data every 7; = 900 s and used
those measurements to update the reconstructed velocity field. This iterative process allowed
the model to adapt to evolving surface conditions and maintain consistency with real-world ob-
servations. The impact of this approach is illustrated in Figure 9.9, which presents the flow field

at both the beginning and end of the reconstruction period.
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Figure 9.9: Flow reconstruction using the fusion model for the initial t =
0s (A, B, C) and the final t = 7200 s (D, E, F) period.

The CFD simulation at t = 0 s within a bounded domain (A) shows reduced velocities in
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the southern region due to coastal confinement, with initial drifter positions marked by yellow
crosses. The flow from the open domain model at the same time (B) illustrates stronger north-
ern currents and weaker southern flow due to non-uniform conditions. By combining these, the
fusion model at t = 0 s (C) improves flow representation through integration of bounded and
open domain data. At ¢t = 7200 s, the bounded domain CFD simulation (D) captures tempo-
ral changes in flow direction and magnitude based on drifter displacement, while the adjusted
open domain flow (E) aligns with updated drifter trajectories. The final reconstructed field at
t = 7200 s (F) demonstrates how fusion forcing effectively captures the temporal evolution of
surface currents.

Presented results highlight a major limitation of standard CFD simulations, as the bounded
domain simulation approach encounters difficulties in producing velocity fields that reflect real-
istic surface flow patterns, particularly in regions distant from the boundaries. On the other
hand, the open domain approximation offers a more flexible framework, introducing non-
uniform velocity fields that adapt more closely to observed data. As time progresses, the flex-
ibility of the fusion surrogate model enhances the model’s capacity to replicate actual surface
conditions.

To assess the reliability of the proposed approach, the drifter paths recorded during the
experiment were reconstructed using both the previous method with a fixed wind component
from [112] and the updated fusion-based approach. As illustrated in Figure 9.10, the compar-
ison reveals clear differences where the fusion model better follows the curvature of observed

trajectories, with several paths closely matching the measurements.
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Drifter trajectories with fixed wind Drifter trajectories with fusion model

Figure 9.10: The figure compares reconstructed drifter trajectories using a

fixed wind approach and the fusion model based on measurements every

900 seconds over two hours. Darker lines show experimental paths, while
transparent lines show reconstructed paths.

The fusion model approximation demonstrates a clear improvement, capturing the realistic
curvature of drifter trajectories more accurately, especially in the southern area of the domain.
In contrast, the fixed wind approximation tends to overestimate surface flow velocities in this
region, whereas the fusion model effectively addresses this problem. While many reconstructed
trajectories closely resemble the experimental paths, some differences still remain. To evaluate
the precision of the trajectory reconstruction, Figure 9.11 shows the reconstruction error, defined
as the distance in meters between the reconstructed and observed trajectories.

The results indicate that the steady fit flow model, which advects drifter positions using
only the initial reconstructed velocity field, exhibits a wide range of errors, reflecting unstable
trajectory predictions. The transient fit approach improves accuracy over longer durations by
incorporating updated measurements every 900 seconds. The fusion model further reduces tra-
jectory reconstruction errors, providing a closer match to the observed experimental data. This
comparison shows that both the steady and transient fit methods have considerable variability
in trajectory errors, with minimum and maximum values spanning a wide range throughout the
period. In contrast, the fusion approach, highlighted by the green-shaded area, displays much
narrower error bounds, indicating a more stable and reliable reconstruction of drifter trajecto-

ries.
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Figure 9.11: Comparison of reconstructed drifter trajectories using steady
fit, transient fit and fusion model approach.

9.4 Valun Bay search experiment

Following the successful second sea experiment, which provided valuable results for surface
flow reconstruction and drifter trajectory estimation, a third sea experiment, also conducted in
Valun Bay, aimed to simulate a realistic search scenario. To recreate such conditions, custom
targets were deployed along with drifters to transmit surface flow measurements, while UAVs
were tasked with searching for these targets.

Each of the four identical, custom-made targets was constructed from 0.5 x 0.5 meter
wooden boards painted yellow to maximize visibility. A one-meter metal rod with marking
tape was mounted at each target to further enhance visibility for surrounding vessels. Figure
9.12 shows an example of a deployed target alongside a drifter.

In order to locate the floating targets during the experiment, a commercially available UAYV,
the DJI Matrice 210 v2, was employed. It was equipped with a DJI Zenmuse X5S RGB camera,
capable of capturing high-resolution images at 5280 x 2970 pixels with a 16:9 aspect ratio. An
example of the UAV used in the experiment is shown in Figure 9.13.

The idea of this search mission was to conduct autonomous flights using the methodology
described in 7.4, where the probability field was updated based on the reconstructed surface
flow. To allow autonomous control of the UAVs from a central PC, a dedicated communication
system that manages the exchange of commands and telemetry data was implemented. For any

flight operation, each UAV must be paired with a remote controller and a tablet running either
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Figure 9.12: Illustration of a deployed target in the experiment.

Figure 9.13: UAV used in this realistic search scenario.
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DIJT’s official “Pilot” application or a custom app built on the DJI SDK. The UAV communicates
with the remote controller via radio signals, and the controller is linked to the tablet through a
wired connection.

To enable this communication, a custom Android application was developed. This applica-
tion connects to the PC server, which generates flight commands and sends them to the UAV.
Meanwhile, the UAV continuously transmits status and position updates back to the server,
enabling real-time two-way communication. The complete communication architecture is il-

lustrated in Figure 9.14.

Wi-Fi Wired connection Radio
socket (DJI SDK) 2.4 GHz, 5.8 GHz
= > - > - >

PC ) Tablet A Controller ) Drone

Linux, Python \ Android, Java / \ DJI Cendence / \ DJI Matrice 210 V2 )

Figure 9.14: Illustration of the communication setup between the PC and
UAV [187].

To validate whether targets were successfully located, UAVs captured aerial images every
three seconds to detect floating targets, which was the maximum frequency permitted by DJI
software constraints. For this purpose, a machine learning model was employed, using a dataset
of 522 aerial images collected at altitudes between 60 and 100 meters.

Object detection relied on the YOLOvVS algorithm, initialized with the yolo8l.pt model, pre-
viously trained on the COCO dataset. The key metric considered is recall, which measures the
proportion of actual targets correctly detected by the model. This metric, used to construct the
sensing function, yields a value of u; = 0.68 with the default detection confidence threshold of
0.001. Figure 9.15 illustrates detections of sea targets, including the corresponding confidence

values with labels.

;orgef 0.88

Figure 9.15: Examples of sea target detections with corresponding confi-
dence levels.

To implement the proposed search methodology, drifter data processing, flow field recon-
struction, and UAV operations were integrated within a dedicated search framework, as illus-

trated in Figure 9.16.

100



Q :
il

< Smart Sensor
\\ T AMEC TB560

Satellite
GPS T

MMSI, location, speed, heading
VHF AIS rness'age 18 and 24

- Laptop with antenna
. _=_
— \ T / = =
Processing data Drifter mea'surements Diffusion coefficient
Workstation Reconstructed flow field Laptop with
OpenFOAM + HEDAC
u Dropbox T
Flow-fit scalarTransportFoam
_
T Y
1
Reconstructed flow field Probability field
a, o HEDAC guidance to area of interest
0
UAV control

Figure 9.16: Overview of the search framework integrating drifter data
processing, flow field reconstruction, and UAV operations to locate objects
at sea.

The process starts with a Smart Sensor (AMEC TB560) transmitting real-time information,
including its MMSI, location, speed, and heading, via VHF AIS messages 18 and 24. This data
is received by a laptop with an antenna receiver and stored as a drifter measurements file in a
Dropbox folder. At the same time, a workstation processes the raw data, applies the Flow-fit
approach for 7, and reconstructs the surface flow field.

The reconstructed flow field, along with a diffusion coefficient calculated from the differ-
ence between estimated drifter positions and newly received measurements, is then provided
to another laptop running a coupled OpenFOAM and HEDAC model. This model advects the
probability field using the reconstructed flow and diffusion coefficient through scalarTransport-
Foam. The resulting probability field guides the UAV during the visual search, directing it to
areas of interest identified by HEDAC in order to locate the target.

To carry out this search experiment, which took place on June 04, 2025, the team was
organized into two groups: one on the vessel, responsible for deploying targets and drifters, and

one on land, handling drifter data processing, flow field reconstruction, and UAV operations. In
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the previous sea experiment, gaps in drifter data transmission occurred because the receiving
antenna was located on the vessel, where signals were frequently interrupted due to distance and
wave motion. To address this, the AIS reciever is positioned on an elevated land location rather
than on the moving vessel. Additionally, launching and recovering UAVs from the boat was
considered highly risky because the vessel was constantly moving. If a UAV needed to return to
its takeoff point due to an issue, it would attempt to land at the original launch location, which
would no longer be under the UAV due to the vessel’s motion, creating a significant safety risk.
Therefore, the land group operated from the base station on the central part Valun Bay’s eastern
coast, at an elevation of 85 m, offering an unobstructed view of the search area and reliable
signal coverage from both UAV and drifters. Figure 9.17 provides a view of the experiment

base station and the area around Valun Bay.

Figure 9.17: Base station with a view over the Valun Bay search area.

The search experiment began with the deployment of 12 drifters in the domain, with 4 evenly
spaced throughout the bay, 5 placed near the target site to improve the accuracy of the flow field
reconstruction, and the remaining 3 used solely for observational purposes. The area for target
deployment was defined within a circle of 300 m radius, located approximately 1.4 km to the
west of the base station. Four targets were arranged in a cross formation, with each positioned
roughly 120 m from the central point. The deployment of targets was completed at 10:15 AM,

marking t = 0, with all targets successfully placed within the designated area. An example of
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a deployed sea target along with the corresponding reconstructed flow at that time is shown in

Figure 9.18.
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Figure 9.18: The search area with the reconstructed flow field, deployed
target positions, and undetected target probability field at t=0.

To simulate a realistic search scenario, in which targets drift from their initial locations, a
delay in the search start was introduced. Since the targets were not equipped with GPS devices,
their positions after the 30-minute delay were estimated using Lagrangian particle advection as
described in (6.10). Figure 9.19 depicts the estimated target positions at the start of the search,
the estimated trajectories during the 30-minute delay, and the advected probability of undetected
targets.

The actual search began with the UAV being manually guided to the offshore starting lo-
cation within the search domain, after which it proceeded autonomously. Autonomous control
was then applied with a constant velocity of 8 m/s and a constant altitude of 75 m. For proba-
bility area exploration, the sensing interval Az; and the control interval Az were set to 3 s, while
the HEDAC parameters were assigned values of o = 5000 and = 0.1. During this mission,

the probability of an undetected target within the UAV’s Field of View (FOV) was discretely
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Figure 9.19: The reconstructed flow, probability of undetected targets, and
estimated target positions at the start of the search, including their esti-
mated trajectories after the 30-minute delay.

reduced at each captured image, based on the recall of the detection model. The probability

field is therefore updated as:

si(y)(1— 1), if y € UAV FOV,
Sit1 = 9.1)

S, otherwise.

Following the completion of the search, the captured images were analyzed using the de-
tection model to identify targets. Each detected target’s position was calculated based on the
UAV’s location at the time of image capture and the position of the target label within the
image. Figure 9.20 illustrates the search outcome, showing the UAV trajectory, locations of
detected targets, estimated target positions and trajectories from t = 0, as well as the probability

distribution of undetected targets.
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Figure 9.20: The reconstructed flow, probability of undetected targets, the
UAV trajectory, detected target locations, and the estimated target positions
and trajectories at the end of the search.

It should be noted that detections and their recorded positions occurred at different times
throughout the search and therefore may not exactly match the estimated target positions shown
for the final state of the search. The few detections located on the right are assumed to corre-
spond to the rightmost target, even though its estimated trajectory does not perfectly align with
these observations. Such a discrepancy indicates that the flow field approximation contains
inherent inaccuracies, which are accounted by using an adaptive diffusion coefficient. These
inaccuracies are quantified by the E, error of the 9 drifters included in the optimization process,
the E error of the 3 drifters placed along the targets only for observation, and the corresponding
diffusion coefficient, as presented in Figure 9.21.

The use of an adaptive diffusion coefficient confirms that the diffused probability field com-
pensates for uncertainties in both the flow reconstruction and the GPS measurements (positional
uncertainty up to 2.5, as specified by manufacturer). As the UAVs explored these areas, they
successfully detected targets multiple times, demonstrating that the diffusion-based approach
effectively accounts for both modeling errors and measurement limitations.

Since the deployed targets lacked GPS trackers, it was not possible to reliably associate
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Figure 9.21: Reconstruction errors based on drifter velocity and position,
from the beginning to the end of the search.

detections with specific targets. Nevertheless, by examining the estimated target trajectories
together with the detected locations and assuming that each detection corresponds to the closest
trajectory, it is clear that all targets were successfully detected. The probability field closely
matched the target distribution, and at least one target was detected outside its estimated trajec-

tory, providing further confirmation of the effectiveness of the adaptive diffusion approach.
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10 LIMITATIONS AND DISCUSSION

This methodology combines two simplified two-dimensional steady flow models to approxi-
mate submesoscale sea surface flow, using a quasi-steady approach in which sea surface velocity
measurements are continuously updated to improve the accuracy of the reconstructed velocity
field. This approach serves as a basis for the advection of particles or objects, as well as passive
scalar transport and diffusion, making it suitable for modeling and predicting target probability
density dynamics.

Because the model needs to remain fast for near real-time applications, an appropriate res-
olution of the computational mesh is crucial, as it strongly affects computation time. Since
refining the mesh offers little advantage in this context, a coarse grid was chosen to reduce
computational cost, even though it limits the ability to capture fine-scale details. Mesh sensi-
tivity tests additionally confirmed stable convergence and provided clear error margins. As a
result, the model is less capable of resolving localized flow structures, which can be critical
in coastal settings or when precise trajectory prediction is required. Although the use of finer
meshes is not excluded, it is important to acknowledge the numerical trade-offs and the sig-
nificant increase in computational demand they involve. Additionally, the model deliberately
omits factors such as bathymetry, the vertical component of flow, transient effects, and the Cori-
olis force to maintain computational efficiency. These omissions are addressed by the fusion
model through an open-domain flow approximation, thereby balancing computational speed
with predictive accuracy. The two-dimensional flow assumption constrains the model’s appli-
cability in scenarios where vertical flow structures substantially influence horizontal transport.
Furthermore, although innovative, the approach may produce unrealistic velocity patterns near
the coastline. While similar anomalies have been documented in similar studies, they can affect
the reliability of predictions in near-coastline regions. It is important to emphasize that, as a
surrogate model, the proposed method is not designed to provide absolute accuracy, but rather a
level of precision acceptable within the established computational and operational constraints.

One of the main limitations of the proposed approach is that, over time, it can accumulate
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errors. Trajectory discrepancies arising from imperfections in the velocity field are not cor-
rected between optimization windows, causing deviations to grow progressively and leading
to increasingly divergent predictions. Moreover, the methodology has only been evaluated for
velocities up to 1.5 m/s, leaving its performance under higher or more variable flow conditions
untested. It should also be noted that in smaller domains with faster flows, passive drifters (mea-
surement points) may exit the area quickly, reducing the available reference data and potentially
affecting the accuracy of the reconstructed flow field.

Since the simplified two-dimensional quasi-steady flow model is unable to fully replicate
transient flow dynamics and tends to accumulate errors over time, an adaptive diffusion co-
efficient is employed to govern scalar transport. This coefficient is updated according to the
discrepancies observed between the reconstructed velocity field and the actual flow, assesed
by recoreded and simulated motion of drifters, thereby compensating for inaccuracies of the
flow reconstruction. Although this adjustment improves the ability to capture the referent scalar
probability distribution, it often leads to a wider spreading of the scalar, enlarging the area that
must be considered and potentially including regions with very low probability. The extent of
this spreading is influenced by both the magnitude and spatial pattern of reconstruction errors,
which can result in deviations from the true physical dispersion and dilution of the scalar.

To test the proposed methodology under realistic conditions, three separate sea experiments
were carried out, each designed to explore different aspects of the approach: steady flow recon-
struction, the quasi-steady updating method, and a realistic search scenario. The preliminary
experiment, conducted in Plomin Bay, offered valuable insights into surface velocity patterns,
drifter dynamics, buoyancy effects, and small-scale variability of the flow. It also highlighted
the limitations of relying on a steady reconstruction based on a single time step, as it was un-
able to accurately predict drifter movements, confirming the complex underlying behavior of
the surface currents. In this relatively small bay, signal transmission remained largely reliable,
posing minimal issues for data collection. The second sea experiment, conducted in Valun
Bay, covered a much larger area and revealed additional challenges, including interruptions in
data transmission and decreased GPS reliability. These problems were addressed by applying
interpolation to fill missing measurements and a moving average technique to reduce GPS po-
sitional noise. Despite these complications, the reconstructed velocity fields closely matched
observed flow patterns, demonstrating the robustness of the method within an acceptable mar-

gin of error. A fundamental aspect of this approach is that measurements are updated at each
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measurement period, improving the optimization process while utilizing the progressive field
initialization and search narrowing. This relies on the assumption that the surface flow does
not change dramatically between updates, allowing computations to be carried out much more
quickly, especially in larger or more complex domains.

Nevertheless, this method carries a risk of guiding the optimization toward suboptimal so-
lutions, since each scenario begins with the internal field taken from the current best-estimated
flow. Even without progressive field initialization, the optimization can still perform effectively.
Adding numerical complexity, however, can limit the time available for real-time optimization,
which directly affects the precision of flow reconstruction. Examining experimental drifter
paths reveals that the method cannot capture every detail of the flow, yet it still produces reli-
able trajectory approximations. Challenges also emerge when measurement points are sparse,
complicating error evaluation and making it difficult to determine which optimized outcome
best represents reality. The issue becomes more pronounced when drifters are concentrated in a
small region, restricting the ability to accurately reconstruct the flow across a broader domain.
Thus, maintaining a balance between computational simplicity and sufficient optimization time
is essential.

To address the challenges observed in the first two sea experiments and to test the methodol-
ogy 1in a realistic search scenario with UAVs, a base station was positioned on elevated ground
onshore, where all control, signal reception, and UAV takeoffs were conducted. This setup
eliminated the signal gaps that occurred when the base station was on a boat in the second
experiment, while also making operations such as UAV battery changes much easier, which
would have been very difficult at sea. Despite this improvement, signal limitations from the
UAVs themselves and the time spent before starting the search still significantly affected the
coverage and detection of target objects. This experiment also confirmed that the shape and
buoyancy of floating objects strongly influence drift behavior. Acquired sensors were placed
on a floating buoy with a submerged drougue, while the target objects consisted of 0.5 x 0.5
meter wooden boards with flags, which were more strongly affected by purely surface currents.
Consequently, the drift of sensors and the targets was not perfectly identical, as evidenced by
their dispersal patterns over time. One potential improvement is the deployment of instruments
capable of measuring the relative influence of wind, surface currents, and sub-surface flows at
any given moment, so that the flow reconstruction can account for differences in object shape

and buoyancy.
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Overall, these experiments demonstrate the potential of the proposed methodology to reli-
ably approximate surface flow and predict object movement under realistic conditions, while
also highlighting areas for refinement, particularly in accounting for variable object properties

and optimizing UAV-assisted search operations.
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11 CONCLUSION

Reliable approximation of sea surface velocity fields is essential in tasks such as search and
rescue or tracking the dispersion of pollutants, where modeling the advection of passive scalars
must be performed in real or near real time. Achieving this, however, remains challenging
because of the highly variable nature of oceanic flows. Existing approaches can capture certain
aspects effectively, but they often fall short in representing the detailed dynamics of the flow and
tend to require considerable computational resources, which limits their use for time-sensitive
applications.

Therefore, this thesis proposes an ad-hoc data-driven framework for approximating sea sur-
face velocity fields based on scattered drifter measurements. The approach relies on a two-
dimensional surrogate fusion model coupled with an optimization procedure that adapts bound-
ary conditions to ensure consistency with observed data. By deliberately omitting influences
such as wind, tides, and temperature variations, the method emphasizes computational effi-
ciency, offering a practical tool for real-world scenarios where assuming quasi-steady flow is
sufficient for forecasting advection processes, including pollutant transport and object drift.

Based on the results, several conclusions can be drawn:

e The framework reliably reconstructs the flow field across the entire domain, including
regions without direct measurements, reducing the need for dense data collection and

high computational cost.

e Coarse numerical meshes can be used, enhancing computational efficiency while still

capturing essential flow patterns.

e A limited number of strategically placed measurements is sufficient for accurate recon-

struction of sea surface velocity.

e Transient patterns can be reproduced by updating flow fields at regular intervals, without

the need for fully time-dependent simulations.

111



e Passive scalar advection with compensating diffusion accounts for GPS errors, flow re-
construction inaccuracies, and other uncertainties, enabling dynamic updates of the prob-

ability distribution around the target location.

e The methodology was validated through three sea experiments, addressing practical chal-
lenges such as drifting dynamics, data transmission, computational framework, and real-

istic search scenarios with deployed targets.

Nevertheless, some limitations remain. By simplifying environmental influences such as
wind, tides, and temperature variations, the method may not fully capture highly complex or
three-dimensional flow structures, particularly in regions where such effects play a dominant
role. Additionally, the framework assumes predominantly passive target motion, which may
not accurately represent situations where objects or individuals actively navigate or swim, po-
tentially affecting the predictive performance. The accuracy of flow reconstruction is also in-
fluenced by the number and allocation of measurement points, meaning that poorly distributed
or insufficient data can reduce the fidelity of the reconstructed field. Finally, the assumption of
quasi-steady flow may limit the method’s applicability in rapidly evolving or highly turbulent
scenarios, where temporal variability is significant and reconstuction of one time frame may not
adequately describe the dynamics of the system.

Building on these findings, several directions for future research can further enhance the

framework:
e Develop adaptive measurement deployment strategies to optimize data collection.

e Improve guidance strategies, detection models, and real-time data assimilation to increase

operational efficiency and success rate.

e Combine the current framework with higher-fidelity simulations or complementary mea-
surement systems to extend applicability to more complex or rapidly changing environ-

ments, while keeping in mind real-time applicability and computational efficiency

The results from both simulations and field experiments confirm that the approach effec-
tively supports real-time search operations, demonstrating a practical balance between compu-
tational efficiency and adaptability, and confirming the hypothesis that limited measurements
suffice for accurate reconstruction of the sea surface flow field and prediction of target proba-

bility dynamics.
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