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ABSTRACT

Accurate assessment of the sea surface velocity field is essential for various applications, par-

ticularly for predicting the movement of objects and substances on the sea surface, as well as

for search and rescue (SAR) operations. However, reconstructing the full flow field from sparse

and scattered observations is both difficult and computationally demanding. This challenge is

compounded by the highly dynamic and variable nature of oceanic flows, which makes accu-

rate prediction of surface transport even with advanced measurement techniques such as coastal

radar systems or high-resolution numerical ocean models particularly challenging, especially in

time-sensitive scenarios.

To address these challenges, this thesis proposes a rapid, data-driven approach for recon-

structing sea surface velocity fields from sparsely distributed measurements. The flow field is

represented using two simplified two-dimensional models that together capture submesoscale

dynamics across the entire domain while enabling near-real-time computation. To ensure reli-

able prediction of object trajectories and target probabilities, the framework incorporates model

of passive scalar advection with compensating diffusion, explicitly accounting for flow recon-

struction errors, measurement noise, and other system uncertainties. The central hypothesis of

this work is that realistic sea surface flow patterns can be effectively approximated by iteratively

fitting a steady-state numerical surrogate model to real-time scattered measurements, thereby

avoiding the computational cost of complex oceanic models. This approach enables continuous

updates of the target probability distribution representing its possible location in realistic search

scenarios.

This research introduces several methodological innovations essential for implementing the

proposed concept. The fusion methodology converts scattered velocity measurements into a

coherent flow field using a novel surrogate modeling approach that preserves key flow dynam-

ics while maintaining computational efficiency. Numerical optimization algorithms are em-

ployed to iteratively adjust model parameters and boundary conditions, ensuring that the recon-

structed fields remain consistent with observational constraints. The quasi-steady implemen-

tation captures temporal flow evolution through periodic field updates rather than continuous
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time-dependent simulations, substantially reducing computational overhead.

The methodology was systematically validated through simulation tests and real-world field

trials. In these trials, GPS drifters measured sea surface velocities, while purpose-deployed ma-

rine targets served as test objects for trajectory prediction. Unmanned Aerial Vehicles provided

aerial tracking and verification of target movements, based on its advected probability, as well

as searching for and locating custom sea targets based on their estimated trajectories. Validation

was achieved by comparing observed drifter paths with predictions generated exclusively from

the reconstructed flow fields, allowing direct assessment of accuracy under realistic operational

conditions.

The results demonstrate that the proposed concept successfully balances computational ef-

ficiency with the fidelity of the reconstructed flow field. It provides flow and advection recon-

structions that are sufficiently accurate for operational decision-making, while being fast enough

to support real-time or near-real-time applications. These outcomes highlight its potential as a

practical operational tool for time-critical maritime applications, particularly in scenarios where

traditional high-resolution simulations are computationally prohibitive and rapid response is re-

quired.

Keywords: Velocity field reconstruction, Point measurements, Surrogate model, Model fitting,

Advection, Diffusion, Computational Fluid Dynamics
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PROŠIRENI SAŽETAK

Pouzdana procjena polja brzine morske površine ključna je za brojne primjene, osobito za

praćenje kretanja objekata i tvari na površini mora, kao i za operacije traganja i spašavanja.

Med̄utim, rekonstrukcija cjelokupnog strujnog polja na temelju rijetkih i prostorno razbacanih

mjerenja istodobno je zahtjevna i računalno skupa. Izrazito dinamična i promjenjiva priroda

oceanskih strujanja dodatno otežava precizno predvid̄anje površinskog transporta, koje ostaje

izazovno čak i uz napredne tehnologije poput obalnih radara i visokorezolucijskih numeričkih

oceanskih modela u vremenski osjetljivim situacijama.

Strujno polje aproksimira se pomoću dva pojednostavljena dvodimenzionalna modela koji

zajedno obuhvaćaju submezoskalnu dinamiku na cijelom području, a pritom omogućuju izračune

gotovo u stvarnom vremenu. Kako bi se osiguralo pouzdano predvid̄anje putanja objekata

i vjerojatnosti nalaženja mete, sustav uključuje model advekcije pasivnog skalara s kompen-

zacijskom difuzijom, pri čemu se eksplicitno uzimaju u obzir pogreške rekonstrukcije polja,

šum mjerenja i druge nesigurnosti sustava. Središnja hipoteza ovog rada jest da se realistični

obrasci strujanja morske površine mogu učinkovito aproksimirati iterativnim prilagod̄avanjem

stacionarnog numeričkog surogat-modela stvarnim prostorno razbacanim mjerenjima, čime se

izbjegava računalna zahtjevnost složenih oceanskih modela. Ovakav pristup omogućuje kon-

tinuirano ažuriranje distribucije vjerojatnosti nalaženja mete u realnim scenarijima pretraži-

vanja.

Ovo istraživanje uvodi nekoliko metodoloških inovacija ključnih za provedbu predloženog

koncepta. Metodologija fuzije strujnih polja površine mora pretvara razbacana mjerenja brzina

u koherentno strujno polje koristeći novi pristup surogatnog modeliranja koji zadržava ključne

dinamike strujanja, a istovremeno održava računalnu učinkovitost. Numerički optimizacijski

algoritmi koriste se za iterativno prilagod̄avanje parametara modela i rubnih uvjeta, osigurava-

jući da rekonstruirana polja ostanu usklad̄ena s dostupnim mjerenjima i fizičkim ograničenjima.

Kvazi-stacionarna implementacija bilježi vremenski razvoj strujanja kroz periodična ažuriranja

strujnih polja, umjesto kontinuiranih vremenski ovisnih simulacija, što znatno smanjuje raču-

nalno opterećenje.
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Metodologija je sustavno validirana kroz simulacijske testove i stvarne terenske eksperi-

mente. U tim eksperimentima, GPS drifteri mjerili su brzine morske površine, dok su nam-

jenski postavljeni morske mete služile kao objekti za predvid̄anje putanja. Bespilotne letjelice

pružale su zračno praćenje i verifikaciju kretanja meta, temeljeno na advekciji gustoće vjerojat-

nosti njihova nalaska, kao i traženje i lociranje meta na temelju njihovih procijenjenih putanja.

Validacija je provedena usporedbom promatranih putanja driftera s predvid̄anjima generiranim

isključivo iz rekonstruiranih strujnih polja, što je omogućilo izravnu procjenu točnosti u realnim

operativnim uvjetima.

Rezultati pokazuju da predloženi koncept uspješno uravnotežuje računalnu učinkovitost i

vjerodostojnost rekonstruiranog strujnog polja. Rekonstrukcije strujnog polja i advekcije do-

voljno su precizne za operativno donošenje odluka, a istovremeno dovoljno brze da podrže

primjene u stvarnom ili gotovo stvarnom vremenu. Ovi ishodi ističu njegov potencijal kao prak-

tičnog operativnog alata za vremenski kritične pomorske primjene, osobito u scenarijima gdje

su tradicionalne visokorezolucijske simulacije računalno zahtjevne, a potrebna je brza reakcija.

Ključne riječi: Rekonstrukcija polja brzine, Točkasta mjerenja, Surogat-model, Prilagodba

modela, Advekcija, Difuzija, Računalna dinamika fluida
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1 INTRODUCTION

Objects and substances floating on the sea surface, such as debris, oil spills, or drifting vessels,

are constantly in motion due to currents, wind, and waves. Understanding and predicting these

movements is crucial for a wide range of applications, including search and rescue (SAR) op-

erations, environmental monitoring, pollution control, and maritime navigation. This physical

phenomenon is known as advection, which in this specific instance refers to the transport of

material/objects by the surface flow. Additionally, floating materials tend to gradually spread

out on the surface over time, moving from areas of higher concentration to areas of lower con-

centration, in a process known as diffusion.

Accurately modeling both advection and diffusion requires insight into the sea surface ve-

locity field, which can be obtained or estimated through various measurement techniques, each

suited to different environments and applications. For instance, fixed systems like coastal radar

provide continuous coverage in nearshore regions, while mobile platforms such as floating sen-

sors (drifters) offer flexibility and precision in open waters. If large-scale areas need to be

monitored, satellite-based observations can provide wide coverage, although they typically of-

fer low resolution and limited accessibility to frequent updates.

While current approaches to surface flow reconstruction are effective in certain respects,

they often lack detail regarding specific flow field characteristics, accuracy, and spatial or tem-

poral resolution. To overcome these limitations, this research proposes a modeling approach in

which numerical simulations from Computational Fluid Dynamics (CFD) are combined with

available point measurements of sea surface velocity. Since point measurements provide ad hoc

data, this approach reduces both the cost and effort associated with data acquisition. Due to the

complexity of oceanic models, a simplified numerical surrogate model is introduced to ensure

near real-time applicability. This flow surrogate model is iteratively adjusted until the resulting

velocity fields align with the measurements. The method not only provides reliable velocity

approximations across the entire domain but also enables predictions of object trajectories and

probability field advection.
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1.1 Hypothesis and Research Goals

Earlier studies on velocity field reconstruction, particle and object advection, and scalar trans-

port with diffusion have largely relied on available measurements to derive flow fields. However,

these approaches often required extensive data, while still neglecting important aspects of sea

flow complexity. From these limitations, the research hypothesis emerges:

• A meta-model-based reconstruction of the sea surface flow field using a small number of

drifter measurements is suitable for accurate modelling and prediction of target probabil-

ity density dynamics.

The research goals are:

• Develop a rapid approximation method for sea surface velocity estimation using scattered

drifter measurements.

• Apply the surrogate modeling approach to fit numerical simulations with available data

for efficient flow field reconstruction.

• Analyze and predict the advection of objects or target probability fields based on the

reconstructed velocity fields.

• Assess the applicability of the proposed methodology for mesoscale processes and oper-

ational modeling.

• Perform numerical and experimental validation of the methodology under realistic con-

ditions.

1.2 Scientific Contribution

The scientific contribution of the proposed research lies in the development of a rapid approxi-

mation method for surface flow reconstruction using a surrogate model that replicates realistic

submesoscale flow. This approach enables fast and detailed assessment of the surface velocity

field from a limited number of measurements, reducing both the cost and time associated with

flow reconstruction. Moreover, it provides an adequate velocity field for the entire simulated

domain, including areas not covered with measurements.
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The framework is easily extended to incorporate the advection of particles or objects, as

well as passive scalar advection and diffusion, making it suitable for modeling and predict-

ing target probability density dynamics. Additionally, it includes an auto-adaptive mechanism

that compensates for potential measurement errors and flow reconstruction inaccuracies using

a diffusion, enabling dynamic updates of the target probability distribution. The framework has

been validated through numerical simulations in both synthetic and realistic domains. Its per-

formance was further confirmed in carefully designed experiments using custom drifters, which

addressed practical challenges such as drifting dynamics and data transmission, as well as real-

istic search scenarios involving Unmanned Aerial Vehicle (UAV) operations to locate deployed

custom sea targets based on their estimated movements.

1.3 Thesis Structure

This thesis is organised into eleven chapters with corresponding subchapters. The introductory

chapter presents the hypothesis and research goals, outlines the scientific contributions, and

describes the overall thesis structure.

The second chapter provides an overview of scientific literature covering sea surface ve-

locity reconstruction, advection and transport modeling at the sea surface, and applications in

search and rescue.

The third presents the technology behind sea surface velocity measurement techniques. It

covers data collection methods, including floating sensors (drifters), high-frequency radar sys-

tems, and satellite-based measurements, and discusses measurement uncertainties and spatial

resolution, along with a proposal for the effective number of measurements.

The fourth chapter examines the dynamics of sea surface drift. It covers the drift of floating

objects, influence of object shape, environmental factors, and overall complexity of the drift

phenomenon.

The fifth chapter introduces the surrogate modeling approach for surface flow. It covers a

steady two-dimensional model, the fusion model concept, a transient flow estimation method

based on quasi-steady assumptions, and the numerical implementation of the proposed ap-

proach.

The sixth chapter focuses on the formulation of the model fitting and optimization problem,

defining the objective functions and constraints.
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The seventh chapter addresses advection–diffusion processes, including the formulation of

the advection–diffusion term, modeling of passive scalar transport, evaluation of advection ac-

curacy, proposal of an adaptive diffusion coefficient, and discussion of applications in search

and rescue.

The eighth chapter presents simulation results from various test cases. It covers the prepara-

tion of synthetic and realistic domains, examines multimodality, compares optimization meth-

ods, analyzes robustness, investigates mesh independence, and validates the results.

The ninth chapter details the experimental results, describing preliminary and search ex-

periments conducted in the areas of Plomin and Cres, Croatia. These experiments validate the

proposed methodology and illustrate a practical application of the developed methods.

The tenth chapter discusses limitations of the current research, reflecting on challenges en-

countered and potential areas for improvement. The final chapter summarizes the main findings

and scientific contributions, and confirms the thesis hypothesis.
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2 LITERATURE OVERVIEW

In recent decades, accurately predicting the movement of objects and substances at sea has been

a major challenge, particularly in search and rescue operations and environmental emergencies.

Such incidents make rapid and informed decision-making crucial, especially when events like

hazardous material pollution pose significant risks to marine ecosystems and coastal communi-

ties [1–4]. A variety of numerical models are regularly adopted to simulate the transport and

distribution of probability densities representing the likely location of drifting objects or con-

centrations of pollutants, often serving as the most practical tool for forecasting their movement

at sea. The performance of these models depends heavily on the quality of input data, including

sea surface velocities, wind measurements, and the precise location of the source. Accurate

reconstruction of surface flow is therefore a key prerequisite for reliable transport modeling

and underpins numerous real-world applications, from tracking floating debris and locating lost

objects to supporting search and rescue operations.

2.1 Sea surface velocity reconstruction

Generally, all transport modeling and prediction methods depend on sea surface velocity fields

calculated from a variety of data sources. These sources vary quite a bit in how they measure ve-

locity, how often and where they collect data, and how accurate they are. Knowing the strengths

and weaknesses of each method is important for choosing the right data and building accurate

surface flow maps. The following section reviews common velocity measurement methods and

their roles in ocean surface flow reconstruction.

2.1.1 Acquiring velocity data

Among the different methods for measuring sea surface velocity, satellite-tracked drifters have

become widely used due to their affordability and reliable performance. Over the past two
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decades, their use has grown significantly, with many deployments across different ocean re-

gions [5]. These floating devices, designed specifically to record surface current data and to

study circulation patterns, particularly in semi-enclosed seas, have been the subject of extensive

research and analysis [6–9]. They typically use Global Positioning System (GPS) technology to

enable continuous tracking, providing valuable information about ocean surface dynamics and

circulation patterns. However, drifters can sometimes move outside the area of interest, lead-

ing to widely scattered measurements that don’t provide usable data. Moreover, because they

only collect measurements at specific points, they can’t offer a complete view of circulation

throughout the entire domain. Although drifter data provide detailed information on movement

over time and space, researchers often use it not only to study trajectories but also to recon-

struct Eulerian velocity fields. Numerous studies have employed drifter observations for this

purpose [10–12].

To overcome the limitations of drifting in-situ instruments, high-frequency (HF) radar sys-

tems have become an increasingly valuable tool for near real-time monitoring of surface cur-

rents and for validating ocean circulation models [13, 14]. HF radar provides broad spatial

coverage of surface currents, typically interpreted in the Eulerian framework, and primarily

senses the upper meter of the ocean [15]. These systems are particularly suited for coastal

regions, encompassing areas from a few kilometers to over 200 kilometers offshore, and can

operate under nearly all weather conditions due to their ability to propagate radio waves beyond

the horizon [15]. HF radar data have proven especially useful in time-sensitive scenarios such

as Search and Rescue (SAR) operations and oil spill response [16]. However, a single HF radar

station only captures the radial component of surface flow, either toward or away from the an-

tenna. As such, combining data from at least two stations is necessary to reconstruct full vector

current fields [17]. Despite their numerous advantages, high-frequency (HF) radar systems also

come with notable limitations. They typically operate within shallow coastal waters, are prone

to radio interference, offer limited spatial resolution, and demand significant infrastructure and

maintenance efforts.

These observational measurements are often combined with or compared to Acoustic Doppler

Current Profilers (ADCPs), which provide an additional in-situ approach for measuring flow ve-

locities by capturing vertical profiles from surface to bottom using the Doppler shift principle,

as demonstrated in multiple studies [18, 19]. Unlike surface drifters, ADCPs deliver contin-

uous measurements throughout the water column, offering detailed mapping of flow structure
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[20]. They can be deployed from vessels, moorings, or autonomous platforms, providing high

temporal resolution and complementing both drifter and HF radar observations, particularly for

understanding vertical shear and validating numerical models.

To address the inherent limitations of traditional in-situ methods, satellite altimetry has

emerged as a powerful tool, offering broader spatial coverage and additional insights into sur-

face flow dynamics. Since the early 1990s, radar altimeters on satellites, which look directly

downward, have provided near-global observations of the ocean surface, offering coverage that

HF radar systems cannot offer. Rather than measuring surface currents directly, these satellites

estimate them indirectly by first measuring Absolute Dynamic Topography (ADT) along one-

dimensional tracks. The data are then interpolated into two-dimensional ADT maps, from which

surface velocities are derived using the geostrophic approximation [21]. This approximation,

which relates sea surface height (SSH) gradients to ocean surface velocity, is widely accepted

for resolving large-scale circulation. This is because geostrophic flow dominates ocean dynam-

ics on spatial scales larger than approximately 10 km and over timescales longer than a few

days [22]. However, despite its utility, this method has inherent limitations. Due to the coarse

spatial and temporal sampling of ADT and the assumptions underlying the geostrophic balance,

satellite altimetry primarily captures mesoscale dynamics, on the order of 100 km and 10 days

[21]. As a result, it struggles to resolve finer sub-mesoscale motions, which are essential for

capturing detailed advection and energy exchange processes [23].

While satellite altimetry has greatly advanced the ability to monitor broad oceanic flows, its

reliance on the geostrophic approximation leaves a gap in observing smaller, faster, or unbal-

anced motions. These include common processes in dynamic coastal zones and within energetic

eddies, which play a key role in sub-mesoscale dynamics. This gap poses a fundamental limita-

tion when it comes to accurately simulating near-surface advection, where finer-scale variability

can have a substantial impact [21].

2.1.2 Reconstruction techniques

To overcome the limitations of sparse observational data and assumptions inherent in geostrophic

approximations, various computational techniques have been developed for reconstructing sea

surface velocity fields. These range from classical interpolation schemes to advanced data as-

similation and machine learning methods [24, 25]. More recently, hybrid approaches combining
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physical constraints with data-driven models have shown promise in improving reconstruction

accuracy [26, 27].

2.1.2.1 Spatial interpolation methods

Reconstructing continuous velocity fields from scattered measurements, such as those collected

by GPS drifters, remains one of the central challenges in oceanography. Because ocean currents

are often sampled at irregular locations and times, researchers rely on interpolation techniques to

estimate flow conditions across unsampled areas. A wide range of methods has been explored,

from straightforward geometric approaches to more advanced statistical and physics-informed

techniques [28].

For scalar fields like sea surface temperature or elevation, methods such as Inverse Distance

Weighting (IDW) and Ordinary Kriging (OK) are commonly used [29, 30]. However, vector

fields like ocean currents pose additional challenges, as they involve both direction and mag-

nitude. In these cases, Radial Basis Function (RBF) interpolation methods, especially those

designed to be divergence-free, thereby preserving the incompressibility of ocean flow, have

shown promising results [31–33]. Such methods have demonstrated improved accuracy in re-

constructing realistic coastal circulation patterns from sparse data [34].

While simple geometric methods are computationally efficient, they often struggle to cap-

ture complex flow features, especially in dynamic regions with sharp gradients or rapidly chang-

ing directions. Kinematic interpolation techniques, which take into account the movement be-

havior of particles, tend to perform better under such conditions [35, 36]. Furthermore, methods

that incorporate temporal dynamics, such as spatio-temporal kriging, can improve reconstruc-

tions by leveraging flow evolution patterns over time. However, these approaches often require

more computational resources and careful tuning. Robust handling of measurement noise and

missing data remains an ongoing challenge.

Recently, machine learning-based interpolation models have emerged as a compelling alter-

native [37, 38]. By learning spatial and temporal patterns from large datasets, they can poten-

tially offer more accurate reconstructions, though they require substantial amounts of training

data and computational power to be effective [39]. The trade-off between computational cost

and reconstruction quality remains a key consideration, especially for large-scale or real-time

applications.
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2.1.2.2 Data Assimilation

While spatial interpolation techniques estimate flow fields using scattered observations alone,

Data Assimilation (DA) methods improve these reconstructions by optimally combining obser-

vational data with dynamical ocean models. DA effectively merges real-world measurements

and model forecasts to provide a more accurate and comprehensive representation of the ocean’s

current state [24]. By weighting information based on the uncertainties of both data sources,

DA corrects errors and fills in gaps, leading to enhanced estimates of key variables such as

current velocity, salinity, and temperature.

Among the advanced DA techniques, methods like Four-Dimensional Variational Assimi-

lation (4D-Var) and the Ensemble Kalman Filter (EnKF) have become prominent in recent re-

search [24]. While 4D-Var is known for producing smooth and dynamically consistent results,

it tends to be computationally demanding. On the other hand, lighter-weight methods such as

Ensemble Optimal Interpolation (EnOI) can offer practical alternatives with less computational

cost, though sometimes at the expense of some accuracy or detail [40]. Despite their potential,

applying DA effectively remains a complex task as it depends heavily on having high-quality

observational data, precise models, and sufficient computing power, especially when working

with fine-scale, high-resolution ocean simulations [41].

2.1.2.3 Machine Learning and Hybrid approaches

To overcome the limitations of both spatial interpolation and DA, recent research has increas-

ingly explored machine learning (ML) techniques as a complementary or alternative approach

for predicting flow fields [42]. For instance, artificial neural networks (ANNs) have been em-

ployed to learn spatio temporal patterns from drifter trajectories, leading to improved long-term

trajectory prediction and reduced modeling errors [43, 44]. Beyond trajectory analysis, deep

learning (DL) techniques have also been employed to construct surrogate models of fluid flows

[45, 46], allowing rapid and efficient flow predictions while avoiding the computational cost of

conventional fluid dynamics simulations. The accessibility of ML algorithms has driven their

growing use in oceanography, for tasks ranging from estimating chlorophyll concentration to

reconstructing three-dimensional ocean structure and surface current fields [47]. Convolutional

Neural Networks (CNNs) have been widely used to increase the resolution of gridded ocean

datasets, by learning spatial patterns and reconstructing fine-scale velocity structures while re-

specting geostrophic balance [48, 49].
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However, ML models still face well-known challenges: they tend to overfit to training data,

struggle with novel or anomalous conditions (known as "distribution shift") [50], and are often

criticized as "black boxes" because the decision-making process can be difficult to interpret.

Nevertheless, ML offers strong potential for classification, regression, anomaly detection, and

integration of diverse data streams through self-supervised and hybrid physics-informed learn-

ing [26]. Therefore, the combination of spatial interpolation, data assimilation, and machine

learning is leading to a major change in modeling ocean surface velocities. Since each method

has its own challenges, a shift is being made away from relying solely on traditional physics-

based models toward more flexible, hybrid data-driven frameworks. Interpolation needs suf-

ficient number of data points, data assimilation can be heavy on computation, and machine

learning sometimes doesn’t perform well outside its training conditions. However, when these

approaches are used together, they can fill in each other’s weaknesses. For instance, machine

learning is increasingly becoming part of data assimilation processes to improve forecast accu-

racy. Meanwhile, physics-informed neural networks help preserve important physical principles

in the models [51, 52].

This integration reflects the reality of modern oceanography’s big data era, characterized

by the collection of vast datasets from diverse sources such as satellites, autonomous underwa-

ter vehicles, and drifters. Effectively processing and assimilating this extensive data demands

advanced analytical tools, with the added challenge of maintaining transparency and trustwor-

thiness in such enhanced models, especially for critical applications like search and rescue

operations [53].

To provide an overview of sea surface velocity reconstruction methods, Table 2.1 com-

pares commonly used observation platforms with advanced techniques. It highlights the main

strengths and limitations of each approach, including traditional methods such as drifters and

HF radar, as well as modern methods like data assimilation, machine learning, and hybrid mod-

els that integrate physical and data-driven components.
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Table 2.1: Overview of observation platforms and reconstruction tech-
niques for sea surface velocity estimation.

Method Cost Spatial coverage Temporal resolution Accuracy
Drifters Low Point measurements High Medium
HF Radar High Coastal High High
ADCP Medium-High Vertical profiles High High
Satellite Altimetry High Near-global Low Medium
Spatial Interpolation Low Sparse data Moderate Medium
Data Assimilation High Observation density High High
Machine Learning Medium-High Training data High Medium-High
Hybrid (ML + DA) High Obtained data High High

As shown in Table 2.1, different observation platforms provide direct measurements with

varying cost, coverage, and resolution. Reconstruction techniques complement these obser-

vations by estimating velocity fields where measurements are sparse. Spatial interpolation is

simple and low-cost but less accurate in complex flows, while data assimilation and machine

learning can capture detailed flow structures and fill gaps but require accurate models, large

datasets, or high computational resources.

2.2 Advection and transport modeling at the sea surface

The ability to accurately reconstruct sea surface flows is key to simulating how passive scalars,

representing concentration fields of pollutants or nutrients, or probability densities of debris and

objects, spread over time. These transport processes are governed by the combined effects of

advection and diffusion, which determine how a scalar like concentration (s) changes in space

and time without affecting the fluid’s velocity or pressure. This makes passive scalar modeling

particularly useful for studying mixing and dispersion in environmental and engineering flows

[54].

Mathematically, this behavior is described by the advection-diffusion equation. The non-

conservative (advective) form of this equation is often used for its clarity in separating the

effects of advection and diffusion:

∂ s
∂ t

+u ·∇s = D ·∇2s+R− γ · s. (2.1)

Here, s represents a passive scalar, also referred to as a tracer, describing a concentration or

probability density in the domain. The term ∂ s
∂ t represents the temporal change in scalar con-

centration at a fixed location, while u ·∇s describes its transport by the surrounding flow field
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u. The term D∇2s captures the gradual spreading caused by diffusion, with D denoting the dif-

fusion coefficient. R accounts for any sources introducing tracer or sinks removing it, while γ · s

represents decay, which models continuous loss of scalar proportional to its concentration(e.g.

evaporation, degradation) [55].

At the ocean surface, these combined processes interact with wind-driven currents, swirling

eddies, and small-scale turbulence, while also being influenced by changes in depth and tidal

variations, resulting in complex and often unpredictable transport pathways. Capturing these

dynamics through modeling is challenging, largely because they span multiple scales and in-

volve nonlinear interactions. To tackle this complexity, researchers rely on various theoretical

frameworks and computational strategies to approximate the flow field and simulate how tracers

like pollutants or nutrients disperse over time, as discussed in [56].

Two of the most commonly used approaches are the Lagrangian and Eulerian frameworks.

These methods adopt fundamentally different perspectives: the Lagrangian approach tracks

individual particles, whereas the Eulerian approach focuses on changes occurring at fixed lo-

cations. Each approach has its own strengths, and often they are combined to provide a more

comprehensive understanding.

2.2.1 Lagrangian vs. Eulerian approaches

The Lagrangian approach describes fluid motion from the perspective of fluid particles mov-

ing with the flow [57]. In this framework, large numbers of virtual particles are embedded in

three-dimensional, time-evolving ocean velocity fields. This method is particularly powerful

for analyzing pathways, understanding connectivity between regions, and investigating the ori-

gin of water masses through reverse-time analysis [57]. Lagrangian analysis is well-suited for

handling transport barriers, including eddies and currents, which substantially impact dispersal

patterns. It can also yield accurate results in turbulent or complex geometric flow fields by

directly simulating particle movement [58]. However, the Lagrangian approach can be compu-

tationally demanding, especially for large scales, and the resulting complex and unpredictable

paths of individual particles can be more difficult to analyze compared to other oceanographic

techniques.

In contrast, the Eulerian approach describes fluid motion from a fixed point in space, fo-

cusing on the changes in fluid properties (i.e. tracer concentration) at specific locations over

time [58]. For fast, first-order estimates of particle transport and dispersion, particularly in
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environments like vegetated coastal zones, a simplified Eulerian approach is often the more

practical and cost-effective option compared to Lagrangian models, which tend to require more

detailed input data and greater computational resources [59]. Eulerian models are well adapted

for capturing large-scale concentration changes, but they generally offer less insight into in-

dividual particle trajectories and may struggle to represent the full complexity of fine-scale,

unpredictable movements that Lagrangian methods are designed to resolve [58].

To improve model accuracy and make better use of Lagrangian observations, researchers

have explored methods to incorporate such data into predictive frameworks. One approach esti-

mates velocities by tracking changes in observed positions over time and then adjusts the model

predictions accordingly [60]. Another approach uses an observational operator derived from the

particle advection equation to improve the Eulerian velocity field by minimizing discrepancies

between observed and simulated trajectories [61]. Early studies [62] demonstrated that us-

ing basic Euler methods in non-uniform flow fields can produce substantial trajectory errors.

Consequently, modern pollution prediction models often employ more physically grounded

techniques, remaining within an Eulerian framework while calculating slick thickness with

layer-averaged Navier–Stokes equations and modeling pollutant transport through the advec-

tion–diffusion equation [63].

The decision between using a Lagrangian or Eulerian framework largely depends on the

specific objectives of the study and the resources available. In many cases, the two are used

together, as their strengths are complementary. For example, Eulerian models can supply the

velocity fields needed for Lagrangian particle tracking, providing a more complete picture of

ocean transport processes.

2.2.2 Computational models

Computational models represent numerical or mathematical approaches for simulating ocean

dynamics and particle transport. These models vary widely in complexity, from large-scale

circulation simulations to simplified stochastic or particle-tracking approaches, each addressing

different research needs.

Numerical ocean models: Large-scale ocean circulation models, such as ROMS (Regional

Ocean Modeling System) [64], HYCOM (Hybrid Coordinate Ocean Model) [65], and NEMO

(Nucleus for European Modelling of the Ocean) [66], simulate the key physical processes that

govern currents, temperature, and salinity across spatial and temporal scales. These velocity
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fields form the backbone for most transport simulations. To maintain reliability, such models

require continuous updates through data assimilation, blending real-time measurements with

physical constraints. Techniques like 4D-Var are vital for improving the accuracy of short-term

forecasts and capturing dynamic features like eddies [40].

Lagrangian particle tracking: These models are designed to simulate the motion of vir-

tual particles through ocean velocity fields, making them well adapted for studying connectivity,

dispersal, and biophysical interactions [57]. While tracking on structured model grids is compu-

tationally efficient, many coastal ocean applications use unstructured grids to balance nearshore

resolution with offshore efficiency. Historically, particle tracking on unstructured meshes has

been slower, limiting the number of particles and behaviors modeled [67]. However, tools like

OceanTracker (OT) have greatly improved computational efficiency. They include innovations

such as the Short Triangle Walk (STW) method and interpolation weight reuse, which enable

simulation of millions of particle trajectories on unstructured grids at speeds often two orders

of magnitude faster than earlier approaches [67].

Stochastic models: Particle transport in the ocean is affected not only by the main flow but

also by diffusion and unresolved subgrid-scale processes. These are typically modeled using

stochastic terms added to particle trajectories via stochastic differential equations (SDEs) [57].

Such approaches are particularly useful for representing eddy-driven transport and sharp tracer

gradients while avoiding numerical artifacts like negative concentrations [57]. Choosing when

and how to incorporate stochastic terms remains an open question and depends on factors such

as resolution and flow complexity.

Beyond these foundational modeling strategies, recent research highlights the complexity

and unpredictability of passive scalar transport in dynamic ocean environments. For example,

[68] examined how deterministic flows impact the probability density function (PDF) of passive

scalars, emphasizing the challenges of predicting scalar decay in turbulent systems. Similarly,

[69] explored how chaotic advection generates localized ‘hot spots’ in boundary layers, under-

scoring the sensitivity of scalar transport to fine-scale structures. These findings illustrate that

even in seemingly stable conditions, complex internal dynamics can strongly influence tracer

dispersion.

In practical applications, modeling scalar transport often serves urgent societal needs, such

as tracking pollutants, predicting harmful algal blooms, or guiding search and rescue operations.

For instance, [70] proposed reduced-order stochastic models that efficiently approximate the
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statistics of passive tracers in turbulent flows, enabling fast forecasts of extreme events. In

disaster response scenarios, such as oil spills or locating individuals lost at sea, the ability to

predict short-term drift patterns becomes critical. The work of [71] highlights the need for

highly accurate short-term forecasts, especially under rapidly changing atmospheric conditions

and sea states, including the influence of wind waves and their interaction with ocean currents.

Emerging applications are also expanding the role of transport modeling beyond traditional

marine contexts. For example, [72] introduced a novel framework for autonomous search

strategies in dynamic environments. Their approach uses an advection-diffusion-based global

saliency map, where particles originating from visually salient regions are guided toward the

robot’s position.

Altogether, the continuous refinement of computational tools, from high-fidelity circulation

models to efficient particle tracking and stochastic formulations, reflects a broader effort to

accurately simulate the complex, multi-scale nature of ocean transport. Hybrid methods that

combine the strengths of Eulerian and Lagrangian frameworks are increasingly used to capture

both the broad-scale structure and fine-scale variability of oceanic flows [73].

2.3 Applications in Search and Rescue

The accuracy of transport modelling in marine SAR operations strongly depends on the qual-

ity of met-ocean forecast data used to predict object movement in the water [74]. For quick

responses in a variety of changing conditions, SAR operators rely on several forecast products

that deliver near–real-time ocean and wind data. Over time, different modeling methods have

been proposed to improve the precision of predictions, where early approaches focused mainly

on wind-driven drift models that account for specific object characteristics like shape, buoy-

ancy, and how much wind they catch [75–77]. These models, known as leeway models, offer a

simplified but practical way to estimate how objects drift in the water during operations.

More recent efforts focus on integrating high-resolution oceanographic data and numerical

model outputs into ensemble-based prediction systems. These systems account for environ-

mental uncertainty and sub-grid variability, which are especially critical in dynamically active

coastal zones [78]. The use of ensemble trajectory modeling helps mitigate uncertainties in ob-

ject initialization, forcing inputs, and small-scale ocean processes that are often not captured in
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deterministic models [79, 80]. By simulating multiple plausible scenarios, ensemble approaches

can yield more robust predictions and support probabilistic search strategies.

Operational transport forecasting increasingly benefits from the assimilation of near-real-

time observational data, such as those from HF radar systems, ocean drifters, and satellite-

derived wind and current products. These data sources improve the spatial and temporal res-

olution of input fields, enhancing model performance in short-term prediction horizons [74].

However, limitations in data coverage, particularly in remote or offshore regions, continue to

present significant challenges to operational implementation [53].

Efforts to refine such modeling also include the incorporation of wave-induced motion and

stochastic perturbations to simulate unresolved turbulence and variability [81, 82]. Probabilistic

frameworks combining wind, current, and random motion components have shown potential to

produce more realistic trajectories, particularly in high-variability environments. Still, perfor-

mance remains sensitive to both object-specific characteristics and the accuracy of environmen-

tal inputs [83]. Complementary approaches have been proposed to augment trajectory models,

including the use of Lagrangian Coherent Structures (LCS) to identify flow features that influ-

ence material transport. These methods can help define regions of convergence or separation in

the flow, offering additional guidance for narrowing SAR search areas [84]. Such techniques

are especially valuable when traditional trajectory predictions diverge or when direct object

tracking is not available.

While advances in modeling and observation have significantly improved transport predic-

tion capabilities, key limitations persist. The operational usability of models depends not only

on their accuracy but also on their ability to integrate diverse data sources and deliver timely, in-

terpretable output to SAR personnel [85]. Furthermore, large-scale and long-duration transport

events, such as those involving aviation debris, reveal the influence of broad ocean circulation

patterns and highlight the need for multi-scale modeling approaches [86].

Overall, the progression from deterministic wind-transport models to sophisticated ensemble-

based systems reflects a broader shift toward coupling physical realism with probabilistic anal-

ysis. Continued research into submesoscale dynamics, object characterization, and hybrid

observational-modeling frameworks remains essential to further advance SAR effectiveness

[87–89].
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3 TECHNOLOGY OF SEA SURFACE
VELOCITY MEASUREMENTS

Every sea surface velocity reconstruction requires the acquisition of velocity measurements.

The quality and reliability of the reconstruction are directly influenced by the characteristics

of these measurements, specifically their accuracy, spatial resolution, temporal resolution, and

total amount of measurements. The resolution and precision of the obtained data determine the

level of detail that can be resolved in the resulting flow field, while a wider spatial distribution

helps reduce uncertainty in areas far from measurement points. The time available for data

processing, the method of measurement (e.g., drifters, HF radar, remote sensing), and the speed

at which the measurements are obtained all play critical roles in shaping the final reconstruc-

tion. In real-world scenarios, these factors are often constrained by logistical and operational

limitations, requiring a balance between measurement density and timeliness. Therefore, the

effectiveness of any reconstruction method depends not only on the methods employed but also

on the quality, configuration, and interpretation of the collected velocity data.

3.1 Floating sensors

One of the most popular and cost-effective ways to gather sea surface velocity data is through

satellite tracking of drifting sensors, commonly known as drifters. Over the last twenty years,

their use has expanded significantly, with deployments spread across diverse ocean regions [5].

These floating instruments are specifically designed to record surface current information, and

their data have been the focus of extensive research and numerous analyses [6, 7].

While GPS is commonly used for positioning, modern drifters are often equipped with ad-

ditional sensors that can measure salinity, temperature, pressure, and other relevant parameters,

providing improved insight into sea conditions. Such drifters rely primarily on satellite com-

munication for data transmission, where the most widely used communications are Argos and

Iridium. A comparison of their performance, including the advantages of the newer Argos-3

system relative to Iridium, is presented in [90]. In contrast, when velocity measurements are
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collected over smaller spatial domains, data transfer can also be achieved using terrestrial com-

munication technologies such as General Packet Radio Service (GPRS) or Very High Frequency

(VHF) systems.

However, thanks to their ability to move freely with the currents, their trajectories are nat-

urally uncontrolled, which can cause them to drift far beyond the intended monitoring areas.

This characteristic presents both an advantage and a limitation: while it allows for the cap-

ture of natural Lagrangian paths, it also means that coverage can become spatially uneven and

unpredictable.

As illustrated in Figure 3.1, drifters come in various designs, reflecting differences in instru-

mentation, energy sources, and communication technologies. These variations allow them to be

adapted for specific environments or research objectives.

Figure 3.1: Examples of surface drifters used in oceanographic studies.
Different models are optimized for various applications and primarily dif-

fer in their communication and data transmission capabilities [91–94].

One of the key factors to consider is the number of available measurements. A larger drifter

deployment can improve spatial coverage and data resolution, but practical constraints such as

cost, deployment logistics, and maintenance limit the number of devices that can be used at

one time [81, 82]. Furthermore, the precision of onboard sensors and the accuracy of position

measurements also influence the quality of the data collected.

A significant advancement in obtaining reliable Lagrangian velocity time series was achieved

by attaching a sea anchor, or drogue, to drifters. A variety of drogue shapes and designs exist,
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each optimized for specific measurement objectives. Some of the designs can be seen in Figure

3.2.

Figure 3.2: Different types of drogues, constructed from various materials
and designed for different deployment conditions [95].

These drogues stabilize the instrument by minimizing the influence of wind and waves, al-

lowing the drifter to follow the water movement more accurately. The choice of drogue depends

on the measurement objectives, drifter design, and environmental conditions. Larger or high-

drag drogues are used to minimize wind influence and accurately track water motion, especially

in rough seas or deeper layers, while smaller drogues are mostly used for near-surface currents

in calm conditions [95]. Material and durability also influence the selection to ensure stability

and reliable measurements over time.

Despite their value, it is important to recognize that drifter data represent discrete, point-

based measurements. As a result, while they offer critical insight into localized flow dynamics,

they cannot provide a complete, continuous map of circulation patterns over an entire area on

their own. Combining drifter data with other observational methods, such as HF radars and

satellite measurements, is often necessary to build a more comprehensive understanding of sea

surface velocities [53, 78, 85].

3.2 High-Frequency (HF) radar systems

In situations where long-term monitoring of surface currents within a fixed coastal area is

needed, HF radar systems offer clear advantages over drifting sensors. Unlike drifters, which
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move with the flow and can quickly leave the area of interest, HF radar provides continuous

measurements over a defined, stationary region. This makes it an ideal solution for observing

dynamic changes in coastal circulation patterns over time without the risk of losing coverage

due to sensor drift.

In general, HF radar operates by emitting electromagnetic waves that interact with the ocean

surface and reflect back information about current velocities. This happens through the analysis

of Doppler shifts in radio waves backscattered by surface gravity waves, a phenomenon known

as Bragg scattering [96]. These systems provide near-real-time data with broad spatial coverage,

often measuring currents over the upper meter of the ocean, making them especially useful for

operational oceanography and model validation [13]. For instance, assimilation of HF radar

data into numerical models has been shown to improve the accuracy of current predictions,

especially in regions with complex circulation where other measurement methods may struggle

[14]. An example of an HF radar system is visible in Figure 3.3.

Figure 3.3: Great Lakes Observing System HF radar providing live snap-
shots of lake surface currents, 24 hours a day [97].
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HF radar systems can cover large coastal regions, as their wide coverage is enabled by

the propagation of radio waves beyond the visible horizon through the “ground wave” effect

over conductive seawater [98]. One limitation is that a single HF radar site only measures the

component of flow directly toward or away from that site (radial velocity). To obtain a full

vector of surface currents, data from at least two sites with a suitable angle (typically between

30◦ and 150◦) must be combined [17]. This is needed to overcome the so-called “baseline

problem” and accurately estimate flow direction and speed. Additionally, the effective range

can be reduced by radio interference, high sea states, or poor ground conductivity near receiving

antennas (i.e., dry rocky terrain that weakens the signal) [17]. It is also important to note that

HF radar measurements represent an integrated flow over a shallow depth rather than a single

point measurement, requiring careful interpretation [96].

Installing and operating HF radar systems comes with logistical challenges. They require

coastal installation sites with suitable terrain, infrastructure, and an unobstructed view of the

ocean surface. Because these systems are fixed installations, they lack portability, which may

leave some coastal regions unmonitored due to geographic or logistical constraints. They pro-

vide high-resolution two-dimensional surface current maps, with spatial resolution from several

hundred meters to a few kilometers and temporal resolution from tens of minutes to about one

hour. However, they cannot capture vertical flow structures and are sensitive to electromagnetic

interference, weather conditions, and noise from nearby infrastructure.

Despite these limitations, HF radar remains one of the most efficient and reliable tools for

maintaining consistent, long-duration surface current observations over specific coastal zones.

Its ability to monitor large areas continuously without deploying sensors directly into the water

makes it a valuable complement to drifters and other mobile platforms.

3.3 Satellite-based surface velocity measurements

When it comes to observing sea surface velocities over vast or remote areas, satellite-based

measurements offer a powerful and unmatched advantage, which is global reach. Satellites can

cover regions that are difficult or impossible to access with ships, radars, or drifters, and they do

so on a regular basis. This makes satellite data especially appealing for large-scale monitoring

efforts, where having at least some level of observation across wide spatial domains is more

valuable than high-resolution, localized measurements [99, 100].
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One of the greatest strengths of satellite systems is that they do not require any deployment

or maintenance on the ocean surface. With a single satellite pass, it becomes possible to gather

data from areas thousands of kilometers away, including open oceans and politically sensitive or

environmentally protected zones. This passive, wide-area access opens the door to comprehen-

sive mapping of oceanic features like eddies, large-scale currents, or even seasonal circulation

patterns [101, 102].

However, this convenience comes with significant trade-offs. A key limitation lies in spatial

resolution. While some satellites can provide measurements at a scale of about 1 km, many

standard products offer coarser resolutions as reported in [102]. This may be sufficient for

detecting broad circulation trends, but if the goal is to understand finer details, such as currents

near the coastline or around small islands where dynamics occur at scales of tens of meters, then

satellite data quickly becomes inadequate [100]. Therefore, when a satellite provides only one

data point per square kilometer, it is unable to capture sub-kilometer-scale features that may be

crucial for navigation, search and rescue, or pollution tracking [103].

Temporal resolution presents another constraint. In many cases, surface velocity estimates

derived from satellite imagery or altimetry are only available every few days or even weekly,

depending on satellite orbits. Additionally, this approach is also limited by the inability to

acquire data during cloudy conditions, which can create significant gaps in monitoring fast-

evolving events such as short-lived eddies or storm-driven currents [101, 104].

Accessing high-resolution satellite data can also come at a cost. While many datasets are

freely available, finer spatial and temporal products often generated by commercial satellites

may require paid access or subscriptions [105]. Even after obtaining the data, the process of

transforming raw satellite observations into usable velocity fields is not straightforward. It

involves complex data processing, including atmospheric correction, image interpretation, and

often the integration of multiple data sources like sea surface height, ocean color, and sea surface

temperature [99, 106]. Without proper algorithms, experience, or computing resources, turning

satellite data into meaningful current estimates can be slow and error-prone. Additionally, data

usage permissions and latency can be a limiting factor in operational scenarios. Some datasets

may be restricted due to national security or commercial licensing, and delays in data delivery

can reduce their value for real-time applications [102].
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3.4 Measurement uncertainty

When comparing how accurately different methods measure surface currents, it’s important to

look at their uncertainties and how often they collect data, as shown in Table 3.1. Drifters can

provide very accurate point-based measurements, with low uncertainty and frequent sampling,

making them ideal for tracking water movement at specific locations. However, their spatial

coverage is limited since they only provide point measurements, and because they move freely

with the currents, they can drift away from the area of interest. In contrast, HF radars cover

extensive coastal regions with good spatial and temporal resolution, though their accuracy can

fluctuate, with root-mean-square-error (RMSE) sometimes reaching up to 16 cm/s. Satellite

altimetry typically delivers lower uncertainty over open-ocean areas, but its coarser spatial and

temporal resolution makes it less suitable for capturing short-term or small-scale changes.

Table 3.1: Measurement characteristics of surface current data collection
methods, including resolution and uncertainty ranges.

Instrument Spatial Resolution Temporal Resolution Uncertainty / RMSE Reference
Drifters Point measurement 5 min RMSE up to 1.9 cm/s [107, 108]
HF radar 200 m - 12 km grid 10-60 min RMSE up to 16 cm/s [109, 110]
Satellite altimetry 25-100 km 7-10 days RMSE up to 12 cm/s [22, 111]

Overall, each method has trade-offs: drifters excel in precision at specific points, HF radar

balances coverage and frequency nearshore, and satellite altimetry provides broader, less fre-

quent snapshots of surface currents.

3.5 Effective number of measurements

Reconstruction accuracy of the surface flow field depends not only on the amount of available

measurements but also on how they are distributed within the domain. Although increasing the

number of measurements generally improves the stability and accuracy of the reconstruction by

providing more data, this improvement is not always guaranteed. When velocity measurements

are placed too closely together, they tend to capture redundant information about the flow field.

In such cases, the contribution of each additional measurement becomes negligible. To better

assess the scope of measurement placement, the authors of [112] proposed the concept of the ef-

fective number of measurement points, denoted as η . This represents the number of points that

provide unique and valuable information for the reconstruction of surface flows. Importantly,

η is based on the criterion of uniform distribution of measurements across the observed area.
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Such an approach is particularly relevant for drifters, as other measurement systems typically

sample on a predefined uniform grid.

The influence area of a single measurement point mi is estimated using a 2D Gaussian

function:

Φi(x) =
1

2πσ2 exp

(
−(x−mi)

T · (x−mi)

2σ2

)
, (3.1)

where σ is the standard deviation, while 1
2πσ2 presents the scaling factor which ensures that the

total volume under the Gaussian curve equals 1, regardless of the value of σ .

The objective is to cover the domain with nMP measurement points such that, ideally, each

point covers a circular area with a radius of three standard deviations, capturing approximately

99.7% of the volume under Φ. Assuming all measurement points have equal influence (i.e., σ

is the same for all i), in the ideal case, the total influence of all measurement points is equal to

the area of the domain Ω:

9σ
2 ·π ·nMP = |Ω|. (3.2)

From (3.2), the value of σ can be directly calculated. Once the measurement point locations

and the corresponding standard deviation σ are known, the Gaussian influence function can be

evaluated around each measurement point within the domain. If some measurements are placed

close to one another, their influence regions will overlap.

To quantify the effective influence of the measurement locations, the maximum value of

the combined influence functions at each point in the domain is used. The effective number of

measurement points, denoted by η , is then defined as:

η =
∫

Ω

max(Φ1(x),Φ2(x), ...,ΦnMP(x))dx. (3.3)

The resulting η is expected to be a positive real number, bounded by the total number of

measurement points (1 ≤ η ≤ nMP). For an ideal configuration where all measurement points

contribute unique information, η approaches nMP. A visual illustration of the concept of effec-

tive number of measurement points is provided in Figure 3.4.
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Figure 3.4: Illustration of the effective number of measurement points η .

As illustrated in Figure 3.4, the measurement points on the figure’s left side are well spaced,

with each covering a distinct portion of the domain. However, due to the rectangular shape,

some corners remain uncovered, so the effective number η is slightly less than the total number

of measurement points nMP. In the middle part, the points are clustered too closely, causing

their reach areas to overlap and resulting in redundant information. Consequently, η is much

lower than nMP. On the right side, as an illustrative example, two measurement points overlap

and provide identical information. In this case, the effective number reduces to η = 1, even

though nMP = 2.

To illustrate the impact of measurement point placement in a realistic coastal domain, Figure

3.5 shows two configurations of 15 measurement points within a domain featuring a complex

coastline and an inlet-outlet boundary. Although the total number of points is the same, the

effective number of measurements η differs depending on their spatial distribution.
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Figure 3.5: Example of measurement point configurations in a coastal do-
main with different effective number of measurements η .

In the left configuration, the points are well spaced, resulting in η = 12.88, which indi-

cates minimal redundancy. In contrast, the right configuration contains several closely spaced

measurement points, reducing the effective number of measurements to η = 10.21 due to over-

lapping areas. This example highlights how clustering of measurement points can decrease

reach efficiency and overall information yield, motivating the use of the proposed concept, η ,

in the analyses of the following chapters.
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4 DYNAMICS OF SEA SURFACE DRIFT

Operational ocean forecasting is primarily concerned with predicting key hydrodynamic vari-

ables, such as sea level, temperature, salinity, and ocean currents. While these parameters are

fundamental for describing the physical state of the ocean, the broader interest often lies in their

practical implications. One particularly relevant application is the transport of floating objects

or substances, commonly referred to as drift [88]. From maritime safety and pollution control to

search and rescue efforts, understanding how materials move across the sea surface represents

a critical link between ocean dynamics and real-world decision-making.

Sea surface drift is governed by a wide range of environmental processes that interact in

complex, often nonlinear ways. These environmental influences are tightly interconnected and

work across a wide range of spatial and time scales, where changing one can propagate through

the entire system. For example, large-scale climate systems can shift wind and temperature

patterns, which then impact local wave generation and current dynamics. At the same time,

small-scale turbulence, wave breaking, and interactions with shorelines further complicate the

movement of drifting objects, especially near coasts.

This multiscale aspect makes it inherently difficult to model sea surface drift in a cohesive

way. The complexity means that predicting drift accurately requires factoring in many interact-

ing variables at once. However, creating and running detailed models that capture all relevant

processes, from global to local scales, demands a lot of computational time and resources. Even

with the use of modern supercomputers, addressing all aspects of sea surface drift for either op-

erational or research purposes remains a significant challenge.

4.1 Drift of floating objects

Historically, knowledge of surface ocean circulation has often been inferred from the observed

drift of floating objects. The movement of these objects across the ocean surface is driven by

a complex combination of forces. Ocean currents, wind stress, and wave motion all act on the
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object’s surface, while internal forces like gravity and buoyancy influence its center of mass

[88]. Together, these factors determine the object’s overall trajectory.

Mathematically, the drift velocity of an object, denoted as udri f t , can be expressed as the

sum of the ocean current velocity ucurr and the object’s motion relative to the water urel:

udri f t = ucurr +urel. (4.1)

Here, ucurr typically includes contributions from various processes such as baroclinic circu-

lation, tidal and inertial currents, wind-driven Ekman flow, and the wave-induced Stokes drift

[88]. This component is usually assumed to affect all floating objects similarly and is often

derived from numerical ocean models, wind parameterizations, or in situ measurements.

The relative component urel , on the other hand, is highly dependent on the object’s proper-

ties, including its shape, size, buoyancy, and how much of it is exposed above the water. This

term reflects the wind and wave forces acting directly on the object and often varies significantly

between different types of debris or vessels.

As a result, modeling the drift of objects has been a longstanding research challenge. Early

approaches, such as the Leeway method introduced in [75], provided practical frameworks for

estimating drift by incorporating empirical relationships between wind forcing and object mo-

tion. However, these models rely on simplifications and can struggle to account for real-world

complexities such as irregular object shapes, variable sea states, or uncertain object character-

istics.

The drift behavior of both human survivors and man-made objects ranging from life rafts

and shipping containers to various types of marine debris has been extensively studied, particu-

larly in the context of SAR by [75, 76], as well as more recent advances in modeling uncertainty

and wind-wave-object interactions [82, 83, 86, 89]. Despite progress, predicting the precise

path of drifting objects remains difficult in practice due to the stochastic nature of environmen-

tal forcing and the diversity in object geometries.

4.2 Influence of object shape and environmental factors

The types of objects involved in operational contexts such as SAR, ship drift prediction, and

hazardous material (HAZMAT) tracking span a wide range of shapes and sizes, from small

debris such as life jackets or broken containers to large vessels. Regardless of size, an object’s
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drift is often characterized by its leeway motion. A comprehensive review by [75] categorized

63 object types relevant to SAR planning, providing empirical values for leeway speed and

divergence angle. From these values, leeway coefficients are derived to quantify the motion of

drifting objects relative to ambient water as a function of wind speed, typically decomposed into

downwind and crosswind components. These coefficients were later expressed as functional

relationships in [76] and remain widely used in operational SAR tools. More recent studies,

such as [77], expanded these models to incorporate wind drag, wave effects, and uncertainty

estimates, improving the robustness and realism of modern drift forecasts [81].

The influence of object shape is not limited to rigid bodies. Oil spills, for example, represent

a dynamic class of drifting objects with evolving physical characteristics. Depending on their

source, oil spills from vessels or leaks at drilling sites behave quite differently, spreading across

the surface, changing in thickness, and partially mixing into the underlying water [113]. While

smaller spills from routine ship operations are frequent and contribute substantially to global

marine pollution, it is the large-scale events that cause the most severe environmental damage.

In most countries, oil spill response, including drift forecasting, is a coordinated government-

administered service.

In both SAR and HAZMAT contexts, an object’s exposure to wind and shape-dependent

drag determines how much it deviates from the current-driven path. Streamlined or submerged

objects tend to follow ocean currents closely, whereas objects with large above-water profiles

are more influenced by wind. Consequently, object trajectories can diverge significantly over

time, especially under variable environmental conditions.

This complexity is not just a technical issue, as it shows the real difficulty of forecasting

movement in a constantly changing marine environment. Models need to balance physical real-

ism with practical feasibility, which often leads to trade-offs between resolution, accuracy, and

speed. Given these challenges, it is clear that traditional modeling methods alone are not al-

ways sufficient. They often need simplifications that reduce realism, or they require computing

power that is not easily accessible. This creates a growing need for alternative, more efficient

strategies like surrogate modeling, which provides a practical way to overcome the limitations

of traditional methods, allowing for more efficient and thorough analyses.
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5 SURROGATE MODELING OF SEA SURFACE
DYNAMICS

Simulating how the ocean changes over time can be very demanding, due to multiple factors.

Fully resolving all relevant physical phenomena requires very complex mathematical models,

which demand significant computing power and long simulation times. Additionally, many

necessary inputs, such as precise geometry, boundary conditions, wind forcing, and other envi-

ronmental parameters, are often unavailable as either constant or transient data, further compli-

cating accurate modeling. High-fidelity simulations are also not well suited for data assimilation

based on drifter measurements, as they are computationally too expensive for real-time updates.

Moreover, the necessity of super-precise simulations is questionable, since even highly detailed

models may not realistically capture drifter trajectories or small-scale flow variability. These

limitations motivate the development of surrogate models, which provide sufficient approxi-

mations of sea surface dynamics while remaining computationally feasible. Accordingly, this

thesis adopts a surrogate-based approach employing a steady-state, incompressible flow model.

This simplifies the physical setup by excluding dynamic influences like wind, tides, waves, and

temperature fluctuations in the initial stage. Instead of fully resolving these effects, the surro-

gate model focuses on estimating the drift velocity, udri f t , rather than the full current velocity,

ucurr. A secondary fusion model can later be applied to provide greater flexibility in accounting

for additional influences, without explicitly including the full physics of wind, waves, or tides.

The proposed approach combines two simplified two-dimensional surrogate models: one

for the realistic coastal region with inlet/outlet boundaries, and another circular open-domain

model to represent the broader offshore influence. Each domain is computed separately before

being fused (added), creating a hybrid solution capable of capturing submesoscale flow behavior

and passive scalar transport, such as pollution or drifting objects.

By avoiding the need for dense measurement data, complex domain setups, and full transient

simulations, this approach greatly improves computational efficiency. CFD simulations still

provide physically meaningful flow fields, while the fusion of surrogates makes it possible to
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reflect wider hydrodynamic behavior with low computational cost. This makes the model ideal

for scenarios that require fast yet reliable drift velocity predictions, particularly in time-sensitive

applications like emergency response or real-time tracking.

5.1 Steady 2D flow model

A steady-state, incompressible flow model is defined over a two-dimensional domain Ω ⊂ R2.

The flow is governed by the steady incompressible Navier-Stokes equations [114–116]:

ρ(u ·∇)u =−∇p+µ∇
2u+ρf (5.1)

∇ ·u = 0, (5.2)

where u is the velocity vector, p is the dynamic pressure, ρ the fluid density, µ the dynamic

viscosity, and f represents external forces. The assumption of incompressibility implies that the

density ρ is constant.

As the approach focuses on two-dimensional surface flows, vertical dynamics are not re-

solved explicitly. Instead, hydrostatic balance is assumed and pressure at the surface is repre-

sented only by the dynamic component as introduced in [117]. This assumption is typical in

surface-flow modeling but may limit reliability where different layers and pressure variations

impact horizontal transport. To realistically simulate interactions between the modeled region

and the surrounding sea, boundary conditions in the form of tangential velocity components and

pressure values are applied. These are not assigned arbitrarily, rather, they are chosen within

physically realistic ranges to reflect plausible ocean dynamics and tuned to the measurements

as described in the next chapters.

In submesoscale regions of the Adriatic Sea, which serves as the primary area of interest,

surface currents exhibit significant variability due to the interaction between mesoscale struc-

tures and smaller-scale processes. Based on HF radar, numerical studies, and satellite imagery,

surface velocities vary from less than 0.1 m/s to more than 0.5 m/s [118–120], with typical

values within the range of 0.1–0.2 m/s. Faster currents, occasionally surpassing 1.0 m/s, are

observed in high-flow regions such as the Strait of Otranto [121], but this study is primarily

concerned with calmer, semi-enclosed coastal basins.
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The flow model is formulated as pressure-driven, making it suitable for situations where the

domain boundaries are known but it is uncertain which segments function as inlets or outlets.

In this setup, inlet and outlet conditions are not prescribed in advance but are implicitly deter-

mined during the solution. Specifically, zero-gradient conditions are applied at outlet bound-

aries, while inlet velocities are inferred from fluxes in the patch-normal direction. This requires

specifying the tangential velocity ut and total pressure p0 along the boundary. The dynamic

pressure is then calculated depending on whether the boundary behaves as an inlet or outlet:

p =

p0 for outlet,

p0 +0.5ρ|u|2 for inlet.
(5.3)

Assigned tangential velocity and total pressure are interpolated smoothly along the open-sea

boundaries while enforcing zero values at boundary endpoints. This boundary condition setup

allows for flexibility in the placement and strength of inlet and outlet regions, while maintain-

ing a robust and consistent solution. These profiles are iteratively adjusted until the resulting

flow field closely matches the point velocity measurements. The parametrization of boundary

conditions is described in detail in the following chapters.

5.2 Fusion model

The fusion framework combines two steady-state incompressible flows, each defined over a

specific domain with its own boundary conditions. The bounded domain is tailored to a realistic

area of interest and includes features such as coastlines and inlets/outlets. This is enclosed by

an open, fully circular region that encompasses the bounded domain and accounts for broader

environmental influences. Flow fields for each domain are computed separately and then com-

bined, enabling the flexibility of simplified two-dimensional surrogate to better capture real-

world variability. This concept is illustrated in Figure 5.1, where a synthetic scenario called

Simple bay case is used to demonstrate the workflow applied to a representative domain.

To account for external conditions, the open domain employs four control points (contribut-

ing eight variables to the optimization vector) that influence the background flow. The velocity

field fusion is achieved by extracting the velocity values at each node within the bounded do-

main, retrieving corresponding values from the open domain, and summing them point-wise:
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u f used = ubounded +uopen, (5.4)

where ubounded and uopen denote the velocity fields from the bounded and open domains, re-

spectively.

Figure 5.1: Illustration of the fusion model methodology. The bounded do-
main, shown on the left, incorporates coastlines and represents the primary
area of interest. The open domain, depicted in the middle, encloses the
bounded domain and reflects broader environmental conditions. The fused
velocity field, obtained by superimposing the two simulations, is displayed
on the right. In the overlapping region, velocity values from both domains

are interpolated and summed at each grid point.

By fusing these velocity fields, the model delivers a more comprehensive and respon-

sive representation of surface flow dynamics. In practical marine scenarios, unusual flow

patterns, such as currents seemingly originating from land, have been documented in high-

frequency radar studies [16, 122, 123]. Such patterns cannot be accurately captured using

conventional two-dimensional CFD methods, which are not capable of representing complex

three-dimensional coastal effects. Since the methodology focuses on reconstructing surface

flow from observational data, the fusion model is deliberately designed to capture both typical

and atypical patterns observed in measurements. This adaptability enables real-time updates of

the flow field, significantly improving the fidelity of passive scalar reconstruction. By incor-

porating dynamic environmental influences, the model offers a more accurate representation of

real-world coastal and marine conditions.
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5.3 Transient flow estimation

Fully transient flow simulations are computationally demanding, often requiring very small time

steps and fine spatial resolution to capture rapid variations accurately. This makes them chal-

lenging to apply in real-time scenarios, particularly when high-resolution meshes or large do-

mains are involved. Such limitations are well documented in studies employing the open-source

toolkit OpenFOAM [124]. To overcome this challenge, the transient flow is approximated us-

ing a quasi-steady approach, in which a sequence of steady flow reconstructions represents the

temporal evolution of the flow.

The quasi-steady approximation relies on the observation that many oceanic flows evolve

gradually rather than abruptly, allowing them to be considered approximately steady over short

time intervals. The flow field is updated at regular intervals, denoted Ts, at which measurements

are obtained. The choice of Ts is based on the expected timescale of flow variations and the

frequency of available measurements, ensuring that each interval is short enough to resolve sig-

nificant changes but long enough to maintain computational efficiency. The impact of different

Ts values on flow reconstruction accuracy and efficiency is analyzed in the results section.

The strategy for reconstructing passive scalar advection and diffusion assumes that the flow

remains approximately steady within short time intervals. The scalar is transported and spread

according to the flow field reconstructed at the time of the measurements. Since the scalar

field evolution is highly sensitive to the flow field, small inaccuracies can accumulate over

time, but with frequent measurement updates these deviations are progressively corrected. As

long as measurement updates are frequent enough, this allows us to simulate the evolving flow

effectively by piecing together a series of steady states.

This framework offers a range of advantages. By combining a series of quasi-steady states,

it effectively captures the evolution of transient flows while avoiding the substantial compu-

tational cost associated with fully time-dependent simulations. It naturally represents gradual

changes in the flow, providing a realistic approximation of the evolving dynamics. The method

allows the flow field to be updated continuously as new measurements become available, en-

suring that deviations from the true state are progressively corrected. Moreover, it enables a

clear assessment of how measurement frequency and spatial coverage influence the accuracy of

the reconstruction. This combination of efficiency, adaptability, and informative output makes

the framework well-suited for operational oceanography, environmental monitoring, pollutant

tracking, and other scenarios where timely and reliable flow estimates are essential.
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5.4 Numerical implementation

The governing equations of fluid motion are complex, non-linear partial differential equations.

In many scientific and engineering problems, finding exact solutions is difficult or impossi-

ble. Computational fluid dynamics (CFD) addresses this by discretizing these equations into

algebraic forms that can be solved numerically.

5.4.1 Governing Equations of Fluid Flow

Fluid motion follows the basic conservation laws of mass, momentum, and energy. These laws

are expressed mathematically as partial differential equations. They form the basis of fluid

dynamics and explain how fluids act and change over time [125, 126]. A key assumption in this

field is the continuum hypothesis. This idea suggests that fluids can be viewed as continuous

media, ignoring their separate molecular nature [126, 127]. This perspective allows us to treat

physical properties like velocity (u), pressure (p), density (ρ), temperature (T ), and viscosity

(µ) as smoothly changing field variables at every point within the computational area [128].

This hypothesis holds true for most engineering applications dealt with in CFD.

The thesis adopts the Eulerian perspective for modelling the flow, focusing on fixed spatial

locations to observe changes in fluid properties as the fluid passes through them, rather than

tracking individual fluid particles as in the Lagrangian approach. A key concept in this for-

mulation is the control volume (CV). This is a specific area in space where conservation laws

apply [126]. The general conservation principle for a quantity φ within a control volume V

surrounded by surface S is shown by the integral equation:

∂

∂ t

∫
V

ρφ dV +
∫

S
ρφ(u ·n)dS =

∫
S

Γφ (∇φ ·n)dS+
∫

V
Sφ dV, (2.1)

where t denotes time, n is the surface normal vector, Γφ is the diffusion coefficient, and Sφ

represents a source or sink term.

5.4.1.1 Conservation of Mass

The principle of mass conservation dictates that the mass within a CV can only change due to

the net flow of mass across its boundaries. For a fixed control volume, the integral form of

the mass conservation equation is derived from the general conservation equation by setting the
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property φ = 1, with a diffusion coefficient Γφ = 0 and no source terms Sφ = 0. This results in:

∂

∂ t

∫
V

ρ dV +
∫

S
ρ(u ·n)dS = 0. (5.5)

The term ρ(u ·n) represents the mass flux through the control volume boundary. Applying

the divergence theorem to the surface integral yields the differential form of the mass conserva-

tion equation:
∂ρ

∂ t
+∇ · (ρu) = 0. (5.6)

This equation is applicable to both compressible and incompressible flows. For incompress-

ible flow, where the material derivative of density (ρ) is zero, the continuity equation simplifies

to:

∇ ·u = 0. (5.7)

5.4.1.2 Conservation of Momentum

The law of momentum conservation is essentially an application of Newton’s second law to

fluids [125, 126]. It states that the rate at which a fluid particle’s momentum changes is equal

to the net force acting upon it. These forces can be categorized into surface forces, such as

pressure and viscous forces, and body forces, like gravity [125, 126]. By setting φ = u in the

general control volume equation, the integral form of the momentum conservation equation is

derived:

d
dt

∫
V

ρudV +
∫

S
ρu(u ·n)dS =

∫
S

σ ·ndS+
∫

V
ρgdV +

∫
V

fdV, (5.8)

where σ is the stress tensor, g represents gravitational acceleration, and f denotes other body

forces acting per unit volume.

The left side of the equation describes the rate of change of momentum within a control

volume, including both local time variations and momentum transported by the flow itself. On

the right side, the terms represent the forces acting on the fluid: surface forces expressed through

the stress tensor acting on the control volume boundaries, and body forces such as gravity and

other external influences distributed throughout the fluid. The differential form, obtained by

applying the divergence theorem, results in:
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∂ (ρu)
∂ t

+∇ · (ρu⊗u) =−∇p+∇ · τ +ρg+ f. (5.9)

Here, ρu is the momentum density, ρu⊗u represents the convective momentum flux, p is

the static pressure, τ is the viscous stress tensor, ρg denotes gravitational body forces, and f

represents other body forces per unit volume [129, 130].

For an incompressible Newtonian fluid with constant dynamic viscosity µ , the viscous stress

tensor simplifies to:

τ = µ
(
∇u+(∇u)T) , (5.10)

where u is the velocity vector and (·)T denotes the transpose.

Using this, the Navier-Stokes equation can be written in simplified form as:

ρ
∂u
∂ t

+ρ(u ·∇)u =−∇p+µ∇
2u, (5.11)

where ρ is the fluid density, p the pressure, and µ the dynamic viscosity. The gravitational term

ρg and other body forces f are omitted here, as they are not applied in the present study.

The difficulty in solving the Navier-Stokes equations largely stems from the nonlinear con-

vective term, u ·∇u, which causes interaction between velocity components and leads to com-

plex flow features such as turbulence and vortices [127].

5.4.1.3 Conservation of Energy

The fluid energy conservation equation, derived from the first law of thermodynamics, ac-

counts for convection, heat conduction, work performed by surface forces (pressure and viscous

stresses), and heat addition from body forces or internal sources [131]. By substituting φ = E

(total energy per unit mass) into the general control volume equation and including appropriate

source terms, the differential form of the energy equation is obtained:

d
dt

∫
V

ρE dV +
∫

S
ρE(u ·n)dS =−

∫
S

p(u ·n)dS+
∫

S
(τ ·u) ·ndS

−
∫

S
q ·ndS+

∫
V

ρ(g ·u)dV +
∫

V
Q̇dV.

(5.12)
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In this equation, E = e+ 1
2 |u|

2, where e is the internal energy, q is the heat flux vector, and Q̇

represents internal heat sinks or sources. By applying the divergence theorem to convert surface

integrals into volume integrals, the differential form of the energy equation becomes:

∂ (ρE)
∂ t

+∇ · (ρEu) =−∇ · (pu)+∇ · (τ ·u)−∇ ·q+ρ(g ·u)+ Q̇. (5.13)

5.4.2 Principles of the Finite Volume Method

Numerical discretization approximates continuous derivatives and integrals in the governing

equations at a limited number of points or over finite volumes within the computational domain

[126, 127]. In the Finite Volume Method (FVM), the computational domain is divided into a fi-

nite number of non-overlapping control volumes or cells. The integral forms of the conservation

laws are applied directly to these cells [126].

A key feature of FVM is local conservation. The flux leaving one control volume through a

shared face is exactly equal in amount and opposite in direction to the flux entering the adjacent

volume. This ensures global conservation of quantities such as mass, momentum, and energy,

regardless of mesh resolution [132, 133]. The general semi-discrete form of the FVM for a

scalar quantity s in cell i can be expressed as:

∆Vi
dsi

dt
= ∑

f
Ff +Ri, (5.14)

where ∆Vi is the volume of cell i, Ff represents the flux through face f of the cell (which may

depend nonlinearly on the state of neighboring cells), and Ri accounts for source terms within

the cell. This formulation shows that the time rate of change of s in a cell is governed by the

net flux through its faces and any internal or external sources. Upon discretization in both space

and time, these equations are transformed. For a scalar s, the resulting fully discrete form is:

ds(t+1)
P
dt

= aPs(t)P +∑
N

aNs(t)N +R, (5.15)

where st+1
P is the value at the center of cell P at the new time step, st

N are the neighboring

cell values, aP and aN are coefficients derived from flux and source term discretization, and R

accounts for contributions from sources and boundary conditions.

This conservation property remains valid regardless of mesh resolution, making the FVM

robust and reliable even on coarse grids.
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5.4.3 Turbulence

Turbulence is a chaotic regime of fluid motion characterized by irregular velocity and pressure

fluctuations, in contrast to the smooth and orderly behavior of laminar flow [126]. The shift

from laminar to turbulent conditions typically occurs near a critical Reynolds number, where

turbulence may intermittently appear within an otherwise laminar flow. This transition is highly

sensitive to factors such as surface roughness, background turbulence, pressure gradients, and

geometric features that promote instabilities. Once established, turbulence is inherently un-

steady, three-dimensional, and rotational, spanning a broad range of time and length scales that

make its exact prediction virtually impossible. Since resolving all turbulent motions with Direct

Numerical Simulation (DNS) is computationally impractical for most applications, turbulence

is generally modeled. Common strategies include Reynolds-averaged Navier-Stokes (RANS),

which captures the averaged effects efficiently, and Large Eddy Simulation (LES), which re-

solves larger structures while modeling the smaller scales [126, 127].

In this thesis, turbulence is modeled using the k-ω Shear Stress Transport (SST) model

[134], which integrates the benefits of the k-ω and k-ε models to improve the accuracy and

stability of complex turbulent flow simulations. Using this approach, the computational domain

is separated into near-wall regions and outer regions. Near the walls, a dedicated wall function

is applied to effectively resolve turbulence behavior close to solid boundaries. In the free-stream

outer region, the model operates as a k-ε model, providing stable and reliable results away from

the wall [135]. In this thesis, the turbulence variables are initialized using:

k =
3
2
(|u| I)2, (5.16)

ω =
k0.5

C0.25
µ L

. (5.17)

Here, k denotes the turbulence kinetic energy, I the turbulence intensity, ω the specific

dissipation rate, Cµ a model constant (set to 0.09), and L the turbulent length scale.
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5.4.4 Numerical simulations in OpenFOAM

In this thesis, OpenFOAM was employed to numerically solve the governing equations using

the Finite Volume Method (FVM). OpenFOAM is a C++ toolbox for computational contin-

uum mechanics, providing core libraries for meshing, discretization, and turbulence model-

ing, along with application-specific solvers and utilities [136–138]. Several significant forks of

OpenFOAM exist, including those from the OpenFOAM Foundation, ESI-OpenCFD, and the

community-driven foam-extend project, which may differ in syntax and solver behavior [136,

139]. For the purposes of this thesis, OpenFOAMv2306 from ESI-OpenCFD was used.

OpenFOAM is built in a modular, object-oriented way, where core libraries handle tasks

such as mesh operations, numerical calculations, linear solvers, and turbulence modeling. On

top of these libraries, the software provides applications that make simulations easier to set up

and run, divided into solvers and utilities:

• Solvers: Programs that solve specific types of flow problems, like:

– simpleFoam for steady turbulent flows

– pisoFoam for transient flows

– interFoam for multiphase flows

• Utilities: Tools for preprocessing, postprocessing, and general case management, such as

blockMesh (mesh generation), mapFields (field mapping between cases), setFields

(initializing fields), and foamToVTK (exporting data for visualization)

A typical OpenFOAM project is organized into three main folders:

• constant: Contains data that usually remains unchanged, including:

– Mesh in polyMesh

– Dictionaries for material properties, e.g., physicalProperties, momentumTransport,

thermophysicalProperties

– Files for dynamic mesh operations, e.g., dynamicMeshDict

• system: Holds configuration files controlling the simulation, such as:

– controlDict for overall execution

40



– fvSchemes for numerical discretization

– fvSolution for solver settings, linear solvers, and relaxation factors

– Additional optional dictionaries for parallel computing or specialized settings

• time directories: Store field data at different simulation times. The initial folder (usually

0) defines starting and boundary conditions for all variables.

The typical workflow in OpenFOAM starts with creating the computational mesh, which

can be generated using built-in tools like blockMesh, snappyHexMesh, cfMesh(in some Open-

FOAM distributions), or imported from other sources. After the mesh is prepared, the physical

properties of the fluid and case-specific parameters are defined within the constant folder. The

initial state of the simulation, including boundary conditions and field values, is set in the 0 di-

rectory. Next, numerical schemes, solver options, and other runtime settings are specified in the

system directory. Once the configuration is complete, the chosen solver is launched to perform

the simulation.

In the context of scalar transport phenomena, OpenFOAM includes dedicated solvers such

as scalarTransportFoam, which model the passive advection and diffusion of scalar quanti-

ties without influencing the underlying velocity field [136].

5.4.5 Boundary conditions

At the coastline, a no-slip condition (Dirichlet) is imposed on the velocity, ensuring that fluid

motion vanishes at solid walls. For boundary faces where the fluid exits the domain, a Neumann

condition is applied, allowing velocity to be extrapolated from the interior solution. On the

open-sea boundary, where fluid enters the domain, a Dirichlet condition is used where velocity

is determined from the prescribed flux in the direction normal to the boundary. Additionally,

tangential velocity components are set to accommodate flow directions that are not perfectly

perpendicular to the boundary, enabling a more realistic representation of rotational or oblique

inflow.

At the open boundary, pressure is prescribed via a Dirichlet condition constrained to phys-

ically realistic values, while a Neumann condition is enforced along the coastline. To ensure

numerical stability and resolve pressure gradients consistently, one internal reference cell is

chosen and set to a fixed pressure of zero. The pressure field is then computed relative to this

reference.
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Initial estimates of turbulent kinetic energy and specific dissipation rate are obtained from

(5.16) and (5.17), with appropriate wall functions applied at boundaries where required. Ta-

ble 5.1 summarizes the boundary conditions applied for all test cases.

Table 5.1: An overview of the OpenFOAM boundary condition type em-
ployed in flow simulations for surrogate model.

Field Inlet/Outlet Coastline
u pressureInletOutletVelocity noSlip
p totalPressure zeroGradient
k fixedValue kqRWallFunction
ω fixedValue omegaWallFunction

To simulate quasi-steady flow conditions in this study, the simpleFoam solver from the

OpenFOAM suite was employed, as it is designed for steady-state incompressible flow. Al-

though the solver is inherently steady, a sequence of short, steady simulations was carried out

to approximate transient-like behavior. The pressure–velocity coupling was handled using the

SIMPLEC (SIMPLE-consistent) algorithm, a variation of the classic SIMPLE method origi-

nally proposed by [140]. This algorithm was controlled by setting a fixed number of iterations

along with convergence criteria based on the residuals of velocity, pressure, and turbulence

variables.

In terms of discretization, second-order accurate gradient and Laplacian schemes were ap-

plied to maintain solution accuracy, whereas first-order upwind schemes were used in regions

with sharp gradients to ensure numerical stability, particularly for divergence terms related to

convective transport. The meshWave method was used to compute wall distances required for

turbulence modeling.

All simulations across test cases were configured using consistent boundary conditions and

solver settings. For this pressure-driven flow, the initial conditions for velocity specified tan-

gential velocity components using the pressureInletOutletVelocity boundary condition,

along with total pressure, turbulent kinetic energy, and specific dissipation rate, while the in-

ternal field values were set to zero. The boundary conditions were specified in a non-uniform

manner, with each boundary cell assigned a pair of values (ut ,p) representing the tangential

velocity and total pressure, respectively. This treatment allows tangential velocity components

to be prescribed, accounting for possible misalignment of the inflow with the inlet boundaries

and providing more realistic conditions that capture swirl and tangential fluid motion.
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Further implementation details, including grid structure, cell distribution, discretization

schemes, and complete numerical setups for both bounded and open-domain cases, can be found

in the repository on the Open Science Framework: https://osf.io/wjsb2/.
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6 MODEL FITTING FRAMEWORK

The proposed methodology addresses a model fitting problem in which the objective is to match

measured and simulated flow measurements. On one side, measurements provide velocity vec-

tors at specific locations in the domain, while on the other, the numerical model simulates a

flow field whose behavior can be adjusted by modifying the boundary conditions. The goal is

to identify boundary values that yield a simulated flow matching the measurements as closely

as possible at the measurement locations. This fitting problem is solved using an optimization

algorithm, which iteratively updates the boundary values in order to minimize the error between

the simulated and the referent flow.

To set boundary cell values, a user-defined number of control points is uniformly distributed

along the boundary, with each point specifying a pair of (ut ,p). Cubic spline interpolation

is then applied to generate smooth velocity and pressure profiles across all boundary cells,

ensuring continuity while allowing the boundary conditions to be controlled with a reduced

number of variables. Because of this, the quality and fidelity of the flow reconstruction rely

heavily on the optimization vector b, which contains the tangential velocity and pressure values

at the boundary control points:

b = (ut,1, p1, . . . ,ut,nCP, pnCP)
T , (6.1)

where nCP stands for the number of boundary control points. An illustration of the velocity

profile resulting from the components of the optimization vector can be seen in Figure 6.1.

To realistically represent surface flows and account for natural fluctuations in surface cur-

rents, especially at submesoscale levels, the bounds of the optimization variables were set be-

tween –0.5 and 0.5 m/s for tangential velocity, and between –0.05 and 0.05 m2/s2 for pressure

at the boundary points (in OpenFOAM for incompressible flow, pressure is expressed as p/ρ).

These ranges were chosen to maintain computational stability, with initial candidates randomly

placed within these limits. It should be noted that the final total pressure and tangential veloc-

ity values at the boundaries may slightly differ from the initially assigned ones, as they adjust
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Figure 6.1: Figure depicts the parametrization of boundary conditions by
placing control points along the boundary, each specifying a pair (ut , p),
with cubic spline interpolation used to generate the tangential velocity and

pressure profiles.

through through the solution of the Navier-Stokes equations in the domain.

6.1 Objectives

During each evaluation, a full OpenFOAM simulation is run to compute the velocity field across

the entire domain. Velocity vectors are then extracted at measurement points corresponding to

drifter positions and treated as referent data that the simulation aims to match. To measure

how well the simulation matches these references, the cost function calculates the drifter error,

Ed , defined as the root mean square of the velocity differences at these points (in meters per

second). The optimization objective is to minimize Ed , ensuring the simulated velocities match

the referent measurements as closely as possible:

minimize
b

Ed(b) =

√
1

nMP

nMP

∑
i=1

(ur,i−us,i(b))2

subject to bl≤ b≤ bu.

(6.2)

Here, nMP is the number of measurement points, ur,i is the referent velocity, and us,i is the

simulated velocity at measurement point location. This approach is presented on Figure 6.2).

To evaluate the quality of the reconstructed flow field, a global error measure, denoted as E f ,

is additionally defined. This metric quantifies the overall discrepancy in the velocity field, anal-

ogous to (6.2). The velocity vectors at selected field points are considered solely for assessing
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Figure 6.2: This figure illustrates the objective of adjusting the optimiza-
tion variables at control points (green dots) until the red arrow (represent-
ing the current simulated velocity vector) aligns with the grey arrow (rep-
resenting the referent velocity vector) for every measurement point (yellow

cross).

the reconstruction performance and are not included in the optimization process:

E f (b) =

√√√√ 1
nFP

nFP

∑
j=1

(ur, j−us, j(b))2, (6.3)

where nFP is the total number of field points, ur, j denotes the reference velocity vector, and us, j

represents the simulated velocity vector at the field point location.

6.2 Constraints

To ensure the solutions found are feasible within this simulation-driven optimization, it is es-

sential to enforce certain constraints. These constraints relate to simulation residuals and help

steer the optimization toward solutions that are both accurate and numerically stable. Both sim-

ulation and optimization residuals are included in the optimization process and must remain
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below the defined thresholds for the constraints to be considered satisfied; otherwise, penalties

are applied.

The pressure residual constraint

rp(b)≤ 10−3, (6.4)

helps keep pressure values consistent throughout the optimization, avoiding unrealistic pressure

imbalances. Velocity residuals, which guarantee physically plausible fluid behavior, are defined

individually for each velocity component:

rux(b)≤ 10−4 (6.5)

ruy(b)≤ 10−4. (6.6)

The turbulent kinetic energy residual

rk(b)≤ 10−4, (6.7)

maintains the turbulence energy at acceptable levels. Likewise, the specific dissipation rate

residual

rω(b)≤ 10−4, (6.8)

limits the turbulence dissipation rate to maintain physical accuracy.

Taken together, these constraints guide the optimization process, promoting stable, realistic,

and physically meaningful fluid flow representations. All five constraints are checked for both

bounded and open flow simulations, in a single optimization candidate b evaluation.

6.3 Progressive field initialization and search narrowing

The optimization routine works by iteratively adjusting the values in the optimization vector

to minimize the cost function. Initially, all cases begin with internal field values set to zero,

while the boundary conditions vary according to each candidate solution. However, certain
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combinations of boundary values can lead to slow or failed convergence, thereby extending the

duration of the optimization.

Since the flow field is anticipated to vary only slightly between consecutive periods, the full

range of optimization variable bounds is used only for the initial flow reconstruction. For all

subsequent reconstructions, the bounds are narrowed to focus the search within 60% of initial

range around the best solution for the previous quasi-steady time iteration, i.e:

b∗l = bopt−0.3(bu−bl)

b∗u = bopt +0.3(bu−bl),
(6.9)

where, b∗l and b∗u are the updated lower and upper bounds, respectively. This reduction in

search space focuses the optimization toward the most suitable parameter ranges in each period,

enhancing convergence efficiency and reducing the computational cost of the fitting process.

To further accelerate convergence, a field initialization strategy is introduced, in which the

internal field from the currently best-performing simulation is used as the starting point for new

simulations. This approach is motivated by the observation that as optimization progresses,

many candidates begin to resemble the best solution, resulting in similar flow fields. By initial-

izing new simulations with a flow field already close to the expected final result, convergence

can be achieved more rapidly, often in fewer iterations, leading to shorter simulation times.

In practice, this method has been shown to reduce simulation time by up to 20%. While this

improvement may not be noticeable for small domains or simulations that already converge

quickly, it becomes particularly beneficial for larger domains with more complex flow dynam-

ics. In such cases, convergence is more demanding, and the time savings are more substantial.

The effectiveness of this field initialization approach is demonstrated in Figure 6.3, which

shows results from 300 pairs of optimization runs for the Simple bay test case. Each pair in-

cludes one run with field initialization and one without, using identical initial conditions, target

flow fields, and randomly selected measurement points. The same optimization seed is applied

to ensure a fair comparison. The figure clearly shows that field initialization leads to a reduction

in computational time across iterations. While the advantage is minimal in early stages, after

around 100 iterations, the time savings become significant, reaching up to 20%. Similar trends

were observed in other test cases as well. These results show that, although the benefit is small

during the early iterations, it increases over time, reaching up to 20% improvement by the 100th

iteration.
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Figure 6.3: Computational improvements from using field initialization in
simulations. Colored bands represent simulation durations per iteration,
bounded by the average minimum and maximum run times. Dotted lines
show the average minimum, and dashed lines indicate the average maxi-

mum simulation times.

6.4 Modeling drifter advection

In real-world conditions, drifters are carried by the currents across the domain while contin-

uously emitting measurements. To simulate both their motion and the timing of measurement

updates, a quasi-steady advection approach was used. In this approach, the reconstruction of the

flow field is not controlled by a fixed number of optimization iterations. Instead, it runs within a

predefined time limit Ts, corresponding to the expected interval between real-time measurement

updates. This setup allows the system to regularly update the velocity field and trajectory pre-

dictions, assimilate new data as it becomes available, and treat the flow as steady within each

update cycle. At each interval Ts, a drifter’s displacement is computed based on the velocity

field from the previous reconstruction, where the updated position is calculated using:

dx
dt

= u(x, t). (6.10)

Here, x(t) denotes the position of a drifter at time t, and u(x, t) is the velocity at that position

and time. This ensures that simulated drifter positions evolve consistently with the reconstructed

flow field, enabling their trajectories to be tracked over time. Over consecutive intervals, this

produces a realistic and adaptive approximation of transient drifter behavior, supporting fast
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and field-ready decision-making.

The approach of advecting drifter positions also provides an additional assessment of the

accuracy of the reconstructed flow. This is achieved by calculating a positional error between

the referent and simulated drifter locations, defined as

S(t) =
1
N

N

∑
i=1

∥∥∥x(i)re f erent(t)−x(i)simulated(t)
∥∥∥ , (6.11)

which measures the deviation of the simulated drifter positions from their expected locations

and provides an indication of how well the reconstructed velocity field reproduces the actual

drifter motion. However, it should be noted that this was only used in the simulation frame-

work. In real deployments, drifters naturally follow the currents, and no explicit advection of

measurement points is needed.

This process of updating the velocity field in real time allows the system to keep accuracy

in scalar transport modeling and meet the demands of operational time scales. Along with pro-

viding reliable performance, this ability supports the overall aim of the framework, which is de-

signed to work as a useful decision-support tool that gives quick feedback. This responsiveness

is particularly important in field operations where timely information can support operational

choices and enhance the effectiveness of interventions.
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7 ADVECTION DIFFUSION PROCESSES

A significant aspect of this work involves modeling the dispersion of pollutants, tracers, and

hazardous materials that may be released into the marine environment, as well as modeling the

dynamics of probability distribution in maritime SAR operations. These scenarios typically

require methods that can simulate how substances evolve over time and space, often driven by

ocean currents across broad domains. In such cases, the passive scalar transport framework

based on the advection–diffusion equation is widely used due to its simplicity, adaptability, and

effectiveness in rapid-response applications.

7.1 Passive scalar transport

A pollutant concentration, represented as a scalar field, evolves through advection by the surface

velocity field, usually obtained from ocean circulation models. Since these substances are con-

sidered to have little or no influence on the flow itself and typically do not decay or react rapidly,

this approach offers an efficient and reasonably accurate way to estimate how they spread. This

simplification has been successful in various marine studies, including early models that tracked

conservative tracers in large-scale ocean basins [141, 142].

The passive scalar approach plays a key role in many oceanographic and environmental

applications. For instance, it forms the basis of biogeochemical and ecological models that

monitor the distribution of nutrients and other tracers, transported by oceanic velocity fields

and influenced by complex biological interactions [143, 144]. These models often rely on flow

fields from hydrodynamic simulations, and to manage the high computational cost of simulating

numerous tracers over large areas, efficient numerical techniques such as multigrid solvers have

been developed [145]. Regional studies in the Mediterranean, for example, have combined

passive advection with particle tracking to map plastic accumulation zones [146]. Similarly,

high-resolution CFD tools have been employed to study microplastic dispersal in nearshore

regions, where small-scale turbulence significantly impacts particle movement [147].
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Here, the advection–diffusion equation introduced in Section 2.2, is adapted for a scalar

field s advected by the fused velocity field ufused without source or sink terms which results in:

∂ s
∂ t

+u f used ·∇s−D∇
2s = 0. (7.1)

While it does not resolve the exact shape or detailed dynamics of individual floating objects,

it provides sufficiently accurate results for rapid decision-making and emergency response. For

scenarios requiring greater physical detail, the framework can be extended to include effects

such as turbulent diffusion, buoyancy, biofouling, decay, or reactive transport, allowing it to

address a broad range of environmental modeling needs.

7.2 Assessment of passive scalar field advection accuracy

The reliability of passive scalar advection is evaluated by comparing advection-diffusion pro-

cesses within a synthetic benchmark case. A simulated referent flow is used to generate a

baseline passive scalar field, representing the ground truth for advection. The referent flow is

inherently unsteady, and its dynamics are driven by time-varying boundary conditions. Eval-

uation of advection accuracy is only possible when the reference flow is known, as this setup

allows assessment of whether the quasi-steady reconstructed flow provides an adequate approx-

imation. Advection of the passive scalar field is then performed using the reconstructed flow,

which is approximated by solving a series of steady-state flow fields at discrete intervals of Ts.

The resulting scalar field is compared to the baseline to quantify reconstruction accuracy. Both

scalar fields are initialized identically, and advection is simulated using the same numerical

model and mesh to ensure a fair comparison. The only difference between the two simulations

is the underlying velocity field.

To assess passive scalar field advection accuracy, two metrics are introduced. The first is

the intersection metric, which quantifies how much of the referent scalar field overlaps with the

reconstructed one. It is defined as:

I =

∫
Ωintrsc

ssim dΩ∫
Ω

sre f dΩ

, (7.2)
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where Ωintrsc is the intersection region between the referent and simulated scalar fields, and

s denotes the scalar values. An intersection value of 1 indicates perfect overlap, meaning the

reconstructed flow accurately captures the referent advection. Lower values indicate increasing

discrepancies due to reconstruction limitations.

The second metric is the coverage metric, which evaluates how well the simulated scalar

field is encompassed by the referent field. This is particularly important in applications where it

is crucial that the reconstructed scalar covers the region of possible presence of the target, simi-

lar to probability distributions. Even if the reconstruction is not perfectly accurate, ensuring that

the simulated field includes the relevant area provides confidence that the target or phenomenon

is captured. The coverage metric is therefore defined as:

C =

∫
Ωintrsc

ssim dΩ∫
Ω

ssim dΩ

, (7.3)

where a value of 1 indicates that the referent field fully encompasses the simulated scalar dis-

tribution, while a lower value suggests that parts of the reconstructed scalar field deviate from

the expected transport path under the referent flow. In practice, a slight overestimation of the

covered area is acceptable if it ensures that the target remains within the reconstructed field. A

visualization of the intersection region between the referent and simulated scalar fields, from

which these metrics can be obtained, is presented in Figure 7.1.

Figure 7.1: Visualization of the intersection between referent and simu-
lated scalar fields, showing uncovered areas of referent scalar field and

overestimated areas of the simulated scalar field.
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7.3 Adaptive diffusion coefficient

To complement the coverage metric C and account for reconstruction errors in the velocity field,

the diffusion coefficient is adjusted using the concept of mean squared displacement (MSD),

denoted S2. The MSD is based on the drifter location error defined in (6.11) and provides a

measure of the typical displacement caused by inaccuracies in the reconstructed flow. This ad-

justment increases the spread of the advected scalar, improving the possibility that the scalar

field encompasses the target even when the reconstructed velocity field deviates from the refer-

ent flow. For a Brownian particle, the MSD is expressed as:

S2(t) = 2 ·ndim ·D · t, (7.4)

where ndim = 2 is the number of spatial dimensions, D is the diffusion coefficient, and t is time.

Here, the measured drifter positional error S(t) from (6.11) can be used to estimate an effective

diffusion coefficient for the passive scalar field, improving the possibility that the scalar field

covers the relevant regions.

Therefore, an additional compensating diffusion term can be calculated as:

Dc =
S2

4 ·Ts
. (7.5)

Here, S2 represents the average displacement caused by the error over the interval Ts. The

compensating diffusion coefficient Dc accounts for the extra uncertainty introduced by the im-

perfect flow reconstruction. An adaptive diffusion coefficient is then defined for the recon-

structed flow:

Dad p = Dbase +Dc, (7.6)

where Dbase is the diffusion coefficient of the referent flow.

This adaptive diffusion approach ensures that the advected scalar field more reliably covers

regions where the target is likely to be found, even in the presence of unavoidable inaccuracies

arising from both measurements and flow reconstruction. By accounting for these uncertainties,

Dad p enhances the robustness of scalar transport predictions and improves the overall reliability

of the reconstruction for practical applications.
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7.4 Application in dynamic search scenarios

Despite significant advances in marine technology, accidents at sea remain a serious challenge,

keeping SAR operations essential. These efforts are inherently difficult due to the vast search

areas and the constantly changing ocean conditions [53]. Time is one of the most critical factors

in SAR, as survival rates drop rapidly with delays in finding missing persons.

Unmanned aerial vehicles (UAVs) have evolved into a viable solution for SAR [148, 149].

Path planning, multi-agent coordination, probability field generation, and dynamic target track-

ing are among the many topics examined. Work by [150], for instance, provides a technique

for developing intelligent marine reaction plans, shown to be successful in actual contexts. Ad-

ditionally, [151] dives deeply into the topic in his thorough investigation of target detection in

maritime SAR aerial images and camera sensing systems. A dynamic probabilistic search algo-

rithm is introduced in [148] to include Gaussian mixture models and fluctuating ocean current

data. It employs grid-based spatial discretization, which is also found in the method outlined

in [152]. Even if the target probability combines environmental data and sensor readings for

path planning, its dynamic development is limited. Another example is presented in [153],

where USVs were employed to carry out lawnmower-pattern searches, neglecting changes in

the underlying probability domain.

A common objective in maritime SAR operations is to prioritize regions where the probabil-

ity of locating a target is highest. Among the many methods developed for SAR, ergodic search

strategies are particularly useful as they allow for precise exploration of areas based on complex

and dynamically evolving probability fields. These methods ensure that the search trajectory

statistically covers regions in proportion to their likelihood of containing the target. The most

widely adopted ergodic search techniques include Model Predictive Control (MPC), Spectral

Multiscale Coverage (SMC), and Heat Equation Driven Area Coverage (HEDAC). The SMC

technique, originally introduced in [154], employs smoothed Fourier basis functions to generate

trajectories that match the spatial distribution of target probability. Its adaptation for dynamic

environments is discussed in [155], and further extended in [156] for the search of MH370, us-

ing Lagrangian particles to represent dynamic probabilities. MPC-based ergodic control, which

frames trajectory generation as an optimization problem, is investigated in [157] and used for

dynamic exploration and object detection tasks in [158]. Another promising method is HEDAC,

initially proposed in [159]. Its FEM-based version has been shown to work on irregular do-

mains and supports obstacle avoidance [160]. In addition to its spatial coverage capabilities,
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the HEDAC framework was further extended to integrate probabilistic sensing, as discussed in

[161]. However, its application to searching for drifting or dynamically behaving targets has

not yet been demonstrated.

7.4.1 Dynamic probability distribution field

In real-world search scenarios, the domain is explored by multiple agents over the time interval

t. These agents can represent unmanned aerial vehicles (UAVs), manned aircraft, or other search

platforms, and the search is defined by their trajectories. It is assumed that the positions zi(t)

and orientations θi(t) of the agents are known, where i = 1, . . . ,n indexes the individual agents

and n is the total number of agents involved in the exploration. The search process relies on the

probability density s(y, t) : (Ω× t)→ R, which represents the likelihood of a target remaining

undetected at position y and time t. Its initial distribution, defined at t = 0, is given by s0(y) and

satisfies the normalization condition:

∫
Ω

s0(y) dΩ = 1. (7.7)

Each agent contributes to the exploration of the domain, and its sensing influence is modeled

through a sensing function γi(r), where r(t) corresponds to coordinates in the agent’s local

reference frame. A visual illustration is provided in Figure 7.2

Figure 7.2: Absolute and local coordinate systems, along with the agent’s
sensing function γi.
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The cumulative sensing effect exerted by all agents, expressed in the global coordinate sys-

tem, is defined as

Γ(y, t) =
n

∑
i=1

γi (R(θi(t)) · (zi(t)−y)) , (7.8)

with the rotation matrix R given by

R(θ) =

cosθ −sinθ

sinθ cosθ

 . (7.9)

The evolution of the search targets is determined by the vector field w(y, t) : (Ω× t)→

R2, representing the fluid flow which drives the dynamics of s. An advection-diffusion partial

differential equation is employed, incorporating a sink term that models the impact of agents’

sensing. The probability of a target remaining undetected, s(y, t), evolves according to

∂ s
∂ t

= D ·∇2s−w ·∇s−Γ · s, (7.10)

where D denotes the diffusion coefficient. The diffusion term accounts for the overall uncer-

tainty in the system, which may arise from inaccuracies in the flow field, errors in initializing

the undetected probability field, or localization errors affecting sensing. To incorporate this un-

certainty, D is determined according to the adaptive formulation introduced in (7.1), ensuring

consistency with the reconstruction error compensating approach used in the scalar transport

model. Since the primary objective of the search is the rapid and sustained reduction of unde-

tected targets, the ergodic search task can be formulated as

lim
t→∞

∫
Ω

s(y) dΩ = 0. (7.11)

It should be noted that the search cannot be continued indefinitely, and its duration is not

predetermined. Consequently, since the total search time is unknown, the exploration of the

dynamic probability distribution cannot be formulated as a conventional optimization problem

and is instead treated as an ergodic task.

7.4.2 Search agent motion model

The motion of each agent is described using the Dubins model, where a constant speed vi is

assigned to the agent while its heading angle θi is allowed to vary. Accordingly, the trajectory
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of each agent is expressed as

dzi

dt
=

vi · cosθi

vi · sinθi

 . (7.12)

The evolution of the heading angle is dictated by the yaw angular velocity ωi(t) = dθi/dt,

which is limited by |ωi| ≤ ωmax
i . This constraint also defines the minimal turning radius of the

agents as rmin
i = vi/ωmax

i . It should be noted that, since the search is conducted using aerial

robotic agents, the flow field w does not influence their motion.

The agents’ motion is directed by the HEDAC algorithm [160], which determines the ω(t)

from a potential field φ(y, t). This potential is obtained by solving the partial differential equa-

tion:

α∇
2
φ(y, t)−φ(y, t)+ s(y, t) = 0, (7.13)

where α > 0 is a tuning parameter that controls the trade-off between local and global explo-

ration. On the domain boundary B and any internal obstacles, Neumann boundary conditions

are applied:

∂φ

∂n

∣∣∣∣
B
= 0, (7.14)

with n denoting the outward normal to the boundary B.

The normalized gradient of the potential field φ is then computed to guide the exploration

agents:

v(y) =
∇φ(y)
‖∇φ(y)‖

. (7.15)

Based on the gradient v, the agents’ yaw angular velocities are determined by

ωi =
d
dt

(
∠(θi,v(zi))

)
, (7.16)

where the yaw rate ωi may take positive or negative values, corresponding to the turning direc-

tion: positive ωi denotes a counterclockwise turn, whereas negative ωi indicates a clockwise

turn.
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7.4.3 Implementation of the integrated search framework

The proposed methodology is implemented by combining solvers for the advection, diffusion,

and sensing of the probability density in (7.10), the potential field described by (7.13), and

the agents’ motion model in (7.12). The advection and diffusion components in (7.10) are

computed using the Finite Volume Method (FVM) through the scalarTransportFoam solver in

OpenFOAM. Sensing is applied directly to the probability field s at each time step, based on the

agents’ positions zi and their corresponding sensing functions γi. The potential field equation

is solved using the Finite Element Method (FEM) with the Netgen/NGSolve library [162, 163],

which also provides the gradient of the potential for motion guidance. The integration of the

motion model, collision avoidance, utility calculations, visualization, and overall coordination

of all components is carried out using the Python programming language.

In the implementation, motion control and sensing are updated at intervals of ∆t, whereas

the advection and diffusion simulations are computed using a finer time step of ∆t/10 over the

course of each control interval ∆t.

The two coupled approaches operate differently, as OpenFOAM relies on FVM, while

HEDAC employs FVM. To accommodate their respective tasks, the underlying meshes are

structured differently. OpenFOAM applies a three-dimensional hexahedral FVM mesh with a

single element along the third dimension to handle the two-dimensional advection-diffusion

problem, whereas HEDAC uses a two-dimensional triangular FEM mesh. Furthermore, FVM

stores field values at cell centers, while FEM stores them at the mesh nodes, necessitating data

transfer between meshes.

The integration of the methods is performed such that agents’ sensing effects are directly ap-

plied to the FVM scalar field, after which the probability field s is projected onto the FEM mesh

for the potential field computation. The projection is implemented using the nearest neighbor

interpolation method due to its computational efficiency. Only the probability field s accumu-

lates errors, as the potential field φ is recomputed from the updated values of s at each time

step. Consequently, the use of the nearest neighbor interpolation and its associated coarseness

is considered acceptable.

The integration of the two computational methods is achieved by directly updating the FVM

scalar field with the effects of agents’ sensing. After this, the probability field s is projected to

the FEM mesh to calculate the potential field φ . This is done with nearest neighbor interpo-

lation, chosen for its computational simplicity. Only the probability field s is subject to error
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accumulation, since the potential field φ is recomputed from the updated s values at each time

step. The minor coarseness introduced by this interpolation method is therefore considered

acceptable for the intended computations.

The complete workflow of the proposed methodology is outlined in Figure 7.3.

Figure 7.3: UAV navigation procedure based on dynamic probability
fields.
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8 SIMULATION RESULTS

This chapter presents the outcomes of the proposed methodology, structured to demonstrate its

performance under various conditions and validation scenarios. The results are divided into

three main parts. First, the preparation of test cases is outlined, providing the foundation for

subsequent analyses. Second, the steady reconstruction approach is examined, focusing on

multimodality, optimization benchmarks, mesh independence, and validation based on realistic

measurements. Finally, the transient flow reconstruction is analyzed, including robustness test-

ing with determination of the optimal sampling period Ts, followed by validation of different

approaches for transient flow approximation and the associated passive scalar advection.

8.1 Preparation of test cases

The simulation domains used in the test cases are either synthetic, designed for controlled ex-

perimentation, or based on real-world geography to support practical applications. For synthetic

domains, the mesh was generated in OpenFOAM using the blockMesh utility. This tool allows

the user to create a structured grid by defining the computational domain as a set of blocks.

Each block is specified by its corner vertices, the number of cells along each edge, and the way

edges are shaped or curved. By combining multiple blocks, complex geometries can be approx-

imated, and the resulting mesh defines the spatial resolution for simulations. The example of a

numerical mesh generated using blockMesh is presented in Figure 8.3.

For realistic domains, coastline shapes were extracted using the Sentinel Hub [164] plat-

form, which provides satellite-derived products such as the Level-2A NDWI (Normalized Dif-

ference Water Index), and generates the corresponding computational mesh in OpenFOAM.

The NDWI is a spectral index commonly used to identify surface water features by enhanc-

ing the contrast between water and land. It is computed using the surface reflectance values

from the green and near-infrared (NIR) spectral bands, as introduced in [165]:

NDWI =
Green−NIR
Green+NIR

, (8.1)
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where water bodies typically yield positive values, while land and vegetation result in zero

or negative values. The calculation of (8.1) helps isolate water bodies in satellite imagery by

enhancing their spectral signature.

The NDWI data is then retrieved from georeferenced TIFF images, which include both

the pixel-wise NDWI values and the spatial metadata necessary for geolocation. Using this

metadata, each pixel in the image is mapped to geographic coordinates (latitude and longitude).

After normalizing the NDWI image to an 8-bit range, a threshold is applied (e.g., NDWI > 0.25,

corresponding to 165 in the 0-255 scale) to segment water bodies from land. The difference

between water bodies from land is visible on the TIFF image presented in Figure 8.1.

Figure 8.1: The figure illustrates the coastline extraction polygon derived
from the NDWI image. Blue colors represent water surfaces, while green
areas correspond to land. The clear contrast between these regions reflects
the NDWI value distribution, enabling accurate delineation of the coastline

for mesh generation.

Contours are extracted from the binary image using standard image processing techniques,

and the largest contour is selected to represent the coastline. This raw coastline is initially de-

fined in pixel coordinates, then transformed to geographic coordinates using the image’s bound-

ing box and resolution. To improve the accuracy and smoothness of the coastline, a moving

average is applied along the contour before it is exported in both global and local coordinates.

This process is visible on Figure 8.2.
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Figure 8.2: Figure depicts the process of coastline extraction from the
NDWI image. The largest constour representing raw coastline contour
(blue) is smoothed (red) and prepared for conversion from pixels to geo-

graphic coordinates.

The refined coastline polygon is used to generate a stereolithography (STL) surface model,

which provides the geometric basis for creating the computational mesh. STL model is used

with the cfMesh meshing library [166] to generate a two-dimensional mesh, which is subse-

quently imported into OpenFOAM. This workflow enables accurate representation of coastal

geography and supports physically consistent simulations of surface flows in real-world en-

vironments. Examples of mesh generation using both blockMesh and cfMesh are shown in

Figure 8.3.

Figure 8.3: (A) Synthetic domain mesh with coastline generated with
blockMesh. (B) Synthetic domain mesh without coastline generated with

blockMesh. (C) Realistic domain mesh generated with cfMesh.

To validate the proposed methodology, six distinct test cases were developed, each repre-

senting a different domain type: a synthetic domain, five realistic domains with distinct features,
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and two domains incorporating experimental field measurements. The selected domains vary

in size, geometry, boundary complexity, and the presence of coastal features or islands. The

key characteristics of each test case are outlined in Table 8.1, providing an overview of the

computational and physical properties considered during the simulations.

Table 8.1: Characteristics of the simulation test cases.

Case characteristics Simple bay Gulf of Trieste Vis Unije Plomin bay Valun bay
Test case type Synthetic Realistic Realistic Realistic Experimental Experimental
Domain area [km2] 24.6 498.94 2273.9 96.49 3.37 55.62
Number of boundaries 1 1 5 4 1 1
Total boundary length [km] 9.4 20.52 120.97 9.63 3.74 7.22
Coastline length [km] 9.1 86.64 197.61 57.12 8.34 31.74
Number of boundary control points 5 5 14 6 3 3
Max velocity in the domain [m/s] 0.25 0.2 0.35 0.4 0.4 0.5
Number of cells 4625 8262 12856 7530 5676 15833
Average cell size [m] 73.02 245.74 412.41 113.21 24.36 59.28

8.2 Analysis of steady flow reconstruction approach

Validation of the steady flow reconstruction methodology serves as the foundation for the quasi-

steady approach used in the transient flow replication. The primary objective is to evaluate the

effectiveness and limitations of the steady flow fit process by analyzing its performance across

different test cases. The section includes a benchmark of optimization outcomes to illustrate

potential convergence scenarios, as well as validation results in a realistic domain where real-

world drifter measurements were used. These analyses are essential for confirming that the

reconstructed steady flow fields achieve sufficient accuracy and that the optimization process is

effective, thereby ensuring reliable transient reconstruction in the subsequent stages.

8.2.1 Multimodality

Given that proposed reconstruction processes are at their core optimization problems, a con-

ventional test case, lid-driven cavity, was chosen to determine the best optimization approach.

This configuration consists of a square cavity with an area of 1m2 filled with fluid, where flow is

generated by moving the top lid, controlled through three designated points. The induced mo-

tion leads to the development of recirculation zones and vortices, which were the focus of the

reconstruction process. A total of 100 different measurement setups were tested, each involving

100 measurement points, with tangential inlet velocities ranging from -2 m/s to 2 m/s, resulting
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in Reynolds numbers up to 200, assuming a kinematic viscosity of 10−2. To accurately capture

the complex flow patterns, a structured mesh of 40000 cells was used. Steady-state simulations

were employed to investigate the influence of varying Reynolds numbers on the stability, scale,

and behavior of the resulting vortical structures.

The findings revealed that identical velocity vectors at specific measurement points can

arise from multiple distinct boundary condition combinations. As a result, optimizing to match

a target velocity at a single location does not ensure that the overall flow field is accurately

represented. This phenomenon is illustrated in Figure 8.4. Given this ambiguity, local search

strategies are considered inadequate for the optimization framework adopted in this study.

Figure 8.4: Analysis of the multimodal characteristics of the flow fitting
task. (A) shows the cavity lid scenario at Re = 160 with two marked obser-
vation points. (B) presents overlapping velocity profiles at point 48 (left
marker), indicating identical local velocities from different boundary con-

ditions, with another example shown in (C) at point 73 (right marker).

Analysis of all measurement positions throughout the parameter range confirmed that mul-

tiple optimization inputs can yield the same velocity at specific points in the domain. This

behavior reflects the multimodal nature of the problem, indicating that different boundary con-

figurations can produce indistinguishable flow characteristics at certain locations.

8.2.2 Optimization methods and benchmark

In all optimization tests, the objective function is defined using the root mean squared velocity

difference at measurement locations, denoted as Ed . Convergence is considered achieved once

the measurement velocity error, Ed , falls below the threshold of 10−2, equivalent to a drifter

velocity error of 1 cm/s. In addition, the accuracy of the reconstructed velocity field is assessed
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using a separate metric, E f , with a threshold set at 2 ·10−2, which translates to a drifter velocity

error of 2 cm/s. It is important to note that E f is not incorporated into the optimization process

itself, but is instead just monitored to provide a more comprehensive evaluation of flow field

reconstruction quality. This metric is calculated for all test cases to ensure consistency in as-

sessing the spatial accuracy of the reconstructed fields. Based on conducted tests, setting E f

to be three times larger than the drifter-based error Ed has proven effective in confirming that

the reconstructed flow adequately matches the reference field. All results satisfying both error

thresholds are considered acceptable.

Using the computed values of Ed and E f , the optimization outcomes can be categorized into

four distinct groups:

• Ed > 0, E f > 0 (red region)

This represents cases where the optimization did not satisfy both the drifter and field error

thresholds.

• Ed > 0, E f ≈ 0 (gray region)

A less frequent outcome in which the field error falls within the acceptable limit, but the

drifter error remains above the defined threshold.

• Ed ≈ 0, E f > 0 (orange region)

Cases where the drifter error meets the target, but discrepancies remain in the recon-

structed velocity field compared to the referent one.

• Ed ≈ 0, E f ≈ 0 (green region)

The ideal outcome, where both drifter and field errors fall below their respective thresh-

olds, indicating a successful reconstruction of the surface velocity field.

Figure 8.5 presents a visual representation of the four distinct groups according to optimiza-

tion error, obtained during the initial testing phase using the Particle Swarm Optimization (PSO)

algorithm.
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Figure 8.5: (A) The referent flow that needs to be reconstructed. (B) Ve-
locities matched locally but field error threshold not met. (C) Main vortex
captured, but northern flow diverges. (D) Distribution of optimization out-
comes. (E) Both drifter and field errors are within limits. (F) Field error

threshold met, but drifter error not met.

Since reconstruction accuracy depends on the placement of measurement points, the fig-

ure confirms the hypothesis that the orange scenario (Ed ≈ 0, E f > 0) will progressively move

toward the green region (Ed ≈ 0, E f ≈ 0) as the number of measurements increases. Con-

versely, the red scenario (Ed > 0, E f > 0) represents a poorly resolved case where adding more

measurements does not improve the solution due to insufficient information in critical areas

for the optimization algorithm. The grey scenario (Ed > 0, E f ≈ 0) yields a flow field closely

resembling the referent one, with minor velocity deviations at measurement locations. Such in-

stances are uncommon and likely caused by numerical inaccuracies, consistently hovering near

the threshold. Although this scenario is very similar to the referent flow, slight differences in

measurements can prevent meeting the error threshold. These results emphasize the importance

of drifter placement, suggesting that a more uniform distribution could enhance reconstruction

accuracy. While varying the error thresholds might produce slightly different outcomes, the

current thresholds depicted in the figure appear appropriate for flow reconstruction, given that

the absolute error remains below 0.03 cm/s.
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To identify the most suitable optimization algorithm for the proposed flow field reconstruc-

tion, various methods available in the Python optimization library Indago [167] were assessed.

Only the most promising approaches are presented here. The focus was on global search al-

gorithms, as local search methods were excluded due to the multimodal characteristics of the

problem discussed in Section 8.2.1. In addition to the PSO algorithm, initially chosen for testing

due to its widespread use and proven efficiency in solving complex optimization tasks [168],

the Fireworks Algorithm (FWA) was also employed for its potential advantages over PSO, par-

ticularly in terms of faster convergence and improved global search capabilities [169]. The

Artificial Bee Colony (ABC) algorithm was also considered due to its strong performance in

complex search spaces across a variety of optimization problems [170]. To contrast global and

local search strategies, the MSGS algorithm [167], a variant of the GPS-MADS method [171],

was used to represent local search approaches. Unlike the stochastic global algorithms, MSGS

employs a deterministic mesh-based strategy that systematically refines the search space.

Ten distinct Simple bay test cases were randomly generated, each serving as a referent

case. Each optimization algorithm was executed 10 times per reference case, utilizing 10 mea-

surement points for flow field reconstruction, resulting in a total of 100 optimization runs per

algorithm. The corresponding results are presented in Figure 8.6.

It is clear that, on average, all algorithms met the defined threshold successfully, with 6.5%

of results falling in the red region, 5.75% in orange, 3.25% in gray, and the remaining 84.5% in

green. The local search method MSGS exhibited notably fast convergence but achieved higher

fitness values compared to the global search algorithms. Moreover, as highlighted in the cav-

ity lid test case, MSGS is susceptible to becoming trapped in a local optimum. Consequently,

global search techniques were favored for the modeling approach, with Particle Swarm Opti-

mization (PSO) identified as the most effective among them. Despite its effectiveness, PSO

converges more slowly than MSGS.

Given the differences in complexity and size among the test cases, PSO was selected as

the preferred method, allowing for better capture of complex flow features while avoiding lo-

cal minimum. This approach was further validated with 50 optimization runs per algorithm,

revealing less than 2% variation in results. These findings align with previous observations and

support the conclusions drawn.
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Figure 8.6: Overview of optimization algorithms for flow field reconstruc-
tion. Colored squares denote four outcome categories, while the lower

panel shows average convergence trends.

8.2.3 Impact of available measurements on flow reconstruction accuracy

The accuracy of surface flow field reconstruction is influenced not only by the total number

of measurements but also by their spatial distribution within the domain. In this context, the

concept of the effective number of measurements (η) was examined, representing the number

of points that provide unique and informative data for reconstructing the flow field.

Figure 8.7 presents the influence of η on the reconstruction results, based on 100 optimiza-

tion runs for each configuration using 1 to 20 measurement points randomly placed within the

Simple bay domain. When only a few measurement points are used (e.g., between 1 and 3),

the drifter error Ed often meets the convergence threshold, yet the corresponding field error E f

remains high (represented in orange), indicating insufficient domain information for accurate

flow reconstruction. As the number of measurement points increases, the optimization algo-

rithm gains access to more spatially informative data, resulting in improved field reconstruction

performance (shown in green).

The orange region should not be interpreted as a failure of the optimization itself, but rather
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as a consequence of limited spatial coverage, where the available measurements do not ad-

equately capture the full complexity of the flow. This becomes more evident in the second

plot, where the orange region vanishes as the availability of unique measurement information

improves.

The second and third plots offer complementary perspectives: the second highlights the

proportion of successful reconstructions relative to η , while the third shows the absolute number

of optimization runs associated with each η value. Notably, very few runs correspond to higher

values of η , reflecting the limitations imposed by random measurement sampling. In some

cases (e.g., η = 19 or η = 20), no data is available due to insufficient domain coverage under

random configurations.

Figure 8.7: Results of 100 optimization runs with 1–20 randomly dis-
tributed measurement points. (A) Optimization success based on measure-
ment points. (B) Optimization success relative to the effective number of

measurement points, while (C) presents their absolute distribution.
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8.2.4 Mesh independence

Given that the method is intended for near-real-time use, when computationally expensive nu-

merical simulations are impractical, a coarse numerical mesh for the CFD model is required.

To evaluate the accuracy of simulation results under this constraint, a mesh convergence anal-

ysis was carried out using a standard meshing approach. For the synthetic Simple bay test

case, three meshes were generated: coarse (4625 cells), medium (10564 cells), and fine (23296

cells), maintaining a uniform refinement ratio of 1.5. The Grid Convergence Index (GCI) was

calculated based on vorticity values at all mesh points, following the procedure from [172],

which applies Richardson extrapolation to estimate the convergence order. As summarized in

Table 8.2, the results indicate that the solution lies within the asymptotic convergence range.

Further evidence is provided by an estimated order of convergence of p = 1.79 and an average

correction factor cc = 0.976, which exceeds the standard threshold of 0.95, indicating consistent

error behavior with mesh refinement.

Table 8.2: Mesh characteristics and Grid Convergence Index (GCI) values
for the synthetic Simple Bay case. Vorticity values were evaluated at all

grid points.

Mesh Number of Cells Refinement Ratio (r) Relative Error (%) GCI (%)
Coarse 4625 1 — —
Medium 10564 1.5 1.53 1.09
Fine 23296 2.25 0.76 1.34

8.2.5 Case studies of Steady Flow Fit

Datasets with detailed, simultaneous surface current measurements were selected to validate

the method and assess the impact of different observations on reconstruction accuracy. One key

dataset originates from the TOSCA experiment in April 2012 [173], containing simultaneous

HF-radar and drifter measurements for the Gulf of Trieste. This makes it an excellent test case

for seeing how well this approach works with different measurement types.

The method was further validated with HF-radar measurements from the Stončica-Ražanj

stations near the island of Vis. This data, collected in October 2019 and provided by the Institute

of Oceanography and Fisheries [174], helps validate this method in a region with complex

coastal features, despite the radar stations no longer being active.
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The method’s reliability under sparse data conditions was tested by reducing the number of

measurements and observing the impact on flow reconstruction accuracy. This allows assess-

ment of the method’s performance in realistic scenarios with limited observational data.

8.2.5.1 Gulf of Trieste

The Gulf of Trieste, located at the northernmost edge of the Adriatic Sea, is a shallow bay

spanning over 500 square kilometers. Surface flow patterns in this region have been the subject

of detailed investigation, particularly in [118], where a combination of high-resolution outputs

from the Northern Adriatic Princeton Ocean Model (NAPOM), HF-radar data, and measure-

ments from ADCPs was employed. This study highlighted a wide range of surface velocities,

typically from below 0.1 m/s up to over 0.5 m/s, and reported that the RMSE between radar-

based and model-derived currents mostly fell within 8.6 to 11.2 cm/s for 80% of the dataset.

In a related study, [16] performed a targeted validation of HF-radar surface velocities by

comparing them to Lagrangian data obtained from CODE drifters. They found an RMSE of ap-

proximately 10 cm/s for the radial velocity component, aligning well with commonly accepted

HF-radar accuracy thresholds in the 5–15 cm/s range [109, 175–177].

In a comparable effort, [120] applied the MIKE3/21 hydrodynamic modeling system in con-

junction with localized measurements of wind, waves, currents, and sea level to analyze current

patterns in the northern Adriatic region. Their work involved a detailed sensitivity analysis,

testing various model parameterizations and configurations. The model outputs were compared

with in-situ measurements such as wave height, current velocity, water level, and temperature,

along with results from a high resolution implementation of the COAWST modeling framework

applied in the same area. During a year-long simulation, the MIKE3/21 model demonstrated

good agreement with observational data, performing similarly to COAWST. Specifically, the

RMSE in surface current velocities, validated using observations from the “Acqua Alta” plat-

form, was approximately 13 cm/s.

Together, these studies highlight the complex and varied nature of surface circulation in the

Gulf of Trieste. The validation of the Gulf of Trieste surface flow was carried out using data

obtained as part of the TOSCA experiment in April 2012 [173], with available measurements

shown in Figure 8.8. This visualization outlines the measurement sources, with HF-radar veloc-

ity vectors available at 225 locations throughout April 2012, and 44 drifters deployed between

April 23 and May 4, 2012.
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Figure 8.8: (A) Gulf of Trieste location. (B) HF-radar velocity vectors
available at 225 locations for April 2012. (C) Positions of 44 drifters de-

ployed between April 23 and May 4, 2012.

To assess the influence of measurement data on flow reconstruction from drifter and HF-

radar sources, a fixed evaluation time was selected. Drifter data collected at 4:00 AM on April

24, 2012, provided 15 drifter positions, which were relatively clustered. Further examination

of the HF-radar measurements revealed inconsistencies with the continuity principle, as several

flow vectors pointed toward the coastline, as visualized in Figure 8.9. These inconsistencies are

likely due to strong wind effects on the sea surface, which alter the current direction and drive

flow toward the shore. This phenomenon has also been acknowledged in earlier studies [118,

178], highlighting the substantial role of local atmospheric conditions in modulating surface

currents. Consequently, wind forcing was included by adding the wind vector field to the x

and y components of the domain-wide velocity. While mass flux conservation is preserved,

the resulting vectors are biased toward the coastline, providing a more realistic match to the

observed data.

For both the drifter and HF-radar cases, three control points were used, corresponding to six

optimization parameters. While the drifter dataset was relatively sparse, the HF-radar measure-

ments offered a much denser spatial coverage. Sensitivity analyses were conducted by reducing

the available measurement data to evaluate the robustness of the reconstruction method. A

reduction of x% indicates that (100-x)% of available data points are used for reconstruction

as nMP, while the remaining x% are reserved for observation as nFP. Specifically, the drifter

data points were reduced by 7% and 30%, while the HF-radar data points were reduced by 10%,

50%, and 90%. Reconstruction accuracy was then evaluated using the full dataset as a reference

for field error. Representative flow reconstructions for the 30% drifter data points reduction and

50% HF-radar data points reduction are shown in Figure 8.9.
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Figure 8.9: (A) Combined drifter and HF-radar data at 4:00 AM on April
24, 2012. (B) Flow reconstruction based on a 30% reduction of drifter
measurements. (C) Flow reconstruction based on a 50% reduction of HF-

radar measurements.

To generate meaningful results across different data availability scenarios, 50 independent

optimization runs were performed for each case. The outcomes of these assessments, along

with the corresponding data reduction levels, are summarized in Table 8.3.

Table 8.3: Data coverage and reconstruction performance for the Gulf of
Trieste.

Data Source Available measurements Reduction [%] nMP nFP Ed [cm/s] E f [cm/s]

Trieste drifters 15 7 14 1 8.2 5.6
15 30 10 5 7.9 7.6

Trieste HF radars
225 10 202 23 10.1 9.9
225 50 112 113 9.7 10.2
225 90 23 202 8.5 11.2

∗ · is average across 50 optimization runs.

The comparison of flow fields reconstructed using drifter and HF-radar measurements re-

veals distinctions stemming from differences in measurement principles. In the vertical di-

mension, HF-radar data represent depth-weighted averages influenced by radar frequency and

vertical current shear [179, 180], while drifter data represent near-surface motion at a discrete

depth. Horizontally, HF-radar values are spatially averaged over large grid cells spanning sev-

eral kilometers, whereas drifter data capture movement at a much finer scale, typically on the

order of 1 meter [177].

Despite methodological differences, the reconstructed velocity fields from both data sources

exhibit similar spatial patterns, with some expected variations. The dominant flow features,

their directions, magnitudes, and associated RMSE values indicate that the proposed meta-

model fitting approach delivers consistent performance, particularly in capturing non-physical

currents directed normal to the coastline/shoreline.
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8.2.5.2 Vis island

The region surrounding the island of Vis, located in the central Adriatic near the Croatian coast,

spans over 2200 square kilometers. This area serves as a comprehensive test case due to its

complex geography, which includes numerous islands, inlets, and outlets, which are features

that encompass a wide range of potential modeling challenges. The dataset used for this analysis

was provided by the Institute of Oceanography and Fisheries [174], and consists of HF-radar

measurements collected in October 2019 from two radar stations, which are now inactive. The

study area was intentionally defined to be broader than the direct coverage of the HF-radar

system, in order to capture the flow development leading into the radar-observed region, as

illustrated in Figure 8.10.

Figure 8.10: (A) Study area around Vis island, with over 2200 km2. (B)
Spatial distribution of 555 HF-radar velocity measurements, including four

islands and parts of the mainland coastline.

As shown in Figure 8.11, the reconstructed surface flow closely resembles the general flow

structure captured by the HF-radar measurements, although finer details such as small-scale

vortices are not fully resolved in some areas. These discrepancies may stem from the resolution

used in the simulation setup, which prioritized computational efficiency over fine-scale accu-

racy, or from the limited density of measurements in certain regions. To assess the impact of

measurement availability on reconstruction quality, data subsets corresponding to 10%, 50%,

and 90% reduction were used. The results demonstrate that even with significantly fewer input

measurements, the main flow patterns are still recognizable. Examples of flow reconstruction

under 50% and 90% data reduction are shown in Figure 8.11, highlighting the method’s ability

to maintain structural consistency despite limited observational data.
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Figure 8.11: (A) HF-radar measurement locations with velocity vectors
colored by magnitude. (B) Reconstructed flow using 277 measurements
and 278 field points (50% data reduction). (C) Reconstruction with 55

measurements and 500 field points (90% reduction).

Furthermore, as shown by the average RMSE values over 50 optimization runs in Table 8.4,

results confirm that even with significant reductions in measurement points, the flow reconstruc-

tion remains highly accurate.

Table 8.4: Data availability for the Vis case.

Data Type Available data points Reduction [%] nMP nFP Ed [cm/s] E f [cm/s]

Vis HF radars
555 10 500 55 5.7 5.8
555 50 277 278 5.4 5.5
555 90 55 500 5.0 6.0

∗ · is average across 50 optimization runs.

These results validate the robustness and effectiveness of the simulation-based optimization

method for surface flow reconstruction.

8.3 Analysis of transient flow reconstruction

The transient reconstruction approach extends the flexibility of the discussed methodology by

addressing the unsteady flow dynamics using a series of short steady-state simulations, per-

formed at regular intervals. During each interval, boundary conditions are updated based on

reference measurements, allowing the system to adapt to gradual flow changes without the need

for computationally intensive full transient simulations. This approach reduces temporal com-

plexity, while the fusion model addresses spatial complexity by integrating information from

both domains. Through this iterative process, the resulting passive scalar transport better cap-

tures real-world behavior, particularly in situations where temporal variations strongly influence

advection. In order to clarify the iterative process of the method, the complete optimization-

simulation loop for each measurement interval is shown in Figure 8.12.
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Figure 8.12: Schematic of the optimization–simulation workflow initiated
at time t for evaluating scalar transport over interval [t, t +Ts].

The workflow consists of measuring velocity fields, performing dual-domain simulations

in OpenFOAM, optimizing boundary conditions, fusing velocity fields, evaluating errors, and

iteratively minimizing the drifter-based error Ed . This cycle is repeated for each subsequent

time step incremented by Ts, reconstructing the transient flow field in stages.

8.3.1 Robustness analysis of quasi-steady period

Choosing an appropriate value for Ts is essential. Choosing an appropriate value for Ts is es-

sential. While a longer Ts provides the optimization more time to improve the reconstruction,
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excessively long Ts can lead to errors due to temporal changes in the flow affecting passive

scalar transport. The accuracy of scalar advection is directly influenced by the quality of the

reconstructed velocity field, and any discrepancies tend to accumulate over time. The effect of

Ts was investigated by evaluating reconstruction accuracy through the RMSE of the full veloc-

ity field (E f ) over a range of Ts values from 300 to 1500 seconds in the Simple Bay test case.

For each selected Ts, 10 separate optimization runs were conducted to account for algorithmic

randomness, and the median E f was calculated. The outcomes of this evaluation are illustrated

in Figure 8.13.

Figure 8.13: Reconstruction error (E f ) of the velocity field obtained for
five different values of Ts.

Faded lines on Figure 8.13 correspond to individual optimization runs, while the bold dotted

line denotes the median E f for each set. The inset in the top-right corner shows the average of

median E f values, highlighting the balance between reconstruction time and error introduced

by flow evolution. From these results, Ts = 900 s is chosen as the optimal interval. Decreasing

Ts makes the optimization more difficult, while increasing it enhances transient effects. This

chosen value therefore provides a balance between accurate flow reconstruction and minimal

error due to temporal variations.

8.3.2 Case studies of Transient Flow Fit

The proposed quasi-steady approach was evaluated using two test cases: the familiar synthetic

scenario called Simple Bay, and the realistic domain, the Unije Channel near the island of
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Lošinj. The goal was to achieve accurate reconstruction of passive scalar advection to assess

the method’s suitability for such applications, with the level of accuracy primarily depending on

the quality of the flow reconstruction. Based on the results presented in Section 8.3.1, a Ts value

of 900 seconds was used in both cases. To assess the method’s performance, passive scalar

advection was compared across four different approaches: steady flow reconstruction, transient

flow reconstruction without the fusion model (using only the bounded domain), transient flow

reconstruction with the fusion model, and transient flow reconstruction with the fusion model

combined with an adaptive diffusion coefficient to compensate for measurement and reconstruc-

tion errors.

8.3.2.1 Simple bay

Since the objective was to evaluate the methodology under highly dynamic flow conditions, a

synthetic scenario was designed with an evolving flow over a period of 9 hours (32400 seconds),

featuring significant variations in both direction and magnitude to challenge the reconstruction

accuracy. Therefore, Figure 8.14 presents the temporal evolution of this referent flow during

this period, highlighting the complexity of the flow patterns that the reconstruction seeks to

replicate. Although such pronounced flow changes are unlikely to occur over short timescales

in natural environments, the synthetic scenario allows for testing the method’s robustness and

adaptability under evolving boundary conditions.

Figure 8.14: Figure shows one example of the evolving referent flow in the
synthetic Simple Bay case after 9 hours (32400 seconds), comparing the

initial flow state (A) with the final state (B).
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A comparison of already mentioned reconstruction approaches and their influence on pas-

sive scalar advection is presented in Figure 8.15. Given the time-dependent nature of the referent

flow, the steady fit approach (B), which uses only the initial 15 drifter measurements to recon-

struct the flow and then advects the passive scalar over 32400 seconds without further updates,

results in substantial inaccuracies, yielding zero percent overlap with the referent scalar field.

Similarly, the bounded domain transient fit approach (C), based on reconstructing the referent

flow at each Ts interval using repeated steady state optimizations, also fails to capture the com-

plexity of the evolving referent flow, mainly due to limitations imposed by the bounded domain.

This approach also results in zero percent intersection. Furthermore, after 32400 seconds, only

four drifters remain within the domain, limiting the availability of data and further reducing

reconstruction performance.

To address this issue, the fusion model was included in the fitting procedure (E), signif-

icantly improving flow accuracy and achieving an 86% intersection. Additional refinement

using an adaptive diffusion coefficient (F) with the fusion model further improved the result,

reaching 90% intersection with the referent scalar field by the end of the simulation.

The success analysis (D) illustrates the effectiveness of each approach in capturing the pas-

sive scalar field. Moreover, the most effective approach, which integrates the fusion model with

adaptive diffusion, achieved the highest intersection percentage while maintaining a balanced

tradeoff between coverage and overestimation, resulting in the most accurate reconstruction of

the passive scalar field.
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Figure 8.15: (A) Referent flow after 32400 seconds. (B) Steady recon-
struction from 15 drifter measurements. (C) Reconstruction with periodic
measurement updates without fusion model. (D) Analysis of proposed
metrics for passive scalar advection. (E) Reconstruction with measure-
ment updates and a fusion model. (F) Reconstruction with measurement

updates, fusion model, and adaptive diffusion compensation.

8.3.2.2 Unije Channel

To test the proposed methodology in a real-world setting, the Unije Channel near the island of

Lošinj, covering an area of 96.5 km2, was selected. The domain contains four separate inlet and

outlet regions, which contribute to complex and variable flow behavior. Unlike the synthetic

case, the realistic domain captures naturally occurring variations driven by environmental in-

fluences, offering a more demanding scenario for testing flow reconstruction accuracy. These

spatial and temporal variations in surface flow can be observed in Figure 8.16.
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Figure 8.16: Evolution of the referent flow in Unije Channel after 10 hours
(36000 seconds), showing the initial (A) and final (B) states with four inlet

and outlet areas.

To showcase how well the method performs in realistic domains, Figure 8.17 presents a

comparison of four different flow approximation techniques and their corresponding passive

scalar advection results. Similar to the synthetic scenario conducted in 8.3.2.1, both the steady

fit (B) and bounded domain transient fit (C) struggled to accurately reproduce the movement of

the referent passive scalar. Interestingly, the bounded domain transient fit in this case produced

even less accurate results than the steady fit, highlighting that optimization can sometimes lead

to incorrect outcomes. By integrating the fusion model (E) into the transient fitting process, the

reconstruction accuracy improved substantially, reaching nearly 93% overlap with the referent

passive scalar field after 10 hours (36000 seconds). Introducing an adaptive diffusion coefficient

(F) further enhanced the results, achieving a 94% intersection and full coverage of the scalar

field.
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Figure 8.17: (A) Referent flow after 36000 s. (B) Steady reconstruction
from 15 drifters with no overlap of the passive scalar. (C) Transient re-
construction showing an even larger mismatch. (D) Analysis of proposed
metrics for passive scalar advection. (E) The fusion model achieves high
accuracy. (F) The fusion approach and adaptive diffusion closely match

the referent passive scalar field.

The success analysis (D) shows a modest improvement with the addition of the adaptive dif-

fusion coefficient and an unexpectedly better result from the steady fit compared to the transient

fit. Additionally, the top-performing approach, which combines the fusion model and adaptive

diffusion, includes some overestimated areas. Nevertheless, the coverage metric suggests that

this excess region contains only a negligible amount of passive scalar, likely due to numerical

errors, and can therefore be ignored when predicting the main passive scalar distribution.
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9 EXPERIMENTAL RESULTS

After validating the approach in a simulation environment, additional experimental validation

in a real environment was carried out in multiple field experiments in the Kvarner region near

Rijeka, Croatia. To enable this, suitable and reliable equipment was first acquired to match

the requirements of the methodology. This included setting up a complete system for sensor

deployment, data acquisition, flow reconstruction, and finally, advection simulation based on

the reconstructed surface flow derived from point measurements.

This chapter is divided into the following sections: Section 9.1 describes the selection and

configuration of the measurement and transmission system used in conducted deployments.

Section 9.2 presents the preliminary sea experiment conducted in a small bay, aimed at vali-

dating steady flow reconstruction and evaluating the system’s velocity, GPS, and drifting ac-

curacy. Section 9.3 addresses transient flow reconstruction in a larger domain, focusing on

how the measurement period impacts reconstruction accuracy. Lastly, Section 9.4 demonstrates

an integrated scenario combining transient flow reconstruction with autonomous UAV search,

highlighting the framework’s practical application in a search task.

9.1 Equipment and preparation

For experimental validation of the proposed methodology, in-situ sea surface velocity measure-

ments were obtained using commercially available equipment, as described in Section 3. To

support near-real-time reconstruction of flow fields across multiple submesoscale domains, the

measurement system was required to provide accurate and frequent data under varying spatial

and temporal conditions. Standard technologies, such as HF radar systems, are effective in fixed

coastal areas but lack mobility and are very expensive, while satellite-based alternatives offer

wide spatial coverage but come with high costs and insufficient temporal resolution for frequent

updates.

To tackle these issues, GPS-tracked drifters were chosen. These devices are floating buoys

that are equipped with sensors, which record and transmit surface velocity. Floating buoys are
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equipped with sensors that measure and transmit surface velocity data. This method offers a

mobile, scalable, and relatively low-cost solution for dynamic marine environments. Among

various options available, drifters that use GSM/GPRS communication stood out as especially

beneficial due to their easy deployment, accessible infrastructure, and affordable data plans.

However, the selection of these drifters is limited by availability and vendor-specific features.

Therefore, to address these limitations, particularly for reliable offshore communication in real

time, the Automatic Identification System (AIS) was selected as the primary method for ob-

taining measurements. This system is originally created for maritime navigation and vessel

tracking, but is now commonly used in many oceanographic applications [181]. AIS is actually

a mandatory maritime transponder network that continuously broadcasts vital vessel informa-

tion, such as identity, position, course, and speed, to nearby ships and shore stations. Its primary

purpose is to enhance safety, prevent collisions, and support vessel traffic management and mar-

itime domain awareness [182]. An example of possible AIS messages is shown in Table 9.1.

Table 9.1: Overview of AIS message types.

Message Description Example Applications
Type 1 Position Report Class A Live location data for Class A vessels
Type 5 Static and Voyage Information Identification and voyage specifics
Type 8 Binary Broadcast Message Custom data transmissions for specialized uses
Type 18 Standard Position Report Class B Live location data for Class B vessels
Type 22 Channel Management AIS frequency and channel coordination
Type 24 Static Data Key vessel identification details
Type 27 Long-Range Position Report Extended distance position updates

Although such AIS transponders are primarily designed as fixed-mounted equipment for

small vessels, they were repurposed for buoy-based oceanographic monitoring in this research.

Therefore, 14 units of the Alltek Marine Electronics Corp (AMEC) TB-560 [94] tracking bea-

con model were acquired and mounted on custom floating buoys. The combination of these

TB-560 beacons with the buoys created custom drifters equipped with GPS and surface veloc-

ity sensors. This method of monitoring sea surface velocity allows for analyzing drift patterns,

forecasting trajectories of drifting objects or persons, and identifying the most promising search

areas. Such information is particularly suitable for experimental validation of the proposed

methodology.

It should be noted that each tracking beacon is paired with a specific mounting bracket and

was therefore labeled sequentially from 1 to 14, as shown in Figure 9.1. Once a TB-560 beacon

is activated with a clear view of the sky, it typically obtains a GPS fix within one minute.
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Figure 9.1: Labeled AMEC TB-560 tracking beacons (left) and AMEC
Cypho-150 AIS receiver with VHF antenna (right), used for receiving AIS

transmissions.

Configuring the AMEC TB-560 involves programming parameters to tailor its operation for

the study. This includes setting the transmission frequency, vessel identification (MMSI and

name), and other settings to ensure accurate AIS broadcasts using AMEC software.

The last step in the equipment setup procedure involves receiving and decoding the AIS

signals broadcast by the AMEC TB-560 tracking beacons through an AIS receiver. For this

purpose, the AMEC Cypho-150 receiver was employed, as illustrated on the right side of Fig-

ure 9.1. It comes equipped with a VHF antenna and dedicated software. This receiver allows

us to accurately capture AIS transmissions from vessels within a range of approximately 40–50

nautical miles (70–90 km). Before deploying the tracking beacons at sea, it was essential to

confirm their signal transmission and verify reception with the receiver. Therefore, an initial

field test was conducted on land. The left part of Figure 9.2 shows AIS messages received from

multiple vessels within range, containing coded information including vessel position, identity,

course, speed, and other relevant data.

The decoding of these messages was performed using the Python library pyais [183], which

supports both encoding and decoding of AIS data, enabling the extraction of essential informa-

tion from the received messages. As the receiver captured AIS signals from vessels beyond the
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purchased tracking beacons, a Python-based filtering script was implemented to extract only

messages with MMSI numbers corresponding exclusively to the deployed beacons (lower part

of Figure 9.2).

Figure 9.2: AIS messages decoded using the Python pyais module

To adapt the AIS tracking beacons for monitoring sea surface velocity, custom buoy plat-

forms were developed to accommodate the mounting of the AMEC TB-560 devices. This

required procuring appropriate floating buoys, adding concrete weight to ensure stability, and

designing a drogue system aimed at reducing wave- and wind-induced motion. The necessary

materials for drifter construction, including mounting brackets and vertical support rods, were

acquired. A dedicated ground station was established, consisting of a laptop connected to the

AMEC Cypho-150 receiver to capture and process AIS signals from the beacons. After integra-

tion of all components, operational drifters capable of recording surface current velocities were

successfully assembled. The full workflow for drifter preparation, from initial planning to final

configuration, is illustrated in Figure 9.3.
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Figure 9.3: Overview of drifter setup: from design and acquisition to final
assembly

After the custom drifters were completed and their AIS communication settings configured,

buoyancy tests were conducted to verify that each unit floats stably and transmits positional

data reliably. Once these verifications were successfully completed, the system was ready for

deployment, marking the final step before initiating the first sea experiment.
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9.2 Plomin Bay flow experiment

For the preliminary sea experiment and drifter deployment, Plomin Bay, situated in the north-

ern Adriatic Sea on the east coast of the Istria peninsula, was selected. The bay covers ap-

proximately 3.5 km2 and was chosen for its relatively low maritime traffic and favorable study

conditions. Its sheltered waters provide a controlled environment that minimizes the effects of

external disturbances such as strong currents and heavy vessel movement, which could other-

wise interfere with data quality. Moreover, the bay’s compact size facilitates easier tracking and

retrieval of the drifters.

The experiment took place on April 15, 2024, and involved deploying drifters at specific

locations within the bay. Navigation followed a predefined route to ensure accurate placement

of the drifters. Figure 9.4 shows the actual deployment process, along with the workstation setup

consisting of a laptop and the AMEC Cypho-150 receiver. This receiver, equipped with a VHF

antenna and dedicated decoding software, allowed us to capture the AIS signals transmitted by

the tracking beacons.

Figure 9.4: Drifter deployment and AIS message reception using the
AMEC Cypho-150 receiver

To collect measurements from multiple locations within Plomin Bay, several drifters were

manually retrieved and redeployed at different positions. This method enabled us to analyze

spatial variations in the data and evaluate the effects of operating with fewer than the full set of

drifters. A total of eight drifter deployment configurations were carried out, each differing in

duration and the number of active drifters. A summary of the collected AIS messages is given in
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Table 9.2. Throughout all deployments, no issues occurred, such as loss of signal transmission

or drifters or colliding with the coastline.

Table 9.2: Overview of received AIS messages.

Configuration Active drifters Duration [min] AIS messages
1 8 40 1516
2 8 13 423
3 5 8 112
4 6 12 212
5 8 60 2538
6 5 3 108
7 7 11 470
8 5 21 525

Since drifter configuration 5 had the longest AIS transmission and produced the highest

number of received AIS messages, it was selected for a more detailed analysis. Figure 9.5 shows

the outcomes of this deployment. On the left side, the figure presents the AIS messages received

from each individual drifter, offering a clear view of their spatial distribution and the area they

covered within Plomin Bay at that time. On the right side, a steady flow field is reconstructed

from one representative time step during the same deployment. The flow inside the bay appears

streamlined, with no evident vortex structures. This outcome is expected given the shape of

Plomin Bay, which has a narrow and enclosed inlet where lateral movement is constrained.

The bathymetry also lacks significant features that typically promote eddy formation, further

contributing to the absence of vortices in the reconstructed flow field.

Figure 9.5: Results from deployment configuration 5 with 8 drifters in
Plomin Bay. Left: drifter trajectories with final positions marked. Right:

reconstructed steady surface flow from a single time step.
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It should be noted that, although the drifter trajectories inside the bay are longer than those

toward the open sea, the reconstructed velocities appear reversed. This is because the recon-

struction represents a single snapshot, while the trajectories correspond to moving drifters, high-

lighting the limitations of a steady-fit approach for that measurement instance.

Based on the reconstructed flow field shown in Figure 9.5, a comparison was made between

the observed drifter trajectories and those generated through Lagrangian particle advection us-

ing the steady surface velocity field. The goal was to assess how well a single time step recon-

struction can predict drifter motion over time. The outcome of this comparison is illustrated in

Figure 9.6, where darker colored lines represent the experimental drifter trajectories, while the

corresponding simulated trajectories advected on the reconstructed flow are shown in the same

colors with increased transparency for distinction.

Figure 9.6: Comparison of real and simulated drifter trajectories in Plomin
Bay, with dark lines showing observed paths and transparent lines showing

60-minute simulated paths from reconstructed flow.

As shown on Figure 9.6, a notable discrepancy exists between the real and simulated trajec-

tories, further confirming the transient nature of surface dynamics in the bay. A single steady

flow reconstruction cannot fully capture the evolving flow field over an extended period, such as

60 minutes. Nevertheless, the reconstruction visually aligns well with the drifter measurements
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at that specific time step, indicating that the approximation is satisfactory in the short term.

This suggests that employing more frequent flow reconstructions, for example, every 10 to 15

minutes, would likely improve the accuracy of simulated drifter trajectories. While the flow

is not expected to vary significantly within such short intervals, substantial changes do occur

over the course of an hour. Based on these findings, the next step in the experimental validation

was to conduct a deployment in a larger and more dynamic domain, where vortex formation

could occur and where high-frequency flow updates would more effectively improve trajectory

prediction.

9.3 Valun Bay flow experiment

Based on the findings from the first sea experiment, a second deployment was conducted to

further test the reconstruction algorithm’s predictive performance. This experiment took place

in Valun Bay on the island of Cres, located in the Kvarner region of the northern Adriatic

Sea. It involved more frequent flow field reconstruction over a significantly larger domain

capable of supporting mesoscale phenomena such as vortex formation. The area, spanning

approximately 5 km by 10 km, was chosen for its moderate and stable environmental conditions.

While it is more open and exposed than smaller enclosed bays like Plomin Bay, it still provides

sufficient natural boundaries to ensure safe deployment and retrieval operations, while enabling

the development of more complex and dynamic surface flows.

Given that velocity measurements are recorded every 10 seconds using satellite-based GPS,

a certain level of inaccuracy is inevitable due to signal noise and positioning limitations. These

short-term fluctuations and GPS noise can distort the drifter trajectories and result in misleading

velocity estimates. To reduce the impact of this error, a moving average filter was used on

the raw velocity data. For each drifter, the velocity was averaged over 1-minute windows.

This method smoothed out high-frequency noise and highlighted consistent movement patterns

caused by the underlying flow field.

Before initiating the deployment, it was necessary to design a strategy that would maximize

drifter coverage and provide a more complete depiction of surface circulation in Valun Bay.

For this purpose, the Halton sequence was employed, a low-discrepancy quasi-random method

that provides better spatial uniformity than purely random placement. This enabled a more

deliberate distribution of drifters throughout the domain, effectively reducing clustering and
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enhancing the mapping of flow patterns. Deployment timing was also planned in advance by

considering the vessel’s speed and the time required to release each drifter, enabling a well-

paced and efficient process. The finalized deployment coordinates obtained using this approach

are shown on the left side of Figure 9.7 while the right side of the figure illustrates the actual

deployment process, beginning with the loading of drifters at Cres Marina and continuing with

the departure toward the predefined release locations in Valun Bay.

Figure 9.7: Selected deployment locations across Valun Bay, generated us-
ing the Halton sequence for improved spatial uniformity (left). Field pho-
tos showing the preparation and release of drifters during the experiment

(right).

The deployment took place on September 22, 2024, with drifters distributed across the

55 km2 bay. The entire deployment process lasted around 1 hour and 30 minutes, with each

unit placed at a predetermined location. During the observation period, surface current and

wind forecasts were monitored using publicly available sources such as Windy [184], DHMZ

[185], and Windfinder [186]. The left side of Figure 9.8 shows the predicted surface flow direc-

tions based on these sources, which initially indicated southeastward movement.

However, shortly after deployment, the drifters began to move in a direction opposite to

what was forecasted. The right side of Figure 9.8 presents the recorded drifter trajectories.

Each path is colored individually to differentiate between units, with dots marking received

signal positions and balloon-shaped icons denoting the last known locations.
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Figure 9.8: Forecasted surface flow direction from publicly available pre-
diction sources (left). Drifter trajectories recorded during the September
22, 2024, deployment where colored lines indicating individual drifter

paths.

Although certain segments of the bay exhibit missing data, the general movement trends

of the drifters remain evident. These data gaps are likely caused by temporary signal interrup-

tions. Since the receiver AMEC Cyptho-150 with antenna was placed on a boat, potential issues

include signal loss due to increased distance between drifters and the receiver, as well as the

influence of sea conditions. In particular, waves may have intermittently obstructed the line of

sight between the antenna and the drifters, further contributing to reduced signal reliability. De-

spite these limitations, the deployment yielded valuable insights into drifter behavior and flow

conditions within the bay.

To replicate the observed drifter trajectories, a representative 2-hour segment of the total

4.5-hour experiment was analyzed. Out of the 14 deployed drifters, 12 were used in this analy-

sis since the remaining two emitted signals while still on the boat, which would have negatively

influenced the flow reconstruction. Based on robustness analysis from 8.3.1, drifter positions

were sampled every 900 seconds, assuming relatively stable flow conditions during each inter-

val.

As a first step, the method presented in [112] was applied, which considers a spatially uni-

form wind field superposed on a CFD-based flow model. However, this approach revealed
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discrepancies in the southern bay region, where the presence of the surrounding coastline con-

strains flow and reduces surface velocities. The artificially imposed wind led to overestimated

velocities in this semi-enclosed area, producing simulated trajectories that diverged significantly

from those recorded during the experiment.

To improve prediction accuracy within this complex flow environment, a fusion-based mod-

eling approach was adopted. The model incorporated new drifter data every Ts = 900 s and used

those measurements to update the reconstructed velocity field. This iterative process allowed

the model to adapt to evolving surface conditions and maintain consistency with real-world ob-

servations. The impact of this approach is illustrated in Figure 9.9, which presents the flow field

at both the beginning and end of the reconstruction period.

Figure 9.9: Flow reconstruction using the fusion model for the initial t =
0 s (A, B, C) and the final t = 7200 s (D, E, F) period.

The CFD simulation at t = 0 s within a bounded domain (A) shows reduced velocities in
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the southern region due to coastal confinement, with initial drifter positions marked by yellow

crosses. The flow from the open domain model at the same time (B) illustrates stronger north-

ern currents and weaker southern flow due to non-uniform conditions. By combining these, the

fusion model at t = 0 s (C) improves flow representation through integration of bounded and

open domain data. At t = 7200 s, the bounded domain CFD simulation (D) captures tempo-

ral changes in flow direction and magnitude based on drifter displacement, while the adjusted

open domain flow (E) aligns with updated drifter trajectories. The final reconstructed field at

t = 7200 s (F) demonstrates how fusion forcing effectively captures the temporal evolution of

surface currents.

Presented results highlight a major limitation of standard CFD simulations, as the bounded

domain simulation approach encounters difficulties in producing velocity fields that reflect real-

istic surface flow patterns, particularly in regions distant from the boundaries. On the other

hand, the open domain approximation offers a more flexible framework, introducing non-

uniform velocity fields that adapt more closely to observed data. As time progresses, the flex-

ibility of the fusion surrogate model enhances the model’s capacity to replicate actual surface

conditions.

To assess the reliability of the proposed approach, the drifter paths recorded during the

experiment were reconstructed using both the previous method with a fixed wind component

from [112] and the updated fusion-based approach. As illustrated in Figure 9.10, the compar-

ison reveals clear differences where the fusion model better follows the curvature of observed

trajectories, with several paths closely matching the measurements.
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Figure 9.10: The figure compares reconstructed drifter trajectories using a
fixed wind approach and the fusion model based on measurements every
900 seconds over two hours. Darker lines show experimental paths, while

transparent lines show reconstructed paths.

The fusion model approximation demonstrates a clear improvement, capturing the realistic

curvature of drifter trajectories more accurately, especially in the southern area of the domain.

In contrast, the fixed wind approximation tends to overestimate surface flow velocities in this

region, whereas the fusion model effectively addresses this problem. While many reconstructed

trajectories closely resemble the experimental paths, some differences still remain. To evaluate

the precision of the trajectory reconstruction, Figure 9.11 shows the reconstruction error, defined

as the distance in meters between the reconstructed and observed trajectories.

The results indicate that the steady fit flow model, which advects drifter positions using

only the initial reconstructed velocity field, exhibits a wide range of errors, reflecting unstable

trajectory predictions. The transient fit approach improves accuracy over longer durations by

incorporating updated measurements every 900 seconds. The fusion model further reduces tra-

jectory reconstruction errors, providing a closer match to the observed experimental data. This

comparison shows that both the steady and transient fit methods have considerable variability

in trajectory errors, with minimum and maximum values spanning a wide range throughout the

period. In contrast, the fusion approach, highlighted by the green-shaded area, displays much

narrower error bounds, indicating a more stable and reliable reconstruction of drifter trajecto-

ries.
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Figure 9.11: Comparison of reconstructed drifter trajectories using steady
fit, transient fit and fusion model approach.

9.4 Valun Bay search experiment

Following the successful second sea experiment, which provided valuable results for surface

flow reconstruction and drifter trajectory estimation, a third sea experiment, also conducted in

Valun Bay, aimed to simulate a realistic search scenario. To recreate such conditions, custom

targets were deployed along with drifters to transmit surface flow measurements, while UAVs

were tasked with searching for these targets.

Each of the four identical, custom-made targets was constructed from 0.5 x 0.5 meter

wooden boards painted yellow to maximize visibility. A one-meter metal rod with marking

tape was mounted at each target to further enhance visibility for surrounding vessels. Figure

9.12 shows an example of a deployed target alongside a drifter.

In order to locate the floating targets during the experiment, a commercially available UAV,

the DJI Matrice 210 v2, was employed. It was equipped with a DJI Zenmuse X5S RGB camera,

capable of capturing high-resolution images at 5280 x 2970 pixels with a 16:9 aspect ratio. An

example of the UAV used in the experiment is shown in Figure 9.13.

The idea of this search mission was to conduct autonomous flights using the methodology

described in 7.4, where the probability field was updated based on the reconstructed surface

flow. To allow autonomous control of the UAVs from a central PC, a dedicated communication

system that manages the exchange of commands and telemetry data was implemented. For any

flight operation, each UAV must be paired with a remote controller and a tablet running either
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Figure 9.12: Illustration of a deployed target in the experiment.

Figure 9.13: UAV used in this realistic search scenario.
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DJI’s official “Pilot” application or a custom app built on the DJI SDK. The UAV communicates

with the remote controller via radio signals, and the controller is linked to the tablet through a

wired connection.

To enable this communication, a custom Android application was developed. This applica-

tion connects to the PC server, which generates flight commands and sends them to the UAV.

Meanwhile, the UAV continuously transmits status and position updates back to the server,

enabling real-time two-way communication. The complete communication architecture is il-

lustrated in Figure 9.14.

Figure 9.14: Illustration of the communication setup between the PC and
UAV [187].

To validate whether targets were successfully located, UAVs captured aerial images every

three seconds to detect floating targets, which was the maximum frequency permitted by DJI

software constraints. For this purpose, a machine learning model was employed, using a dataset

of 522 aerial images collected at altitudes between 60 and 100 meters.

Object detection relied on the YOLOv8 algorithm, initialized with the yolo8l.pt model, pre-

viously trained on the COCO dataset. The key metric considered is recall, which measures the

proportion of actual targets correctly detected by the model. This metric, used to construct the

sensing function, yields a value of µs = 0.68 with the default detection confidence threshold of

0.001. Figure 9.15 illustrates detections of sea targets, including the corresponding confidence

values with labels.

Figure 9.15: Examples of sea target detections with corresponding confi-
dence levels.

To implement the proposed search methodology, drifter data processing, flow field recon-

struction, and UAV operations were integrated within a dedicated search framework, as illus-

trated in Figure 9.16.
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Figure 9.16: Overview of the search framework integrating drifter data
processing, flow field reconstruction, and UAV operations to locate objects

at sea.

The process starts with a Smart Sensor (AMEC TB560) transmitting real-time information,

including its MMSI, location, speed, and heading, via VHF AIS messages 18 and 24. This data

is received by a laptop with an antenna receiver and stored as a drifter measurements file in a

Dropbox folder. At the same time, a workstation processes the raw data, applies the Flow-fit

approach for Ts, and reconstructs the surface flow field.

The reconstructed flow field, along with a diffusion coefficient calculated from the differ-

ence between estimated drifter positions and newly received measurements, is then provided

to another laptop running a coupled OpenFOAM and HEDAC model. This model advects the

probability field using the reconstructed flow and diffusion coefficient through scalarTransport-

Foam. The resulting probability field guides the UAV during the visual search, directing it to

areas of interest identified by HEDAC in order to locate the target.

To carry out this search experiment, which took place on June 04, 2025, the team was

organized into two groups: one on the vessel, responsible for deploying targets and drifters, and

one on land, handling drifter data processing, flow field reconstruction, and UAV operations. In
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the previous sea experiment, gaps in drifter data transmission occurred because the receiving

antenna was located on the vessel, where signals were frequently interrupted due to distance and

wave motion. To address this, the AIS reciever is positioned on an elevated land location rather

than on the moving vessel. Additionally, launching and recovering UAVs from the boat was

considered highly risky because the vessel was constantly moving. If a UAV needed to return to

its takeoff point due to an issue, it would attempt to land at the original launch location, which

would no longer be under the UAV due to the vessel’s motion, creating a significant safety risk.

Therefore, the land group operated from the base station on the central part Valun Bay’s eastern

coast, at an elevation of 85 m, offering an unobstructed view of the search area and reliable

signal coverage from both UAV and drifters. Figure 9.17 provides a view of the experiment

base station and the area around Valun Bay.

Figure 9.17: Base station with a view over the Valun Bay search area.

The search experiment began with the deployment of 12 drifters in the domain, with 4 evenly

spaced throughout the bay, 5 placed near the target site to improve the accuracy of the flow field

reconstruction, and the remaining 3 used solely for observational purposes. The area for target

deployment was defined within a circle of 300 m radius, located approximately 1.4 km to the

west of the base station. Four targets were arranged in a cross formation, with each positioned

roughly 120 m from the central point. The deployment of targets was completed at 10:15 AM,

marking t = 0, with all targets successfully placed within the designated area. An example of
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a deployed sea target along with the corresponding reconstructed flow at that time is shown in

Figure 9.18.

Figure 9.18: The search area with the reconstructed flow field, deployed
target positions, and undetected target probability field at t=0.

To simulate a realistic search scenario, in which targets drift from their initial locations, a

delay in the search start was introduced. Since the targets were not equipped with GPS devices,

their positions after the 30-minute delay were estimated using Lagrangian particle advection as

described in (6.10). Figure 9.19 depicts the estimated target positions at the start of the search,

the estimated trajectories during the 30-minute delay, and the advected probability of undetected

targets.

The actual search began with the UAV being manually guided to the offshore starting lo-

cation within the search domain, after which it proceeded autonomously. Autonomous control

was then applied with a constant velocity of 8 m/s and a constant altitude of 75 m. For proba-

bility area exploration, the sensing interval ∆ts and the control interval ∆t were set to 3 s, while

the HEDAC parameters were assigned values of α = 5000 and β = 0.1. During this mission,

the probability of an undetected target within the UAV’s Field of View (FOV) was discretely
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Figure 9.19: The reconstructed flow, probability of undetected targets, and
estimated target positions at the start of the search, including their esti-

mated trajectories after the 30-minute delay.

reduced at each captured image, based on the recall of the detection model. The probability

field is therefore updated as:

si+1 =


si(y)(1−µs), if y ∈ UAV FOV,

si, otherwise.
(9.1)

Following the completion of the search, the captured images were analyzed using the de-

tection model to identify targets. Each detected target’s position was calculated based on the

UAV’s location at the time of image capture and the position of the target label within the

image. Figure 9.20 illustrates the search outcome, showing the UAV trajectory, locations of

detected targets, estimated target positions and trajectories from t = 0, as well as the probability

distribution of undetected targets.
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Figure 9.20: The reconstructed flow, probability of undetected targets, the
UAV trajectory, detected target locations, and the estimated target positions

and trajectories at the end of the search.

It should be noted that detections and their recorded positions occurred at different times

throughout the search and therefore may not exactly match the estimated target positions shown

for the final state of the search. The few detections located on the right are assumed to corre-

spond to the rightmost target, even though its estimated trajectory does not perfectly align with

these observations. Such a discrepancy indicates that the flow field approximation contains

inherent inaccuracies, which are accounted by using an adaptive diffusion coefficient. These

inaccuracies are quantified by the Ed error of the 9 drifters included in the optimization process,

the E f error of the 3 drifters placed along the targets only for observation, and the corresponding

diffusion coefficient, as presented in Figure 9.21.

The use of an adaptive diffusion coefficient confirms that the diffused probability field com-

pensates for uncertainties in both the flow reconstruction and the GPS measurements (positional

uncertainty up to 2.5, as specified by manufacturer). As the UAVs explored these areas, they

successfully detected targets multiple times, demonstrating that the diffusion-based approach

effectively accounts for both modeling errors and measurement limitations.

Since the deployed targets lacked GPS trackers, it was not possible to reliably associate
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Figure 9.21: Reconstruction errors based on drifter velocity and position,
from the beginning to the end of the search.

detections with specific targets. Nevertheless, by examining the estimated target trajectories

together with the detected locations and assuming that each detection corresponds to the closest

trajectory, it is clear that all targets were successfully detected. The probability field closely

matched the target distribution, and at least one target was detected outside its estimated trajec-

tory, providing further confirmation of the effectiveness of the adaptive diffusion approach.
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10 LIMITATIONS AND DISCUSSION

This methodology combines two simplified two-dimensional steady flow models to approxi-

mate submesoscale sea surface flow, using a quasi-steady approach in which sea surface velocity

measurements are continuously updated to improve the accuracy of the reconstructed velocity

field. This approach serves as a basis for the advection of particles or objects, as well as passive

scalar transport and diffusion, making it suitable for modeling and predicting target probability

density dynamics.

Because the model needs to remain fast for near real-time applications, an appropriate res-

olution of the computational mesh is crucial, as it strongly affects computation time. Since

refining the mesh offers little advantage in this context, a coarse grid was chosen to reduce

computational cost, even though it limits the ability to capture fine-scale details. Mesh sensi-

tivity tests additionally confirmed stable convergence and provided clear error margins. As a

result, the model is less capable of resolving localized flow structures, which can be critical

in coastal settings or when precise trajectory prediction is required. Although the use of finer

meshes is not excluded, it is important to acknowledge the numerical trade-offs and the sig-

nificant increase in computational demand they involve. Additionally, the model deliberately

omits factors such as bathymetry, the vertical component of flow, transient effects, and the Cori-

olis force to maintain computational efficiency. These omissions are addressed by the fusion

model through an open-domain flow approximation, thereby balancing computational speed

with predictive accuracy. The two-dimensional flow assumption constrains the model’s appli-

cability in scenarios where vertical flow structures substantially influence horizontal transport.

Furthermore, although innovative, the approach may produce unrealistic velocity patterns near

the coastline. While similar anomalies have been documented in similar studies, they can affect

the reliability of predictions in near-coastline regions. It is important to emphasize that, as a

surrogate model, the proposed method is not designed to provide absolute accuracy, but rather a

level of precision acceptable within the established computational and operational constraints.

One of the main limitations of the proposed approach is that, over time, it can accumulate
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errors. Trajectory discrepancies arising from imperfections in the velocity field are not cor-

rected between optimization windows, causing deviations to grow progressively and leading

to increasingly divergent predictions. Moreover, the methodology has only been evaluated for

velocities up to 1.5 m/s, leaving its performance under higher or more variable flow conditions

untested. It should also be noted that in smaller domains with faster flows, passive drifters (mea-

surement points) may exit the area quickly, reducing the available reference data and potentially

affecting the accuracy of the reconstructed flow field.

Since the simplified two-dimensional quasi-steady flow model is unable to fully replicate

transient flow dynamics and tends to accumulate errors over time, an adaptive diffusion co-

efficient is employed to govern scalar transport. This coefficient is updated according to the

discrepancies observed between the reconstructed velocity field and the actual flow, assesed

by recoreded and simulated motion of drifters, thereby compensating for inaccuracies of the

flow reconstruction. Although this adjustment improves the ability to capture the referent scalar

probability distribution, it often leads to a wider spreading of the scalar, enlarging the area that

must be considered and potentially including regions with very low probability. The extent of

this spreading is influenced by both the magnitude and spatial pattern of reconstruction errors,

which can result in deviations from the true physical dispersion and dilution of the scalar.

To test the proposed methodology under realistic conditions, three separate sea experiments

were carried out, each designed to explore different aspects of the approach: steady flow recon-

struction, the quasi-steady updating method, and a realistic search scenario. The preliminary

experiment, conducted in Plomin Bay, offered valuable insights into surface velocity patterns,

drifter dynamics, buoyancy effects, and small-scale variability of the flow. It also highlighted

the limitations of relying on a steady reconstruction based on a single time step, as it was un-

able to accurately predict drifter movements, confirming the complex underlying behavior of

the surface currents. In this relatively small bay, signal transmission remained largely reliable,

posing minimal issues for data collection. The second sea experiment, conducted in Valun

Bay, covered a much larger area and revealed additional challenges, including interruptions in

data transmission and decreased GPS reliability. These problems were addressed by applying

interpolation to fill missing measurements and a moving average technique to reduce GPS po-

sitional noise. Despite these complications, the reconstructed velocity fields closely matched

observed flow patterns, demonstrating the robustness of the method within an acceptable mar-

gin of error. A fundamental aspect of this approach is that measurements are updated at each
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measurement period, improving the optimization process while utilizing the progressive field

initialization and search narrowing. This relies on the assumption that the surface flow does

not change dramatically between updates, allowing computations to be carried out much more

quickly, especially in larger or more complex domains.

Nevertheless, this method carries a risk of guiding the optimization toward suboptimal so-

lutions, since each scenario begins with the internal field taken from the current best-estimated

flow. Even without progressive field initialization, the optimization can still perform effectively.

Adding numerical complexity, however, can limit the time available for real-time optimization,

which directly affects the precision of flow reconstruction. Examining experimental drifter

paths reveals that the method cannot capture every detail of the flow, yet it still produces reli-

able trajectory approximations. Challenges also emerge when measurement points are sparse,

complicating error evaluation and making it difficult to determine which optimized outcome

best represents reality. The issue becomes more pronounced when drifters are concentrated in a

small region, restricting the ability to accurately reconstruct the flow across a broader domain.

Thus, maintaining a balance between computational simplicity and sufficient optimization time

is essential.

To address the challenges observed in the first two sea experiments and to test the methodol-

ogy in a realistic search scenario with UAVs, a base station was positioned on elevated ground

onshore, where all control, signal reception, and UAV takeoffs were conducted. This setup

eliminated the signal gaps that occurred when the base station was on a boat in the second

experiment, while also making operations such as UAV battery changes much easier, which

would have been very difficult at sea. Despite this improvement, signal limitations from the

UAVs themselves and the time spent before starting the search still significantly affected the

coverage and detection of target objects. This experiment also confirmed that the shape and

buoyancy of floating objects strongly influence drift behavior. Acquired sensors were placed

on a floating buoy with a submerged drougue, while the target objects consisted of 0.5 x 0.5

meter wooden boards with flags, which were more strongly affected by purely surface currents.

Consequently, the drift of sensors and the targets was not perfectly identical, as evidenced by

their dispersal patterns over time. One potential improvement is the deployment of instruments

capable of measuring the relative influence of wind, surface currents, and sub-surface flows at

any given moment, so that the flow reconstruction can account for differences in object shape

and buoyancy.
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Overall, these experiments demonstrate the potential of the proposed methodology to reli-

ably approximate surface flow and predict object movement under realistic conditions, while

also highlighting areas for refinement, particularly in accounting for variable object properties

and optimizing UAV-assisted search operations.
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11 CONCLUSION

Reliable approximation of sea surface velocity fields is essential in tasks such as search and

rescue or tracking the dispersion of pollutants, where modeling the advection of passive scalars

must be performed in real or near real time. Achieving this, however, remains challenging

because of the highly variable nature of oceanic flows. Existing approaches can capture certain

aspects effectively, but they often fall short in representing the detailed dynamics of the flow and

tend to require considerable computational resources, which limits their use for time-sensitive

applications.

Therefore, this thesis proposes an ad-hoc data-driven framework for approximating sea sur-

face velocity fields based on scattered drifter measurements. The approach relies on a two-

dimensional surrogate fusion model coupled with an optimization procedure that adapts bound-

ary conditions to ensure consistency with observed data. By deliberately omitting influences

such as wind, tides, and temperature variations, the method emphasizes computational effi-

ciency, offering a practical tool for real-world scenarios where assuming quasi-steady flow is

sufficient for forecasting advection processes, including pollutant transport and object drift.

Based on the results, several conclusions can be drawn:

• The framework reliably reconstructs the flow field across the entire domain, including

regions without direct measurements, reducing the need for dense data collection and

high computational cost.

• Coarse numerical meshes can be used, enhancing computational efficiency while still

capturing essential flow patterns.

• A limited number of strategically placed measurements is sufficient for accurate recon-

struction of sea surface velocity.

• Transient patterns can be reproduced by updating flow fields at regular intervals, without

the need for fully time-dependent simulations.
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• Passive scalar advection with compensating diffusion accounts for GPS errors, flow re-

construction inaccuracies, and other uncertainties, enabling dynamic updates of the prob-

ability distribution around the target location.

• The methodology was validated through three sea experiments, addressing practical chal-

lenges such as drifting dynamics, data transmission, computational framework, and real-

istic search scenarios with deployed targets.

Nevertheless, some limitations remain. By simplifying environmental influences such as

wind, tides, and temperature variations, the method may not fully capture highly complex or

three-dimensional flow structures, particularly in regions where such effects play a dominant

role. Additionally, the framework assumes predominantly passive target motion, which may

not accurately represent situations where objects or individuals actively navigate or swim, po-

tentially affecting the predictive performance. The accuracy of flow reconstruction is also in-

fluenced by the number and allocation of measurement points, meaning that poorly distributed

or insufficient data can reduce the fidelity of the reconstructed field. Finally, the assumption of

quasi-steady flow may limit the method’s applicability in rapidly evolving or highly turbulent

scenarios, where temporal variability is significant and reconstuction of one time frame may not

adequately describe the dynamics of the system.

Building on these findings, several directions for future research can further enhance the

framework:

• Develop adaptive measurement deployment strategies to optimize data collection.

• Improve guidance strategies, detection models, and real-time data assimilation to increase

operational efficiency and success rate.

• Combine the current framework with higher-fidelity simulations or complementary mea-

surement systems to extend applicability to more complex or rapidly changing environ-

ments, while keeping in mind real-time applicability and computational efficiency

The results from both simulations and field experiments confirm that the approach effec-

tively supports real-time search operations, demonstrating a practical balance between compu-

tational efficiency and adaptability, and confirming the hypothesis that limited measurements

suffice for accurate reconstruction of the sea surface flow field and prediction of target proba-

bility dynamics.
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[122] V. Kovačević, M. Gačić, I. M. Mosquera, A. Mazzoldi, and S. Marinetti, “Hf radar ob-

servations in the northern adriatic: Surface current field in front of the venetian lagoon”,

Journal of marine systems, vol. 51, no. 1-4, pp. 95–122, 2004.

[123] M. Berta, L. Ursella, F. Nencioli, A. M. Doglioli, A. A. Petrenko, and S. Cosoli, “Sur-

face transport in the northeastern adriatic sea from fsle analysis of hf radar measure-

ments”, Continental Shelf Research, vol. 77, pp. 14–23, 2014.

[124] P. Higuera, J. L. Lara, and I. J. Losada, “Simulating coastal engineering processes with

openfoam R©”, Coastal Engineering, vol. 71, pp. 119–134, 2013.

[125] J. D. Anderson, J. Wendt, et al., Computational fluid dynamics. Springer, 1995, vol. 206.
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