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ABSTRACT

This dissertation presents a comprehensive computational investigation of primary and bio-

inspired serrated trailing edge airfoils, employing multiple methodological and numerical ap-

proaches within computational fluid dynamics to evaluate their aerodynamic and aeroacoustic

characteristics.

The experimental validation component conducted in a wind tunnel facility expands the

NACA 0012 dataset for moderate Reynolds number flows (Re = 191,000) and low Mach num-

bers (Ma = 0.057), across angles of attack ranging from 2° to 8°. A novel hybrid Lattice

Boltzmann Method (LBM) - Large Eddy Simulation (LES) approach, incorporating one-way

coupling with the Generalized Wall Function, D3Q27 velocity set, and a modern cumulant col-

lision operator, validates computational predictions against experimental measurements with

pressure coefficient deviations below 0.076 based on RMSE statistics.

The research then focuses on the implementation of robust LES on an airfoil’s serrations,

which were performed at various Reynolds numbers from 100,000 to half a million and a highly

incompressible Mach number of 0.25 at a 5° angle of attack. At a Reynolds number of 250,000,

a detailed analysis revealed that adding serrations is advantageous for enhancing the airfoil’s

boundary layer stability and reducing noise with only a minor compromise in aerodynamic ef-

ficiency that improves over time and at higher Reynolds numbers. Analysis of the aerodynamic

and aeroacoustic influences on the flow reveals that trailing edge sound waves trigger the break-

down of the laminar separation bubble on the primary trailing edge airfoil. On the other hand,

the serrations promote an earlier transition of the turbulent boundary layer without forming a

laminar separation bubble. Across higher Reynolds numbers, the benefits of the serrated trailing

edge persisted, with earlier noise generation and boundary layer transition enhancing the non-

dimensional force in the y-direction. Overall, adding serrations enhances boundary layer sta-

bility and reduces trailing edge noise during both the acceleration and post-acceleration phases.

Likewise, it achieves consistent noise reductions of 3-8 dB across all examined Reynolds num-

bers while simultaneously maintaining acceptable aerodynamic performance.
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Finally, an advanced two-way coupling approach is implemented, incorporating the Gener-

alized Law of the Wall, to enable high-fidelity simulations that capture specific physical phe-

nomena. The finite-span wing analysis reveals the wing tip vortex’s influence on boundary

layer transition, extending from the wing tip and affecting overall flow development patterns, in

addition to shear layer instability and boundary layer transition mechanisms.

The integrated methodological framework successfully elucidates detailed aerodynamic and

aeroacoustic interactions for both infinite and finite-span configurations with triangular and

sinusoidal serrations across acceleration and post-acceleration phases, demonstrating consistent

benefits of serration implementation through noise reduction and stability improvements for

moderate Reynolds number applications.

Keywords: Lattice Boltzmann Method, Serrated Trailing Edge, Large Eddy Simulation, Com-

putational Fluid Dynamics, Aerodynamics, Aeroacoustics, Boundary Layer Transition, Trailing

Edge Noise
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PROŠIRENI SAŽETAK

Ova disertacija predstavlja sveobuhvatno računalno istraživanje primarnih i bioinspiriranih nazubljenih

aeroprofila s pratećim rubom, koristeći više metodoloških i numeričkih pristupa unutar raču-

nalne dinamike fluida za procjenu njihovih aerodinamičkih i aeroakustičkih karakteristika.

Eksperimentalna komponenta validacije provedena u zračnom tunelu proširuje skup po-

dataka NACA 0012 za umjerene tokove Reynoldsovog broja (Re = 191,000) i niske Machove

brojeve (Ma = 0.057), preko upadnih kutova u rasponu od 2° do 8°. Novi hibridni pristup Lattice

Boltzmannove metode (LBM) - simulacije velikih vrtloga (LES), koji uključuje jednosmjerno

spajanje s generaliziranom zidnom funkcijom, skupom brzina D3Q27 i modernim operatorom

kumulativnog sudara, potvrd̄uje računalna predvid̄anja u odnosu na eksperimentalna mjerenja s

odstupanjima koeficijenta tlaka ispod 0.076 na temelju RMSE statistike.

Istraživanje se zatim usredotočuje na implementaciju robusnog LES-a na nazubljenjima

krila, što je provedeno pri različitim Reynoldsovim brojevima od 100,000 do pola milijuna i

visoko nestlačivom Machovom broju od 0.25 pod upadnim kutom od 5°. Pri Reynoldsovom

broju od 250,000, detaljna analiza otkriva da je dodavanje nazubljenja korisno za poboljšanje

stabilnosti graničnog sloja krila i smanjenje buke uz samo manji kompromis u aerodinamičkoj

učinkovitosti koja se poboljšava s vremenom i pri višim Reynoldsovim brojevima. Analiza

aerodinamičkih i aeroakustičkih utjecaja na strujanje otkriva da zvučni valovi sa pratećeg ruba

pokreću raspad laminarnog separacijskog mjehura na krilu s primarnim pratećim rubom. S

druge strane, nazubljenja potiču raniji prijelaz ka turbulentnom graničnom sloju bez stvaranja

laminarnog separacijskog mjehura. Pri višim Reynoldsovim brojevima, prednosti nazubljenog

pratećeg ruba su se zadržale, s ranijim generiranjem buke i prijelazom graničnog sloja koji po-

jačavaju bezdimenzionalnu silu u y-smjeru. Sveukupno, dodavanje nazubljenja poboljšava sta-

bilnost graničnog sloja i smanjuje buku stražnjeg ruba tijekom faze ubrzanja i nakon ubrzanja.

Isto tako, postiže konzistentno smanjenje buke od 3-8 dB za sve ispitivane Reynoldsove brojeve

uz istovremeno održavanje prihvatljivih aerodinamičkih performansi.

Na kraju, implementiran je napredni pristup dvosmjernog spajanja, koji uključuje general-

izirani zakon zida, kako bi se omogućile visokovjerne simulacije koje obuhvaćaju specifične

IV



fizičke pojave. Analiza krila s konačno definiranim rasponom otkriva utjecaj rubnog vrtloga

krila na prijelaz graničnog sloja, koji se proteže od ruba krila i utječe na ukupne obrasce razvoja

strujanja, uz nestabilnost sloja smicanja i mehanizme prijelaza graničnog sloja.

Integrirani metodološki okvir uspješno objašnjava detaljne aerodinamičke i aeroakustičke

interakcije za konfiguracije beskonačnog i konačnog raspona s trokutastim i sinusoidalnim

nazubljenjima tijekom faza ubrzanja i nakon ubrzanja, demonstrirajući dosljedne prednosti im-

plementacije nazubljenja kroz smanjenje buke i poboljšanja stabilnosti za uvjete strujanja s

umjerenim Reynoldsovim brojem.

Ključne riječi: Lattice Boltzmann metoda, nazubljeni prateći rub krila, simulacije velikih vrt-

loga, računalna dinamika fluida, aerodinamika, aeroakustika, prijelaz graničnog sloja, buka

pratećeg ruba krila
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1 INTRODUCTION

Computational fluid dynamics (CFD) research faces ongoing challenges in achieving both ac-

curacy and efficiency in flow simulations. Traditional CFD methods often require significant

computational resources and time, particularly when analyzing complex geometries or unsteady

flow phenomena. Meanwhile, bio-inspired designs have emerged as a promising approach to

address aerodynamic and aeroacoustic challenges. Serrated trailing edges, inspired by the silent

flight of owls, have shown remarkable potential for simultaneously improving aerodynamic per-

formance and reducing noise generation. Modern high-performance computing has enabled the

investigation of these complex bio-inspired configurations using advanced numerical methods.

This dissertation addresses two equally important research areas: validating advanced com-

putational methods for efficient CFD simulations and investigating the aerodynamic benefits of

serrated trailing edge airfoils. The research demonstrates how the Lattice Boltzmann Method

(LBM) can achieve high-fidelity results while leveraging modern computational hardware, and

explores the impact of serrated trailing edges on aerodynamic efficiency and control flow sepa-

ration. These bio-inspired configurations exhibit complex flow physics that necessitate sophis-

ticated numerical approaches to fully comprehend their mechanisms. By combining advanced

computational tools with bio-inspired design analysis, this work provides insights into both the

development of more efficient simulation methods and the understanding of the intricate flow

phenomena that make serrated airfoils effective for aerodynamic applications.

1.1 Research motivation

While conventional CFD methods are widely used to solve a range of engineering problems,

each method has its own limitations and drawbacks. Generally, more detailed analyses require

significantly greater computational time and resources. The rapid growth of High Performance

Computing (HPC) [1] has enabled the development of advanced turbulence models and CFD ap-

proaches, ranging from Reynolds-Averaged Navier–Stokes (RANS) to Large Eddy Simulation

(LES), and ultimately to Direct Numerical Simulation (DNS). These macroscopic approaches
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are not the only means of addressing physical problems. Figure 1.1 illustrates the spectrum of

methods used to describe physical phenomena with CFD.

Figure 1.1: Classification of CFD methods across different scales, highlighting the mesoscopic
position of the Lattice Boltzmann Method and the role of high-performance computing in en-
abling higher-fidelity turbulence modeling approaches.

This dissertation focuses primarily on the aerodynamic analysis of airfoils. Therefore, a

microscopic approach would be unnecessarily detailed for the scope of this work. Instead, a

mesoscopic approach offers a balanced perspective. Several recent studies, about which more

details are revealed in Section 1.3, have identified the Lattice Boltzmann Method as a promising

mesoscopic technique, especially for applications involving low Mach and Reynolds numbers.

LBM’s ability to leverage advanced GPUs enables high-fidelity results with reduced computa-

tional time [2]. The current state of LBM and its supporting database motivates further explo-

ration and enhancement of LBM for a wider range of applications, which will be investigated

in this dissertation.

From a methodological standpoint, the study begins with classical airfoils, using aerody-

namic analysis for validation against experimental data and benchmark cases from the liter-

ature. Beyond methodology, the focus extends to serrated trailing edge airfoils, which have

garnered significant attention in recent years for their innovative design. Additionally, there has

been considerable growth in bio-inspired airfoil analysis, which can be applied across various

industries. This dissertation will emphasize its potential application to the aircraft industry. The

primary interest in this field is centered on aeroacoustics and noise reduction. At the same time,

other physical phenomena that have been underexplored in the literature have been explored in

correlation with sound waves throughout this dissertation.
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In summary, this research is driven by two primary motivations: (1) to implement advanced

numerical methods for solving aerodynamic problems of airfoils, and (2) to analyze newly

developed bio-inspired airfoils to assess their impact on aeroacoustic and aerodynamic perfor-

mance.

1.2 Hypothesis and Aims of the Dissertation

This dissertation is based on two main hypotheses: one from a methodological numerical per-

spective and the other from an aerodynamic design perspective. The hypotheses are as follows:

(1) The application of advanced mesoscopic numerical methods, such as the Lattice Boltz-

mann Method (LBM), will provide accurate predictions of aerodynamic behavior for airfoil

geometries at medium-range Reynolds numbers, as validated against experimental data; and

(2) Serrated trailing edge (STE) airfoils will demonstrate a significant reduction in aeroacoustic

noise compared to a primary straight-edge airfoil, with minimal compromise to aerodynamic

efficiency at various medium-range Reynolds numbers and moderate angle of attack.

One of the primary aims of this dissertation is to validate the LBM against experimental data

for incompressible flow around an airfoil at medium Reynolds numbers, a regime not exten-

sively explored in the literature due to previous LBM limitations. These limitations will be ad-

dressed through methodological upgrades introduced in detail in Subsection 1.3. Furthermore,

this work aims to investigate the physical phenomena associated with STE and primary trailing

edge (PTE) airfoils, such as trailing edge noise, shear-layer noise, boundary layer instabilities

(including laminar, transitional, and turbulent regions), laminar separation bubbles, and aero-

dynamic efficiency. The study will also consider the acceleration and post-acceleration phases

of both airfoil types, with potential applications for aircraft take-off. Finally, this dissertation

will provide a detailed analysis of the interdependence between aerodynamic and aeroacoustic

performance.

1.3 Background and Literature Review

This literature review examines the current state of research in the two primary areas addressed

by this dissertation: advanced computational fluid dynamics methods and bio-inspired airfoil

configurations. The review is organized into three complementary sections that progressively

3



build the theoretical foundation for this work. The first subsection examines the development

and validation of the Lattice Boltzmann Method in aerodynamic applications, highlighting its

advantages over traditional CFD approaches and recent advancements in collision operators and

turbulence modeling. The second subsection reviews the growing body of research on serrated

trailing edges, examining both their aerodynamic performance benefits and noise reduction

mechanisms, with particular attention to the complex flow phenomena they generate. The final

subsection synthesizes these areas by reviewing the emerging field of LBM applications in

bio-inspired airfoil analysis, highlighting the unique capabilities of mesoscopic methods for

capturing the intricate flow physics associated with serrated configurations. Together, these

sections establish the scientific foundation for the methodological choices and research gaps

addressed throughout this dissertation.

1.3.1 Lattice Boltzmann Method Applications in Aerodynamic Simula-

tions

Modeling complex physical phenomena in fluid dynamics has seen significant advancements

with the introduction of the Lattice Boltzmann Method (LBM), which is increasingly favored by

engineers and scientists for its computational efficiency and scalability, particularly on modern

high-performance computing architectures such as GPUs [1–3]. Despite its growing popular-

ity, one of the ongoing challenges remains the validation of numerical results, where a balance

must be struck between computational simplicity, speed, and accuracy. While experimental

analyses offer robust validation, they are often more costly and time-consuming than numeri-

cal simulations. Nevertheless, calibrating numerical models with experimental data is essential

to ensure that simulations accurately represent real-world physical phenomena [2, 4]. Tradi-

tionally, CFD has relied on macroscopic approaches, such as the finite volume method (FVM),

finite element method (FEM), and finite difference method (FDM), which directly solve the

Navier-Stokes equations to obtain variables like pressure and velocity [5, 6]. However, with

the rapid advancements in computational hardware, most notably general-purpose GPU com-

puting, alternative methods such as LBM and Smoothed Particle Hydrodynamics (SPH) have

gained traction due to their inherent parallelism and flexibility [2, 3, 7].
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Unlike conventional CFD methods, LBM operates at the mesoscopic scale, solving a Boltz-

mann equation to model the statistical behavior of fluid particle populations [8, 9]. This ap-

proach enables LBM to efficiently handle complex boundary conditions and multiphase or mul-

tiscale flows. The foundational work of McNamara and Zanetti [10], as well as Higuera and

Jiménez [11], established LBM as a viable CFD technique, and subsequent developments have

expanded its theoretical and practical scope. The evolution of LBM from a theoretical curiosity

to a practical engineering tool has been particularly pronounced in aerodynamic applications,

where its natural ability to capture both flow dynamics and acoustic phenomena simultaneously

has proven invaluable [2, 9].

Recent research has demonstrated the suitability of LBM for external aerodynamic applica-

tions, including the simulation of flow around airfoils and complex geometries across a range of

Reynolds numbers [12–15]. For instance, Imamura et al. [12] applied a two-dimensional LBM

with a D2Q9 velocity set to model flow around a NACA 0012 airfoil at Reynolds numbers up

to 500,000, validating their results against both experimental data and traditional CFD codes.

The integration of the Immersed Boundary method with LBM (IB-LBM) has further enhanced

the method’s ability to model complex, moving boundaries, as shown in studies by Peng et al.

[13], Wu and Shu [14], and Qiu et al. [15]. Furthermore, IB-LBM has been modified through

the bounce-back method by Wang et al. [16]. These advancements have enabled accurate sim-

ulations of both incompressible and compressible flows over airfoils, with improvements in

boundary condition enforcement and computational efficiency.

A key area of ongoing development in LBM is the selection of collision operators and

turbulence modeling strategies. The single-relaxation-time Bhatnagar–Gross–Krook (BGK)

operator remains widely used for its simplicity [17–19], but alternative formulations such as

the Multiple Relaxation Time (MRT) operator [20, 21] and cascaded or cumulant-based oper-

ators [22, 23] have been introduced to enhance numerical stability and accuracy, particularly

at higher Reynolds numbers and in turbulent regimes. Turbulence models such as Reynolds-

Averaged Navier–Stokes (RANS) [24, 25], Large Eddy Simulation (LES) [26, 27], and hybrid

approaches have also been successfully coupled with LBM to capture a wide spectrum of flow

phenomena.

Validation studies confirm the reliability of LBM for simulating aerodynamic flows over

airfoils at both low and high Reynolds numbers. For example, Reyes Barraza and Deiterding

[28] extended LBM to non-uniform grids for various angles of attack and low Reynolds number
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flows (up to 12,000), using the BGK collision operator and D2Q9 velocity set. In contrast, Zhuo

et al. [29] and Hejranfar and Saadat [30] demonstrated LBM’s capability for high Reynolds

number simulations using D2Q13 and D2Q9 velocity sets, respectively. Recent work has also

emphasized the importance of three-dimensional simulations: Leveque et al. [31] used a D3Q19

lattice and BGK operator for low Reynolds number 3D flow predictions, while Degrigny et

al. [32] and Wilhelm et al. [33] explored LBM-LES and LBM-RANS approaches for higher

Reynolds number airfoil flows.

Overall, LBM has developed into a robust and versatile tool for aerodynamic simulations.

Its ongoing advancements, particularly in collision operators, turbulence modeling, and bound-

ary condition treatments, position LBM as a promising alternative to traditional CFD methods

for both fundamental research and engineering applications [2, 7]. Notably, recent studies on

high Reynolds number flows have predominantly employed the D3Q19 velocity set for three-

dimensional simulations [31–33]. However, with the increasing availability of computational

resources, especially general-purpose GPUs, it is now feasible to utilize the more computa-

tionally intensive D3Q27 velocity set, which offers improved isotropy and rotational invariance

[34–36].

This opens new opportunities to explore the performance of more advanced collision op-

erators, such as the MRT [37, 38] or cumulant-based schemes, the latter of which has demon-

strated the best accuracy and performance among collision operators in cylinder benchmark

cases [39]. Recent studies by Krenchiglova et al. [40] have investigated various collision oper-

ators (BGK, SRT, moment-based models) for NACA 0012 flows, though primarily focusing on

low Reynolds number regimes (up to 1,000). Investigating these combinations could further en-

hance the accuracy and stability of LBM for aerodynamic applications, such as simulating fluid

flow around airfoils at medium and high Reynolds numbers. Likewise, the continued develop-

ment of these methodological advances provides a strong foundation for tackling increasingly

complex aerodynamic challenges, including those posed by bio-inspired configurations with

intricate geometric features.

1.3.2 Serrated Trailing Edges in Aeroacoustic and Aerodynamic Applica-

tions

The aerodynamic and aeroacoustic performance of bio-inspired airfoil configurations has be-

come a central topic in contemporary aerospace research, particularly due to the dual challenge
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of optimizing aerodynamic efficiency and mitigating noise emissions during unsteady flow con-

ditions. The complexity of fluid-structure interactions, stability, and noise generation in such

scenarios has driven the development and analysis of various flow control devices. These de-

vices are generally categorized into active controls, such as suction, blowing, and wall oscilla-

tions, and passive controls, which include vortex generators, shock control bumps [41, 42], and,

most notably, trailing edge modifications like serrations.

Serrated trailing edges (STEs), often inspired by the silent flight of owls, represent a promi-

nent passive modification that has garnered significant attention in the aeroacoustic community

(Figure 1.2). The foundational analytical framework for STEs was established by Howe [43],

who demonstrated that the effectiveness of noise reduction is closely linked to the serration

length (2h) and wavelength (λ ). Since then, a series of analytical and semi-analytical models,

frequently building on Amiet’s theory [44], have been developed to predict noise reduction for

a variety of leading [45] and trailing edge geometries [46, 47]. These theoretical advances are

complemented by comprehensive reviews on noise reduction technologies for aircraft [48, 49],

including airframe and landing gear noise [50], and the emerging field of acoustic metamateri-

als [51]. The integration of these theoretical frameworks with advanced computational methods

has opened new avenues for understanding the complex physics underlying bio-inspired noise

reduction mechanisms.

Figure 1.2: 3D model representation of the owl wing serrations.

A comprehensive review by Weger et al. [52] delves into the engineering insights derived

from owl wing morphology, highlighting features that contribute to their renowned silent flight

capabilities. Oerlemans et al. [53] conducted a notable study examining the acoustic effects

of serrations on wind turbine blades, comparing conventional, serrated, and optimized airfoil
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shapes, and reporting noise reductions of 0.5 dB and 3.2 dB for optimized and serrated con-

figurations, respectively. To further investigate these phenomena, researchers have employed

advanced computational and experimental techniques, such as transient compressible lattice

Boltzmann methods [54, 55] and direct numerical simulation [56], alongside wind tunnel ex-

periments for flat plate serrations [57] and airfoils equipped with STEs [58, 59]. The conver-

gence of these diverse methodological approaches has been instrumental in advancing the over-

all science community’s understanding of the underlying flow physics and acoustic generation

mechanisms.

In the past five years, a growing body of research has expanded understanding of STEs

through both experimental measurements [60–66] and CFD simulations [67–73]. These stud-

ies have deepened insights into complex flow phenomena, refined noise modeling techniques,

and advanced experimental methodologies, thereby narrowing the gap between numerical sim-

ulations and practical applications. For example, Wei et al. [74] combined experimental and

CFD approaches to design a novel propeller that integrates owl feather serrations with cicada

wing geometry; this 3D sinusoidal serration configuration achieved up to a 5.5 dB reduction in

sound pressure and over 20% improvement in propulsive efficiency, offering a promising av-

enue for quieter, more efficient aerial vehicles. Such innovations demonstrate the potential for

bio-inspired designs to address multiple performance objectives simultaneously.

The studies mentioned above have also explored a variety of airfoil and wing geometries.

Celik et al. [62] provided experimental evidence of noise reduction using large-scale serrations

on flat plates. Hasheminasab et al. [63] utilized time-resolved planar Particle Image Velocime-

try (PIV) in the airfoil wake, both with and without serrations, to analyze noise and apply Proper

Orthogonal Decomposition (POD) for assessing dominant wake structures. PIV was also cen-

tral to noise-reduction investigations by Pereira et al. [65] and Sumesh et al. [66], while Pereira

et al. [64] extended this by measuring steady aerodynamic performance with PIV and surface

pressure taps, focusing on physical flow mechanisms influencing wall-pressure fluctuations over

STEs rather than noise reduction alone. Zhao et al. [61] placed greater emphasis on the aero-

dynamic performance of STEs, reporting optimizations in lift-to-drag ratio and lift coefficient

by 1.9% and 32.5%, respectively. Additionally, Zhou et al. [60] incorporated deformation mea-

surements to further elucidate the interplay between aerodynamic forces and noise reduction

mechanisms.

Notably, all recent CFD studies addressing STE flow analysis, aerodynamic performance,
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and noise reduction have relied on LES to solve the Navier-Stokes equations. Several works

have focused specifically on noise mitigation. For example, Wang et al. [70] demonstrated

that innovative asymmetric serrations can yield an additional noise reduction of 3.68 dB. Cao

et al. [67] introduced a novel modeling approach by parameterizing serration features and

incorporating extra lift and drag sources directly into the momentum equation to simulate STE

effects. Song et al. [71] developed a Multi-Flapped-Serration with Iron-Shaped Edges (MFS-

Iron) to control turbulence-induced noise at the trailing edge of wind turbine airfoils.

Further innovations include the Insert-type Porous-Serrated (IPS) trailing edge with variable

porosity designed by Hu et al. [73], which achieved a 5.21 dB noise reduction, albeit with an

8.0% increase in drag. Lai et al. [72] proposed the application of STE designs in high-speed,

near-wall environments to reduce trailing edge noise for an aero-train, a novel ground effect

vehicle. Gelot and Kim [68] also investigated noise reduction, but placed greater emphasis on

flow phenomena such as the Laminar Separation Bubble (LSB), finding that STEs decrease the

amplitude of acoustic source pressure in transitional regions and promote destructive phase in-

terference in wall pressure fluctuations near the trailing edge, thereby weakening the acoustic

feedback loop. Similarly, Hu et al. [69] examined the interplay between flow structures and

acoustic sources using Dynamic Mode Decomposition (DMD), revealing how pressure struc-

tures change with serration length. Their study also underscored the need for further research

to address the balance between aerodynamic performance and noise reduction.

Overall, comprehensive aerodynamic investigations that simultaneously incorporate noise

reduction for STE configurations remain relatively scarce in the literature. This gap presents

an opportunity to explore, in greater detail, both the aerodynamic and aeroacoustic perspectives

and their interdependence for primary and serrated trailing edges. Furthermore, to the author’s

knowledge, no studies have examined the acceleration and post-acceleration phases for STE

airfoils. It will therefore be of particular interest to determine whether some of the benefits and

limitations identified in previous works can be translated to these transient phases.

1.3.3 LBM Applications in Serrated Airfoil Analysis

The application of the Lattice Boltzmann Method to bio-inspired aeroacoustic configurations

represents a rapidly evolving research area that bridges the computational advantages of LBM

with the growing demand for quieter, more efficient aerodynamic systems. This convergence
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has been driven by LBM’s inherent suitability for aeroacoustic simulations, particularly its abil-

ity to capture both flow dynamics and acoustic wave propagation within a single computa-

tional framework, making it ideally suited for investigating the complex physics underlying

bio-inspired noise reduction mechanisms.

Recent research has demonstrated the effectiveness of LBM in analyzing serrated configu-

rations across multiple scales and applications. Buszyk et al. [75] conducted comprehensive

investigations of turbofan aeroacoustics with serrated stators, achieving significant noise re-

ductions of up to 3 dB from broadband intake radiation and 6 dB in the bypass duct, with an

additional 4 dB reduction at the blade passing frequency. Their work exemplifies LBM’s ca-

pability to handle industrial-scale aeroacoustic problems with complex geometries, providing

validation against both experimental measurements and traditional CFD approaches.

The versatility of LBM in bio-inspired aeroacoustic applications extends beyond traditional

turbomachinery to encompass a diverse range of configurations and operating conditions. Kim

et al. [76] utilized LBM for aeroacoustic analysis of dual-type combined fans incorporating

serrated trailing edges, demonstrating the method’s effectiveness in capturing the complex flow

phenomena associated with these bio-inspired modifications. Similarly, van der Velden et al.

[77] employed LBM for full-scale serrated wind turbine trailing edge noise certification anal-

ysis, highlighting the method’s scalability from laboratory configurations to industrial applica-

tions. These studies collectively demonstrate LBM’s ability to maintain accuracy across differ-

ent Reynolds number regimes and geometric complexities, establishing it as a robust tool for

bio-inspired aeroacoustic design.

Buszyk et al. [78] demonstrated methodology in their assessment of rectilinear cascades

with leading edge serrations, employing analytical models for initial design, Euler-based meth-

ods for preliminary validation, and high-fidelity LBM simulations for final verification. Their

findings revealed that while fast design methods and mid-fidelity simulations provided satis-

factory trends, only high-fidelity LBM simulations accurately matched experimental acoustic

spectra and sound power level reductions.

Avallone et al. [55] provided crucial insights into the noise reduction mechanisms of saw-

tooth and combed-sawtooth trailing-edge serrations, revealing that sawtooth serrations reduce

noise through destructive interference between sound waves generated at different spanwise lo-

cations, while combed-sawtooth configurations introduce additional complexity through their
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three-dimensional geometry. Their work demonstrated that the effectiveness of these mecha-

nisms depends critically on the serration geometry and the incoming turbulent flow characteris-

tics, highlighting the importance of detailed flow field analysis that LBM can provide.

The geometric complexity studies have revealed the potential for innovative hybrid designs

that leverage multiple noise reduction mechanisms simultaneously. The understanding of how

different serration geometries influence the flow field and acoustic characteristics has been cru-

cial for developing more effective bio-inspired solutions. The work by Avallone et al. [55]

on combed-sawtooth configurations particularly exemplifies how LBM can capture the intri-

cate three-dimensional flow phenomena that govern the effectiveness of complex bio-inspired

geometries, providing insights that would be difficult to obtain through simplified analytical

approaches or lower-fidelity computational methods.

Halimi et al. [79] addressed the challenges specific to small-scale applications through an-

alytical prediction methods for mini-RPA propellers with serrated edges, while Sanjosé et al.

[80] employed comprehensive multi-fidelity strategies combining analytical, numerical, and ex-

perimental approaches for trailing-edge noise reduction investigations. These complementary

methodologies, spanning from Reynolds number effects and geometric scaling considerations

to detailed experimental validation, ensure that benefits observed in simplified academic con-

figurations can be reliably translated to more complex, industrially relevant geometries.

The current state of LBM applications in bio-inspired aeroacoustic design represents a ma-

ture but still evolving field. While significant progress has been made in demonstrating the

method’s effectiveness across various applications and scales, opportunities remain for expand-

ing its application to more complex configurations and operating conditions. The gap between

current capabilities and the full potential of bio-inspired aeroacoustic and exceptionally aero-

dynamic design, which is underrepresented in the literature, provides a compelling motivation

for continued research in this area. The continued advancement of computational hardware,

particularly GPU architectures, will further expand the feasibility of conducting comprehensive

studies using high-fidelity LBM simulations.

1.4 Scientific Contributions

This dissertation makes three primary scientific contributions:
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• Validation of the LBM for simulating fluid flow around an airfoil at medium Reynolds

numbers and various angles of attack (AoA), utilizing advanced approaches such as the

cumulant collision operator and the D3Q27 velocity set, which are currently underrepre-

sented in the literature.

• Detailed analysis of aerodynamic and aeroacoustic interdependence, for both primary and

serrated trailing edge airfoils during the initial acceleration and post-acceleration phases.

• Synthesis of insights from LBM simulations of the primary airfoil and LES results for

both primary and serrated airfoils to investigate the performance of bio-inspired airfoil

configurations with LBM.

Figure 1.3: Visualized and simplified main scientific contributions that also correlate with the
dissertation structure.

From these main contributions, several additional outcomes are derived:

• Expansion of the wind tunnel measurement dataset for the NACA 0012 airfoil at various

angles of attack using an open-circuit wind tunnel.

• Provision of high-fidelity three-dimensional LBM analyses of airfoil flows, addressing a

gap in the literature where two-dimensional studies are more prevalent.

• Extension of LES datasets for airfoil flows, with a focus on the initial acceleration phase,

which remains unexplored for serrated trailing edges (STE).
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• In-depth analysis of laminar, transitional, and turbulent boundary layer development.

• Investigation of trailing edge noise and its influence on the boundary layer, with particular

emphasis on the laminar separation bubble (LSB).

• Assessment of aerodynamic efficiency during acceleration and post-acceleration phases.

• Insights into HPC hardware usage, including both CPUs and GPUs.

• Expansion of the NACA 0012 and Joukowski primary and serrated edge airfoil databases

for various angles of attack, Mach numbers, and Reynolds numbers.

• Implementation of two-way coupling with the Generalized Law of the Wall for solving

high-fidelity LBM-LES analysis of the serrated trailing edge wings.

• Investigation of infinite and finite span wings.

1.5 Structure of the Dissertation

This dissertation is organized into five main chapters. Chapter 1 introduces the research moti-

vation, defines the hypotheses and aims, and presents a detailed literature review that highlights

existing gaps in the field. The scientific contributions of this work are also outlined in this

chapter.

Chapter 2 presents and validates a comprehensive numerical framework for analyzing fluid

flow around airfoils using the Lattice Boltzmann Method (LBM). The chapter begins with ex-

perimental investigations conducted in an open-circuit wind tunnel for a NACA 0012 airfoil at a

medium Reynolds number of 191,000, covering angles of attack of 2°, 4°, 6°, and 8°. Following

a detailed exposition of LBM theory and its mesoscopic approach to fluid dynamics modeling,

the chapter describes the numerical setup using Altair’s UltraFluidX solver with D3Q27 velocity

sets and high-fidelity cumulant-based collision operators. A systematic mesh sensitivity analy-

sis establishes grid independence using four different mesh configurations, while experimental

uncertainty quantification provides statistical validation of the wind tunnel measurements. The

chapter concludes with a comprehensive validation of LBM-LES predictions against experi-

mental pressure coefficient distributions, demonstrating excellent agreement with Root Mean

Square Errors below 0.1 and correlation coefficients exceeding 0.86 across all test cases. This

validation establishes the reliability of the computational framework for subsequent analyses of
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bio-inspired airfoil configurations and provides the foundation for the advanced investigations

of flow phenomena presented in the following chapters.

Chapter 3 addresses the identified gap in the literature concerning the mutual aerodynamic

and aeroacoustic influences in STE airfoil configurations. This chapter investigates and vi-

sualizes the acoustic-aerodynamic correlation for a symmetrical airfoil in accelerating flow,

considering Reynolds numbers from 100,000 to 500,000 at Mach 0.25, with a focus on Re =

250,000. These parameters, along with the inclusion of an acceleration phase, are selected for

their relevance to smaller aircraft and unmanned aerial vehicle (UAV) applications. The chapter

details the methodology, including governing equations, computational setup, and grid valida-

tion. It provides a thorough analysis of both PTE and STE airfoils, examining their aerody-

namic, aeroacoustic, and stability characteristics individually and comparatively. Additionally,

the chapter explores STE behavior during both acceleration and post-acceleration phases, elu-

cidating complex unsteady phenomena such as boundary layer instabilities, laminar separation

bubble dynamics, and interactions between sound waves and streamwise fluid flow.

Chapter 4 integrates the validated LBM framework from Chapter 2 with the advanced flow

physics understanding from Chapter 3 to conduct a 3D flow analysis of wing serrations un-

der realistic finite-span conditions. This chapter illustrates the transition from two-dimensional

idealized studies to practical finite-wing applications. Utilizing enhanced UltraFluidX version

2025 with advanced adaptive two-way coupling and Generalized Law of the Wall modeling,

the analysis encompasses both primary trailing edge (PTE) and serrated trailing edge (STE)

wings with triangular and sinusoidal variants across multiple angles of attack (2°, 4°, 6°, and

8°). It implements finite-span conditions of 0.3 m (200% chord length) to capture realistic

three-dimensional effects, including tip vortices and induced drag. It reveals angle-dependent

serration effectiveness with STE wings showing a 4.26% improved lift performance and en-

hanced stability at higher angles of attack. Advanced flow visualization, utilizing the Q-criterion

and vorticity analysis, elaborates complex phenomena such as boundary layer transition, wake

region development, Kelvin-Helmholtz instabilities, and wing tip vortex formation. Computa-

tional performance analysis reveals the enhanced fidelity achieved through sophisticated wall

modeling approaches, albeit at a higher computational cost, with runtimes exceeding 33 hours

and nearly doubling memory requirements compared to simpler modeling approaches from

Chapter 2.

Finally, Chapter 5 summarizes the key findings and contributions of this study.
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Several chapters of this dissertation have been published as research articles as part of the

author’s progress during the PhD. Chapter 2 includes elements from a research article published

in the International Journal of Numerical Methods for Heat & Fluid Flow (Q1 exc.) [81]. Ad-

ditionally, portions of Chapter 3 are based on an accepted manuscript in Advances in Aerody-

namics (Q1).
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2 EXPERIMENTAL WIND TUNNEL AND
LATTICE BOLTZMANN METHOD ANALYSIS
OF AERODYNAMICS IN THE PRIMARY
AIRFOIL

This chapter presents an examination of fluid flow around a NACA0012 airfoil, with the aim of

validating the numerical results obtained using the Lattice Boltzmann Method (LBM) against

experimental results obtained in a wind tunnel at a medium Reynolds number (Re = 191,000).

The Reynolds number of 191,000 represents a transitional regime where the boundary layer

exhibits characteristics of both low and high Reynolds number flows, making it particularly

challenging for numerical methods and ideal for validation studies [82].

First, Section 2.1 presents the experimental setup of the NACA 0012 airfoil in an open-

circuit wind tunnel. Section 2.2 provides a broader overview of the Lattice Boltzmann Method,

while Section 2.3 offers detailed information about configuring Altair’s UltraFLuidX 2021

LBM software with appropriate mesh analysis in Section 2.4. Finally, Section 2.5 presents

experimental results, while Section 2.6 compares numerical results with experimental data.

2.1 Experimental setup

Wind tunnels are classified into two primary categories based on their flow circulation charac-

teristics: open-circuit (also known as Eiffel-type) and closed-circuit (also known as Göttingen-

type) wind tunnels. The fundamental distinction lies in the air flow path and circulation pattern

employed in each design [83, 84].

Open-circuit wind tunnels draw air from the surrounding environment and discharge it back

into the atmosphere after it has passed through the test section. This configuration offers several

distinct advantages, including lower construction costs, superior performance for propulsion

and smoke visualization studies due to the absence of exhaust product accumulation, and easier

access to the test section for model installation and maintenance [83]. However, open-circuit
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designs also present certain limitations, including higher power consumption requirements, po-

tential for poor flow quality due to atmospheric influences, increased noise levels, and higher

operating costs due to the continuous need to accelerate fresh air through the tunnel [85].

In contrast, closed-circuit wind tunnels recirculate air within a closed loop system, return-

ing the air from the exit through a series of ducts and turning vanes back to the contraction

section. This design philosophy yields several operational advantages: significantly lower

power consumption for a given test section velocity (approximately one-third of open-circuit

requirements), superior flow quality control through isolation from external atmospheric dis-

turbances, reduced noise levels, and the ability to maintain controlled atmospheric conditions,

including temperature and humidity regulation. The primary disadvantages of closed-circuit

designs include substantially higher construction costs (typically three times that of equivalent

open-circuit tunnels), larger facility space requirements, potential air heating issues during ex-

tended operation, and more complex maintenance procedures due to limited access to internal

components [83].

For the present experimental investigation, an open-circuit wind tunnel was selected pri-

marily due to cost considerations and the specific requirements of the validation study. The

relatively moderate Reynolds number (Re = 191000) and short-duration testing protocol make

the higher power consumption acceptable, while accessibility of the wind tunnel’s test section

eases the experimental procedure of calibrating the tunnel, changing the Pitot tube position, and

varying the angle of attacks.

The experiment was conducted using TecQuipment’s ISO 9001 certified open-circuit suc-

tion AF1300 subsonic wind tunnel with a test section measuring 305 mm × 305 mm × 600

mm. The Open-circuit wind tunnel is designed to draw air from the atmosphere through an

aerodynamically designed conical contraction section, which accelerates the air linearly due to

the reduction in cross-sectional area. A honeycomb section is positioned at the inlet, which

serves as a flow conditioning device that straightens the flow and reduces large-scale turbulent

structures. An axial fan positioned after the diffuser section extracts air and returns it to the

atmosphere. The complete wind tunnel assembly measures 3700 mm in length, 1065 mm in

width, and 1900 mm in height.

Experimental data are obtained using several ISO 9001 certified TecQuipment sensors lo-

cated within the test section. Figure 2.1 provides an overall overview of the open-circuit wind
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tunnel used for the experiment, with emphasis on the main components and measurement in-

strumentation. Two Pitot-static tubes are connected to the AFA5 differential pressure unit with

a measurement range of ±7 kPa. Additionally, 20 static pressure tappings are connected to a

manifold system that feeds into the AFA6 32-Way Pressure Display Unit, also with a range of

±7 kPa. A protractor and model holder for precise angle adjustment are located at the rear of

the test section.

Figure 2.1: Subsonic open-circuit wind tunnel with four main flow path components high-
lighted in orange, while sensors, control panel, software, and airfoil are displayed in blue.

The experimental procedure begins with positioning the Pitot-static probe 30 mm from the

top wall of the test section. Pitot-static tubes operate on Bernoulli’s principle, measuring both

total pressure (through the forward-facing pitot port) and static pressure (through side ports

perpendicular to the flow). The dynamic pressure, calculated as the difference between total

and static pressure, directly relates to velocity through q = 1
2ρV 2, enabling accurate velocity

measurements in subsonic flows [82]. Initially, the optimal position of the Pitot-static tube

is calibrated to minimize boundary layer effects in the stabilized flow field. This calibration

procedure is essential because boundary layer thickness near the tunnel walls can significantly

affect velocity measurements. The boundary layer displacement thickness typically grows along

the tunnel walls, requiring careful probe positioning to ensure measurements in the free stream

region [83]. Following the calibration procedure, the NACA 0012 airfoil is positioned within

the test section and analyzed at a Reynolds number of 191,000.
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The NACA 0012 airfoil dimensions are 150 mm chord length and 300 mm span length,

resulting in an aspect ratio of 2.0. This aspect ratio places the wing in the finite-wing cate-

gory where three-dimensional effects become significant. However, for validation purposes, the

central portion of the wing experiences predominantly two-dimensional flow characteristics,

making it suitable for comparison with 2D numerical simulations [82]. The airfoil incorporates

20 static pressure tappings distributed along the chord, with equal geometric distribution on

the upper and lower surfaces. The geometric distribution of tapping positions is presented in

Table 2.1, showing the exact distance from the leading edge for each measurement point.

Table 2.1: Pressure tapping positions for surface pressure measurement on the NACA 0012
airfoil.

Upper surface
tapping

Distance from
leading edge [mm]

Lower surface
tapping

Distance from
leading edge [mm]

1 0.76 2 1.52
3 3.81 4 7.62
5 11.43 6 15.24
7 19.05 8 22.86
9 38.00 10 41.15

11 62.00 12 59.44
13 80.77 14 77.73
15 101.35 16 96.02
17 121.92 18 114.30
19 137.16 20 129.54

The distribution of pressure tappings is designed to capture critical flow features, with a

higher density near the leading edge, where pressure gradients are steepest, and a lower den-

sity afterwards, where pressure variations are more gradual. This distribution follows estab-

lished practices in experimental aerodynamics for obtaining accurate pressure coefficient distri-

butions [84].

To obtain reliable experimental results, several procedural steps are necessary. First, the

airfoil’s trailing edge is positioned at the same height as the centerline of the model holder to

ensure proper flow alignment. Second, all tube connections are verified, and after the flow field

stabilizes, sensors begin recording experimental values. TecQuipment’s Versatile Data Acqui-

sition System (VDAS) software is employed to record and export experimental data. Relevant

experimental values are recorded every 0.5 seconds over a total duration of 300 seconds to

ensure adequate statistical sampling. This sampling frequency and duration provide sufficient
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data points for statistical analysis while avoiding aliasing effects and ensuring convergence of

time-averaged quantities [85].

All recorded values are time-averaged, and for quantitative analysis, the pressure coefficient

Cp (defined in Equation 2.1) serves as the primary benchmark for comparison and validation. Cp

is a non-dimensional parameter that quantifies the ratio of local pressure difference to dynamic

pressure of the fluid. It is fundamental in aerodynamics as it represents the normalized pressure

field around the body. Values of Cp = 0 indicate static pressure equal to free stream pressure,

Cp = 1 corresponds to stagnation conditions, and negative values indicate local pressure below

free stream pressure, typically occurring in accelerated flow regions [82].

Cp =
p− p∞

1
2ρ∞v2

∞

(2.1)

The subscript ∞ denotes free stream conditions measured away from the airfoil’s influence,

specifically representing the undisturbed air passing through the test section. Therefore, p∞

represents the wall static pressure, while p corresponds to the pressure at individual tapping

points on the airfoil surface. v∞ specifies the velocity at the test section inlet, and ρ∞ defines the

air density within the test section.

The wind tunnel test section operates under the following conditions: atmospheric tempera-

ture of 27°C, atmospheric pressure of 1015.2 mbar, ambient air density of 1.18 kg/m³, and inlet

air velocity of 20 m/s. These operating conditions correspond to standard atmospheric condi-

tions with slight temperature elevation. It ensures incompressible flow conditions with Mach

numbers well below 0.3, specifically 0.0576, where compressibility effects are negligible. The

experiment was conducted at four different angles of attack: 2°, 4°, 6°, and 8°, encompassing

the linear lift region of the NACA 0012 airfoil.

2.2 Lattice Boltzmann Method

The Lattice Boltzmann Method (LBM) was developed as a solution to overcome the limita-

tions of particle-based lattice gas automata models, which suffered from statistical noise and

limited applicability to realistic fluid flow problems. While microscopic models track individ-

ual particles at the molecular level, their dynamics are too complex for practical computational

fluid dynamics modeling. LBM operates at the mesoscopic scale, tracking particle distribution

functions rather than individual particles. The mesoscopic approach bridges the gap between
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the microscopic kinetic description of molecular motion and the macroscopic continuum equa-

tions of fluid mechanics. This intermediate scale captures the essential physics of fluid flow

while avoiding the computational complexity associated with molecular dynamics simulations.

All together, it provides an optimal balance between physical accuracy and computational effi-

ciency [2, 9].

A microscopic description entails tracking particles at the molecular level; however, observ-

ing particles within a defined control volume allows for significant simplification. The left panel

of Figure 2.2 illustrates this concept. Each particle within the observed volume possesses an

individual velocity (yellow vectors). When all velocity vectors are summed and divided by the

number of particles in the constrained volume, the average or bulk flow velocity (red vector) is

obtained. Individual particles exhibit velocity deviations from the average velocity, represent-

ing thermal or chaotic motion (blue vectors). These velocity deviations sum to zero and can be

neglected in the macroscopic description (closed light blue vector loop).

Figure 2.2: Scale hierarchy in CFD: microscale molecular dynamics (left) captures individual
particle motion, mesoscale LBM (center) tracks particle distribution functions on a regular lat-
tice, and macroscale continuum methods (right) solve macroscopic field variables.

The LBM approach tracks particle distribution functions instead of individual particles (cen-

ter panel of Figure 2.2), providing computational advantages in terms of both efficiency and

accuracy. This statistical mechanics foundation ensures that LBM naturally incorporates the

molecular origins of fluid behavior while remaining computationally tractable for engineering

applications. LBM is based on kinetic theory, where the fundamental variable is the particle dis-

tribution function f (x,ξ , t). This function represents the probability density of finding particles

with velocity ξ = (ξx,ξy,ξz) at position x and time t.

The temporal evolution of the particle distribution function follows from the total time

derivative:
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d f
dt

=

(
∂ f
∂ t

)
dt
dt

+

(
∂ f
∂xβ

)
dxβ

dt
+

(
∂ f

∂ξ β

)
dξ β

dt
(2.2)

where subscript β represents spatial coordinate directions or components of vectors in the co-

ordinate system.

From Equation 2.2, particle velocity should be written as dxβ/dt = ξβ , while the specific

body force from Newton’s second law is dξβ/dt = Fβ/ρ . Also, for changing the total differen-

tial with the collision operator as Ω( f ) = d f/dt, the Boltzmann equation is obtained (2.3):

∂ f
∂ t

+ξβ

∂ f
∂xβ

+
Fβ

ρ

∂ f
∂ξ β

= Ω( f ) (2.3)

where Fβ represents the β -component of the external body force acting on the particles.

The Boltzmann equation can be interpreted as a hyperbolic advection equation where the

first two terms represent free streaming of the distribution function in phase space. The third

term represents how external forces change the particle velocity distribution function. The col-

lision operator on the right-hand side describes the redistribution of particles due to intermolec-

ular collisions. The local nature of the collision operator, which depends only on f and not

its gradients, is fundamental to LBM’s computational efficiency and excellent parallelization

properties [2].

The discrete-velocity distribution function fi, commonly referred to as particle populations,

forms the cornerstone of the LBM approach. The fundamental distinction between the contin-

uous distribution function f and the discrete populations fi lies in the discretization of velocity

space. While f represents a continuous function in velocity space, fi is defined only at specific

discrete velocities. To derive the LBM equation, the Boltzmann equation must be discretized in

velocity space, physical space, and time [2, 20].

Spatial discretization is achieved by dividing the computational domain into regular cubic

elements called voxels, each with edge length δx. This approach parallels classical finite dif-

ference methodologies. Temporal discretization employs uniform time steps δ t, ensuring that

the distribution function is defined at voxel centroids at each discrete time level. The choice of

spatial and temporal discretization parameters is constrained by stability requirements, typically

expressed through the Courant-Friedrichs-Lewy (CFL) condition [2].

Velocity space discretization leads to the determination of the discrete velocity set {ci}.
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Each velocity set employs the notation DdQq, where d represents the number of spatial dimen-

sions and q denotes the number of discrete velocities. The selection of velocity sets involves

a trade-off between computational cost and accuracy, with higher-order sets providing better

isotropy and rotational invariance at the expense of increased memory and computational re-

quirements [9]. The Altair’s UltraFluidX (UFX) solver, used for numerical analysis in this

research, employs the D3Q27 velocity set, illustrated in Figure 2.3.

Figure 2.3: Three-dimensional D3Q27 velocity set comprising one zero velocity at the center
(rest particles) and 26 non-zero discrete velocities. The velocity vectors connect the central
lattice node to its nearest neighbors (six vectors, purple arrows), next-nearest neighbors (twelve
vectors, red arrows), and diagonal neighbors (eight vectors, green arrows), providing enhanced
isotropy and rotational invariance compared to lower-order velocity sets.

The D3Q27 velocity set offers superior numerical stability and significantly reduces anisotropy

errors compared to lower-order alternatives, such as D3Q15 or D3Q19 [34]. The enhanced

isotropy is particularly beneficial for applications involving complex geometries or rotating

flows, where directional bias can significantly affect solution accuracy [36]. Previous studies

have demonstrated the robustness of the D3Q27 velocity set for modeling medium and high

Reynolds number flows [34–36]. Consequently, the D3Q27 velocity set is expected to provide

higher accuracy than other popular alternatives, such as D2Q9, D3Q15, and D3Q19, albeit at

an increased computational cost.

Following discretization, the lattice Boltzmann equation is expressed as:
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fi (x+ ci∆t, t +∆t) = fi (x, t)+Ωi(x, t) (2.4)

Equation 2.4 describes the evolution of particle populations with discrete velocity ci from the

current lattice node x to the neighboring node (x+ ci∆t) during the time step ∆t. The collision

operator Ωi(x, t) represents the change in particle populations due to intermolecular collisions

during each time step. The lattice Boltzmann equation can be conceptually divided into two

distinct phases executed sequentially: collision (relaxation) and streaming (propagation), as

illustrated in Figure 2.4.

During the collision step, particles interact locally at each lattice node, resulting in the re-

distribution of particle populations according to the collision operator (left to middle panel of

Figure 2.4). Subsequently, during the streaming step, the post-collision particle populations

propagate to neighboring nodes according to their respective discrete velocities (middle to right

panel of Figure 2.4).

Figure 2.4: Collision-streaming algorithm in the LBM showing initial particle populations
(left), post-collision redistribution (middle), and streaming to neighboring nodes (right).

Figure 2.4 illustrates the fundamental two-step algorithm that drives the LBM. In the ini-

tial state (left panel), particles are distributed among discrete velocity directions at each lattice

node, represented by the red arrows radiating from the central node. During the collision step

(middle panel), these particle populations undergo local redistribution according to the colli-

sion operator, which models the local interactions and drives the system toward equilibrium.

The arrows show how the particle populations are reoriented and redistributed among the avail-

able discrete velocity directions. Finally, in the streaming step (right panel), the post-collision

particle populations propagate simultaneously to their neighboring nodes along their respective
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discrete velocity vectors. This streaming process represents the advective transport of particles

through the lattice. The combination of these collision and streaming operations, performed

iteratively across all lattice nodes, enables the LBM to solve fluid flow problems by evolving

the particle distribution functions in both velocity and physical space.

The form and complexity of the collision operator Ωi(x, t) significantly influence the nu-

merical properties of the LBM algorithm, including stability, accuracy, and computational effi-

ciency [86]. The choice of collision operator represents one of the most active areas of LBM

research, with various formulations offering different balances between simplicity, accuracy,

and stability [2].

The UFX solver implements the high-fidelity cumulant collision operator, which exhibits

exceptionally low numerical diffusion and enhanced stability properties [22, 23, 87–89]. The

cumulant collision operator represents a significant advancement over traditional approaches by

working directly with cumulants of the distribution function, which are Galilean invariant quan-

tities that naturally separate equilibrium and non-equilibrium contributions [22]. The cumulant

operator is more recent, highly accurate, and computationally more complex than simpler alter-

natives such as the Bhatnagar-Gross-Krook (BGK) operator [90–96].

For turbulent flow simulation, LBM can employ a hybrid approach that incorporates the

Large Eddy Simulation (LES) [5, 97–99] through the inherent filtering effect of the lattice dis-

cretization. The lattice spacing acts as an implicit filter, with subgrid-scale turbulence modeled

through appropriate subgrid-scale stress models [100–103]. The reason lies in the improved

wall resolution achieved with conventional CFD methods compared to a pure mesoscopic LBM

approach. Therefore, UFX applies the LES turbulence modeling framework with a Smagorin-

sky subgrid-scale model for closure [100]. Additionally, UFX employs generalized wall func-

tions to handle turbulent boundary layers near solid surfaces [99, 104].

Boundary condition implementation in LBM differs fundamentally from traditional CFD

methods due to the particle-based nature of the algorithm. The discrete particle populations

require special treatment at boundaries where standard streaming cannot be applied. Boundary

schemes in LBM are classified into two primary categories: link-wise and wet-node approaches,

both of which are implemented in the UFX solver. Link-wise schemes are applied at solid

boundaries, which correspond to the no-slip boundary conditions in the conventional CFD ap-

proaches. On the other hand, wet-node schemes are used at the inlet and outlet boundaries. The

bounce-back method [105] is used for the link-wise boundary scheme [4], which means that
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during particle propagation, the particles reflect to their original location with reversed velocity

when they collide with a solid boundary [2, 106]. The bounce-back boundary condition nat-

urally preserves mass conservation and provides second-order accuracy for curved boundaries

when combined with appropriate interpolation schemes [105].

The LBM offers several fundamental advantages over traditional CFD methods, including

inherent parallelization due to local operations, the natural handling of complex geometries

through simple boundary conditions, and the automatic incorporation of kinetic effects. How-

ever, it also presents challenges, including memory requirements proportional to the number

of discrete velocities and limitations in compressibility range due to the low Mach number

assumption [2].

2.3 Numerical Setup and Computational Domain Configura-

tion

The numerical domain is configured to replicate the dimensions of the wind tunnel test section

(0.6 m × 0.305 m × 0.305 m), ensuring direct comparability between experimental and com-

putational results. The NACA 0012 airfoil retains identical dimensions, with a chord length of

0.15 m and a span of 0.3 m, and is positioned within the test section exactly as in the experimen-

tal setup. Airfoil profile was constructed using coordinates obtained from Airfoil Tools [107],

while the 3D wing model was created by importing and extruding the 2D airfoil profile in Solid-

Works. This geometric consistency is crucial for validation studies, as it eliminates potential

discrepancies arising from variations in blockage ratios or wall effects between the experimental

and computational configurations.

Unlike conventional CFD approaches that employ body-fitted structured or unstructured

grids, LBM utilizes a Cartesian voxel distribution throughout the computational domain. The

voxel-based approach inherent to LBM offers significant advantages in terms of simplicity in

grid generation, geometric flexibility, and computational efficiency, particularly for complex

geometries [2]. Initially, the coarsest mesh size is defined, which represents the edge length

of cubic volumetric elements, and is referred to as a voxel, as mentioned above. This param-

eter defines the coarsest resolution of the Cartesian grid, with finer local refinements achieved

through refinement zones that must be powers of 2 relative to this base mesh size. Specifically,

if the coarsest mesh size is 1 m, the first refinement level yields 0.5 m, the second yields 0.25 m,
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and so forth. This geometric progression ensures smooth transitions between refinement levels

while maintaining computational efficiency and numerical stability. Based on these principles,

the refinement zone distribution is established as visualized in Figure 2.5, with precise position-

ing and dimensions specified in Table 2.2. The configuration employs four nested refinement

zones concentrating resolution around the airfoil and its immediate wake region.

Figure 2.5: Computational domain configuration showing nested refinement zones (orange
boxes with arrows) and body offset region (purple box with arrow).

Table 2.2: Refinement zone specifications including mesh sizes, spatial dimensions, and posi-
tioning coordinates, along with body offset parameters for near-wall resolution.

Mesh control type Refinement level Type Offset Distance [m]

Body Offset 6 Distance 0.002
Mesh control type Mesh size [m] Dimensions (L x H

x W) [m]
Position (X x Y x Z)

[m]

Refinement Zone 1 0.001063 0.24 x 0.04 x 0.305 0.170 x 0.129 x 0.0
Refinement Zone 2 0.002125 0.36 x 0.07 x 0.305 0.132 x 0.115 x 0.0
Refinement Zone 3 0.00425 0.48 x 0.10 x 0.305 0.080 x 0.100 x 0.0
Refinement Zone 4 0.0085 0.60 x 0.16 x 0.305 0.000 x 0.070 x 0.0

Although the computational domain is initially defined to match the wind tunnel test sec-

tion, the final domain dimensions differ slightly due to the requirements of UltraFluidX. The

software mandates that domain dimensions in each direction must be multiples of four times the
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coarsest mesh size to ensure proper load balancing and memory alignment for efficient parallel

processing. Consequently, the domain is automatically enlarged in the positive x-direction, pos-

itive z-direction, and symmetrically in the y-direction when this requirement is not satisfied. In

this study, the coarsest mesh size of 0.017 m results in adjusted domain dimensions of 0.612 m

in the x-direction and 0.34 m in both y- and z-directions. The refinement zones are scaled pro-

portionally with the domain adjustments. This minor enlargement actually provides a beneficial

reduction in wall effects on the airfoil flow field, improving the simulation’s representation of

free-stream conditions. Overall, these changes introduce minimal impact on the comparative

analysis while enhancing the physical accuracy of the simulation.

As illustrated in Figure 2.5, four distinct refinement zones are positioned around the airfoil

(highlighted with orange arrows), while the purple arrow indicates the body offset. The body

offset implements refinement level 6, corresponding to a mesh size of 2.66 · 10−4 m, with a

distance of 0.002 m from the airfoil surface. This configuration provides sufficient resolution to

capture the development of the boundary layer and near-wall flow phenomena. The body offset

approach is analogous to near-wall refinement in traditional CFD, but it leverages LBM’s wall

function capabilities to maintain computational efficiency while ensuring an accurate boundary

layer representation.

The mesh distribution is visualized comprehensively in Figure 2.6, where orange and purple

arrows indicate regions of varying mesh density around the airfoil. Figure 2.6(a) and (b) present

three-dimensional views of the complete and sectioned domains, respectively. Figure 2.6(c) dis-

plays the two-dimensional mesh distribution across the mid-plane, while Figure 2.6(d) provides

a detailed view of the refined zones surrounding the airfoil.

UltraFluidX automatically generates transitional refinement layers between user-defined

zones to ensure smooth gradients and numerical stability. These intermediate layers prevent

abrupt mesh size changes that could introduce spurious numerical artifacts. In this configura-

tion, an additional refinement zone 5 is visible in Figure 2.6(d), representing such an automati-

cally generated transitional layer. The mesh is progressively refined toward the airfoil, ensuring

higher flow resolution in smaller voxels where complex physics occur.

Additionally, a one-way coupling with Generalized Wall Functions (GWF) is applied near

the airfoil surface [108], with the slip velocity factor set to 0.5. This approach numerically en-

forces a thinner effective boundary layer representation while providing enhanced stability and

reduced oscillatory behavior compared to fully resolved boundary layer simulations. The wall
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Figure 2.6: Computational mesh distribution around the NACA 0012 airfoil showing the hi-
erarchical refinement strategy: (a) complete three-dimensional domain, (b) sectioned three-
dimensional view, (c) two-dimensional mid-plane cross-section, and (d) detailed view of near-
airfoil refinement zones.

function approach represents a practical compromise between computational cost and physical

accuracy for engineering applications.

To complete the numerical setup, fluid properties are defined to match the experimental con-

ditions precisely. The working fluid is air with a temperature of 27°C and an inlet velocity of 20

m/s. Based on the specified temperature, the density is 1.175 kg/m³ and the dynamic viscosity is

1.846 ·10−5 Pa·s. The specific gas constant is 287.058 J/(kg·K), which, combined with the spe-

cific heat ratio γ = 1.4, yields a speed of sound of 347.31 m/s according to c =
√

γ ·R ·T . These

thermodynamic properties correspond to standard atmospheric conditions with slight temper-

ature elevation, ensuring consistency with experimental conditions. Consequently, the Mach

number, calculated as Ma = vin/c, yields 0.0576, where vin represents the velocity at the inlet
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surface, which confirms highly incompressible flow conditions where compressibility effects

remain negligible. This low Mach number validates the usage of LBM for incompressible flow,

with its limitations up to the Mach number of 0.4. The Reynolds number, determined from

Re = (ρ · vin ·LC) / µ , equals approximately 191,000, where LC is the wing’s chord length,

which matches the experimental target value.

The temporal discretization is intrinsically linked to the spatial mesh through the Courant-

Friedrichs-Lewy (CFL) stability condition. In UltraFluidX, the time step is calculated using

Equation 2.5, which represents a modified CFL formulation expressed as a Mach scaling factor

with a default value of one:

δ t =
∆xcoar ·Ms f√

3 · c
(2.5)

where ∆xcoar represents coarsest mesh size, while Ms f stands for the Mach scaling factor. The

factor
√

3 accounts for the three-dimensional nature of the lattice, ensuring stability in the most

restrictive direction. The Mach scaling factor provides flexibility to adjust the effective CFL

number for convergence acceleration or enhanced stability, though it was maintained at unity

throughout this study.

For the physical simulation time (tpt), UltraFluidX recommends a duration sufficient for

multiple flow-through times over the object of interest. The proposed calculation is tpt =

(30 ·LC) / vin, yielding 0.225 s. This duration ensures that transient startup effects dissipate

and the flow field reaches a quasi-steady state, suitable for meaningful comparisons of force

and pressure coefficients. However, to provide an additional safety margin for numerical sta-

bility and convergence, the final simulation time is extended to 0.3 s and is maintained for all

simulations with different AoA, as revealed in Section 2.6. The number of iterations required

to achieve the specified physical time is calculated as N = tpt / δ t, where N represents the total

iteration count.

Regarding output parameters, the simulation captures various flow variables, including pres-

sure scalars, velocity vectors, wall shear stress distributions, and surface normal vectors. Ultra-

FluidX offers an efficient time-averaging capability where variables are averaged internally at

each time step, providing superior accuracy and computational efficiency for post-processing.

This internal averaging approach proves particularly advantageous for surface quantities around

the airfoil, where the refinement level 6 corresponds to a mesh size of 2.66 ·10−4 m, resulting

in an extremely small time step of 4.422 ·10−7 s.
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For comparison purposes, the time step gathered at the coarsest mesh size gives the value

of 2.826 · 10−5 s, which is 64 times larger than the finest time step. The internal averaging

approach, therefore, captures higher-frequency fluctuations that would otherwise be aliased or

missed in coarser temporal sampling. For the subsequent validation analysis in Section 2.6,

pressure coefficient distributions are computed using pressure values averaged over the final

10% of the simulation duration, ensuring statistical convergence while eliminating transient

startup effects.

2.4 Mesh Sensitivity Assessment

Grid sensitivity analysis is conducted for four different mesh configurations, ranging from

coarsest to finest resolution. These configurations differ in terms of total voxel count and in-

dividual coarsest mesh size ratios, as visualized in Figure 2.7. Grid independence studies are

fundamental to CFD validation, ensuring that numerical solutions converge to grid-independent

values as mesh resolution increases. The objective is to demonstrate that further mesh refine-

ment does not significantly alter the solution, thereby establishing confidence in the numerical

accuracy of the results. The exponential growth in voxel count, evident from the trend line in

Figure 2.7, illustrates the computational cost scaling associated with three-dimensional mesh

refinement.

Figure 2.7: Exponential voxel growth with decreasing coarsest mesh size, shown by the yellow-
green trend line. Purple circles represent mesh configurations (Coarse, Medium, Fine, Finest),
with marker size proportional to the coarsest mesh dimension.
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In this study, pressure coefficient and velocity distributions are evaluated and compared

across cases with varying mesh densities. Figure 2.8(a) and (b) present pressure coefficient

distributions over the normalized chord length for different mesh configurations on the airfoil’s

upper and lower surfaces, respectively.

Figure 2.8: Pressure coefficient distribution along the normalized chord length for four mesh
configurations: (a) upper surface showing excellent convergence except near the leading edge,
where the finest mesh captures enhanced suction peaks, and (b) lower surface demonstrating
consistent behavior across mesh refinements with trailing edge variations for the coarsest mesh.

Figure 2.8(a) demonstrates relative equivalence between results for different grids, with no-

ticeable deviation occurring near the trailing edge for the coarsest mesh. The trailing edge

region is particularly sensitive to mesh resolution due to the sharp geometric discontinuity and

the associated pressure recovery, which requires adequate spatial resolution to capture accu-

rately. A similar trend is exhibited in Figure 2.8(b), where the correlation between meshes

is satisfactory except for the coarse mesh near the trailing edge. At the leading edge (Figure

2.8(a)), the finest mesh achieves the lowest Cp values compared to the other three cases, indi-

cating enhanced capture of the suction peak. This behavior is expected as finer meshes better

resolve the sharp pressure gradients associated with flow acceleration around curved surfaces,

particularly the leading edge region where geometric curvature is maximum. At other locations

on the upper surface, the data correlate well between cases.

Beyond the visual assessment provided in Figure 2.8, quantitative analysis of pressure co-

efficient extrema is presented in Table 2.3. For all four cases, the total number of fluid voxels,
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maximum, and minimum pressure coefficients are documented. According to Bernoulli’s equa-

tion for incompressible flow, the maximum pressure coefficient should theoretically approach

unity at stagnation points where the flow velocity approaches zero, as mentioned in Section 2.1.

Based on this theoretical foundation, the coarse mesh exhibits a relative error of 3.68%, while

the other three cases maintain numerical errors below 3%, demonstrating improved accuracy

with mesh refinement.

Table 2.3: Mesh configuration summary showing total fluid voxels and pressure coefficient
extrema for mesh assessment.

Mesh type case Total fluid voxels[
·105] Max Cp Min Cp

Coarse 3.66 1.037 -2.121
Medium 8.01 0.995 -2.130

Fine 12.69 1.014 -2.037
Finest 17.02 1.028 -2.324

To extend the comparison beyond visual assessment and pressure coefficient extrema, a

statistical analysis methodology is implemented. Root Mean Square Error (RMSE) is em-

ployed for quantitative comparison between predicted values from different mesh configura-

tions. RMSE provides a measure of the average magnitude of differences between mesh solu-

tions, with lower values indicating better convergence. This statistical approach complements

visual inspection by providing objective convergence metrics. The results are presented in Ta-

ble 2.4, where RMSE is calculated using:

RMSECp =

√
1
n

n

∑
i=1

[(Cp)mesh1,i − (Cp)mesh2,i]2 (2.6)

where n represents the number of comparison points along the airfoil surface, and the subscripts

denote different mesh configurations.

Table 2.4: RMSE analysis of pressure coefficient distributions between different meshes for
both airfoil surfaces.

Mesh type case RMSECp Lower surface RMSECp Upper surface

Coarse-Medium 0.0627 0.0187
Medium-Fine 0.0202 0.0494
Fine-Finest 0.0488 0.0843
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The lower surface RMSE exhibits the highest value for the coarse-medium comparison due

to inconsistent trailing edge representation visible in Figure 2.8(b). This behavior is typical in

CFD validation studies, where coarse meshes fail to adequately resolve flow features in regions

of high gradient, resulting in larger solution differences when compared to refined meshes.

Regarding the upper surface, coarse, medium, and fine meshes demonstrate solid correlation.

However, a larger divergence appears between fine and finest meshes for two primary reasons.

First, the fine mesh underpredicts Cp values compared to medium and finest meshes, contribut-

ing to higher differences. The RMSE of 0.0351 between medium and finest mesh cases sup-

ports this observation. Second, the finest mesh captures enhanced Cp values around the leading

edge due to significantly denser voxel distribution on the airfoil surface. Overall, the results

demonstrate good congruence, with minimal variation, thereby establishing grid consistency

for pressure coefficient analysis.

Velocity distribution assessment is conducted by evaluating velocity magnitude profiles at

the centerline of several yz-plane cross-sections. The obtained profiles and corresponding lo-

cations are presented in Figure 2.9. The upper panel represents a clipped segment of the com-

putational domain extending from x = 0.177 m to 0.36 m in the streamwise direction and y =

0.129 m to 0.169 m in the vertical direction. The domain contains the airfoil at an 8° angle of

attack, with contours colored by velocity magnitude values. Black dashed lines on the contours

emphasize centerline regions where velocity magnitudes are extracted for the four graphs in the

lower panel.

Profiles for sections Dx1 and Dx2 indicate that upstream of the airfoil, velocity values for

different grids remain consistent due to uniform inflow conditions. This upstream consistency

is expected since the free-stream region contains minimal flow gradients, making it less sensi-

tive to mesh resolution. The second profile (Dx2) additionally reveals small deviations in the

coarsest mesh near the leading edge region.

Conversely, values in the wake region (Dx3 and Dx4) exhibit fluctuations as velocity de-

creases due to viscous effects and wake development. The wake region presents particular

challenges for mesh independence studies due to the presence of unsteady vortical structures,

velocity deficits, and enhanced turbulent mixing, all of which require adequate spatial resolution

to be accurately captured. These differences, particularly the larger deviations from the coarsest

mesh, result directly from insufficient mesh density in this region, leading to inadequate capture

of complex flow structures. Nevertheless, the similar profile shapes obtained with medium, fine,
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Figure 2.9: Velocity magnitude profiles extracted at yz-plane cross-sections for 8° angle of
attack across different mesh configurations. Cross-sections Dx1 through Dx4 are located at x =
0.182 m, 0.185 m, 0.348 m, and 0.351 m, respectively. Profiles represent time-averaged velocity
magnitude over the final 10% of simulation duration, demonstrating mesh independence in
upstream regions and convergence behavior in the complex wake region.

and finest meshes indicate satisfactory mesh independence quality, even in the turbulent wake

region where velocity minima occur.

The choice of 8° angle of attack for the grid sensitivity study is strategic, as this represents

the highest incidence angle investigated in this chapter and therefore exhibits the most complex

flow physics. Due to the higher turbulence level associated with larger angles of attack, this case

serves as a conservative benchmark for other cases. Therefore, the mesh assessment with the

chosen finest mesh configuration should be applicable to the remaining three angles of attack.

Based on the comprehensive assessment, several conclusions emerge. The coarse mesh
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proves inadequate near the leading and trailing edge regions and should be avoided for accurate

predictions. The remaining grid configurations are suitable and yield consistent results for

both pressure coefficients and velocity distributions. To minimize potential mesh-associated

errors and ensure adequate resolution of all relevant flow scales, the finest grid is selected for

subsequent analyses. The demonstrated grid convergence provides the foundation for reliable

numerical predictions and validates the computational setup for subsequent validation against

experimental data.

2.5 Experimental results

Experimental measurement results have been analyzed and evaluated using Python data pro-

cessing routines. Experimental data processing in aerodynamics requires careful consideration

of measurement uncertainties, systematic errors, and statistical analysis to ensure reliable and

reproducible results [109]. Experimental data are presented via the pressure coefficient, which

has been calculated according to Equation 2.1 defined in Section 2.1. This equation incorpo-

rates static pressure, stagnation pressure, and reference pressure and can be further expressed

as Equation 2.7:

Cp =
pst − pre f

pstag − pre f
=

prel

pdyn
(2.7)

where pre f represents the reference free-stream static pressure within the test section, while

prel denotes relative pressure as the difference between static (pst) and free-stream pressure.

Additionally, pdyn represents dynamic pressure as the difference between stagnation (pstag) and

reference pressure. The use of Cp enables a clear representation of the relative pressure dis-

tribution around the airfoil. The maximum value that Cp can achieve is unity (Cp = 1), which

occurs when static pressure equals stagnation pressure (pst = pstag), corresponding to stagna-

tion conditions where the fluid velocity approaches zero. This theoretical maximum is derived

from the isentropic stagnation relations and represents the ideal pressure recovery at a stag-

nation point [82]. If pst = pre f , then the pressure coefficient equals zero (Cp = 0), indicating

undisturbed free-stream conditions.

When plotting pressure coefficient distributions, the abscissa typically represents the ratio

of distance from the leading edge to the total chord length of the airfoil. This approach is con-

sistently adopted in accordance with the methodology employed in Section 2.4. The pressure
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coefficient distribution over normalized chord length for all four angles of attack is presented in

Figure 2.10.

Figure 2.10: Wind tunnel measured pressure coefficient distributions at discrete tapping points
over normalized chord length for four angles of attack: 2° (yellow), 4° (light green), 6° (forest
green), and 8° (light sea green) for the airfoil’s (a) upper surface and (b) lower surface.

Figure 2.10 demonstrates the expected asymptotic behavior of pressure coefficient values

approaching the trailing edge region. However, there is a notable deviation at the trailing edge

near LC = 0.8, particularly pronounced for angles of attack of 8° and 6°, while being less

obvious at 4° and negligible at 2°. This trailing edge behavior is characteristic of viscous flow

separation and boundary layer thickening, which become more pronounced at higher angles of

attack as the adverse pressure gradient strengthens [82].

Beyond physical flow phenomena, experimental factors may contribute to measurement

variations. Measurement equipment inherently possesses finite accuracy, which can become

more pronounced when overall pressure values are small, such as in the trailing edge region

where pressure recovery occurs. Similarly, structural vibrations can influence measurements,

particularly at higher flow speeds, since the airfoil experiences cantilever mounting conditions.

Experimental results do not reach the theoretical pressure coefficient maximum of unity

due to the discrete tapping position limitations. The initial measurement tapping positions are

located slightly downstream of the actual stagnation point. The stagnation point location is not

fixed but migrates with changing angle of attack according to the relation xstag/Lc ≈ sin(α)
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for small angles, where α represents the angle of attack [82]. Consequently, higher angle of

attack values yield maximum Cp values closer to unity because the stagnation point moves

downstream, approaching the first tapping position on the lower surface located 1.52 mm from

the leading edge (Table 2.1).

Enhanced visualization of pressure coefficient extrema is provided through Figure 2.11,

which illustrates the pressure field distribution around the airfoil for different angles of attack.

Figure 2.11: Pressure coefficient distribution visualization for the NACA 0012 airfoil at vary-
ing angles of attack: (a) 2°, (b) 4°, (c) 6°, and (d) 8°. High-pressure regions (red shading)
indicate positive Cp values, while low-pressure regions (blue shading) represent negative Cp
values. Purple circles denote tapping positions, with red and blue stars marking maximum and
minimum Cp locations, respectively.

The progressive intensification of suction peaks with increasing angle of attack is clearly

visible in Figure 2.11. This behavior reflects the fundamental mechanism of lift generation

through asymmetric pressure distribution, where the net upward force results from the pressure

difference between upper and lower surfaces.

Quantifying experimental uncertainty is crucial for establishing confidence intervals and en-

abling meaningful comparisons with computational results. The sources of uncertainty in wind

tunnel pressure measurements include systematic errors from calibration drift, random errors

from turbulence fluctuations, and environmental factors such as temperature and barometric

pressure variations [109].
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These deviations require statistical analysis to quantify their impact on measurement con-

fidence. Measurement deviations can be quantified through statistical analysis of the pressure

coefficient time series. As described in Section 2.1, experimental data were recorded over 300

seconds at 0.5-second intervals, yielding 600 individual measurements per tapping location.

The pressure coefficient was calculated for each time step. From this time series, the standard

deviation of pressure coefficient measurements is calculated using Equation 2.8:

σ =

√
∑

n
i=1 (Cpi −Cp)

2

n
(2.8)

where σ represents the standard deviation, n is the number of measurements in the sample

(600), Cpi denotes the pressure coefficient for an individual measurement, and Cp represents

the time-averaged pressure coefficient. This statistical approach follows standard practices in

experimental uncertainty analysis, providing a measure of measurement repeatability and the

magnitude of random error [109]. The measurement uncertainties calculated for all experimen-

tal configurations (four different angles of attack) are illustrated in Figure 2.12, which shows

pressure coefficient distributions with associated error bars.

The measurement uncertainties displayed in Figure 2.12 are relatively small, indicating ac-

ceptable measurement precision throughout the experimental campaign. Detailed numerical

values are presented in Table 2.5, which summarizes the maximum standard deviations and

their corresponding tapping positions for different angles of attack.

Table 2.5: Maximum pressure coefficient standard deviations for upper and lower surfaces with
corresponding tapping position numbers for each angle of attack configuration.

Angle of attack σmax upper
surface

Tapping
position

σmax lower
surface

Tapping
position

2° 0.0211 13 0.0207 16
4° 0.0328 3 0.0173 10
6° 0.0395 3 0.0331 2
8° 0.0479 1 0.0280 16

According to Table 2.5, the largest standard deviation for the upper surface occurs at 8° angle

of attack at tapping position 1 (near the leading edge). Conversely, for the lower surface, the

maximum deviation occurs at tapping position 2 for the 6° angle of attack case. The occurrence

of peak uncertainties near leading and trailing edges aligns with expectations, as these regions

experience the most complex flow phenomena and steepest pressure gradients.
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Figure 2.12: Experimental pressure coefficient distributions with measurement uncertainties
(error bars) for lower surface (red) and upper surface (teal) at four angles of attack: (a) 2°, (b)
4°, (c) 6°, and (d) 8°. The error bars represent one standard deviation from the mean, providing
confidence intervals for the experimental measurements.

All measurement uncertainties maintain standard deviations below 5%, which falls within

acceptable limits for experimental aerodynamics according to established guidelines [109]. This

level of precision enables confident comparison with numerical results and validates the exper-

imental methodology for subsequent validation studies. Therefore, the time-averaged experi-

mental results presented in this section provide a reliable benchmark for computational valida-

tion in Section 2.6.
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2.6 LBM Validation Against Experimental Results

The numerical setup described in Section 2.3 is employed using the finest mesh configuration

from Section 2.4 for all angle of attack test cases. Before conducting a quantitative comparison

between numerical and experimental results, a comprehensive overview of the LBM flow field

characteristics is presented.

As expected, the results presented in Figure 2.13 demonstrate that increasing the AoA pro-

duces correspondingly stronger pressure gradients around the airfoil. The pressure field clearly

shows a distinct stagnation point at the leading edge, evidenced by the high-pressure region (red

coloring) in Figures 2.13(a-d), where the flow decelerates to zero velocity, visible as blue re-

gions in Figures 2.13(e-h). Moving along the airfoil surface, the favorable pressure gradient on

the upper surface creates the characteristic low-pressure zone (blue-green regions) responsible

for lift generation. The flow acceleration over the upper surface, indicated by higher velocity

magnitudes (yellow-red regions) in Figure 2.13(e-h), demonstrates mass conservation princi-

ples and the conversion of pressure head to kinetic energy. This behavior directly validates

Bernoulli’s equation for incompressible flow, where p+ 1
2ρV 2 = constant along streamlines,

resulting in inverse correlation between pressure and velocity [82].

The red dashed line in the velocity magnitude panels of Figure 2.13 shows regions where

blue coloring intensifies from the marked line toward the trailing edge across all four angle

configurations. Since these represent time-averaged values to facilitate comparison with exper-

imental data, transient phenomena are not pursued in detail within this chapter. Time averaging

inherently filters out unsteady fluctuations and vortical structures, providing a statistical rep-

resentation of the mean flow field that corresponds to the averaged experimental measurement

conditions. Consequently, discrete vortices are not visible, although this does not preclude the

existence of turbulent flow in regions such as the wake and boundary layer, particularly at higher

angles of attack.

The observed low velocities and elevated pressures near the trailing edge suggest possi-

ble flow separation and laminar-to-turbulent boundary layer transition. These phenomena are

characteristic of moderate Reynolds number flows where adverse pressure gradients can induce

boundary layer separation and subsequent transition to turbulence [110]. More comprehensive

analysis of these physical phenomena is presented in Chapters 3 and 4.

The stagnation point migration with increasing angle of attack is further emphasized in Fig-

ure 2.14, which demonstrates the downstream movement of the maximum pressure coefficient
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Figure 2.13: Time-averaged pressure (a-d) and velocity magnitude (e-h) contours at the mid-
plane XY cross-section for angles of attack: (a,e) 2°, (b,f) 4°, (c,g) 6°, and (d,h) 8°. Averaging
is performed over the final 10% of simulation time. The red dashed line is a demarcation of the
boundary layer growth region.

location on the lower surface.

The magnified view within the purple rectangle clearly illustrates the downstream migration

of Cp,max with increasing angle of attack. This behavior explains the experimental limitation

mentioned in Subsection 2.5 regarding the discrete tapping positions. Tapping position 2, lo-

cated 1.52 mm from the leading edge, was unable to capture Cp,max for lower angles of attack

but approached this maximum as the angle increased. As already mentioned, the stagnation

point location follows the approximate relation xstag/Lc ≈ sin(α) for small angles, where the

stagnation point moves progressively downstream as the effective angle of attack increases [82].

Higher pressure coefficient values were obtained for steeper angles because Cp,max approaches

tapping position 2 at 0.01013 LC (1.52 mm) from the leading edge.

Besides CFD analysis alone, the primary objective of this validation study is to compare

and assess LBM predictions against experimental wind tunnel data. Figure 2.15 presents a

comprehensive comparison between LBM and experimental results for all four angle of attack
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Figure 2.14: Stagnation point distribution for different angle of attack cases, with the magnified
leading edge region highlighted by the purple rectangle. The lower surface is depicted in black,
while the upper surface is shown in gray. Stagnation points circle markers are color-coded for
different AoA: 2° (yellow), 4° (light green), 6° (forest green), and 8° (light sea green).

configurations.

At first examination, the correlation between numerical and experimental data appears satis-

factory across all configurations. The relative error based on the theoretical maximum Cp,max =

1 for incompressible flow (Mach number well below 0.3) remains below 1.5% for all cases

except the 8° angle of attack, where it reaches 2.8%. On the other hand, Figure 2.15(d) re-

veals excellent agreement for both surfaces at 8° angle of attack, besides the already mentioned

minimum Cp. In comparison, for lower angles (Figures 2.15(a-c)), deviations become more

pronounced approaching the trailing edge, particularly on the upper surface. Nevertheless, this

level of accuracy validates the numerical methodology and confirms that the LBM-LES ap-

proach captures the essential physics of the flow field.

However, the systematic analysis reveals distinct characteristics of the flow regime. For

the first 40% of the chord length from the leading edge, excellent agreement with minimal

deviation from experimental results is maintained across all cases. In certain scenarios, such as

the 6° angle of attack case (Figure 2.15(c)), minor deviations are visible in this region; however,

the trends remain consistent, enabling the curves to overlap with minimal vertical displacement.

Interestingly, a notable pattern emerges around the mid-chord region, particularly on the

upper surface. Experimental data show that the absolute values of the pressure coefficient sud-

denly increase, followed by decreases, at upper surface tapping positions 11, 13, and 15 (located
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Figure 2.15: Pressure coefficient distributions comparing LBM results (red rectangles for lower
surface, teal circles for upper surface) with experimental data (violet markers and dashed lines)
around the NACA 0012 midplane surface. Semitransparent violet bands around the dashed lines
represent experimental measurement uncertainties.
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at 62 mm, 80.77 mm, and 101.35 mm, respectively). These pressure coefficient fluctuations are

characteristic signatures of laminar separation bubble (LSB) formation, a well-documented phe-

nomenon in moderate Reynolds number flows where laminar boundary layers separate due to

adverse pressure gradients and subsequently reattach after transitioning to turbulence [82]. The

stability characteristics of laminar separation bubbles are highly sensitive to the angle of attack

and the Reynolds number. At lower angles, bubbles remain relatively stable, while at higher

incidence angles, they become susceptible to "bursting"—a phenomenon where the bubble sud-

denly increases in length and becomes highly unsteady. This effect of AoA on LSB is nicely

captured in Figures 2.15(a-d), where LSB is most prominent at lower angles of attack, while

at 8°, the effect becomes less pronounced due to natural boundary layer destabilization. The

LBM results demonstrate reasonable correlation with experimental trends in the aft portion of

the airfoil but do not fully capture the detailed physics of laminar separation bubble dynamics.

Figure 2.16 provides a quantitative assessment through filled regions emphasizing differ-

ences between numerical and experimental results, using time-averaged experimental values

without uncertainty bands.

Statistical validation metrics are presented in Table 2.6, where the coefficient of determina-

tion R2 is calculated according to Equation 2.9:

R2 = 1− ∑
n
i=1(yi − ŷi)

2

∑
n
i=1(yi − ȳ)2 (2.9)

where yi represents experimental data values, ŷi denotes LBM simulation results, ȳ is the mean

of experimental values, and n symbolizes the number of comparison points. The R2 metric

provides a normalized measure of how well the computational model explains the variance in

experimental data, with values approaching unity indicating excellent agreement.

The 8° angle of attack case demonstrates best agreement with experimental data on the lower

surface, surpassing all other configurations in terms of accuracy. Notably, excluding the first

and last tapping positions on the lower surface (positions 2 and 20) would reduce the RMSE

from 0.068 to 0.014, indicating that edge effects contribute significantly to the overall error.

For the 6° AoA case, the most significant errors occur near the trailing edge (positions 19 and

20) and around the suspected LSB region, as illustrated in Figure 2.16(c). The 4° case exhibits

similar deviations to the 6° AoA wing while maintaining excellent correlation elsewhere. The

2° angle of attack case exhibits the largest disagreement from mid-chord to trailing edge, which

is confirmed as the least correlated result based on R2 metrics in Table 2.6.
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Figure 2.16: Comparison between experimental results (violet markers) and LBM predictions
(red rectangles for lower surface, teal circles for upper surface). Semitransparent red and teal
regions represent the magnitude of differences between computational and experimental data.

Table 2.6: Statistical validation metrics including Root Mean Square Error (RMSE) and coeffi-
cient of determination (R2) for different angles of attack, with separate RMSE values for upper
and lower surfaces.

AoA (°) RMSE Total R2 Total RMSE Lower RMSE Upper

2° 0.081 0.865 0.089 0.072
4° 0.076 0.958 0.075 0.077
6° 0.093 0.974 0.079 0.105
8° 0.073 0.991 0.068 0.077

The present validation at medium Reynolds number (Re = 191,000) represents a signifi-

cant advancement in assessing LBM capabilities for engineering applications. It demonstrates

that LBM-LES implementation provides reliable results for moderate Reynolds number airfoil

flows using Generalized Wall Functions, D3Q27 velocity set, and high-fidelity cumulant-based

collision operators. Furthermore, the computational efficiency advantages are substantial: all
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simulations were conducted using one Quadro M6000 GPU and one Intel CPU, with the finest

mesh 8° angle of attack case requiring 23 hours, 34 minutes, and 17 seconds, a peak CPU mem-

ory consumption of 29.824 GB, and peak GPU memory usage of 9.522 GB. This performance

represents a significant reduction in computational time compared to traditional high-fidelity

CFD approaches, while maintaining comparable accuracy levels.

The demonstrated validation establishes confidence in the LBM methodology for subse-

quent analyses involving more complex flow phenomena, including bio-inspired airfoil config-

urations and unsteady flow dynamics addressed in Chapter 4.
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3 LARGE EDDY SIMULATION ANALYSIS OF
AERODYNAMICS AND AEROACOUSTICS IN
THE SERRATED AIRFOIL

This chapter presents a detailed numerical investigation of both primary and owl-inspired ser-

rated trailing edge (STE) airfoils, focusing on a symmetric Joukowski airfoil with 12% thick-

ness during the initial acceleration phase. The analysis employs a high-fidelity Large Eddy

Simulation (LES) approach.

Section 3.1 outlines the methodological framework, including the numerical setup, soft-

ware implementation, and hardware resources utilized for the LES computations. Section 3.2

describes the airfoil geometry and mesh generation, accompanied by a comprehensive grid sen-

sitivity study and wall-unit grid spacing analysis. The numerical results are validated against

the XFOIL [111] program for the Reynolds number of 250,000, Mach number of 0.25, and AoA

of 5°.

Section 3.3 provides a detailed aerodynamic and aeroacoustic analysis of the primary trail-

ing edge (PTE) airfoil, further divided into two subsections. Subsection 3.3.1 focuses on the

aerodynamic efficiency of the PTE, while Subsection 3.3.2 investigates key regions on and

around the airfoil that influence aerodynamic and aeroacoustic characteristics, including bound-

ary layer transition and laminar separation bubble formation.

Section 3.4 presents a comparative analysis between the STE and PTE airfoils, utilizing

data from the previous section. Finally, Section 3.5 extends the comparison to various Reynolds

numbers from 100,000 to half a million, where more focus on aerodynamic forces and boundary

layer transition is obtained through Subsection 3.5.1, while Subsection 3.5.2 conducts aeroa-

coustic analysis.

3.1 Computational Methodology and Numerical Framework

As noted, the LES approach is employed to solve the fluid flow around the airfoil. The simula-

tions are performed using CANARD (Compressible Aerodynamics & Aeroacoustics Research
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code), an in-house, high-order, wavenumber-optimised DNS/LES solver developed at the Uni-

versity of Southampton. CANARD enables efficient and accurate simulations of compressible

flows and sound waves on massively parallel supercomputers. The code has been extensively

validated and has produced high-quality research outputs published in leading journals over the

last five years [112–117].

In this study, four Reynolds numbers are considered, ranging from 100,000 up to 500,000,

based on the chord length (Lc) and the freestream velocity (U∞) evaluated at the end of the

acceleration phase (i.e., the onset of the post-acceleration phase at constant velocity). The

final freestream Mach number is set to M∞ = U∞/a∞ = 0.25, and the angle of attack (AoA) is

fixed at 5◦. Here, the AoA is specified by adjusting the direction of the velocity vector, not

by rotating the airfoil geometry; in all equations, the AoA is denoted by the Greek letter α .

The streamwise, vertical, and spanwise velocity components are defined as u∞ = U∞ cos(α),

v∞ = U∞ sin(α), and w∞ = 0, respectively. Two coordinate systems are used throughout the

analysis: a Cartesian system x j = {x,y,z}, where the airfoil chord is aligned with the x-axis,

and a generalized coordinate system ξi = {ξ ,η ,ζ}, where the velocity streamlines are parallel

to the ξ -axis. All other variables are non-dimensionalized, indicated by a superscript asterisk

(e.g., non-dimensional force in the x-direction, f ∗x ).

In this work, the full three-dimensional compressible Navier–Stokes equations, including a

source term for sponge layers, are solved in conservative form and transformed onto a general-

ized coordinate system, as shown in Eq. (3.1):

∂

∂ t

(
Q
J

)
+

∂

∂ξi

(
Ej

J
∂ξi

∂x j

)
=

M∞

Re∞

∂

∂ξi

(
Fj

J
∂ξi

∂x j

)
− S

J
, (3.1)

where i = 1,2,3 and j = 1,2,3. The freestream velocity is defined as U∞ =
√

u2
∞ + v2

∞ +w2
∞,

and the Reynolds number is given by Re = ρ∞U∞Lc/µ∞. The Mach number is M∞ = U∞/a∞,

where a∞ =
√

γ p∞/ρ∞ denotes the ambient speed of sound. All primary parameters are non-

dimensionalized: the length scale by the airfoil chord Lc, the time scale by Lc/a∞, pressure by

ρ∞a2
∞, and velocities by a∞. Similarly, temperature, density, and viscosity are normalized by

their respective ambient values T∞, ρ∞, and µ∞.

The terms in Eq. (3.2) are defined as follows:
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Q = [ρ,ρu,ρv,ρw,ρet ]
T ,

Ej =
[
ρu j,

(
ρuu j +δ1 j p

)
,
(
ρvu j +δ2 j p

)
,
(
ρwu j +δ3 j p

)
,(ρet + p)u j

]T
,

Fj =
[
0,τ1 j,τ2 j,τ3 j,uiτi j +qi

]T
,

τi j = µ

(
∂ui
∂x j

+
∂u j
∂xi

− 2
3δi j

∂ui
∂xi

)
q j =

µ

(γ−1)Pr
∂T
∂x j

,

(3.2)

where the Jacobian determinant of the transformation from Cartesian to body-fitted coordinates

is J−1 = |∂ (ξ ,η ,ζ )/∂ (x,y,z)|. The vector Q contains the conservative variables, with velocity

components u j = {u,v,w} and total energy et = p/[(γ − 1)ρ] + u ju j/2. The Prandtl number

is Pr = 0.71, and the heat capacity ratio is γ = 1.4. Convective, viscous, and heat fluxes are

denoted by Ej, Fj, and q j, respectively. The stress tensor is τi j, and δi j is the Kronecker delta.

The additional source term S is non-zero within a prescribed sponge layer [118, 119], which

is designed to create perfectly anechoic conditions by suppressing numerical reflections of pres-

sure waves from the domain boundaries. At the start of the simulation, the flow is gradually

accelerated from rest to the target speed using a moving frame technique over eight time units,

controlled by a Gaussian growth acceleration function: ua(t) = u∞ · [(t/ta − 1)3(3 · t/ta + 1)]

with ta = 8. The entire simulation spans 20 non-dimensional time units (t∗), with the acceler-

ation phase lasting for the initial 8 time units, as depicted in blue in Figure 3.1. The use of a

Gaussian velocity growth function provides two main advantages. First, its smooth initial ramp

improves computational stability by gradually introducing flow into the domain. Second, the

increased growth rate during most of the acceleration phase more accurately reflects real-world

operational conditions compared to linear profiles.

This computational study employs a high-resolution implicit large eddy simulation (ILES)

approach, utilizing a wavenumber-optimized discrete filter. This filter is applied directly to

the conservative variables at each time step, ensuring dissipation of scales smaller than the

filter cutoff wavelength. The ILES technique has been compared with explicit subgrid-scale

(SGS) models and shown to accurately capture relevant flow physics [120]. Flux derivatives

are computed using wavenumber-optimized, fourth-order pentadiagonal compact finite differ-

ence schemes with seven-point stencils [121]. Numerical stability is maintained by applying a

sixth-order pentadiagonal compact filter, with a cutoff wavenumber (normalized by grid spac-

ing) of 0.88π [122]. Time integration is performed explicitly using the classical fourth-order
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Figure 3.1: Acceleration phase at the start of the simulation, comparing Gaussian and linear
velocity profiles, followed by a constant phase for t∗ > 8.

Runge–Kutta scheme, with a Courant-Friedrichs-Lewy (CFL) number of 0.99.

Characteristic non-reflecting boundary conditions [123] are implemented in conjunction

with a sponge layer at the far-field boundaries. Periodic boundary conditions are enforced

on the spanwise boundary planes, while characteristic interface conditions are imposed at block

interfaces. No-slip wall boundary conditions are applied on the airfoil surface [124].

The code is fully parallelized using domain decomposition and the Message Passing In-

terface (MPI) libraries. The distributed solution of pentadiagonal matrix systems is achieved

through a quasi-disjoint approach [125]. The governing equations are solved on a structured

multi-block grid system consisting of six blocks, with the first and fourth blocks containing the

airfoil surfaces, as illustrated in Figure 3.2 (highlighted in blue).

The computational grid is distributed across 1200 processor cores, with each block assigned

an appropriate number of processors based on its cell count. The processor allocation for each

block is illustrated in Figure 3.2, while the number of grid cells per block is detailed in Table 3.1

in Section 3.2, which clarifies the distribution of processors among the blocks.

All simulations are performed on the IRIDIS-5 cluster at the University of Southampton.

Thirty Lenovo SD530 compute nodes are utilized, each equipped with two Intel Xeon Gold

6138 CPUs. Each CPU contains 20 cores operating at a base frequency of 2.0 GHz, providing

a total of 40 cores per node. Each node is configured with 192 GB of memory (12 × 16 GB

TruDDR4 2666 MHz RDIMMs). Storage for each node includes two 2 TB 7.2K SAS hard

drives, suitable for bulk storage and data logging, as well as a 128 GB SATA SSD, typically

used for the operating system or high-IOPS workloads due to its superior random access speed

compared to HDDs. High-speed networking is provided by a Mellanox ConnectX-4 EDR IB
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Figure 3.2: Block distribution for the airfoil multi-block grid system: (a) 2D XY-plane view
showing the number of CPUs assigned to each block, and (b) 3D view of the same multi-block
structure with block nomenclature.

VPI HCA, a high-performance network adapter supporting both EDR (Enhanced Data Rate)

InfiniBand and 100 Gb/s Ethernet via its Virtual Protocol Interconnect (VPI) feature, ensuring

fast data transfer and low latency for supercomputing applications.

3.2 Geometry and Mesh Generation

The computational study investigates a symmetric Joukowski airfoil with a 12% thickness-to-

chord ratio. Two geometric configurations are analyzed: the primary trailing edge (PTE) airfoil

and the serrated trailing edge (STE) variant. The STE configuration incorporates zero-thickness

serrations extending 10% of the chord length (0.1Lc) downstream from the baseline geometry,

with a wavelength of 0.05Lc, as illustrated in Figure 3.3(a).

The computational mesh employs a structured multi-block topology based on an H-grid con-

figuration, with grid stretching applied in both the streamwise and vertical directions to achieve

optimal resolution near the airfoil surface, thereby capturing the boundary layer accurately. The

airfoil chord length Lc serves as the characteristic dimension, with the spanwise extent limited

to 0.1Lc. The domain extends ±4Lc in both streamwise and vertical directions (x,y ∈ [−4,4]),

centered at the airfoil mid-chord, with spanwise boundaries at z∈ [−0.05Lc,0.05Lc], as depicted

in Figure 3.2.
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Figure 3.3: (a) Geometry of the primary airfoil with added serrations (marked red) that shows
serration length and wavelength. (b) Mesh distribution on the 2D zoomed-in part of the domain
around the airfoil’s surface.

Grid independence is established through a systematic convergence study employing three

mesh configurations: coarse (G1), medium (G2), and fine (G3). The refinement strategy ap-

plies a uniform scaling factor of 1.25 in all coordinate directions, except for inlet blocks, where

streamwise resolution remains constant to maintain consistent boundary condition implemen-

tation. This approach yields a fine mesh with approximately twice the cell count of the coarse

configuration. Table 3.1 summarizes the grid distribution characteristics across the generalized

coordinate system.

Table 3.1: Grid distribution for PTE airfoil simulation validation employs three different mesh
configurations.

nξ ,airfoil nξ nη nζ ntotal
[
·106]

G1 256 672 512 72 24.77
G2 320 800 640 88 45.06
G3 400 960 800 110 84.48

For the medium mesh (G2), the cell distribution allocates 4.51 ·106 cells to blocks 0 and 3,

while the remaining four blocks (1, 2, 4, and 5) contain 9.01 ·106 cells each, totaling 45.06 ·106

cells. This distribution ensures optimal load balancing across the 1200 processor cores while

maintaining computational efficiency.

The wall-resolved LES approach necessitates stringent near-wall grid spacing to accurately

capture boundary layer physics without wall modeling. Figure 3.4 presents a comprehensive
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analysis of near-wall mesh resolution normalized by friction velocity, where s+, n+, and z+

represent streamwise, wall-normal, and spanwise spacing, respectively.

Figure 3.4: Wall-unit grid spacing for the G2 PTE airfoil where s+, n+, and z+ represent
streamwise (blue), normal (orange), and spanwise (green) spacing, respectively. Hatched parts
represent the proposed LES and DNS range, while the red dash-dotted line represents the LES
border.

The streamwise resolution consistently satisfies LES requirements (s+ < 150) as recom-

mended by Piomelli [126] and Georgiadis et al. [127]. Spanwise spacing remains within ac-

ceptable limits (z+ < 40) for 98% of the airfoil surface, with minor exceedances occurring

near the leading edge where laminar flow conditions prevail. Wall-normal spacing (n+ < 1) is

achieved over approximately 70% of the airfoil surface, with elevated values concentrated in the

leading edge region where laminar boundary layer physics dominate. Crucially, turbulent flow

regions maintain n+ < 1.5, ensuring adequate boundary layer resolution for accurate turbulence

prediction.

Grid convergence is demonstrated through comprehensive force coefficient analysis across

the three mesh configurations, as presented in Figure 3.5. The upper panels display complete

simulation time histories for non-dimensional forces in both x- and y-directions, while the lower
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panels provide a detailed examination of pressure and viscous force components during the con-

stant velocity phase, emphasizing oscillation capture fidelity across different grid resolutions.

Figure 3.5: Grid validation for the PTE airfoil. The first two graphs compare the non-
dimensional forces in the x- and y-directions. The remaining four graphs provide a detailed
view of the pressure and skin friction components of the forces for the three different meshes:
coarse (blue), medium (orange), and fine (green).

Root Mean Square Error (RMSE) analysis confirms excellent grid convergence character-

istics. For non-dimensional force in the x-direction, RMSE values of 1.04 · 10−6 (G1-G2) and

9.04 · 10−7 (G2-G3) demonstrate excellent correlation. Similarly, y-direction forces exhibit

RMSE values of 2.49 · 10−5 (G1-G2) and 1.93 · 10−5 (G2-G3). The medium mesh (G2) is se-

lected for subsequent analyses based on its superior agreement with the fine mesh, particularly

in accurately capturing temporal oscillations, while maintaining computational efficiency.

Computational results are validated against XFOIL predictions for the 12% thick Joukowski

airfoil under identical flow conditions. Figure 3.6 presents pressure coefficient distributions

comparing LES results with XFOIL data. While instantaneous LES results exhibit characteristic

55



turbulent fluctuations, particularly in the aft portion of the airfoil (Figure 3.6(a)), the time-

averaged pressure distribution demonstrates excellent agreement with XFOIL predictions in the

turbulent flow region (Figure 3.6(b)).

Figure 3.6: Comparison of the primary trailing edge airfoil for: (a) the last time unit t∗ = 20,
and (b) for the time-averaged values from 15 to 20 time units.

The observed overprediction of maximum Cp by XFOIL in the laminar region is consis-

tent with documented limitations of panel methods for thick airfoils [128]. The focus on initial

acceleration and short post-acceleration phases, rather than fully converged steady-state condi-

tions, explains minor discrepancies in the laminar region, which would diminish with extended

simulation duration. Nevertheless, the excellent correlation in the turbulent region validates the

computational approach for the intended analysis scope.

3.3 Primary Trailing Edge (PTE) Airfoil Analysis

This section provides a comprehensive analysis of the PTE airfoil aerodynamic and flow physics

characteristics. First, Subsection 3.3.1 presents the temporal evolution of aerodynamic perfor-

mance during the acceleration and post-acceleration phases. Second, Subsection 3.3.2 examines

the flow in detail, including boundary layer development and acoustic wave interactions with

flow characteristics.

3.3.1 Force Analysis and Starting Vortex Dynamics

As detailed in Section 3.1, the flow undergoes acceleration according to a Gaussian velocity

profile during the initial eight non-dimensional time units (Figure 3.1). Since all quantities
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are presented in non-dimensional form and the effective angle of attack varies continuously

during acceleration, the analysis focuses on non-dimensional forces in the x- and y-directions

rather than conventional drag and lift coefficients. This approach provides a more fundamental

understanding of force generation mechanisms during unsteady flow conditions, where tradi-

tional steady-state coefficient definitions may not adequately capture the transient aerodynamic

behavior.

Since this analysis involves viscous flow, both pressure and skin friction components influ-

ence the overall force intensity. However, surface shear stress variables are not directly available

in the surface zone data. Therefore, velocity gradients at boundary surfaces must be derived

from the volumetric velocity field of the computational domain. This approach requires the

simultaneous loading of both surface zones, where force calculations are desired, and the ad-

jacent volume zones that contain the requisite velocity field information. This computational

strategy ensures accurate representation of viscous effects while maintaining consistency with

the underlying Navier-Stokes equations [5].

The computational methodology for determining velocity gradients depends fundamentally

on the grid topology employed in the numerical simulation. Unstructured finite-element grids

require the implementation of moving least-squares approximation methods to reconstruct the

necessary gradient information from the irregular node distribution. On the other hand, struc-

tured grids utilize velocity gradients that are computed using established curvilinear coordinate

transformation techniques, which leverage the inherent grid connectivity to maintain high ac-

curacy. The latter approach is employed here, as the analysis utilizes a structured multi-block

topology based on an H-grid configuration, as mentioned in Section 3.2. The structured grid ap-

proach offers superior accuracy for gradient calculations due to the regular connectivity pattern

and well-defined coordinate transformations [5].

The mathematical framework underlying these calculations is grounded in the principles of

continuum mechanics. Under the assumption of Stokes’ hypothesis, where the second coeffi-

cient of viscosity vanishes, the Newtonian stress tensor for a viscous fluid is expressed as:

T = µ
[
∇V+(∇V)T ]−[

2
3

µ(∇ ·V)+ p
]

I (3.3)
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which can be written down in a matrix form as:

T = µ


2∂u

∂x −
2
3D ∂v

∂x +
∂u
∂y

∂w
∂x +

∂u
∂ z

∂v
∂x +

∂u
∂y 2∂v

∂y −
2
3D ∂v

∂ z +
∂w
∂y

∂w
∂x +

∂u
∂ z

∂v
∂ z +

∂w
∂y 2∂w

∂ z −
2
3D

− pI (3.4)

with
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∂v
∂y

+
∂w
∂ z

(3.5)

where µ is the dynamic viscosity, p is pressure, and I is the identity matrix. The stress tensor

formulation captures both the viscous shear effects and the normal stress contributions, provid-

ing a complete description of the fluid’s mechanical response to deformation [34]. The surface

traction is obtained by multiplying the stress tensor by the outward-pointing unit normal vector.

In the end, forces in x- and y-directions are calculated as:
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where nx, ny, and nz are the unit normal vector components. This formulation ensures that

all contributions to the surface force are properly accounted for, including both pressure and

viscous stress effects across all three spatial dimensions.

To enhance understanding of force evolution mechanisms, both force components are de-

composed into pressure and skin friction contributions, as illustrated in Figure 3.7. This de-

composition is particularly valuable for identifying the dominant force-generating mechanisms

and understanding how different physical phenomena contribute to the overall aerodynamic

performance.

The y-direction force components are presented in Figure 3.7(b), clearly demonstrating

that the pressure component dominates the total force f ∗y , while the skin friction contribution

remains negligible throughout the simulation period. The pressure component exhibits pro-

nounced growth during the acceleration phase, followed by oscillatory behavior rather than
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Figure 3.7: Temporal evolution of non-dimensional force components for the PTE airfoil at
Re = 250,000: (a) x-direction forces showing pressure component (violet) and skin friction
component (yellow); (b) y-direction forces showing pressure component (blue) and skin friction
component (green).

smooth convergence to a steady state. These oscillations in f ∗py
, which commence around

t∗ = 13, are analyzed in detail in Subsection 3.3.2. It should be noted that all simulations in

Chapter 3 focus specifically on the initial acceleration and near post-acceleration phases with

high temporal resolution, rather than achieving fully converged steady-state conditions.

The x-direction force components, shown in Figure 3.7(a), reveal a different behavior com-

pared to the y-direction forces. While the pressure component remains dominant, the skin fric-

tion component contributes more significantly to the total x-direction force. The pressure com-

ponent exhibits higher absolute values and more pronounced temporal oscillations compared to

the relatively smooth evolution of skin friction. The initial high-pressure peak observed around

t∗ = 2.4 is attributed to the flow acceleration process and the formation of the starting vortex

phenomenon, as documented in previous studies [129, 130].

The starting vortex formation is an inherent consequence of the Joukowski airfoil’s sharp

trailing edge geometry combined with the non-zero angle of attack, as illustrated in Figure 3.8.

This figure presents both the computational vorticity contour (Figure 3.8(a)) and a schematic

representation of the vortex system balance (Figure 3.8(b)).

According to Kelvin’s circulation theorem, the circulation around any material fluid contour

remains constant in an inviscid flow. This fundamental principle forms the theoretical basis

for understanding lift generation and starting vortex formation around airfoils. When an airfoil

begins its motion from rest, the initial circulation around any contour enclosing the airfoil is

zero. To maintain this zero net circulation as lift develops, the positive circulation that forms
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Figure 3.8: Starting vortex formation and circulation balance: (a) computational vorticity con-
tour showing the starting vortex development (yellow regions indicate higher vorticity mag-
nitude); (b) schematic illustration of the circulation balance between bound vortex (ΓB) and
starting vortex (ΓS) according to Kelvin’s circulation theorem.

around the airfoil (bound vortex, ΓB) must be balanced by an equal and opposite circulation

(starting vortex, ΓS), such that the total circulation remains zero: ΓB +ΓS = 0 [82].

The bound vortex represents the circulation responsible for lift generation according to the

Kutta-Joukowski theorem, where lift per unit span is given by L′ = ρUΓB. This circulation

remains effectively attached to the airfoil and is maintained by the enforcement of the Kutta

condition at the sharp trailing edge, which requires that the flow leave the trailing edge smoothly

without infinite velocities. The starting vortex forms during the initial motion as a consequence

of this circulation development and subsequently convects downstream with the flow [82].

The physical mechanism of starting vortex formation is fundamentally linked to the viscous

effects at the sharp trailing edge. When the airfoil first begins to move, the inviscid flow solution

would predict infinite velocities around the sharp trailing edge. However, the viscous boundary

layer cannot sustain such extreme velocity gradients, causing the flow to separate and roll up

into the starting vortex. This vortex formation process continues until the Kutta condition is

established, after which the flow leaves the trailing edge tangentially [110].

For a symmetric airfoil at zero angle of attack in steady flow, classical thin airfoil theory

predicts zero circulation and hence zero lift. Under these conditions, no bound vortex develops
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around the airfoil, and consequently, no starting vortex is required to maintain circulation bal-

ance. The flow remains symmetric about the chord line, with the stagnation point located at the

leading edge and the flow departing smoothly from the trailing edge without circulation [110].

In the present study, with an angle of attack of 5°, the bound vortex intensifies the flow

acceleration on the airfoil’s suction side. During the mean flow acceleration, the low-pressure

region migrates from the trailing edge toward the leading edge, as visualized in the upper portion

of Figure 3.9 and highlighted by the red dotted ellipses. Simultaneously, the high-pressure

stagnation region shifts downstream along the airfoil surface, as shown in the lower portion

of Figure 3.9. This phenomenon is quantified in the right panels of Figure 3.9, which track

the temporal evolution of the maximum pressure coefficient location (stagnation point) on the

airfoil surface.

Figure 3.9: Pressure field evolution and stagnation point migration: (left) pressure fluctuation
contours at t∗ = 2.4 (top) and t∗ = 9.6 (bottom), with low-pressure regions highlighted by red
ellipses; (right) corresponding pressure coefficient distributions showing the downstream mi-
gration of maximum Cp location (stagnation point). The green circles emphasize the stagnation
point displacement between the two time instances.
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The temporal evolution of the stagnation point location provides insight into the effective

angle of attack variation during the acceleration process. The transparent green circle in the

lower right panel indicates the stagnation point position at t∗ = 2.4, while the solid red cir-

cle with green highlighting shows its new downstream location at t∗ = 9.6. This downstream

migration correlates with the peak stagnation pressure observed at t∗ = 2.4 in Figure 3.7(a),

demonstrating the coupled evolution of pressure distribution and force generation during the

unsteady acceleration phase. This stagnation point migration is characteristic of unsteady air-

foil motion and provides valuable insight into the transient aerodynamic behavior that cannot

be captured through steady-state analysis alone.

3.3.2 Coupled Aerodynamic-Aeroacoustic Analysis of Boundary Layer

Transition

The oscillations observed around t∗ = 13 in Subsection 3.3.2, Figure 3.7, warrant a detailed

investigation to understand the underlying flow physics. While non-dimensional force com-

ponents provide valuable quantitative information, pressure coefficient analysis offers superior

insight into local flow characteristics and boundary layer behavior. By extracting pressure and

coordinate data from each voxel on the airfoil’s surface, the pressure coefficient (Cp) is calcu-

lated at each time step. For computational efficiency and given the minimal three-dimensional

effects in this configuration, the analysis focuses on the mid-plane cross-section.

In comparison to the non-dimensional force in the y-direction, the pressure coefficient anal-

ysis provides an enhanced understanding of flow characteristics. Furthermore, integrating the

area encompassed by the Cp distribution yields the pressure component of the lift coefficient

CLp , which effectively represents the total lift coefficient due to the negligible skin friction con-

tribution demonstrated in Subsection 3.3.1 and illustrated in Figure 3.7(b).

Accordingly, Figure 3.10 illustrates the temporal evolution of pressure coefficient distribu-

tions, revealing critical flow transition phenomena. Following the initial acceleration phase,

disturbances emerge on the airfoil’s suction side, as highlighted by the teal circles in the figure.

These oscillations progressively intensify over time, as demonstrated in the sequential snapshots

of Figures 3.10(b) and (c).

As a reminder, Figure 3.10(a) shows upper and lower surfaces of the Joukowski airfoil

operating at 5° angle of attack, Reynolds number of 250,000, and Mach number of 0.25. At

t∗ = 10.8, initial oscillations appear near the mid-chord region, closer to the leading edge,
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Figure 3.10: Temporal evolution of pressure coefficient distribution on the airfoil mid-plane
surface showing boundary layer instability development: (a) initial oscillation detection at
t∗ = 10.8, (b) amplitude growth and downstream propagation at t∗ = 11.8, and (c) fully de-
veloped oscillatory behavior at t∗ = 17.5. Teal circles and red rectangles represent upper and
lower surface Cp values, respectively. Red and green diamonds indicate the instantaneous min-
imum and maximum Cp values, respectively, while dotted lines represent the global extrema
throughout the simulation.

as indicated by the black arrow and dashed lines in Figure 3.10(a). Within one time unit,

these oscillations intensify significantly and propagate toward the trailing edge with markedly

increased amplitude, as shown in Figure 3.10(b). By t∗ = 17.5, the airfoil’s upper surface

exhibits significant oscillations (visible at Figure 3.10c) that extend in both leading and trailing

edge direction, compromising the stability of the PTE airfoil.

To complement the two-dimensional pressure coefficient analysis and capture three-dimensional

flow structures, Q-criterion iso-contours are employed for vortex visualization. Despite the

limited spanwise extent (10% chord length) with periodic boundary conditions, this approach
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provides valuable insight into boundary layer transition mechanisms. Figure 3.11 presents de-

tailed boundary layer instability development through vortex structure visualization on the air-

foil’s suction side. The Q-criterion visualization reveals boundary layer instabilities earlier

than the pressure coefficient analysis, with initial disturbances detected around t∗ = 10.2 (Fig-

ure 3.11(a)). This enhanced sensitivity stems from the three-dimensional nature of the visual-

ization, which captures subtle flow structures invisible in two-dimensional cross-sections.

Figure 3.11: Boundary layer transition visualization using Q-criterion iso-surfaces (Q = 0.01)
colored by streamwise velocity magnitude: (a) initial instability detection at t∗ = 10.2, (b)
downstream propagation and amplification at t∗ = 13.2, (c) characteristic roll-up formation
at t∗ = 16.7, and (d) wake turbulence development at t∗ = 19.0. The spanwise dimension is
exaggerated for visualization clarity.

The temporal evolution demonstrates the systematic propagation of instability. The bound-

ary layer remains laminar and stable until t∗ = 10.2, after which transition commences with

downstream-propagating oscillations. The initial boundary layer disturbances reach the trailing

edge within approximately three time units, as shown in Figure 3.11(b). At t∗ = 16.7, char-

acteristic roll-up structures emerge with increased irregularity, though without full turbulent

transition. By t∗ = 19.0, while maintaining similar roll-up distributions, the iso-contours reveal

turbulence development in the wake region (Figure 3.11d), which is visually better encompassed

in Figure 3.13c.

The time step window between t∗ = 13.2 and t∗ = 16.7 (Figures 3.11(b) and (c)) corre-

sponds to the formation of a laminar separation bubble (LSB), a well-documented aerodynamic
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phenomenon occurring on airfoils at moderate Reynolds numbers and adverse pressure gradi-

ents [82, 131]. An LSB forms when the laminar boundary layer separates due to an adverse

pressure gradient but subsequently transitions to turbulence and reattaches downstream, creat-

ing a recirculation zone characterized by reversed flow. This fundamental mechanism occurs

because the separated laminar shear layer becomes unstable and undergoes transition to tur-

bulence, which enhances momentum transfer and enables the turbulent flow to overcome the

adverse pressure gradient and reattach to the surface.

The presence of an LSB significantly influences airfoil performance by altering the effective

airfoil shape and pressure distribution on the suction side. The recirculation zone within the

bubble acts as a virtual extension of the airfoil geometry, modifying the local flow field and

pressure recovery characteristics. If the separated laminar flow fails to reattach, the separated

region grows, potentially leading to a stall characterized by a dramatic loss of lift and an increase

in drag [82]. However, when successful reattachment occurs, the turbulent boundary layer

downstream of the bubble can sustain higher adverse pressure gradients compared to the original

laminar boundary layer, partially recovering aerodynamic performance.

The formation and dynamics of LSBs depend critically on Reynolds number, angle of attack,

and pressure gradient distribution along the airfoil surface [131]. At Reynolds numbers in the

range of 105 to 106, as encountered in the present study, LSBs are particularly common and can

induce unsteady aerodynamic forces due to their inherent sensitivity to flow disturbances and

transition processes. The influence of Reynolds numbers on the boundary layer is examined

in the subsequent analysis through Section 3.5. The unsteady behavior of the LSB, including

periodic growth and bursting cycles, directly contributes to the oscillations in lift and drag

coefficients observed in Figure 3.7, particularly the pronounced fluctuations that begin around

t∗ = 13.

This LSB formation is clearly visualized through streamline analysis in Figure 3.12. Fig-

ure 3.12(a) illustrates the stable laminar boundary layer configuration at t∗ = 10.0, representing

the baseline attached flow condition. Detailed examination of the suction side reveals initial

boundary layer instabilities at t∗ = 11.3 (Figure 3.12(b)), consistent with the Q-criterion anal-

ysis showing roll-up formation without three-dimensional deviation or turbulent transition. By

t∗ = 14.0, the laminar separation bubble becomes clearly defined, with the white blank space

indicating the recirculation zone region highlighted by the green dotted ellipse in Figure 3.12(c).
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Figure 3.12: Mid-plane streamline evolution showing boundary layer transition progression:
(a) attached laminar boundary layer at t∗ = 10.0, (b) initial boundary layer disturbances at t∗ =
11.3, and (c) fully developed laminar separation bubble with recirculation zone (highlighted by
green dotted ellipse) at t∗ = 14.0.

The physical mechanism underlying LSB formation in the present case is driven by the com-

bination of the airfoil’s curvature-induced adverse pressure gradient and the unsteady accelera-

tion effects. As the flow decelerates along the suction side due to the adverse pressure gradient,

the momentum deficit in the laminar boundary layer leads to separation. The separated shear

layer then undergoes natural transition to turbulence through amplification of instability waves,

eventually reattaching as a turbulent boundary layer capable of overcoming the adverse pres-

sure gradient. This process is fundamental to understanding transition phenomena on airfoils

and represents a critical consideration for applications in the moderate Reynolds number regime

encountered by small aircraft and unmanned aerial vehicles.

While the analysis has focused on boundary layer oscillations, it is equally important to

address the occurrence of shear layer instability in the wake region. Due to airflow detach-

ment at the trailing edge, a high-velocity gradient forms between the accelerated flow on the

suction side and the slower-moving air below. When velocity differences across the layer be-

come sufficiently large, the growth of vortical structures within the shear layer begins, com-

monly associated with Kelvin-Helmholtz instability. This instability manifests as a result of the

Bernoulli effect, where perturbations in the shear layer create pressure differences that amplify
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the initial disturbances, potentially leading to secondary vortex formation and enhanced mix-

ing. Furthermore, instability in the shear layer generates low-amplitude sound waves, which

can be visualized by plotting contours of density and velocity divergence with a reduced legend

range. Figure 3.13 highlights both the sound wave contours and the Q-criterion iso-contours for

boundary layer and shear layer instabilities.

Figure 3.13: Representation of shear layer and boundary layer instability using Q-criterion
(Q = 0.01) at different time instances: (a) t∗ = 11.5, (b) t∗ = 13.6, and (c) t∗ = 19.0. A mid-
plane cut along the spanwise axis visualizes sound waves at the same time instances as the
3D vortices. Legends apply to all subfigures, except for the extracted circle in the upper-right
corner, which represents a reduced legend range to visualize shear layer-generated sound waves.
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Q-criterion iso-contours are colored by streamwise velocity, while sound waves are visual-

ized at the domain’s mid-plane cut. Coherent vortical structures form behind the trailing edge

as the shear layer folds over itself, creating roll-ups. These structures generate shear layer noise,

which is barely visible in Figure 3.13(a). However, it becomes more pronounced in the upper-

right circle, where the legend range is reduced by a factor of eight. In contrast, trailing edge

noise is more prominent, as highlighted in Figure 3.13(b). Trailing edge noise occurs when

vortical structures from the boundary layer move downstream and interact with the airfoil’s

sharp trailing edge. These pressure fluctuations manifest as acoustic waves that propagate out-

ward as sound. In this case, trailing edge noise begins around t∗ = 13.2 but becomes more

pronounced after another 0.4 time units for visualization purposes. Over time, vortices grow

larger and stronger by drawing energy from the mean flow. Eventually, these structures break

down into smaller, more chaotic forms, leading to fully developed turbulence. At t∗ = 19.0

(Figure 3.13(c)), the boundary layer remains non-turbulent, with visible characteristic roll-ups

in the transitional region. However, early signs of turbulence, including disturbances in all three

dimensions, are observed in a portion of the wake region at the same time instance.

A noteworthy observation is the correlation between streamwise fluid flow and the prop-

agation of sound waves. Sound waves propagate both downstream and upstream through the

domain, potentially influencing the flow field. In this specific case, trailing edge sound waves

contribute to the bursting of the LSB, as visualized in Figure 3.14 and explained in the subse-

quent analysis.

As previously demonstrated, the recirculation zone is visible in Figure 3.12(c) at t∗ = 14.0.

By t∗ = 14.5, the LSB is still present and has grown further, as shown in Figure 3.14(e). The

figure’s bottom panels (Figures 3.14(e) and (f)) illustrate streamlines, while the upper panels

(Figures 3.14(a-d)) show sound wave propagation and its interaction with the fluid flow. For

enhanced visualization and analysis, 400 snapshots were obtained throughout the 20 time-unit

simulation period, providing 0.05 time-unit intervals between snapshots. This high-resolution

temporal sampling, while computationally demanding in terms of memory, storage, and post-

processing time, enables detailed observation of rapid flow phenomena. Several automated

scripts were developed using Tecplot and Python, leveraging the PyTecplot tool, to streamline

the entire process from simulation execution to final visualization, thereby facilitating compre-

hensive analysis of complex fluid flow characteristics.

For better understanding and visualization, a transparent dashed violet line with a violet
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Figure 3.14: Formation and breakdown of the laminar separation bubble visualized using Q-
criterion (Q= 0.01), with sound wave propagation (a-d) and streamlines in a mid-plane cut (e-f)
at different time instances. The transparent dashed violet line emphasizes the region of laminar
separation bubble bursting.

arrow marks the exact spanwise position on the airfoil’s surface where the LSB occurs. This

marker is visible across all four snapshots starting at t∗ = 14.5. This marking is added due to

the LSB’s limited visibility in Figure 3.14(a), although it can be observed at the same time step

through the streamlined view in Figure 3.14(e). However, after 0.25 time units, changes beneath

the marked transparent line become apparent. After just 0.05 time units later, it becomes even

more evident that the LSB begins to burst. By t∗ = 17.3, additional vortical structures have

formed at the LSB’s previous location, indicating its breakdown. The streamlined visualization
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in Figures 3.14(e) and (f) confirms observations from Q-criterion iso-contours. Both visual-

izations highlight the LSB’s significant inflation at t∗ = 14.5 and its subsequent breakdown by

t∗ = 17.3.

The critical question remains: why does the LSB break down? By combining the visual-

ization of vortical structures through the Q-criterion with the mid-plane contour representing

the divergence of density and velocity vector, which reveals instabilities in the domain observ-

able as sound waves, the mechanism becomes clear. Closely examining Figures 3.14(a) and (b)

reveals that the LSB begins to burst after the first trailing edge sound waves reach the spatial

position where the LSB coincides. In Figure 3.14(a), it is visible that at t∗ = 14.5, the first two

pairs of trailing edge sound waves have just reached the position where the LSB occurs. At

t∗ = 14.75 (Figure 3.14(b)), these sound waves pass by the LSB position, which starts to burst

due to pressure disturbances produced by sound wave propagation originating from the trailing

edge.

This analysis leads to the conclusion that trailing edge sound waves influence the fluid flow

in the airfoil’s boundary layer and are consequently responsible for the LSB’s breakdown. The

LSB formation represents a critical aerodynamic phenomenon that can significantly impact the

performance of airfoils. If the flow fails to reattach downstream of the separation point, a com-

plete stall condition may develop, severely degrading lift generation and increasing drag. In the

present case, however, the acoustic-induced LSB breakdown actually facilitates flow reattach-

ment, demonstrating the complex interplay between aerodynamic and aeroacoustic phenomena

in unsteady airfoil flows.

Overall, this detailed examination of the PTE airfoil’s post-acceleration phase provides es-

sential insights into the coupling between boundary layer transition, laminar separation bubble

dynamics, and acoustic wave propagation. These findings establish a comprehensive foundation

for the comparative analysis with the STE airfoil presented in Section 3.4.

3.4 Comparative Analysis at Re = 250,000: PTE vs. STE

Airfoils

This section presents a comparative analysis between the primary trailing edge airfoil data from

Section 3.3 and the serrated trailing edge configuration. As a reminder, PTE represents the

primary trailing edge configuration, while STE denotes the serrated trailing edge variant. The
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airfoil geometry, except for the added serrations, remains identical and is fully defined in Sec-

tion 3.2. Following the approach established in Section 3.3, the analysis begins with aerody-

namic performance assessment through temporal force distribution examination.

The comparative methodology employed here follows established practices in airfoil perfor-

mance evaluation, where baseline configurations are systematically compared against modified

geometries to isolate the effects of specific design changes [82]. This approach enables the di-

rect attribution of performance variations to the trailing edge modifications, while maintaining

identical flow conditions and computational parameters for a Reynolds number of 250,000.

From Figure 3.15, it is evident that during the acceleration phase, no significant differ-

ence exists in the non-dimensional x-direction force ( f ∗x ) between the PTE and STE airfoils.

After approximately eight time units, corresponding to the transition from acceleration to con-

stant velocity, the results begin to diverge, with the STE configuration exhibiting higher non-

dimensional force in the x-direction, indicating increased drag. However, this difference dimin-

ishes over time, resulting in convergent values toward the end of the simulation period. Detailed

quantification of force magnitudes is provided in Section 3.5, where force comparisons across

various Reynolds numbers are presented. The following analysis aims to elucidate the underly-

ing physical mechanisms responsible for these observed trends.

Decomposing the total force into pressure (Figure 3.15(b)) and skin friction (Figure 3.15(c))

components reveals that the pressure component exerts greater influence on overall force char-

acteristics, consistent with the findings presented in Subsection 3.3.1. However, a significant

increase in skin friction force has an adverse effect on the total force magnitude for the STE con-

figuration. This behavior is theoretically expected, as serration addition increases the airfoil’s

surface area exposed to the fluid flow, consequently elevating friction drag. According to fun-

damental boundary layer theory, skin friction is directly proportional to the surface area and the

local shear stress, where τw = µ
∂u
∂y

∣∣
y=0 [82]. Therefore, the increased surface area introduced

by serrations inherently elevates the total friction drag component.

Additionally, serrations promote earlier boundary layer transition to turbulence, resulting in

higher wall shear stresses within the turbulent boundary layer compared to the laminar state.

This phenomenon occurs because turbulent boundary layers exhibit significantly higher mo-

mentum transfer rates near the wall, resulting in steeper velocity gradients and consequently

higher shear stresses. Conversely, the pressure force component shows slight improvement for
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Figure 3.15: Temporal comparison of non-dimensional x-direction forces between PTE and
STE airfoils: (a) total force magnitude, (b) pressure force component, and (c) skin friction
force component. The divergence in performance becomes apparent after the acceleration phase
concludes at t∗ ≈ 8.

the STE airfoil, though this enhancement is not universally observed across all operating condi-

tions. Accordingly, most serrated trailing edge implementations are not designed primarily for

aerodynamic improvement but rather for acoustic noise reduction. The primary mechanism un-

derlying this noise reduction involves the disruption of coherent vortical structures at the trailing

edge, nicely revealed in Figure 3.16(a) and (b), which are the dominant source of trailing edge

noise generation [132].

Nevertheless, the observed pressure force improvement is attributed to the suppression of

laminar separation bubble formation in the serrated trailing edge airfoil, where turbulent transi-

tion initiates earlier in the boundary layer development, as demonstrated in Figure 3.16.

Figure 3.16(a) illustrates the PTE airfoil configuration during the initial stages of LSB break-

down, consistent with the detailed analysis presented in Subsection 3.3.2. In contrast, the STE

airfoil exhibits fully developed turbulent flow initiating at approximately one-quarter of the

chord length from the leading edge (Figure 3.16(b)). This early transition to turbulence is a
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Figure 3.16: Comparative visualization of vortical structures and acoustic wave propagation
for primary trailing edge (a,c) and serrated trailing edge (b,d) airfoils, demonstrating lami-
nar separation bubble suppression through serration implementation. Q-criterion iso-surfaces
(Q = 0.01) are colored by streamwise velocity magnitude, while acoustic waves are visualized
through divergence of density and velocity vector contours in the mid-plane.

fundamental characteristic of serrated trailing edges, which act as passive boundary layer tran-

sition devices by introducing three-dimensional flow disturbances that amplify boundary layer

instabilities [131].

Turbulent transition in the STE configuration occurs significantly earlier than in the PTE

case, as evidenced by comparing Figures 3.16(c) and 3.16(d). By the simulation midpoint, the

boundary layer at mid-chord has achieved full turbulent development in the STE case, even

before vortical structures reach the trailing edge. Conversely, the PTE airfoil remains in an

extended transitional phase characterized by spanwise-coherent roll-up structures that have not

yet achieved full three-dimensional turbulent development.

Regarding the wake region downstream of the trailing edge, the PTE configuration exhibits

classical shear layer instability with characteristic two-dimensional roll-up structures, while
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the entire wake region in the STE case demonstrates fully developed three-dimensional turbu-

lent characteristics. This fundamental difference in wake structure directly impacts the acous-

tic signature of each configuration, as three-dimensional turbulent wakes generate broadband

noise with lower peak amplitudes compared to the tonal noise components associated with

two-dimensional coherent structures. These wave propagation patterns are clearly visualized

in Figures 3.16(a) and (b), demonstrating that the STE airfoil configuration generates reduced

acoustic intensity. The serrations fragment larger vortices into smaller structures, thereby re-

ducing trailing edge noise, which represents the most significant acoustic source in this flow

regime. However, detailed noise reduction quantification is not pursued in this analysis, as

extensive research has already addressed this topic [70, 133, 134].

The non-dimensional force in the y-direction exhibits generally similar temporal evolution

for both PTE and STE airfoils, as illustrated in Figure 3.17. However, differences during the

acceleration phase between PTE and STE f ∗y values are visually more pronounced than those

observed in the x-direction force comparison. In this case, f ∗y demonstrates higher magnitudes

for the STE airfoil, providing a slight performance advantage for this configuration. Upon

decomposing f ∗y into pressure and skin friction components, the analysis confirms, as previ-

ously established through Figure 3.7(b), that the skin friction component remains negligible.

Therefore, despite a visibly pronounced reduction in the skin friction component for the STE

configuration, shown in Figure 3.17(c), the overall effect on f ∗y remains minimal. This negligi-

ble impact becomes apparent when examining the component magnitudes, which are displayed

on the order of 10−6, several orders of magnitude smaller than the pressure component.

Examining the overall y-direction force during the post-acceleration phase reveals a sudden

decrease for the STE case around t∗ = 12, while the PTE configuration begins oscillating ap-

proximately one to two time units later. Therefore, evaluating performance solely based on final

lift values or time-averaged quantities over specific intervals fails to capture the broader insight

regarding airfoil stability improvements introduced by serration implementation. Consequently,

the post-acceleration phase receives further detailed examination through the focused analysis

presented in Figure 3.18(a), beginning from t∗ = 8.0.

The most significant difference manifests during the final third of the simulation period,

where the STE curve exhibits characteristics resembling a regression line that smooths the

volatile PTE data fluctuations. This stability enhancement represents a critical aerodynamic
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Figure 3.17: Temporal comparison of non-dimensional y-direction forces between PTE and
STE airfoils: (a) total force magnitude, (b) pressure force component, and (c) skin friction force
component.

advantage, particularly for applications requiring consistent lift generation, such as small air-

craft and unmanned aerial vehicles operating at moderate Reynolds numbers [135]. The key

mechanism in enhancing airfoil stability involves controlling boundary layer development and,

critically, managing boundary layer transition processes. Through serration implementation,

the trailing edge noise generation phase initiates earlier, as emphasized by the highlighted curve

portions in Figure 3.18(a), where red and teal arrows indicate the transition from steadily in-

creasing force to a sudden decrease before resuming the upward trend. The trailing edge noise

source is visualized in Figures 3.18(b) and 3.18(c) through acoustic wave contour plots, though

the noise generation realistically commences slightly earlier: approximately t∗ = 13.4 for the

PTE airfoil and t∗ = 11.5 for the STE configuration.

The earlier onset of trailing edge noise in the STE configuration paradoxically contributes

to improved stability by establishing consistent turbulent flow characteristics sooner in the de-

velopment process. This early stabilization prevents the formation of large-scale unsteady flow

75



Figure 3.18: Detailed analysis of post-acceleration aerodynamic behavior: (a) temporal evolu-
tion of non-dimensional y-direction force during constant velocity operation, highlighting sta-
bility differences between configurations; (b,c) comparative visualization of trailing edge noise
onset through acoustic wave contour plots, demonstrating earlier noise generation in the STE
configuration at t∗ = 11.5 versus t∗ = 13.4 for the PTE airfoil.

structures that characterize the laminar separation bubble phenomenon, which is primarily re-

sponsible for the higher volatility observed in the PTE airfoil performance (Figure 3.18(a)).

To further demonstrate LSB avoidance, classical pressure coefficient distributions are pre-

sented in Figure 3.19(a), with Cp values averaged over the time interval from t∗ = 14 to t∗ = 16.

This temporal range strategically captures the formation, growth, and bursting phases of the

LSB phenomenon. The time-averaged pressure coefficient distribution provides a clear indica-

tion of LSB presence through the characteristic plateau in the Cp curve, which corresponds to

the recirculation zone where flow velocity approaches zero.

In addition to the time-averaged Cp distribution shown in Figure 3.19(a), Figures 3.19(b)

and (c) highlight the temporal differences in surface pressure distributions. The instantaneous
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Figure 3.19: Pressure coefficient comparison between PTE (red dots) and STE (teal dots) con-
figurations: (a) time-averaged Cp distribution over the interval t∗ = 14 to t∗ = 16, demonstrating
the absence of characteristic laminar separation bubble features in the STE case; (b,c) instan-
taneous pressure distributions at t∗ = 14 and t∗ = 16, respectively, highlighting the reduced
oscillatory behavior in the STE configuration.

pressure coefficient plots consistently demonstrate that the PTE airfoil boundary layer exhibits

significantly higher oscillatory behavior compared to the more stable STE configuration. The

scatter in the PTE pressure data reflects the unsteady nature of the laminar separation bubble,

which undergoes periodic growth and bursting cycles that directly contribute to force oscilla-

tions.

As demonstrated throughout this section, the PTE airfoil exhibits substantially higher volatil-

ity compared to the STE configuration. Based on the comprehensive data analysis for Reynolds

number 250,000, the STE airfoil demonstrates superior boundary layer stability and enhanced

overall aerodynamic stability while simultaneously achieving trailing edge noise reduction from

an aeroacoustic perspective. These findings align with the fundamental understanding that pas-

sive flow control devices, such as trailing edge serrations, can simultaneously address multiple

aerodynamic challenges by manipulating boundary layer transition characteristics [136]. The

trade-off between slightly increased friction drag and improved stability, combined with sig-

nificant noise reduction benefits, makes serrated trailing edges particularly attractive for ap-

plications where acoustic signatures are critical, such as wind turbines and unmanned aerial

vehicles [53].
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3.5 Multi-Reynolds Number Analysis: PTE vs. STE Perfor-

mance Comparison

This section extends the analysis of PTE and STE cases at Re = 250,000 to include three ad-

ditional Reynolds numbers: Re = 100,000, 400,000, and 500,000. Reynolds number, defined

as Re = ρUL/µ , quantifies the ratio of inertial to viscous forces and serves as a fundamental

parameter governing boundary layer development, transition mechanisms, and flow stability.

The aim is to examine how variations in Reynolds number influence the onset of trailing edge

noise, the initiation of turbulent boundary layer, and overall airfoil performance through a com-

parison between PTE and STE configurations (Subsection 3.5.1). Additionally, more detailed

aeroacoustic quantification between the cases is obtained (Subsection 3.5.2). This parametric

study is particularly relevant for applications in the moderate Reynolds number regime, where

boundary layer transition phenomena significantly influence both aerodynamic performance

and acoustic signatures. Collectively, this section focuses on elucidating and highlighting the

differences between PTE and STE airfoils through a detailed examination of the underlying

physical phenomena.

3.5.1 Force Characteristics and Boundary Layer Transition Analysis

Before introducing the comparison between PTE and STE configurations across various Reynolds

numbers, a preliminary analysis examining only PTE airfoil noise occurrences is presented for

different Reynolds numbers. The non-dimensional force in the y-direction is shown in Fig-

ure 3.20 to facilitate comparison between cases and highlight oscillations occurring in the sim-

ulation’s second half (t∗ > 10). A characteristic feature of all four Reynolds number cases is

the presence of strong oscillations that become more pronounced at lower Reynolds numbers.

This behavior is attributed to the inverse relationship between Reynolds number and laminar

boundary layer thickness, resulting in thicker, more unstable laminar regions at lower Reynolds

numbers [82]. However, it is essential to emphasize that this observation applies specifically to

the examined range of Reynolds numbers between 100,000 and 500,000, for this study. Con-

versely, oscillations commence earlier at higher Reynolds values, indicating the earlier onset of

trailing edge noise generation.

Figure 3.20(a) clearly demonstrates the initial deviations from constant fy
∗ growth, indi-

cating disturbances and the influence of trailing edge noise on boundary layer behavior and,
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Figure 3.20: PTE airfoil trailing edge sound wave occurrence visualization for various
Reynolds numbers: (a) fy

∗ versus t∗ graph with emphasized oscillations and trailing edge noise
onset phases highlighted by transparent circles colored with blue palette; (b-e) sound wave con-
tour plots and iso-surfaces at emphasized time steps, where each subfigure corresponds to the
circle colors for respective Reynolds number cases.
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consequently, aerodynamic performance. The transparent circles in Figure 3.20(a) highlight the

moment of trailing edge noise occurrence for each Reynolds number case, distinguished by four

different blue palette colors and line styles. These markers are validated in Figures 3.20(b), (c),

(d), and (e), which employ the aforementioned visualization approach to display sound waves

on mid-plane contours with iso-surfaces. Figure 3.20(b) shows the latest occurrence of sound

waves at t∗ ≈ 14.7. As mentioned in Section 3.4 and demonstrated in Figure 3.18, the time

steps visualized with contour plots and iso-surfaces precede the actual situation shown in the

graphs by several time units. This temporal offset ensures clear visualization of sound waves,

compensating for low visibility effects at the initial stages of the trailing edge noise phase. Fig-

ures 3.20(c), (d), and (e) demonstrate progressively earlier trailing edge sound wave generation

and earlier boundary layer transformation from laminar to transitional phases. Beyond the ear-

lier transition, larger portions of the airfoil surface experience boundary layer transition, with

roll-up structures becoming visible closer to the leading edge as the Reynolds number increases.

Based on the preceding analysis, the STE airfoil is introduced for comparison with the PTE

configuration across four Reynolds numbers. Non-dimensional y-direction force values during

the post-acceleration period are presented in Figure 3.21. Although the comparison between

PTE and STE at Re = 250,000 has been previously presented, it is included here for enhanced

comparison with other Reynolds number cases. Results demonstrate similar serration benefits

for the three additional cases as observed in Figure 3.18 and repeated in Figure 3.21(b). Ser-

ration implementation results in smoother force curves, indicating improved stability and more

reliable airfoil control. The smoothing effect arises from serrations’ ability to promote earlier

boundary layer transition, thereby suppressing large-scale unsteady flow structures associated

with laminar separation bubbles. Furthermore, higher Reynolds number values demonstrate

even greater benefits due to improved overall fy
∗ values compared to the PTE airfoil.

Nevertheless, the sudden performance decline initiates earlier for the STE airfoil, followed

by superior recovery with more controlled growth. The cause of this sudden performance de-

cline stems from boundary layer vortices arriving at the airfoil’s trailing edge, generating sound

waves that propagate through the domain and induce additional disturbances on the suction side

boundary layer. These moments of trailing edge sound wave initiation are highlighted with red

and teal transparent circles in Figure 3.21. The earlier onset in the STE case paradoxically con-

tributes to improved long-term stability by establishing consistent turbulent flow characteristics

sooner, preventing the formation of large-scale unsteady structures.
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Figure 3.21: Comparison of non-dimensional y-direction forces for PTE (red) and STE (teal)
airfoils across four Reynolds numbers: (a) Re = 100,000, (b) Re = 250,000, (c) Re = 400,000,
and (d) Re = 500,000. Red (PTE) and teal (STE) circles highlight the onset of trailing edge
sound wave propagation.

Furthermore, increasing the Reynolds number results in a larger temporal gap between the

initiation of sound wave generation at the trailing edge for PTE and STE configurations. Ex-

planation of those changes can be given through Figure 3.22, which presents non-dimensional

x-direction forces for the four Reynolds number cases. The graphs appear on the left side of

each subfigure, while the right side displays airfoil snapshots at different time steps correspond-

ing to the period emphasized by teal arrows on the left. This period shows sudden fx
∗ growth

for the STE airfoil compared to the PTE configuration, attributed to earlier laminar-to-turbulent

boundary layer transition. As visible on the right side of these subfigures, at identical time

steps for each Reynolds number case, the STE configuration demonstrates the moment when

the turbulent boundary layer transition commences. At the same time, the PTE airfoil maintains

a laminar boundary layer for Reynolds numbers of 250,000 (Figure 3.22(b)), 400,000 (Fig-

ure 3.22(c)), and 500,000 (Figure 3.22(d)), or exhibits a transitional region with roll-ups for
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Reynolds number 100,000 (Figure 3.22(a)).

Figure 3.22: Comparison of non-dimensional x-direction forces for PTE (red) and STE (teal)
airfoils with corresponding flow visualizations. Teal arrows highlight the turbulent boundary
layer initiation phase for the STE airfoil. Four Reynolds number cases are presented: (a) Re =
100,000, (b) Re = 250,000, (c) Re = 400,000, and (d) Re = 500,000. The left legends apply to
force plots, while the right legends correspond to flow visualization contours.

Regarding force analysis comparison, fx
∗ exhibits the smallest difference between PTE and

STE airfoils at Reynolds number 100,000, as visible in Figure 3.22(a). The PTE configuration

actually outperforms the STE airfoil during the final three time units. The other three cases
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demonstrate similar fx
∗ trends with more stable curves but slightly degraded performance. To

quantify differences in both fx
∗ and fy

∗, Table 3.2 is introduced, showing the relative difference

between PTE and STE forces averaged over the post-acceleration phase and the final five time

units. The relative difference for x- and y-direction forces is calculated using Equations 3.8

and 3.9:

εx =
f ∗x PT E − f ∗x ST E

f ∗x PT E
· 100 [%] (3.8)

εy =
f ∗y PT E − f ∗y ST E

f ∗y PT E
· 100 [%] (3.9)

where all forces are averaged over time intervals from t∗ = 8 to t∗ = 20 or from t∗ = 15 to

t∗ = 20. Therefore, positive relative difference values indicate higher PTE forces relative to

STE, and vice versa.

Table 3.2: Relative difference in mean non-dimensional forces in the x- and y-directions be-
tween the PTE and STE airfoils for four Reynolds numbers.

Re
[
·105] t∗ = 8−20 t∗ = 15−20

εx [%] εy [%] εx [%] εy [%]

1 1.15 0.16 -5.51 1.54
2.5 12.65 -0.27 7.96 -1.1
4 12.52 -2.07 7.29 -3.72
5 11.35 -2.28 5.93 -4.05

Combining the fx
∗ analysis from Figure 3.22 with force quantification from Table 3.2, it

becomes evident that fx
∗ improves slightly for the lowest Reynolds number. At the same time,

the other three cases demonstrate approximately 12% degradation, primarily due to earlier tur-

bulent boundary layer transition. This trade-off reflects the fundamental aerodynamic principle

that turbulent boundary layers exhibit higher skin friction values compared to laminar layers.

Nevertheless, fx
∗ maintains relatively low values throughout the acceleration and short post-

acceleration phases. The primary objective of this analysis is to capture, analyze, and explain

specific physical phenomena and their manifestation in aerodynamic trends, rather than solely

assessing force magnitudes.

Conversely, fy
∗ shows negligible changes for Reynolds numbers 100,000 and 250,000, with

slight deterioration and improvement, respectively. For higher Reynolds numbers, the differ-

ence becomes more pronounced, with values around 2% for the post-acceleration phase that
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double when averaged over the final five time units. These values alone do not guarantee perfor-

mance improvement; rather, a comprehensive analysis reveals that serrations enhance boundary

layer stability, resulting in smoother force curves in both the x- and y-directions. Overall, con-

clusions drawn from the Re = 250,000 case, where serrations improve boundary layer stability,

extend to the broader Reynolds number range of 100,000–500,000.

3.5.2 Aeroacoustic Analysis and Noise Reduction Quantification

For the aeroacoustic analysis, 26 pressure measurement points are positioned in the airfoil’s

xy mid-plane with high-density data sampling at 3289 time steps over the complete 20-time-

unit simulation duration. This sampling frequency and spatial distribution follow established

practices in computational aeroacoustics, ensuring adequate temporal resolution to capture the

frequency content of trailing edge noise while providing sufficient spatial coverage for direc-

tivity analysis [132]. The precise locations of these measurement points replicate microphone

positioning in anechoic chamber experiments, where sensors are distributed radially around the

noise source. Similarly, in this CFD analysis, 26 measurement points are distributed around the

airfoil’s trailing edge at a radial distance equal to one chord length, with angular positions rang-

ing from 30° to 150° for the upper surface and 210° to 330° for the lower surface, as illustrated

in Figure 3.23.

The one-chord-length radial distance represents a compromise between near-field accuracy

and far-field applicability, positioning the measurement points within the geometric near-field

while avoiding the fluid dynamic near-field where acoustic and vortical disturbances are cou-

pled. Such dense spatial sampling enables detailed analysis of pressure fluctuations around the

airfoil, capturing numerical differences between PTE and STE configurations across various

Reynolds numbers, complementing the flow visualization interpretations obtained previously.

The coordinate system referenced in Section 3.2 positions the airfoil and measurement points

in the Cartesian system x j = {x,y,z}, while the fluid flow is angeled 5° to the Cartesian system,

and it is measured in a generalized coordinate system ξi = {ξ ,η ,ζ}. The measurement point

at 150° is highlighted with a red circle because it exhibits the highest overall non-dimensional

pressure (p∗) and noise levels. Therefore, this location is examined in detail in the following

figures, starting with Figure 3.24.

84



Figure 3.23: Measurement point locations around the Joukowski airfoil (green circles) with
fluid flow direction indicated by the brown arrow. The red circle highlights the measurement
point at 150° that receives detailed analysis in subsequent figures.

Examining all four Reynolds number cases reveals no pressure differences during the accel-

eration phase. Therefore, the transparent gray rectangles in the upper panels of Figures 3.24(a)-

(d) are magnified in the lower panels, where interesting oscillations begin to manifest. As pre-

viously explained, the transition from a laminar boundary layer to a transitional period (PTE) or

directly to a turbulent boundary layer (STE) introduces vortical structures that generate sound

waves upon reaching the airfoil’s trailing edge. Depending on the Reynolds number, these

boundary layer changes occur earlier but persist for shorter durations at higher Re, and vice

versa for lower Re. All four cases in Figure 3.24 show the magnified second half of the sim-

ulation, emphasizing non-dimensional pressure oscillations at a point located one chord length

from the trailing edge at a 150° angle, highlighted by the red circle in Figure 3.23. Visual

inspection reveals that oscillations commence around t∗ ≈ 15 for Re = 100,000, t∗ ≈ 14 for

Re = 250,000, and approximately t∗ ≈ 13 for both Re = 400,000 and Re = 500,000. This

Reynolds number dependence reflects the enhanced convective transport and reduced diffusion

at higher Re, enabling faster propagation of boundary layer disturbances to the trailing edge.

Consequently, Sound Pressure Level (SPL) analyses visualized in Figures 3.25 and 3.26 are

computed for time intervals t ∈ [15,20] for Re = 1 · 105, t ∈ [14,20] for Re = 2.5 · 105, and

t ∈ [13,17] for Re = 4 ·105 and Re = 5 ·105, as highlighted by the transparent purple regions in

85



Figure 3.24: Non-dimensional pressure fluctuations for the measurement point at the 150° an-
gle from the trailing edge for Reynolds numbers: (a) 100,000, (b) 250,000, (c) 400,000, and
(d) 500,000. PTE curves are shown in red, while STE curves are shown in teal. Upper panels
represent the complete simulation duration, while the gray rectangles indicate the zoomed re-
gions displayed in the lower panels. The transparent purple region highlights the time period
analyzed in subsequent figures.

the lower panels of Figure 3.24.

Based on pressure oscillations, SPL values are calculated for the aforementioned time inter-

vals. Since pressure is obtained in non-dimensional form, all components in the SPL calculation

must be non-dimensional to yield dimensionally consistent decibel values. The process begins

with acquiring pressure time series data p∗(xi, t) at Np = 26 discrete spatial locations xi dis-

tributed around the trailing edge geometry, where the asterisk denotes non-dimensional quan-

tities. The fundamental step in acoustic post-processing involves computing root-mean-square
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(RMS) pressure values at each measurement location. The RMS calculation isolates the fluctu-

ating acoustic pressure from the mean flow pressure, following the standard approach in aeroa-

coustics where only the unsteady pressure components contribute to sound generation [137].

For a given spatial point xi, the non-dimensional RMS pressure is calculated as:

p∗rms(xi) =

√√√√ 1
Nt

Nt

∑
j=1

[p∗(xi, t j)− p∗(xi)]
2 (3.10)

where Nt represents the total number of temporal samples, t j denotes discrete time instances,

and p∗(xi) is the temporal non-dimensional mean pressure at location xi. This formulation

effectively isolates the fluctuating pressure component, which contains acoustic information,

from the time-averaged fluid dynamic pressure field. The temporal averaging window contains

sufficient data with 564 sample points for Re = 1 · 105, 678 for Re = 2.5 · 105, 661 for Re =

4 ·105, and 662 for Re = 5 ·105.

The conversion to Sound Pressure Level follows the standard acoustic definition, adapted

for non-dimensional analysis:

SPL(xi) = 20log10

(
p∗rms(xi)

p∗ref

)
[dB] (3.11)

where p∗ref represents the non-dimensional reference pressure corresponding to the standard

acoustic reference of 20 ·10−6 Pa. The division of non-dimensional values under the logarithm

ensures the SPL calculation remains dimensionally consistent, making this approach suitable

and practically convenient. The logarithmic scale in SPL calculation compresses the wide dy-

namic range of acoustic pressures into a manageable scale, consistent with human auditory

perception and standard acoustic measurement practices [137]. The resulting SPL(xi) are effec-

tively visualized in polar coordinates (ri,θi), where ri = ||xi−xTE|| represents the distance from

the trailing edge location xTE (equal to the chord length c∗), and θi = arctan
(

yi−yTE
xi−xTE

)
defines the

angular position. This polar representation provides valuable insight into the directional char-

acteristics of trailing edge noise radiation and facilitates comparison between PTE and STE

acoustic scattering from sharp edges.

Based on these calculations, four polar plots are presented in Figures 3.25 and 3.26. All

cases contribute to the unified conclusion that serrations improve pressure fluctuations and re-

duce sound pressure levels in these regions by up to 8 dB. Overall, SPL intensity values for the
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PTE airfoil are consistent with those reported in the literature [138, 139]. Beyond visual repre-

sentation, Tables 3.3 and 3.4 provide quantification and statistical analysis of sound values.

By combining statistical and visual data, several observations emerge. First, for Reynolds

number 100,000, the greatest improvements from serration implementation occur at the highest

SPL values, while minimal benefits are achieved at the lowest sound intensities. Additionally,

the upper surface exhibits more significant improvements with a mean of 4.00 dB compared

to 3.34 dB for the lower surface. More importantly, the highest SPL on the upper surface is

reduced by 5.92 dB from its original value of 78.69 dB. Consequently, instead of the maximum

SPL occurring at 150° as in the PTE case, the STE case exhibits its maximum at 210° due

to lower noise reduction on the lower surface compared to the upper surface. This directivity

shift reflects the altered scattering characteristics introduced by serrations, which modify the

coherence length of turbulent structures interacting with the trailing edge.

At Re= 250,000, the situation differs slightly, with higher improvements for lower-intensity

SPL measurement points, while reductions decrease at positions with increased sound levels.

Therefore, at the PTE’s 150° position with the highest SPL of 78.59 dB, only a 2.30 dB reduc-

tion is achieved. However, the overall reduction is approximately 5.01 dB, which exceeds that

of the previous case with a lower Reynolds number. Compared to the lower Reynolds number

case, the reduction influence shifts from the upper to the lower surface. Quantitatively, the up-

per surface mean reduction is 4.75 dB, while the lower surface achieves 5.27 dB with a higher

reduction even in the higher SPL regions compared to the upper surface. The Reynolds number

dependency in serration effectiveness is related to the changing scales of turbulent structures in

the boundary layer, which affects the interaction between eddies and the serrated geometry.

For Re = 400,000 and Re = 500,000 (Figure 3.26), the situation resembles the previous

Re = 250,000 case but with a more pronounced reduction across all regions. However, the time

interval of interest is shorter for these two cases (t ∈ [13,17]) compared to those in Figure 3.25.

Nevertheless, significant noise reduction is achieved through the addition of serration. For the

Re = 400,000 case, the overall reduction is 5.29 dB, while for Re = 500,000, it reaches 6.24

dB. In these two cases, greater reduction is again achieved on the upper surface compared to the

lower surface, with means of 5.55 dB versus 5.03 dB and 6.51 dB versus 5.97 dB for the higher

and lower Reynolds values, respectively.

Interestingly, for the STE case in both Figures 3.25(a) and (b), minimum SPL occurs at

330°, while for Figures 3.26(a) and (b), the minimum occurs at 30°. Consequently, minimum
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Figure 3.25: Polar plot visualization of PTE and STE sound pressure levels around the trailing
edge for Reynolds numbers: (a) 100,000 and (b) 250,000. PTE data are shown with circles
using the viridis colormap, while STE data use diamond markers with the plasma colormap.
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Figure 3.26: Polar plot visualization of PTE and STE sound pressure levels around the trailing
edge for Reynolds numbers: (a) 400,000 and (b) 500,000. PTE data are shown with circles
using the viridis colormap, while STE data use diamond markers with the plasma colormap.
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values shift from the lower to the upper surface with increasing Reynolds number, although

these differences are minimal.

Table 3.3: Statistical analysis of PTE and STE SPL data showing minimum, maximum, and
mean values across different Reynolds numbers.

Re
[
·105] PTE STE

Min
[dB]

Max
[dB]

Mean
[dB]

Min
[dB]

Max
[dB]

Mean
[dB]

1 64.51 78.69 73.24 61.24 74.85 69.57
2.5 64.91 78.59 73.40 58.30 76.28 68.38
4 63.28 75.40 71.00 59.29 72.57 65.71
5 62.62 74.56 70.34 57.47 71.99 64.10

Table 3.4: Comprehensive comparison of SPL reduction between PTE and STE airfoils, with
separate analysis for upper and lower surfaces across various Reynolds numbers. Values repre-
sent noise reduction achieved by the STE configuration.

Re
[
·105] PTE/STE comparison Lower surface comp. Upp surface comp.

Min
[dB]

Max
[dB]

Mean
[dB]

Max
[dB]

Mean
[dB]

Max
[dB]

Mean
[dB]

1 1.18 5.92 3.67 3.96 3.34 5.92 4.00
2.5 2.30 6.61 5.01 6.61 5.27 5.90 4.75
4 2.82 6.57 5.29 6.15 5.03 6.57 5.55
5 2.66 8.09 6.24 7.36 5.97 8.09 6.51

The choice of optimal serration design depends on the specific noise reduction objectives,

and it is shown here that the Reynolds number can have a significant impact on fulfilling those

objectives. If the goal is overall noise reduction, higher Reynolds number cases achieve better

improvements in regions of interest where oscillations are pronounced due to transition regions

in PTE airfoil cases. Conversely, if the purpose of serrations is to reduce maximum sound level

regions, greater effectiveness is observed at lower Reynolds numbers. These conclusions apply

specifically to the Reynolds number range from 100,000 to 500,000 examined in this study.

This design trade-off reflects the fundamental challenge in aeroacoustic optimization, where

different noise metrics may favor different configurations depending on the specific application

requirements [48].

Overall, this consistency across the Reynolds number range, both aerodynamically and

aeroacoustically, validates the effectiveness of serrated trailing edges as passive flow control de-

vices for moderate Reynolds number applications, including small aircraft. The demonstrated

91



dual benefits of improved aerodynamic stability and significant noise reduction make serrated

trailing edges particularly attractive for noise-sensitive applications where environmental im-

pact is a primary concern [53].
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4 PRIMARY AND SERRATED EDGE WINGS
COMPARISON WITH LBM ANALYSIS

This chapter integrates the methodological frameworks and findings from Chapters 2 and 3 to

provide a comprehensive three-dimensional LBM analysis of bio-inspired airfoil configurations.

The integration of experimental validation from Chapter 2 with the detailed flow physics un-

derstanding from Chapter 3 enables a robust computational framework for evaluating serrated

trailing edge performance under realistic three-dimensional conditions. The established LBM

approach and methodology from Chapter 2 are employed, along with enhanced UltraFluidX

software capabilities, to analyze the bio-inspired wing configurations investigated in Chapter 3.

This chapter addresses a critical gap in the existing literature by providing direct three-

dimensional LBM validation of serrated trailing edge designs, bridging the gap between two-

dimensional idealized studies and realistic finite-wing applications. The chapter structure com-

prises three main sections: Section 4.1 presents comprehensive information about the geomet-

ric construction methodology for both primary trailing edge (PTE) and serrated trailing edge

(STE) wings, including the implementation of sinusoidal serration variants. Section 4.2 de-

tails the numerical setup and specialized UltraFluidX wall modeling approaches required for

accurate boundary layer representation. Finally, Section 4.3 presents detailed LBM results for

both PTE and STE configurations with a comprehensive comparative analysis and performance

assessment.

4.1 Three-dimensional wing geometry definition

To configure three-dimensional wing geometries for detailed LBM analysis, a combination

of Python scripting with FreeCAD and associated macro functionalities has been employed

to generate all wing configurations. This computational approach offers superior geometric

control and repeatability compared to manual CAD construction, enabling parametric studies

and systematic design optimization. Unlike the approach utilized in Chapter 2, where Airfoil

Tools [107] provided coordinate data for subsequent 2D extrusion in SolidWorks, the present
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methodology employs mathematical equations for NACA 4-digit airfoils to ensure precise geo-

metric representation.

The thickness distribution for NACA 4-digit airfoils is defined by Equation 4.1:

yt = 5t
[
0.2969

√
x−0.1260x−0.3516x2 +0.2843x3 −0.1015x4] (4.1)

where x represents the normalized chordwise position ranging from zero to unity, yt denotes

the half-thickness at position x, and t represents the maximum thickness as a fraction of chord

length. For the symmetric airfoils, such as NACA 0012, the camber line coincides with the

chord line, simplifying the coordinate generation process. Consequently, the x-coordinates for

upper and lower surfaces are identical (x = xu = xl), while the y-coordinates are calculated as

yu = yt and yl =−yt , respectively.

The discretization strategy for airfoil surface representation requires careful consideration of

both geometric accuracy and computational efficiency. Insufficient point density can introduce

geometric discontinuities that affect boundary layer development, while excessive discretiza-

tion increases computational overhead without proportional accuracy gains. The number of

discretization points directly impacts RAM requirements in UltraFluidX simulations, as the

software’s preprocessing tool must accurately differentiate between fluid and solid regions.

Based on these considerations, 200 points are specified to describe the airfoil surface, with

enhanced point density concentrated near the leading edge where curvature gradients are most

pronounced, as illustrated in Figure 4.1. This distribution strategy follows established practices

in computational geometry, where higher resolution is applied in regions of maximum curvature

to preserve geometric fidelity and ensure accurate flow field prediction [140].

As clearly visible in Figure 4.1, the geometric implementation features carefully designed

point clustering strategies. The upper left magnified region demonstrates the concentrated point

distribution around the leading edge, where the tight spacing ensures accurate representation

of the high curvature region critical for stagnation point formation and pressure recovery. The

lower right magnified region illustrates the trailing edge treatment, showing the finite-thickness

implementation that distinguishes this configuration from the idealized sharp trailing edge em-

ployed in Chapter 3. This finite thickness representation more accurately reflects realistic man-

ufacturing constraints and experimental conditions, though it introduces additional complexity

in wake formation and boundary layer development compared to sharp trailing edge configura-

tions [82].
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Figure 4.1: PTE wing surface discretization showing three-dimensional geometry with detailed
mesh point distribution. The main figure displays the full wing planform, while the magnified
insets highlight: (upper left) the leading edge region with enhanced point clustering for accurate
curvature representation, and (lower right) the trailing edge region demonstrating the finite-
thickness implementation with blunt trailing edge geometry.

Regarding the STE case, serrations are added to the consistent PTE wing. To maintain

consistency with the analysis presented in Chapter 3, the serration wavelength is specified as

0.05LC, while the amplitude corresponds to 0.1LC. These geometric parameters are based on

bio-inspired design principles derived from owl feather analysis, where similar wavelength-

to-amplitude ratios have demonstrated optimal noise reduction characteristics [52]. To ensure

adequate mesh resolution around the serrated geometry, each triangular serration element is

discretized using 50 points.

A fundamental difference between the current three-dimensional approach and the Chap-

ter 3 methodology involves the spanwise boundary conditions. The present configuration fea-

tures a finite span of 0.3 m, corresponding to 200% of the chord length, representing realistic

finite-wing conditions. In contrast, the Joukowski airfoil analysis in Chapter 3 employed a

span of only 10% chord length with periodic boundary conditions to simulate infinite-span con-

ditions. This dimensional scaling significantly affects the flow physics, as finite-span effects
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introduce tip vortices, induced drag, and three-dimensional pressure redistributions that are ab-

sent in infinite-span configurations.

In addition to triangular serrations, sinusoidal serration profiles are investigated using iden-

tical wavelength and amplitude parameters. The distinct geometric characteristics of both vari-

ants are clearly demonstrated in Figure 4.2, which provides a detailed visualization of the trail-

ing edge morphologies and their geometric implementation.

Figure 4.2: STE wing configurations: (a) triangular serrations with sharp vertices, and (b)
sinusoidal serrations with smooth curvature transitions. Both maintain identical wavelength
(0.05LC) and amplitude (0.1LC) parameters.

Based on these three geometric configurations (PTE, triangular STE, and sinusoidal STE)

with primary focus on the PTE and triangular STE variants, a comprehensive analysis is con-

ducted in the subsequent sections. The geometric foundation established through this parametric

modeling approach ensures reproducible results and enables future design optimization studies.

4.2 Numerical setup and wall model changes

The numerical domain configuration follows the same approach as described in Chapter 2, Sec-

tion 2.3. It comprises six nested refinement zones, with the finest zone encompassing the wing

region at a mesh size of 2.66 · 10−6 m. Although the simulation setup remains consistent, this

chapter employs UltraFluidX version 2025, whereas Chapter 2 utilized version 2021. The use

of the latest UltraFluidX version incorporates several algorithmic improvements and enhanced

wall modeling capabilities, which are critical for accurately capturing near-wall turbulence and

complex flow structures around bio-inspired geometries [141].
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The primary differences between simulation cases pertain to the wall modeling approaches.

Both software versions implement Wall Modeled Large Eddy Simulation (WMLES) capabil-

ities through various coupling strategies and theoretical wall laws. UltraFluidX employs an

advanced geometric modeling technique for solid wall treatment, wherein the volume mesh

is intersected with the surface mesh to delineate fluid and solid regions based on voxel cen-

ter positions relative to the surface geometry. For each fluid node, the solver computes the

effective distance to the nearest wall by measuring subgrid distances along each lattice connec-

tion to neighboring nodes, combining these measurements with appropriate weighting. This

methodology facilitates accurate modeling of turbulent boundary layers using wall functions

that integrate seamlessly with the Smagorinsky LES turbulence model, specifically adapted for

the LBM [141].

In contrast, the differences between the two versions are as follows. Simulations in Chap-

ter 2 utilized a Generalized Wall Function (GWF) with one-way coupling and a wall model

intensity parameter set to 0.5, which controls the coupling strength between the velocity field

and the wall model. The one-way coupling approach represents a simplified WMLES strategy

where the wall model influences the flow field, but feedback from the near-wall flow to the

wall model is limited. In this scheme, the slip velocity at the wall is derived directly from the

LES bulk flow information without incorporating wall shear stress feedback mechanisms [142].

This approach, combined with averaging over the last 10% of the simulation duration, provides

a robust foundation for comparison with experimental data. However, the one-way coupling ap-

proach may inadequately capture transient near-wall dynamics and complex vortical structures,

particularly in unsteady flows around serrated trailing edges, necessitating more sophisticated

modeling for detailed flow analysis.

Consequently, in this chapter, an adaptive two-way coupling approach employing a General-

ized Law of the Wall (GLW) is adopted. The GLW was introduced in UltraFluidX version 2023

and has since become the default choice for enhanced near-wall accuracy [143]. Classical two-

way coupling utilizes wall shear stress from the wall model as input for slip velocity computa-

tion. The adaptive two-way coupling differs by implementing dynamic adaptation mechanisms

that automatically adjust the wall model behavior based on local flow conditions and boundary

layer characteristics. This adaptive approach improves the fidelity of near-wall turbulence rep-

resentation by enabling bidirectional interaction between the wall model and the resolved flow,

thereby capturing transient phenomena and complex flow features more accurately [141].
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Overall, the adaptive two-way coupling with GLW represents the most computationally so-

phisticated and physically accurate approach, while the GWF with one-way coupling offers

robust performance with broader applicability across varying mesh resolutions and flow condi-

tions.

4.3 Aerodynamic Performance Analysis of PTE and STE Wings

This section presents a comprehensive aerodynamic performance analysis of both primary trail-

ing edge (PTE) and serrated trailing edge (STE) wing configurations using the enhanced Ul-

traFluidX 2025 framework with adaptive two-way coupling and Generalized Law of the Wall

(GLW) modeling. The analysis employs finite-span wing conditions (0.3 m span) to capture re-

alistic three-dimensional effects, including tip vortices and induced drag phenomena absent in

two-dimensional studies. The investigation proceeds in two stages: first, the enhanced LBM

methodology is validated against experimental wind tunnel data for the PTE configuration

across multiple angles of attack (2°, 4°, 6°, and 8°), establishing confidence in the computa-

tional framework’s ability to capture complex boundary layer phenomena and pressure distri-

butions. Subsequently, a detailed comparative analysis between PTE and STE wings examines

aerodynamic efficiency metrics, temporal stability characteristics, and underlying flow physics

mechanisms. This dual approach ensures both methodological rigor through experimental vali-

dation and a comprehensive understanding of bio-inspired trailing edge modifications on wing

performance under realistic operating conditions.

4.3.1 PTE Analysis and Validation

Before conducting a detailed comparative analysis between the PTE and STE wings, the new

PTE simulation must be validated against experimental data. As described in Section 4.2, the

adaptive two-way coupling with GLW for near-wall region modeling enables more detailed flow

observation. However, enhanced fluid flow resolution introduces increased oscillations, and re-

sults are expected to exhibit fluctuations around experimental values. Nevertheless, trends and

overall magnitudes should remain within reasonable bounds of wind tunnel data. Figure 4.3

shows newly obtained UFX data of averaged Cp values over the last 10% of simulation dura-

tion, positioned within reasonable agreement with experimental data. For lower angle of attack

values, the upper surface demonstrates better correlation with experimental and previous UFX
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2021 data. Higher angle of attack wings correlate well with lower surface measurements but

exhibit discontinuities around the upper surface. As the angle of attack increases, the minimum

pressure coefficient values deviate from the experimental data. The enhanced wall modeling

approach captures near-wall turbulence with greater fidelity, leading to increased solution sen-

sitivity to boundary layer instabilities and transition phenomena.

Examining the discontinuities across all angles of attack cases reveals abrupt changes in

upper surface curve trends. In Figure 4.3(d), the minimum peak near the leading edge is not

captured, while around mid-chord, pressure coefficient values rise above experimental results.

Moving streamwise toward the trailing edge, these deviations diminish, and data correlation

improves. These abrupt mid-chord changes can be attributed to Laminar Separation Bubble

(LSB) occurrence, discussed in detail in Chapter 3, Subsection 3.3.2. The same pattern appears

at other angles, with the LSB occurrence shifting toward the trailing edge as the angle of attack

decreases.

Regarding overall comparison with experimental data and higher deviations compared to

UFX 2021 results based on one-way coupling with GWF, the current results exhibit higher os-

cillation levels. Beyond streamwise volatility, two-way coupling with GLW captures spanwise

variations, as shown in Figure 4.4. Colored markers represent values from three different span-

wise sections: root (z= 0 m) at the mid-plane to wing tip at z = 0.125, where the span terminates

at 0.15 m. All data points are redistributed using Python post-processing with 250 points for

enhanced data visualization. The continued analysis section throughout this dissertation cor-

responds to z = 0 m. Chapter 2 methodology did not capture significant spanwise variations,

so only mid-plane analysis was presented. Chapter 3 provided a detailed fluid flow analysis

but focused on streamwise orientation with minimal spanwise direction (10% chord length) and

periodic boundary conditions that mimic infinite span.

This analysis reveals higher volatility on the mid-plane as the simulation comes to an end.

On the other hand, a lower level of deviations is observed near the tip, with decreased pressure

lift values. This is related to the wing tip vortex, and a more detailed explanation can be found

a bit further down in the text, which is illustrated in Figure 4.9. Overall, three-dimensional

effects become increasingly important in finite-wing configurations, where tip vortices induce

spanwise pressure variations and modify the effective angle of attack distribution along the

span. These effects are absent in two-dimensional or infinite-span simulations but are critical

for realistic aerodynamic assessment [82].
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Figure 4.3: Pressure coefficient distributions comparing LBM-UFX 2025 results averaged over
the last 10% (green rectangles with filled areas representing lift) with experimental data (violet
markers and dashed lines with filled regions representing measurement uncertainties) and LBM-
UFX 2021 data (red and teal markers).
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Figure 4.4: Pressure coefficient distributions for different spanwise sections compared with
experimental data (violet markers). The previously analyzed section is shown in green at z =
0 m, while sections at z = 0.05 m and z = 0.125 m are displayed in red and dark orange,
respectively.

Beyond averaged results, Figure 4.5 presents similar data to Figure 4.3 but displays only

final time-step pressure coefficient values instead of averaged data over the last 10%. Oscil-

lations are preserved across all four angle of attack cases. Again, oscillations occur closer to

the leading edge at higher angles of attack, while at decreased angles, these deviations move

downstream toward the trailing edge.

4.3.2 Comparative Analysis: PTE vs. STE Wings

Following basic PTE analysis, a comprehensive comparison between PTE and STE configura-

tions focuses primarily on the most complex case at an 8° angle of attack. To validate aerody-

namic efficiency, lift and drag coefficients are obtained for both configurations and presented

in Figures 4.6 and 4.7, respectively. Data are sampled at frequent intervals with time steps of

2.826 · 10−5 s, providing precise temporal resolution for both cases. Values are automatically

calculated by UltraFluidX using standard lift and drag coefficient formulations: CD = 2FD
ρv2A and

CL = 2FL
ρv2A , where ρ = 1.176 kg/m³, v = 20 m/s, and reference area A = c · s = 0.045 m². Coef-

ficients are computed at each time step, while averaged values over the last 10% of simulation

duration are summarized in Table 4.1.
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Figure 4.5: Pressure coefficient distributions comparing LBM-UFX 2025 results for the final
time step (yellow rectangles with filled areas representing lift) with experimental data (violet
markers and dashed lines with filled regions representing measurement uncertainties) and LBM-
UFX 2021 data (red and teal markers).
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Figure 4.6: Temporal lift coefficient comparison for PTE (red line) and STE (teal dashed line)
wings at 8° angle of attack with inset showing the final 40% of simulation duration emphasizing
oscillations in the converged stage.

Lift results in Figure 4.6 demonstrate higher CL values for the STE wing, consistent with

analysis from Chapter 3 for similar wing configurations but different flow conditions (5° angle

of attack, Mach 0.25, and Re = 250,000). Beyond 4.26% improved lift performance, the STE

case provides less fluctuating lift coefficients, benefiting overall control and safety character-

istics. Regarding drag coefficient, increased skin friction from serrations contributes to higher

drag, with PTE demonstrating a 4.73% advantage. However, the STE wing again provides

significantly less varying results compared to PTE, as is particularly evident in the converged

simulation portion, highlighted in the inset graph.

Quantified lift and drag coefficient values are presented in Table 4.1. Notably, averaged

results do not demonstrate lift coefficient advantages for the two lowest angles of attack cases,

while 6° AoA has a small CL gain, and a bit higher CD drop. Conversely, drag improvements are

observed for lower AoA. The AoA dependency of serration effectiveness reflects the changing

balance between beneficial boundary layer modification and adverse pressure gradient strength.

At lower angles, serrations may introduce premature transition without sufficient adverse gra-

dient to benefit from enhanced mixing. Overall, it necessitates application-specific evaluation

to determine the advantage of serration.
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Figure 4.7: Temporal drag coefficient comparison for PTE (red line) and STE (teal dashed line)
wings at 8° angle of attack with inset showing the final 40% of simulation duration emphasizing
oscillations in the converged stage.

Beyond the converged portion, the acceleration phase presents interesting characteristics,

highlighted for both CL and CD in Figure 4.8. Oscillations commence at similar times for both

PTE and STE wings; however, deviation intensity remains stronger for the PTE case. During ac-

celeration, both wings exhibit stronger oscillations only within the time range of approximately

0.07 to 0.09 s. This behavior originates from the development of vortex structures, starting

with characteristic roll-up formation and progressing to three-dimensional vortical structures

that contribute to the turbulent boundary layer transition. Boundary layer evolution and wake

region development are visualized using Q-criterion in Figure 4.9.

By examining Figure 4.9(a), the bound vortex, mentioned in Chapter 3, Subsection 3.3.1,

is clearly visualized for both PTE and STE wings. However, the bound vortex is momentarily

segmented into multiple bound vortices for the STE wing due to triangular serrations at the

trailing edge. The boundary layer remains laminar for both wings, while tip vortex development

is observed at the wing tip. Wing tip vortices form due to the pressure differential between the

upper and lower surfaces, creating a helical vortex structure that trails downstream from the

wing tips. These vortices induce downwash and modify the effective angle of attack distribution,

contributing to induced drag [131].
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Table 4.1: Comparison of lift (CL) and drag coefficient (CD) for PTE and STE configurations
across various angles of attack.

AoA
CL CD

PTE STE PTE STE

8° 0.6030 0.6287 0.0613 0.0642
6° 0.4618 0.4695 0.0408 0.0420
4° 0.3409 0.3306 0.0304 0.0298
2° 0.2035 0.1765 0.0237 0.0226

Figure 4.8: Lift and drag coefficient comparison between PTE (red line) and STE (teal dashed
line) during the final portion of the acceleration phase.

In Figure 4.9(b), approximately 0.023 seconds later, several changes occur. The PTE wake

exhibits characteristic roll-up structures, while the boundary layer maintains laminar character-

istics despite transition region development near the trailing edge. The STE wing demonstrates

similar boundary layer behavior, while regular streamwise structures propagate through the

wake region. Wing tip vortices develop further and gain energy in both cases. Approximately

0.01 seconds later (Figure 4.9(c)), initial roll-ups manifest three-dimensional transformation

near the wing tip, observable near the trailing edge for both PTE and STE configurations. Those

tip region changes are caused by the wing tip vortex that continuously influences the wing with-

out dissipating. Its effects are measurable through a reduction in lift or a decrease in pressure

coefficient at the wing tip compared to the root, as shown in Figure 4.4 and consistent with

studies by Smith et al. [144].
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Figure 4.9: Representation of boundary layer transition, shear layer instability, wake region,
and wing tip vortex development visualization using Q-criterion (Q = 1000) colored by stream-
wise velocity at different time steps: (a) 0.0396 s, (b) 0.0622 s, (c) 0.0706 s, and (d) 0.0763 s.
Mid-plane cuts show pressure contours, with left subfigures representing PTE wings and right
subfigures representing STE wings.
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Wake region behavior differs between PTE and STE wings. Similar roll-up deviations oc-

cur near the trailing edge for PTE, while serrations fragment roll-ups that begin deviating in the

vertical direction. Vortical oscillations continue in the STE wake, while PTE exhibits increased

roll-up deviation from the ideal two-dimensional distribution. Along the boundary layer, in-

creased wing chord transitions to turbulent conditions due to disturbances originating at the

wing tip and propagating rapidly to the mid-plane.

Beyond Q-criterion iso-contours, vortical structures are visualized in two dimensions using

vorticity contour plots shown in Figure 4.10. Similar patterns emerge as in Figure 4.9 between

PTE and STE wings. Figure 4.10(a) reveals the bound vortex, followed by Kelvin-Helmholtz

instability region development from the energetic shear layer to vortical structure formation in

the wake (Figures 4.10(b), (c), and (d)). Kelvin-Helmholtz instabilities occur when the velocity

shear across an interface becomes sufficiently large, resulting in unstable wave growth and

vortex formation. These instabilities are fundamental to the development of shear layers and

the enhancement of mixing [110].

Analysis thus far has focused on PTE and triangular STE comparison. However, a brief

overview compares triangular and sinusoidal approaches for an 8° angle of attack. Overall,

minimal, almost negligible differences exist between cases for these flow characteristics (Mach

0.057, Re = 191,000). Lift coefficient relative error difference is 0.27% for the sinusoidal

model, while the drag coefficient favors conventional triangular serrations by 0.78%. These

small variations can be attributed to a slightly earlier boundary layer transition, as shown by the

highlighted oscillations in Figure 4.11. The sinusoidal trailing edge provides marginally earlier

boundary layer transition and more energetic flow, contributing to boundary layer modification.

Nevertheless, for the specified flow characteristics, differences between models are negligible.

However, for more confident and broader conclusions about the optimal serration type, various

fluid flow setups should be analyzed to gather additional information.

Regarding computational expenses, all simulations were conducted on an Nvidia RTX A6000

GPU and an AMD Epyc 7662 64-Core Processor CPU. The most computationally intensive case

(8° angle of attack PTE wing) required a total runtime of 33h 5m 40s with peak CPU memory

consumption of 57.228 GB (nearly double that of one-way GWF analysis with coarser geom-

etry) and peak GPU memory of 14.034 GB (1.5 times higher than initial LBM cases). The

STE case increased total runtime by approximately one hour to 33h 57m 52s with peak CPU

memory of 59.652 GB and peak GPU memory of 14.764 GB. The least expensive case (PTE at
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Figure 4.10: Physical phenomena representation using vorticity contour plots at different time
steps: (a) 0.0396 s, (b) 0.0622 s, (c) 0.0706 s, and (d) 0.0763 s. Left subfigures represent PTE
wings, while right subfigures represent STE wings.

a 2° angle of attack) required 24 hours, 10 minutes, and 29 seconds, with peak CPU and GPU

memory of 56.305 GB and 13.508 GB, respectively.
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Figure 4.11: Comparison of triangular (teal dashed line) and sinusoidal (gold dashed line) STE
wing models during acceleration phase for temporal: (a) lift coefficient and (b) drag coefficient
analysis.

These computational requirements reflect the enhanced resolution and algorithmic sophisti-

cation of the adaptive two-way coupling approach, which provides superior physical fidelity at

the cost of increased computational overhead.
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5 CONCLUSION

This dissertation presents a comprehensive computational investigation of bio-inspired serrated

trailing edge airfoils, employing a multi-scale approach that encompasses experimental valida-

tion, high-fidelity Large Eddy Simulation, and three-dimensional Lattice Boltzmann Method

analysis. The research has systematically addressed the aerodynamic and aeroacoustic char-

acteristics of these passive flow control devices across the moderate Reynolds number regime,

providing fundamental insights into their performance mechanisms and practical applicability.

The mesoscopic Lattice Boltzmann Method has been demonstrated as a robust and accurate

computational framework for the aerodynamic analysis of classical and bio-inspired airfoil con-

figurations. The methodology adapted for this validation study is based on the LBM-LES model

with a D3Q27 velocity set and the high-fidelity Cumulant-based collision operator. Likewise, a

one-way coupling scheme with a Generalized Wall Function is implemented, providing a novel

methodological approach. The validation study presented in Chapter 2 established excellent

agreement between LBM predictions and experimental data conducted in an open-circuit wind

tunnel for the NACA 0012 airfoil at a medium Reynolds number of 191,000 and a Mach num-

ber of 0.057. Computational force coefficients exhibited deviations of less than 3% compared

with the measurement data across four evaluated angles of attack from 2° to 8°.

On the other hand, a robust macroscopic Large Eddy Simulation approach with a structured

mesh provided a detailed analysis of the primary and serrated trailing edge Joukowski airfoil

for a Reynolds number range of 100,000 to 500,000. Main investigations were carried out for

250,000 Re to determine the importance of sound wave propagation and its influence on stream-

wise fluid flow. As expected, TE noise is the predominant one; however, even at a low Mach

number of 0.25 and a 5° angle of attack, TE sound waves still affect BL stability, shear layer

stability, and the laminar separation bubble. Unsteady simulations are provided with the initial

Gaussian acceleration, akin to the aircraft’s takeoff. After providing numerical results in terms

of grid resolution and wall distance analysis, several fluid flow phenomena were extrapolated.

A non-dimensional force in the x-direction has a strong high-pressure region during the

acceleration phase due to the bound vortex that accelerates the flow. The suction effect becomes
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dominant after the starting vortex dissipates, leading to the pressure force component becoming

the primary force against the skin friction force. In terms of aerodynamic efficiency, drag is

initially compromised at the beginning of the post-acceleration phase but becomes negligible

over time. Lift, on the other hand, shows minimal differences initially but becomes stronger for

the STE airfoil as time progresses.

Boundary layer instability analysis shows improvements with the introduction of the STE.

One reason is the earlier and faster transition from the laminar to the turbulent boundary layer

in the STE airfoil compared to the prolonged transition period in the CTE airfoil. Additionally,

LSB forms and breaks in the boundary layer of the CTE airfoil, causing significant instability.

The introduction of serrations triggers the formation of TBLs earlier and prevents the formation

of LSBs. In both cases, TE sound waves influence the boundary layer, with the CTE airfoil

experiencing an LSB break due to these waves. Beyond improving boundary layer stability,

serrations also reduce the amplitude of sound waves. Overall, STE demonstrates consistent

noise reductions of 3-8 dB across the Reynolds number range of 100,000 to 500,000, with

minimal aerodynamic penalties. The lift-to-drag ratio degradation remained below 5% in most

configurations, validating the effectiveness of passive noise reduction strategies for moderate

Reynolds number applications.

Finally, an improved two-way coupling with the Generalized Law of the Wall has been

employed for LBM-LES analysis of STE, incorporating the sinusoidal STE approach. The ex-

tension to three-dimensional finite wing span analysis has revealed the importance of spanwise

variations in serration effectiveness, particularly in the effect of wing tip vortices on boundary

layer transition.

This dissertation has successfully addressed and demonstrated the effectiveness of serrated

trailing edges as passive flow control devices for moderate Reynolds number applications.

The comprehensive computational analysis has provided fundamental insights into the physical

mechanisms governing serration performance while establishing robust methodological frame-

works for future research.
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