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ABSTRACT

Unmanned aerial vehicles (UAVs) provide a versatile and efficient solution for search op-

erations, combining mobility, adaptability, and the ability to cover large areas. This work

presents a methodology for autonomous UAV-based search in complex land and maritime en-

vironments, integrating probabilistic modeling, ergodic search principles, and model predictive

control (MPC). Search missions are guided by a probabilistic model representing uncertainty

in target locations, which adapts according to the UAVs’ achieved search effort. In maritime

scenarios, the model incorporates sea surface dynamics and target drift, allowing the search to

adapt to environmental changes.

The search is governed by the potential field-based ergodic control method. It ensures sys-

tematic and efficient area coverage suitable for solving a probabilistically formulated search

problem. For applications in hilly terrain, MPC is utilized to generate smooth, collision-free

trajectories that maintain the desired search height and balance area coverage with computer

vision target detection. The approach is validated through numerical simulations over varied

terrain and real-world experiments under challenging conditions, demonstrating robustness to

uncertainties in target location, UAV control, and localization errors. Static target search results

demonstrate close correspondence between estimated search performance and actual detections,

confirming the accuracy of the probabilistic model. In dynamic maritime searches, the target

drift and its uncertainties are considered with the advection and diffusion of the probability dis-

tribution, respectively. The results indicate that the probability field evolves consistently with

target movement, improving performance compared to traditional methods.

Overall, the methodology achieves the desired area coverage while adapting to uncertainties

in both target location and UAV operation. The combination of probabilistic modeling, ergodic

search, and terrain-adaptive motion control enables systematic, uncertainty-aware multi-UAV

search operations. This thesis provides a validated framework for autonomous search missions

in both terrestrial and maritime environments, offering a significant improvement in operational

effectiveness for real-world search and rescue applications.
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PROŠIRENI SAŽETAK

Bespilotne letjelice pružaju svestrano i učinkovito rješenje za operacije traganja, kombinira-

jući mobilnost, prilagodljivost i sposobnost pokrivanja velikih područja. Ovaj rad predstavlja

metodologiju za autonomno traganje temeljeno na bespilotnim letjelicama u složenim kop-

nenim i pomorskim okruženjima. Metodologija integrira probabilističko modeliranje, ergodička

načela pretraživanja i modelsko prediktivno upravljanje. Misije traganja vod̄ene su probabilis-

tičkim modelom koji obuhvaća nesigurnost u lokacijama meta, a koji se razvija u skladu s

postignutim naporom traganja bespilotnih letjelica. U pomorskim scenarijima, model uzima u

obzir dinamiku morske površine i pomicanje meta, omogućujući misiji traganja da se prilagodi

promjenama u okolišu.

Traganje se odvija prema metodi ergodičke kontrole temeljene na potencijalnom polju. Ona

osigurava sustavno i učinkovito pokrivanje područja i pogodna je za rješavanje probabilistički

formuliranog problema traganja. Za primjene na brdovitom terenu, modelsko prediktivno up-

ravljanje se koristi za generiranje glatkih putanja bez sudara koje održavaju željenu visinu leta

s ciljem postizanja ravnoteže izmed̄u pokrivenosti područja i učinkovitosti detekcije meta raču-

nalnim vidom. Pristup je validiran numeričkim simulacijama na raznolikom terenu i eksper-

imentima u stvarnim uvjetima, demonstrirajući otpornost na nesigurnosti u lokaciji meta, up-

ravljanju bespilotnim letjelicama i pogreškama lokalizacije. Rezultati potrage za stacionarnim

metama pokazuju blisku podudarnost izmed̄u procijenjene učinkovitosti traganja i stvarnih de-

tekcija, potvrd̄ujući točnost probabilističkog modela. U pomorskim traganjima, dinamika meta

i nesigurnosti u gibanju opisuju s advekcijom i difuzijom raspodjele vjerojatnosti. Rezultati

pokazuju da se polje vjerojatnosti dosljedno razvija s kretanjem meta, poboljšavajući perfor-

manse u usporedbi s tradicionalnim metodama.

U konačnici, metodologija postiže željenu pokrivenost područja, dok se istovremeno pri-

lagod̄ava nesigurnostima i u lokaciji meta i u radu bespilotne letjelice. Kombinacija probabilis-

tičkog modeliranja, ergodičkog pretraživanja i terenski prilagodljive kontrole gibanja omogućuje

sustavne operacije traganja s više bespilotnih letjelica, uzimajući u obzir nesigurnosti. Ovaj

doktorski rad pruža provjereni sustav za autonomne misije traganja u kopnenim i pomorskim
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okruženjima, nudeći značajno poboljšanje operativne učinkovitosti za stvarne primjene traganja

i spašavanja.

Ključne riječi: Traganje i spašavanje, Upravljanje više bespilotnih letjelica, Ergodičko upravl-

janje, Metode potencijalnog polja, Probabilistički model pretraživanja, Detekcija računalnim

vidom
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1 INTRODUCTION

Search and Rescue (SAR) operations are essential for locating lost, missing, or injured individ-

uals, with the primary goal of ensuring their quick recovery while minimizing physical harm,

emotional distress, exposure to environmental hazards, and ultimately saving lives. These mis-

sions often take place in complex and challenging environments such as dense forests, moun-

tainous terrain, remote wilderness regions, collapsed urban structures, and coastal or offshore

marine areas. The search process is often further complicated due to limited visibility, harsh

weather conditions, and dynamic, unpredictable circumstances. The urgency of SAR missions

is emphasized by the fact that any delay in locating victims greatly increases the risk of se-

vere outcomes such as injury, dehydration, hypothermia, or death. Traditional manned search

methods are often slow, require a lot of resources, and are sometimes hazardous for the re-

sponders themselves. Ground-based searches are limited by terrain and visibility, resulting in

slow progress across large areas. Aerial searches offer wider coverage and faster results but

are costly due to reliance on helicopters or specialized aircraft. Furthermore, responders are

exposed to significant risks when operating in disaster-affected environments such as wildfires,

earthquakes, or floods.

In recent years, the integration of Unmanned Aerial Vehicles (UAVs) into SAR operations

has emerged as a valuable technological solution. UAVs can very quickly survey large and

difficult to reach areas at a relatively low operational cost. They also improve mission safety

by keeping responders out of high risk environments as they can be remotely operated. These

factors make them a cost-effective supplement or alternative to traditional search teams. Their

ability to execute predefined or adaptive trajectories, carry a range of onboard sensors such as

RGB, thermal, or multispectral cameras for search tasks, along with additional sensors for col-

lision avoidance, makes them highly effective in time-critical situations that require enhanced

situational awareness. However, they require skilled operators and high levels of concentration

for decision-making during the search process.

The motivation behind this research is to enhance UAV autonomy, allowing them to conduct

search missions with minimal operator intervention. The goal is to further increase efficiency,
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safety, and effectiveness of SAR operations. By optimizing and automating the search pro-

cess, it becomes possible to reduce search times, increase detection probability, and lower the

operational risks to human personnel. The need for faster victim location in challenging and

hazardous environments further highlights the importance of advancing this technology.

1.1 Hypothesis and Research Goals

This thesis aims to develop a robust and practical framework for UAV-based search that in-

tegrates autonomous navigation based on ergodic control and computer vision detection algo-

rithms, ultimately aiming to improve outcomes in critical life-saving missions.

In robotics, ergodic methods are widely used to explore unknown environments. They allow

the system to both gather new information and combine previously known with newly collected

data to focus exploration on high-priority areas. They have proven to be a reliable and efficient

method for guiding inspection based on a prior distribution, prioritizing high-probability regions

while ensuring coverage across the entire distribution.

Target detection in UAV search missions has traditionally been performed by a human opera-

tor monitoring the UAV camera feed and manually identifying targets. In recent years, advances

in machine learning and computer vision have enabled automatic target detection on collected

images or videos, providing increasingly reliable performance. This allows the system to pro-

cess the visual data, recognize potential targets, and determine whether they are present within

the explored area.

Building on these developments, the research hypothesis is formulated as: effective au-

tonomous multi-UAV search missions in complex natural terrain and maritime environments can

be achieved using ergodic control based on target distribution belief and probabilistic model

acknowledging detection sensor performance.

To confirm the hypothesis, the research is guided by these objectives:

• Constrain the control algorithm to comply with the specific UAVs’ technical parameters

and physical limitations.

• Extend the two-dimensional ergodic control method to account for uneven terrain through

UAV altitude and velocity control.

2



• Define a probabilistic sensing model based on computer vision detector performance at

varying distances from the object.

• Investigate the dynamics of the target probability density field governed by advection and

diffusion processes to enable search activities at sea.

• Develop an interface linking the control algorithm with physical UAV platforms.

• Conduct numerical and experimental validation of the proposed UAV control and search

methodology.

1.2 Scientific Contribution

The main scientific contributions of this work are threefold. First, an exact probabilistic model

is proposed to update the target probability distribution based on detection sensor performance,

incorporating camera sensor specifications and computer vision detection model metrics. Sec-

ond, a velocity and altitude control framework is designed that accounts for UAV dynamics

and mission constraints, enabling the application of two-dimensional potential-based control

methods in complex terrains. Third, a dynamic probability distribution model is introduced to

represent temporally evolving target distributions driven by sea surface layer velocity, enabling

effective search for drifting targets.

The complete framework is tested in numerical simulations conducted in both synthetically

generated and natural terrains, as well as in maritime environments. The motion control and

robustness to uncertainty are validated in experimental flights conducted over complex natu-

ral terrain using physical UAV platforms. The search methodology is validated in carefully

designed experiments employing custom search targets in terrestrial and dynamic maritime en-

vironments.

1.3 Thesis Structure

This thesis is organized into fourteen chapters with corresponding subchapters. The introduc-

tory chapter presents the hypothesis and research objectives, highlights the scientific contribu-

tions, and outlines the overall thesis structure.
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The second chapter provides a literature overview covering UAV applications in search and

rescue, path planning and coverage methods, multi-agent systems and collision avoidance, ve-

locity and altitude control methods, computer vision detection, ergodic search methods, and

search strategies in dynamic environments.

The third chapter provides an overview of modern UAV platforms, including classification,

coordinate systems, key control parameters, and commonly used sensors. It also describes the

UAV equipment employed in the real-world tests.

The fourth chapter introduces the UAV motion and perception models. It characterizes

the control parameters governing UAV trajectories, gives an overview of the theory of search,

describes the spatial and probabilistic properties of the sensor, presents the sensing function that

incorporates computer vision detector performance, and, finally, introduces the ergodic search

task and evaluation metrics.

The fifth chapter presents ergodic control methods. It describes the procedure for calculating

control parameters for a two-dimensional coverage problem using these methods, as well as the

numerical implementation.

The sixth chapter focuses on validating and refining the solution provided by the ergodic

method. It applies system constraints to the calculated control parameters and presents the

formulation of the collision avoidance optimization problem.

The seventh chapter presents the velocity and altitude control procedure for uneven terrain

exploration. It describes the terrain surface topography model, introduces the concepts of trial

trajectories and control functions, and formulates the model predictive control for UAV altitude

and speed.

The eight chapter details the numerical validation of the proposed uneven terrain exploration

methodology. It outlines the specifications of the simulated UAV platforms and the parameters

for three search scenarios. It analyzes the results in terms of search performance and constraint

compliance, and compares them with alternative methods. Additionally, it provides an estimate

of the system’s robustness to uncertainty in practical deployment scenarios.

The ninth chapter describes the real-world experimental tests conducted over terrestrial ter-

rain. It validates the proposed motion control methodology through flights over complex natural

terrain and evaluates executed flight trajectories with respect to simulation results. Furthermore,

it details the training and validation of the custom computer vision detector, and demonstrates

its application in validating the proposed search methodology.
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The tenth chapter presents the dynamics of the target probability distribution model used in

maritime search operations. It covers advection-diffusion modeling of sea surface target drift,

introduces the uncertainty compensation procedure, and outlines the numerical implementation

used to solve the governing equations.

The eleventh chapter presents the results of maritime search simulations using the proposed

dynamic probability model. It demonstrates performance across synthetic, coastal, and large-

scale ocean scenarios, examining robustness to parameter selection, effect of different relative

velocities between the UAVs and the flow field, uncertainty compensation, and long search

delay conditions.

The twelfth chapter describes the real-world experimental tests conducted in maritime en-

vironment. It outlines the method used to approximate the flow field and validates the search

methodology under dynamic target behavior in experimental setting.

The thirteenth chapter discusses the limitations of the proposed methodology, possible areas

of improvement and future research possibilities.

The final chapter reflects on the set hypothesis and summarizes core findings in relation to

the defined research objectives.
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2 LITERATURE OVERVIEW

This chapter presents a review of the existing scientific studies relevant to UAV applications in

search and rescue, path planning and area coverage methods, multi-agent systems and collision

avoidance, computer vision detection, altitude and velocity control methods, ergodic search,

and dynamic environment search strategies.

2.1 UAVs in search and rescue

The integration of UAVs into SAR missions offers promising opportunities to overcome tra-

ditional limitations in speed and accessibility. By enabling rapid surveying of hard-to-reach

locations and detailed environmental monitoring, UAVs help accelerate victim detection and

improve overall mission effectiveness [1].

UAVs can assist ground searchers in wilderness SAR missions by employing search algo-

rithms to find clues and direct the search toward the missing person [2]. Nonetheless, their in-

tegration changes traditional search roles and introduces new coordination challenges between

UAV operators and ground personnel. An overview of the current use of UAVs in SAR missions

is presented in [3]. The work highlights various real-world deployments of UAVs in disaster

scenarios, including hurricanes, tsunamis, floods and fires.

The first documented case of a successful rescue in open terrain using a UAV equipped with

a camera sensor and an automatic Computer Vision (CV) detector is reported in [4]. The work

outlines guidelines for maximizing the probability of target detection in UAV search missions.

To improve human detection in UAV-based SAR missions, an automatic person detector was

integrated into a UAV smartphone control application to assist in target identification [5].

For effectiveness in certain specialized scenarios, UAVs can be customized and equipped

with additional sensors tailored to the mission. An example is provided in [6], which presents

the design, construction, and validation of a custom UAV platform equipped with an avalanche

beacon for conducting rescue missions in avalanche scenarios. It utilizes pre-programmed cus-

tom missions and updates the current mission based on environmental readings.
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In contrast to the experimental applications presented, studies have also focused on UAV

control and path planning in SAR operations. In order to conduct a search guided by the esti-

mate of target location, [7] proposes a UAV path planning method utilizing straight paths and

90-degree turns to cover the target probability distribution in wilderness SAR missions. The

research in [8] proposes a multi-UAV control technique based on domain partitioning and task

distribution to effectively survey a given area. Similarly, [9] demonstrates the deployment of

multiple UAVs to effectively obtain situational awareness following a disaster. It simulates the

performance of the proposed UAV control methods in areas affected by a tsunami.

In the context of maritime SAR missions, [10] proposes an algorithm for the generation

of intelligent maritime response plans and analyzes its performance using real scenarios. The

research presented in [11] introduces a framework for maritime search missions that integrates

automatic onboard detections with advanced object recognition performed at ground stations.

This approach enhances operator decision-making and increases the efficiency of manually con-

ducted UAV searches.

2.2 Path planning and area coverage

The UAVs can perform missions with different levels of autonomy and human intervention [12].

Autonomous operation refers to the capability of UAVs to perceive the environment, make deci-

sions, and execute actions without human intervention. To accomplish missions autonomously,

UAVs rely on path planning algorithms to navigate through the environment. The paths can be

computed in real-time [13, 14] or pre-computed before the mission start [15].

In UAV path planning, soft-computing or intelligent methods inspired by natural processes

and human reasoning are widely used as they can effectively tackle complex multi-objective

problems [16]. Commonly used approaches include the Genetic Algorithm (GA) [21, 22],

Particle Swarm Optimization (PSO) [19, 20], and machine learning methods [17, 18]. Var-

ious implementations of PSO for three-dimensional trajectory generation are compared and

experimentally tested in [23]. Similarly, the study in [24] utilizes PSO in combination with

skeletonization and B-spline curves for trajectory generation over complex topographies. A

comparison of PSO and GA for UAV path planning is presented in [25], with the conclusion

that the GA algorithm generally performs better in the tested implementation. The study in [26]

formulates the energy-aware path planning problem as a traveling salesman problem and solves
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it using GA. The results show a comparison with the greedy method, with GA consuming 2–5

times less energy for UAV operations.

Another common approach for trajectory planning is the Receding Horizon Control (RHC),

also referred to as Model Predictive Control (MPC). The method formulates the path planning or

control problem at each time step as a constrained optimization problem, calculates the solution

over the finite prediction horizon, and applies only the first part of the computed solution [27,

28].

A typical consideration in path planning is achieving a desired inspection performance, of-

ten quantified by area coverage. The study in [15] presents a comparison of different motion

planners executing a coverage task from a fixed altitude. It provides comparison between sim-

ulation results and real-world experiments conducted with fixed-wing UAVs. The study in [29]

presents MPC for exploration of unknown environments or a priori known surfaces with micro

aerial vehicles and validates the method in real-world experiments. A practical search applica-

tion is presented in [7], in which a UAV equipped with a radiation sensor is used to locate a

radioactive source.

2.3 Multi-agent systems and collision avoidance

A multi-agent system refers to the employment of multiple interacting agents such as UAVs

or robots, working together to achieve a collective goal. In such a system, agents can either

operate in groups commanded by a leader agent [30, 31], or perform autonomous actions in-

dependently [9, 32]. Multi-agent or swarm-based strategies are commonly applied to coverage

problems, since they enable more efficient inspection in contrast to single-agent methods [33].

The operational domain can either be shared among all agents [34, 35] or partitioned into sub-

domains, with individual agents operating independently within their assigned areas [8, 36].

The system can adopt either centralized [37] or decentralized control [38], each providing spe-

cific advantages and disadvantages. In a centralized system, a central unit governs the behavior

of all agents, while in a decentralized system each agent determines its actions independently

of other agents. Decentralized systems generally offer greater scalability, as the computational

load is distributed among the agents. However, they are more complex and face increased chal-

lenges in collision avoidance and in sharing the information required for mission execution. A
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hybrid solution is proposed in [34], combining global information exchange with locally com-

puted control actions for each agent.

Surrounding environment and collision avoidance should be considered to ensure safe and

successful task execution. Several strategies for collision avoidance have been explored in

previous studies. In [39], collision avoidance for fixed wing UAVs, controlled using MPC and

an artificial potential field, is achieved using points of repulsive potential. In order to guide

UAVs traveling at a constant velocity away from static and moving obstacles, [40] proposes

a method utilizing local guidance vector fields. Even greater attention to collision avoidance

is required in multi-agent systems. Collision avoidance method for decentralized multi-agent

systems is detailed in [41], proposing an asynchronous three-dimensional trajectory planner

capable of collision free route generation in environments containing both static and moving

obstacles. In practical implementations, collision avoidance can be supported by environmental

sensing technologies such as sonar and Light Detection and Ranging (LiDAR) sensors [9, 42].

2.4 Computer vision detection

When equipped with camera sensors, UAVs provide an effective and cost-efficient means of

conducting inspection and surveillance operations from an aerial perspective. With the integra-

tion of machine learning–based detection algorithms, these systems can automatically identify

and localize objects of interest. This combination not only improves the speed and accuracy of

detection but also enhances overall operational efficiency while reducing the need for human

operators. Furthermore, UAVs gain the capability to function as autonomous aerial observers,

able to support tasks such as border surveillance [43], wildlife monitoring [44], and search and

rescue [4, 5].

Considering the number of scientific articles published in the UAV domain, Faster Region-

based Convolutional Neural Networks (Faster R-CNN) [45] and You Only Look Once (YOLO)

[46] are among the most commonly employed methods for object detection in UAV images

[47]. Faster R-CNN uses a two-stage process in which candidate objects are identified by

a region proposal network in the first step, followed by a classification step and additional

post-processing. This pipeline often achieves high detection accuracy in aerial imagery [48,

49], but its modular design can complicate optimization, as each component requires separate

training and parameter adjustment. In contrast, YOLO predicts bounding boxes and classifies
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objects simultaneously in a single stage by applying a neural network to the entire image in

one pass. Although it can struggle with precise localization, especially for small objects, it can

detect objects in an image very quickly. Typically, YOLO exhibits higher localization error

in comparison to Faster R-CNN, but it tends to produce fewer false positive predictions in

background regions [46]. In general, single-shot methods are more suitable for onboard UAV

detection systems since they require less memory and are faster [50].

Although images captured using onboard UAV cameras are valuable for many applications,

they can introduce various challenges for automatic detection systems. Some of these chal-

lenges arise from high-altitude imaging resulting in small objects [51], wide camera angles

producing high object density [52], and camera motion responsible for image degradation such

as motion blur [53]. However, detection performance on degraded images can be improved if

the model is also trained on such images [54]. Detection performance is further affected by

reduced resolution, which corresponds to less detail captured in the image [55]. The amount of

detail captured is determined not only by the image resolution but also by the altitude at which

the image is taken. Increasing the altitude increases area coverage but reduces the amount of

detail in the image. The amount of detail captured by the image is determined by Ground Sam-

pling Distance (GSD), which reports the ground area captured by a single pixel. A smaller GSD

indicates that more detail is captured. In area mapping, it is used to achieve a specific level of

detail [56], and it directly influences the performance of CV detectors [57]. Similarly, various

research studies have examined the effect of altitude on detection model performance, generally

concluding that detection accuracy decreases as altitude increases [58–61].

2.5 Altitude and velocity control

Efficient UAV area survey can be performed with a proper balance between area coverage and

CV detection model performance. This balance is accomplished by conducting the flight mis-

sion at a carefully chosen height above the terrain. Furthermore, maintaining a safe minimum

distance from the terrain is crucial to avoid potential collisions with natural and man-made ob-

stacles. Therefore, in the presence of uneven terrain, UAV altitude control becomes a highly

significant aspect of conducting an effective area survey.

Altitude control can be achieved by following pre-computed paths, as presented in [23].

10



The study introduces a PSO path generation method producing paths that comply with obsta-

cle avoidance and altitude constraints and demonstrates their performance in real-world ex-

periments. In [62], the authors propose an alternative method for terrain-following trajectory

generation, where neural networks are used to produce two-dimensional paths that satisfy con-

straints including UAV dynamics and flight altitude limits. The study in [63] employs digital

surface models to determine flight altitude when generating low-altitude paths that connect mul-

tiple points of interest. The method is experimentally tested through UAV missions in which

the aircraft followed a sequence of waypoints generated from the computed three-dimensional

trajectory.

Terrain following functionality in unknown terrain can be achieved utilizing sparse point

clouds generated through Simultaneous Localization And Mapping (SLAM), as presented in

[64]. The method generally achieves real-time performance in simulation, but encounters dif-

ficulties in areas with indistinct terrain textures and in steep, cliff-like regions. Anther terrain

following approach is presented in [65], focusing on low-altitude flight achieved by generating

the trajectory based on environmental readings from a laser sensor.

Critical considerations in search missions covering extensive areas are UAV energy expendi-

ture and flight range, particularly for multi-rotor UAVs. Range or endurance maximization can

be achieved at a velocity specific for each UAV, based on its characteristics such as mass, sur-

face area, battery capacity, and propeller size [66]. Considering search performance, an increase

in velocity results in higher area coverage in unit time, but as velocity increases, compliance

to constraints such as collision avoidance becomes increasingly difficult [65]. This highlights

the need for velocity management, allowing UAVs to reduce their velocity during maneuvers

that cannot be executed at the optimal endurance or range velocity. In [67], velocity manage-

ment of a UAV swarm was implemented utilizing mid-field game approach, with the goal of

UAV energy expenditure minimization. A practical application of endurance-aware multi-UAV

planning for coverage of disaster areas is presented in [68].

2.6 Ergodic control

The search for missing targets is generally performed based on a belief of their last whereabouts.

That belief can be represented as a probability distribution throughout the search domain, where

the high probability is assigned to regions that are the most likely to contain the target. With
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the utilization of greedy methods [69] the search can be focused on the high-probability ar-

eas, which can be really effective, but only if the belief is correct. In the case of high uncer-

tainty around the target’s location, these methods tend to fail, as they focus only on the highest-

probability areas while disregarding low-probability regions that may still contain the target. On

the other hand, coverage path planning techniques systematically covering the whole domain

area, such as the spiral or lawnmower path methods [70], are inefficient in the case of a non-

uniform probability distribution. To balance the trade-off between exploration (inspection of

the entire probability distribution) and exploitation (increased focus on high-probability areas),

ergodic methods can be utilized. Over time, they produce a trajectory density corresponding to

a given distribution, in this case the target probability. This results in the complete coverage of

the probability distribution, where each region is inspected for an amount of time that is propor-

tional to the probability assigned to it. The research in [71] presents several benefits of ergodic

methods and demonstrates their robustness to the configuration of initial conditions and better

performance in the presence of distractions when compared to alternative methods. For multi-

agent ergodic search control, the most commonly used approaches are: Spectral Multiscale

Coverage (SMC), MPC, and Heat Equation Driven Area Coverage (HEDAC).

The study in [72] presents a metric for determining the ergodicity of a given trajectory

with respect to a specified distribution, and introduces SMC by utilizing the presented metric

in a closed feedback loop for multi-agent system control. Building on this, [73] introduces

the multiscale adaptive search algorithm by coupling SMC, providing trajectory generation for

the sensor, and applying Neyman–Pearson lemma for decision making. The SMC method was

applied to a complex, dynamic search scenario in [74], where it was used to simulate the search

missions for the MH370 aircraft, lost in the Indian Ocean in 2014.

By incorporating the egodicity metric in the optimization problem cost function, MPC can

also be utilized for ergodic trajectory generation. The overview of MPC methods is presented

in [75], highlighting various applications, recent advancements, and the current state-of-the-art.

The study in [34] utilizes MPC for real-time execution of a coverage and target localization task.

In the implementation, each agent computes its own actions, while the coverage information is

shared across a network. A similar method is presented in [38], incorporating changes to the

control policy to achieve full decentralization of the system.

The HEDAC method, introduced in [76], provides a solution to the multi agent coverage

problem by generating ergodic trajectories through a feedback loop that guides the search agents
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based on the potential field generated by a stationary heat equation. Building on the base

method, [35] introduces agent sensing and detection, while [77] presents the Finite Element

Method (FEM) implementation for numerically obtaining the solution to the heat equation. The

application of the method in diverse contexts serves as a proof of its versatility. For example,

it was employed for multi-agent maze exploration [37], path planning for complex structure

inspection [78], and multi-agent non-uniform crop spraying [32]. The method has also been

applied to real-world robotic manipulators performing tasks such as whole body ergodic explo-

ration [79] and curved surface cleaning [80].

2.7 Dynamic environment search strategies

The search of maritime environments introduces new challenges as a result of dynamic target

behavior governed by the underlying velocity filed of the ocean. A method for oceanic search

utilizing UAVs and dynamically changing target probability maps is presented in [82]. The

approach applies a Gaussian mixture model for evolving the probability map and incorporates

diffusion for velocity field error compensation. A cooperative UAV search framework for dy-

namic targets is presented in [83], utilizing grid-based domain discretization where each cell

is assigned a probability of target presence. The method also accounts for communication im-

perfections and data loss. To facilitate communication, in [84], Unmanned Surface Vehicles

(USVs) and UAVs form a temporary communication network for maritime exploration. The

method performs grid-based domain discretization and executes global path planning based on

sea information maps, while local path planning relies on data collected by onboard sensors.

The research in [85] presents the motion-encoded genetic algorithm with multiple parents

and utilizes it to address the moving target localization problem employing multiple UAVs. The

method is grid-based and models target locations with a probability distribution, updating the

belief map through a Bayesian approach as sensing data is collected. In contrast to maritime

applications, [86] introduces an MPC-based ergodic, multi-agent search strategy that utilizes

dynamic information maps and low-information sensors to locate and track moving targets,

focusing on land-based scenarios.
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3 UAV SEARCH TECHNOLOGY

This chapter provides an overview of modern UAV systems relevant to the context of this thesis.

It covers UAV classification, coordinate systems, and introduces control parameters essential for

flight management. It provides a brief overview of commonly used sensors and concludes with

a description of the experimental UAVs used in the real-world tests.

3.1 Classification of UAVs

The most common way to classify UAVs is by platform type, which refers to their physical

structure and how they generate lift. There are three main categories: fixed-wing, rotary-wing,

and hybrid UAVs.

Fixed-wing UAVs are similar to traditional planes and they use static wings that rely on for-

ward motion to produce lift. They are very efficient in long-range and high-speed missions and

can operate for relatively long periods, making them ideal for inspecting large areas. However,

they are impractical for surveying small areas due to their low maneuverability and inability to

hover in place. One notable drawback of fixed-wing UAVs is that they require a runway or a

catapult for takeoff and a large area to land. A typical example of a fixed-wing UAV is shown

in 3.1.

Figure 3.1: Airmobi Skyeye 2600 fixed-wing UAV [87].

Rotary-wing UAVs utilize rotors, assemblies of rotating blades, to generate downward fac-

ing thrust which enables them to fly. Since the motors provide constant motion of the rotor
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blades, the UAV does not require continuous movement to fly, and can hover in place. How-

ever, that requires the motors to run continuously, which increases energy consumption. They

are highly maneuverable and capable of taking off and landing in confined spaces. They can

execute more complex trajectories when compared to fixed-wing UAVs but they produce more

aerodynamic drag, are less energy efficient, and have lower flight endurance. Rotary-wing

UAVs can be further categorized by the number of rotors they have into: single-rotor UAVs,

which resemble traditional helicopters, and multi-rotor UAVs (quad-rotor, hexa-rotor, etc.). Fig-

ure 3.2 shows examples of single-rotor and multi-rotor UAVs.

Figure 3.2: Examples of rotary-wing UAVs: The Rotor single-wing [88]
and DJI Phantom 4 Pro multi-rotor [89] UAVs.

Hybrid UAVs combine the characteristics of fixed-wing and rotary-wing UAVs. The most

common hybrid-UAV type is the Vertical Take-Off and Landing (VTOL) fixed-wing UAV,

which combines the endurance of the fixed-wing aircraft and VTOL capability of rotary-wing

UAVs. They are essentially a more advanced version of fixed-wing UAVs, but they have a

more complex structure, more parts, and are generally more expensive. An example of a VTOL

fixed-wing UAV used primarily for mapping is shown in Figure 3.3.

Figure 3.3: WingtraOne hybrid VTOL UAV [90].
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3.2 Control and state parameters

UAVs can be observed from two different reference frames, or coordinate systems, each serv-

ing a specific purpose and providing distinct information and usefulness. The inertial frame

corresponds to the global or domain coordinate system. It has a fixed origin and is used for

describing UAV’s position and velocity. The body-fixed frame corresponds to the UAV’s local

coordinate system which has its origin at the UAV’s center of gravity and it moves with the

aircraft. It is used to capture UAV’s orientation, forces, and control inputs. Furthermore, an

additional reference frame can be assigned to the sensor, which typically describes the sensor’s

orientation relative to the body-fixed frame.

The attitude of the UAV is defined as the orientation of its local (body-fixed) coordinate sys-

tem relative to the global (inertial) coordinate system, commonly expressed with Euler angles:

pitch, roll, and yaw. Pitch is described as rotation about the lateral axis, roll is rotation about

the longitudinal axis, and yaw is rotation about the vertical axis. The local coordinate system

and attitude angles for fixed-wing and multi-rotor UAVs are illustrated in Figure 3.4.

Figure 3.4: Local UAV coordinate system and attitude angles

UAVs are controlled by adjusting thrust levels and the attitude angles. Control of these

parameters differs between multi-rotor and fixed-wing UAV types. Multi-rotor UAVs achive

this by varying the rotational speed of their motors (rotors), adjusting thrust individually or

collectively to control movement and orientation. The rotors generate downward thrust, so

increasing the rotational speed of all motors equally results in a rise in altitude. To move forward

or backward, the UAV adjusts its pitch by increasing the speed of the motors at the back or front,

respectively. For side to side movement, speed of the side motors is increased. For example,
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increasing the speed of the right motors causes the UAV to move left. Standard multi-rotors

have an even number of rotors arranged in pairs, with half spinning clockwise and the other

half counterclockwise. They are configured in a way that no two adjacent rotors spin in the

same direction. To cause yaw rotation, the speed of half the motors rotating in one direction

is increased, while the speed of the other half is decreased. This creates a torque imbalance,

causing the aircraft to rotate about its vertical axis. Due to the rotor configuration, the overall

thrust direction and intensity remain unchanged. Figure 3.5 illustrates a multi-rotor performing

pitch, roll, and yaw adjustments.

Figure 3.5: Multi-rotor motor power distributions during pitch, roll, and
yaw changes. Red arrows indicate motor rotation direction and rotational

speed (thicker arrows = higher speed).

High-level control, referring to pilot or auto-pilot level commands, of a multirotor UAV is

typically achieved by manually adjusting thrust, pitch, roll, and yaw using a remote controller.

When multi-rotor control is handled by a computer, generally, it can be configured in either at-

titude mode, where thrust and attitude angles (pitch, roll, yaw) are directly adjusted, or velocity

mode, where the UAV is commanded to follow specified velocities in the longitudinal, lateral,

and vertical directions, along with an angular velocity for yaw.

The motors of fixed-wing UAVs generally provide backward thrust, propelling the aircraft

forward. By adjusting the motor power, different thrust levels are produced, resulting in varying

forward velocities. Attitude changes in fixed-wing UAVs are achieved by modifying lift and

drag forces at specific control surfaces. These forces are adjusted using the elevator, rudder, and

ailerons, which are shown in Figure 3.6. To increase or decrease altitude, the aircraft’s pitch

is adjusted using the elevator, which changes the lift forces at the tail. This alters the wings’

angle of attack, resulting in changes to the overall lift force. To increase or decrease altitude,

the pitch of the aircraft is adjusted with the elevator changing the lift forces at the aircraft tail,

which changes the wings’ angle of attack resulting in changes to the aircraft lift force. The
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ailerons create a difference in lift between the wings, causing the aircraft to roll. The yaw angle

is changed by adjusting the side force generated on the tail by regulating the rudder.

Figure 3.6: Fixed-wing aircraft attitude control components [91].

High level control of fixed-wing UAVs is achieved by adjusting thrust and controlling the

elevator, rudder, and ailerons via joystick inputs or the autopilot.

3.3 Onboard sensors

UAVs carry a variety of sensors which they use to collect data while operating. They can be

split into two groups considering their function into navigation and perception sensors.

By combining information gathered from all the navigation sensors, the UAV flight con-

troller can perform state estimation, determining the UAV’s attitude, position, velocities, and

angular velocities. The state estimate is essential for stabilization, navigation, path planning,

and performing autonomous missions. The most essential navigation sensors include the Iner-

tial Measurement Unit (IMU), Global Positioning System (GPS) receiver, magnetometer, and

barometer. The IMU is a combination of accelerometers, which measure linear acceleration, and

gyroscopes, which measure angular velocity. These measurements are used to estimate UAV’s

attitude and motion. The GPS receiver is used to determine the UAVs global position (latitude,

longitude, and altitude). It typically has a low update rate, when compared to the IMU, and may

be unusable indoors. Standard GPS has an accuracy of a couple of meters while Real-Time

Kinematic (RTK) GPS is accurate to a few centimeters. The magnetometer acts like a digital

compass, which measures the Earth’s magnetic field to determine the UAV’s global heading

(yaw angle) relative to north. It can be sensitive to electromagnetic interference coming from

onboard electronics or external sources. The barometer is used in a barometric altimeter to

measure air pressure, which is used to calculate the altitude relative to a local reference, usually
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the UAV’s takeoff point. It provides a reliable estimate of relative altitude, but its accuracy can

be affected by pressure changes due to weather or nearby airflow.

Perception sensors are used to gather information about the surrounding environment. They

enable obstacle detection and avoidance, navigation, terrain mapping, and object detection.

Common UAV perception sensors include: standard Red-Green-Blue (RGB) cameras, infrared

(thermal) cameras, multispectral and hyperspectral cameras, Light Detection and Ranging (Li-

DAR) sensors, laser rangefinders and ultrasonic sensors. Figure 3.7 illustrates several percep-

tion sensors that can be mounted on UAVs, along with their data outputs.

Figure 3.7: Range of UAV perception sensors [92–95] and examples of
their data outputs [96, 97].

Standard RGB cameras capture images or video in the visible spectrum. Their video feed is

typically transmitted to the pilot as the primary source of visual information for operating the

aircraft, often at reduced quality due to limited bandwidth. The captured data can be used for

visual inspection, mapping, and object detection. Thermal cameras are used to capture the in-

frared radiation, producing images that show the temperature distribution of the observed area.

They are commonly used in night operations, SAR, and fire detection. Multispectral cameras

capture images containing a few discrete spectral bands which are selected to target specific fea-

tures. They are often used in environmental monitoring and agriculture to estimate crop health.

Hyperspectral cameras are similar to mulstispectral cameras, but they capture many more bands

which are narrower and closely spaced. This results in more complex data, which is generally

used in scientific research or for detailed material analysis. LiDAR sensors emit a large amount

of laser pulses which are used to measure distance between the sensor and the surfaces they
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hit. The resulting data forms detailed point clouds that can be used for terrain mapping and

obstacle detection. Due to the high volume of data generated, LiDAR systems typically require

a powerful onboard computer for real-time processing. Laser rangefinders operate on the same

principle as LiDAR systems, but they provide only a single-point measurement. They offer ac-

curate distance measurements and are often used to determine a UAV’s height above the terrain.

Ultrasonic sensors utilize high-frequency sound waves to measure distance of nearby surfaces.

They have low computational requirements and can operate in real-time, but have a limited

range of a couple of meters. They are typically used for indoor obstacle avoidance, low-altitude

altitude hold and assisting with takeoff and landing.

3.4 Experimental UAV system overview

The UAVs used in the experimental part of this thesis are commercially available models man-

ufactured by DJI. Specifically, the models used are the DJI Matrice 210 V2 and the Mavic 2

Enterprise Dual, as shown in Figure 3.8.

Figure 3.8: Experimental UAVs used in real-world testing [92, 98, 99].

The Matrice 210 v2 UAV is paired with the DJI Zenmuse X5S RGB camera, which cap-

tures images at a resolution of 5280× 2970 pixels with a 16 : 9 aspect ratio. The Mavic 2

Enterprise Dual features an integrated RGB and thermal camera, but only the RGB camera is

used in this research. It captures images at a resolution of 4056×3040 pixels with a 4:3 aspect

ratio. Table 3.1 summarizes the technical characteristics of the experimental UAVs, based on

manufacturer documentation. It should be noted that the maximum flight times specified by the

manufacturer (Table 3.1) are often calculated considering ideal conditions and likely exclude
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any payload. In realistic operating environments, the actual flight times can be significantly

lower.

Table 3.1: Overview of technical specifications for the UAVs used in field
experiments

Specification DJI Matrice 210 V2 Mavic 2 Enterprise Dual
Weight (without payload) 4.8 kg 899 g
Dimensions 883×886×398 mm 322×242×84 mm
Max flight time 34 min 31 min
Max speed (P-mode) 17 m/s 14 m/s
Max ascent speed 5 m/s 5 m/s
Max descent speed 3 m/s 3 m/s
Max angular velocity (P-mode) 120◦/s 100◦/s
Obstacle sensing Forward, backward, downward sensors Forward, downward, backward
Payload capability Supports multiple payloads Integrated dual camera (RGB + Thermal)

To enable autonomous control managed by a Ground Control Station (GCS) computer, a

communication system was implemented to handle data exchange between the PC and the

UAVs. For any type of flight, each UAV must be operated with a remote controller and a

smart mobile device running the official "DJI Pilot" or a custom DJI-based application. Com-

munication between the UAV and the remote controller is established via radio signals, while

the remote controller is connected to the tablet through a wired link.

To allow PC-based autonomous control, a custom Android application was developed using

the DJI Software Development Kit (SDK). This application is connected to the GCS, where

commands are computed and then forwarded to the UAV. Likewise, state updates from the UAV

are captured and transmitted back to the PC, enabling real-time bidirectional communication.

The overall communication scheme is illustrated in Figure 3.9.

Figure 3.9: Overview of the communication scheme between the PC and
the UAVs [100].
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4 MODELING UAV MOTION, COMPUTER
VISION SENSING, AND DETECTION

This chapter presents the components describing the UAV control parameters, along with the

detection and probabilistic model for the search. The UAV motion is first characterized through

a motion model, where the kinematic relationships and control parameters governing its trajec-

tory are defined. This is followed by a summary of search theory and an introduction to the

undetected target probability, which forms the basis of the search. Next, the modeling of a re-

alistic UAV sensor is presented, describing its spatial and detection characteristics as well as its

probabilistic nature. The integration of the computer vision detection model is then presented,

with its detection performance quantified through relevant metrics, incorporated into the sens-

ing function. Following this, the collaborative sensing effect of all search agents in the static

target search scenario is outlined. Lastly, a measure for evaluating search success is defined,

providing a quantitative assessment of the search effectiveness over time.

4.1 Motion model

To conduct the search, multiple UAVs operate within a predefined domain. Each UAV perform-

ing the search is referred to as a search agent. The total number of search agents is denoted by

n, and each agent is identified by a unique index i. They move in a three-dimensional domain

Ω3D ⊂ R
3, and their motion is controlled by regulating the following variables in time t:

• velocity intensity ρi(t) ∈ [ρmin,1],

• incline angle ϕi(t) ∈ [ϕmin,i,ϕmax,i],

• yaw angular velocity ωi(t) ∈ [−ωmax,i,ωmax,i].

The velocity intensity ρ expresses the proportion of the maximum absolute velocity that

is currently being utilized. Since fixed-wing UAVs, in contrast to multi-rotor UAVs, require a

22



certain amount of horizontal velocity to generate lift and avoid stalling, the minimum horizon-

tal velocity vs,min is introduced. It effectively constraints ρ to the minimum value of ρmin =

vs,min/vs,max, where vs,max denotes the maximum horizontal velocity of the UAV. The minimum

and maximum horizontal velocities must satisfy the conditions: vs,min ≥ 0 and vs,max > vs,min.

In the case of multi-rotor UAVs, which can hover in place, vs,min = 0, and therefore ρmin = 0.

The incline parameter ϕ represents the angle between the horizontal plane and the velocity

vector which is tangential to the UAV’s trajectory. It should be noted that the aircraft pitch

differs from the incline angle ϕ which represents the slope of the resulting trajectory. The pitch

denotes the angle between the horizontal plane and the longitudinal axis of the aircraft. Addi-

tionally, possible lateral motion resulting from multi-rotor roll adjustments is not considered.

To accurately capture the clear differences in velocity characteristics UAVs display during

horizontal flight, ascent, or descent, the limit velocity function v(ϕ) is introduced. This function

denotes the highest absolute velocity achievable by the UAV at a given incline. It offers a clear

description of the UAV’s velocity characteristics and can be easily experimentally determined

for a given aircraft. To reduce complexity, v(ϕ) is approximated with an (asymmetric) ellipse

defined by three characteristic velocities: maximum ascending velocity vz,max ≡ v(ϕmax), maxi-

mum horizontal velocity vs,max ≡ v(0), and maximum descending velocity vz,min ≡ v(ϕmin). As

presented in Figure 4.1, the horizontal and vertical velocity components are indicated by the

green and red vectors, respectively, while the total velocity is represented by the orange vector.

The total velocity vector originates from the aircraft’s center of mass and the feasible region for

its tip is represented with area shaded in light blue color, while the velocity limits associated

with various inclines are illustrated with the red line.

Depending on the mission objectives and operating conditions, it may be more beneficial to

use the optimal range or endurance velocity, considering UAV energy constraints [66]. Addi-

tionally, since CV detector performance depends on the flight velocity at which UAV-mounted

camera captures images [101], the UAV velocity can be set up to achieve the best balance be-

tween area coverage and detection performance. In such cases, the parameters vs,max,vz,max, and

vz,min can be defined based on the velocities that maximize endurance, range, or detection rather

than the UAV’s performance limits.

Additional constraints are introduced to realistically model the dynamic behavior of various

UAV types. For fixed-wing UAVs, the range of ϕ values is constrained with ϕmin and ϕmax

in order to prevent aircraft stall, which typically happens around 15◦ ≈ 0.26 rad. Assuming
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that the angle of attack (the angle between the wing chord line and the oncoming airflow) is

closely aligned with the aircraft incline, ϕ limits within [−0.25,0.25] rad can be imposed. Since

the minimum absolute velocity is constrained by ρmin, as ϕ deviates from 0, it is possible to

slightly breach the prescribed minimum horizontal velocity vs,min. However, this is considered

insignificant due to the realistic ϕ limits which ensure that the velocity does not drop more than

4% below vs,min and can be compensated by more conservative value of ρmin.

In contrast, multi-rotor UAVs are capable of performing purely vertical motion, without

movement in the horizontal plane. Therefore, ϕ limits are imposed with ϕmin =−π/2 rad cor-

responding to vertical descent and ϕmax = π/2 rad representing vertical ascent. Additionally,

multi-rotor UAVs can fly backward, which potentially adds additional motion and search flex-

ibility. However, this is not considered due to practical reasons and better awareness of pilots

supervising the autonomous flight.

Figure 4.1: Velocity components and constraints for multi-rotor (A) and
fixed-wing (B) UAVs.

Based on this framework, the horizontal and vertical UAV velocity components are formu-

lated as functions of control parameters:

vs,i(ρi,ϕi) = ρi · vi(ϕi) · cos(ϕi), (4.1)

vz,i(ρi,ϕi) = ρi · vi(ϕi) · sin(ϕi). (4.2)

The UAV trajectory Yi(t) = [xi(t),yi(t),zi(t)]⊂Ω3D is obtained by solving the equations of

motion while accounting for the different components of the realized UAV velocity. Accord-

ingly, the relations can be written as:

dxi

dt
= vs,i(ρi,ϕi) · cosθi,
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dyi

dt
= vs,i(ρi,ϕi) · sinθi,

dzi

dt
= vz,i(ρi,ϕi),

where θ is the heading angle governed by the yaw angular velocity

dθi

dt
= ωi(t).

The implementation of the ω constraints within the control algorithm is detailed later in Sec-

tion 6.1.

4.2 Theory of search

In the case of continuous observation of a single target, let Γdt represent the probability of

detecting the target in a short time interval dt. Here, Γ represents the instantaneous detection

probability (of the target). According to Koopman [102], the probability of detecting the target

under unchanging conditions, when the target is observed for the time t, is given by

p(t) = 1− eΓt ,

where Γ≥ 0.

The probability that the observed target is not detected during observation time t is given

by q(t) = 1− p(t). Before any observations occur, equation (4.2) implies that the target is

certainly undetected, since p(0) = 0, and therefore q(0) = 1. As outlined in [102], q varies with

time according to the differential equation

dq

dt
=−Γq. (4.3)

In a search scenario, the location of the target is unknown and the search is conducted

based on the belief about the target’s location. Let x represent an arbitrary point in the two-

dimensional search domain Ω2D. As given by [35], this belief is represented by the undetected

target probability density field m(x, t), which describes the spatial probability density of unde-

tected target occurrence over time t. At time t = 0, prior to any observations, the undetected
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target probability density is denoted by m0(x). Since the target is initially undetected, m0 repre-

sents the spatial probability density of the target’s presence at any location x. With the assump-

tion that the target is within the search domain at t = 0, the initial target probability distribution

accumulated over the entire domain area Ω2D must equal 1. Therefore, m0 is required to satisfy

the condition
∫

Ω2D

m0(x)dx = 1. (4.4)

At time t, the undetected target probability density m is obtained by combining the initial spatial

probability density of target presence with the probability of the target remaining undetected.

Since a potential target may be located at any position x, the sensing performance varies across

the domain, making q location dependent. Accordingly, the undetected target distribution is

modeled as

m(x, t) = m0(x) ·q(x, t).

Differentiating this expression with respect to time and substituting equation (4.3) yields the

governing equation for the temporal evolution of m, given by

dm(x, t)
dt

=−Γm(x, t). (4.5)

The probability of an undetected stationary target at x after an observation time t is given by the

analytical solution of equation (4.5), expressed as

m(x, t) = m0(x) · e
−Γt . (4.6)

If Γ varies with time, the probability of the target at x remaining undetected after an obser-

vation time t, according to equation (4.6), is given by

m(x, t) = m0(x) · e
−
∫ t

0 Γ(τ)dτ . (4.7)

In a UAV-based search, observations are performed by an onboard sensor. The UAV moves

over a two-dimensional domain, carrying the sensor along with it. Each point x in the domain

can be represented in the sensor’s coordinate system as a vector R(x, t), which varies over time

as the UAV moves. If Γ is considered a function of R, the probability that the target at x remains
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undetected over an observation period t is determined from equation (4.7) as

m(x, t) = m0(x) · e
−
∫ t

0 Γ(R(x,τ))dτ .

Although the equation (4.2) describes the continuous observation, or sensing performance,

the model can also be applied to discrete sensing with the assumption that Γ does not vary

significantly during the sensing interval ∆ts, corresponding to observation time. In the case

of discrete sensing using a camera sensor, images or frames are captured at fixed intervals.

Even video, which appears continuous to the human eye, is fundamentally discretized into

multiple successive frames. To simulate continuous sensing performance, each captured frame

or image is assumed to be observed over the duration of the sensing interval ∆ts, corresponding

to the time between successive frames. By increasing the number of frames captured within the

same time interval, the instantaneous detection probability function is evaluated more frequently

over shorter periods, while preserving the same overall sensing effect i.e. the total detection

probability.

4.3 UAV sensor modeling

While UAVs operate in three-dimensional space, their main objective is to explore the terrain

or sea surface. Although the terrain is not perfectly flat, the inspection of the terrain surface

can reasonably be treated as a two-dimensional search problem, since the vertical variations

are small compared to the horizontal extent. Consequently, the search problem is reduced to

a two-dimensional horizontal domain Ω2D ⊂ R
2. Let x ∈ Ω2D represent an arbitrary point

in the two-dimensional domain. The surface topography is described by a elevation function

zT : Ω2D→ R, x 7→ zT (x). In the case of land-based operations, the terrain function can be

obtained through various sources, such as Digital Elevation Models (DEMs), terrain reconstruc-

tion from images captured at different perspectives (photogrammetry), or LiDAR point clouds.

For maritime search missions, the sea surface is flat, and consequently, zT = 0.

Inspection is conducted using a sensor mounted onboard a moving UAV. Although they are

generally not identical, for this application it is correct to assume that the origin of the sensor’s

coordinate frame coincides with the UAV position, as defined by Y, representing the origin of

the UAV coordinate frame. The sensor is considered to be mounted on a gimbal that compen-

sates for the UAV’s pitch and roll, ensuring that the sensor direction remains aligned with the
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vertical (nadir) axis. In the case of a camera sensor, this implies taking orthophoto images. Con-

sequently, the sensor maintains a fixed pitch of −90◦ relative to the global coordinate frame.

The sensor yaw is fixed relative to the UAV body frame, with a value of 0◦, meaning that the

sensor heading aligns with the UAV heading θ .

The sensor captures information encompassed inside its Field Of View (FOV) ΩFOV ⊂ R
3.

Two sensor models are considered: a generic sensor represented by a conical FOV and a real

camera sensor modeled by a pyramidal FOV. The conical FOV, employed in several simulated

search scenarios, is characterized only by its apex angle γc, defining the sensor’s angular cover-

age. The pyramidal FOV represents a camera sensor capturing rectangular images. It is defined

by two angles, γ1 and γ2, which correspond to the angles between lateral and longitudinal faces

of the FOV pyramid relative to the UAV’s heading, respectively. he γ angles for both the conical

and pyramidal FOVs are illustrated in Figure 4.2. Accounting for terrain elevation variability

and flight altitude, the data collected by the sensor is provided for the terrain surface enclosed

within the FOV. The information recorded by the sensor are images of the terrain surface in

the case of a camera, but may also comprise any type of surface information acquired by an

arbitrary sensor.

The apex of the FOV coincides with the origin of the sensor’s coordinate frame, corre-

sponding to Y. Within the sensor’s coordinate system, points are represented by the vector R.

Instantaneous detection probability is zero for all points outside the sensor’s FOV or that are

visually obstructed, as determined via ray tracing. Evaluating the sensing effect of the sensor

located at Y on an arbitrary point x ∈ Ω2D requires a transformation into the local coordinate

system

Ri(x,Yi(t),θi(t)) =











cosθi −sinθi 0

sinθi cosθi 0

0 0 1











(

Yi− [xx,xy,zT (x)]
T
)

,

involving a three-dimensional translation and rotation in the horizontal plane based on the

UAV’s heading angle θ , with x projected onto the terrain surface using zT (x). Figure 4.2 il-

lustrates the global and local UAV coordinate frames along with an example of the vector R.

In a practical scenario, the instantaneous detection probability Γ of a target at x depends on

the Euclidean distance between the sensor and the observed point, given by ||Ri||. The effect

of Γ is limited to the area observed by the sensor through the sensing function ψ , which is
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Figure 4.2: Representation of the pyramidal and conical FOV angles (γ),
along with the global and local UAV coordinate frames and an example of

vector R.

expressed as

ψi(Ri) =











Γi(‖Ri‖) if Ri ∈ΩFOV,i

0 otherwise.
(4.8)

A UAV employing a generic ψ function is illustrated in Figure 4.3. Although the function

operates over the two-dimensional domain Ω2D, its effect is shown on the terrain surface to

illustrate how the detection rate changes with distance. The terrain outside the FOV and the

terrain occluded from view (i.e., without a clear line of sight to the sensor) are not affected.

4.4 Computer vision detection

To link the described sensing model with CV detection models used in practice, relevant per-

formance metrics of the detection model are embedded into the sensing framework. In this

context, recall µ is used, representing the proportion of correctly detected objects relative to

the total number of objects present in an image. Since recall measures the effectiveness of the

detection model in identifying all objects instances, it is treated as the probability of detecting

an object, such as a missing person.

The CV detection model is usually computed for a set of still images or extracted video

frames, while the defined instantaneous detection probability Γ expresses sensing performance
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Figure 4.3: Visualization of sensing function ψ .

over time. To establish a connection between µ and Γ, the parameter tscene is introduced, rep-

resenting the duration over which the scene is considered unchanged, or the time required for

significant change to occur. The detection probability that corresponds to the recall value needs

to be accumulated at the sensed point over the duration of tscene through the application of Γ.

In the static target search scenario, the scene change is assumed to be the primarily caused by

camera movement rather than object motion within the observed scene. Consequently, tscene is

approximated as the average duration an arbitrary point remains within the camera’s FOV dur-

ing a single flyover. To calculate tscene, it is assumed that the UAV operates over a flat surface at

an a constant height corresponding to the goal search height hgoal , while maintaining an average

horizontal velocity vs,avg. It can be expressed as

tscene,i =
2 ·hgoal,i · tan γi

2

vs,avg,i
. (4.9)

where

γi =











γ2,i, for a pyramidal FOV,

γc,i, for a conical FOV.

With the assumption that the instantaneous detection probability does not vary significantly

over short time intervals, and given that recall varies with altitude [58, 60, 61], recall µ can be
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defined from (4.2) as

µ(||R||) = 1− e−Γ(||R||)·tscene . (4.10)

Based on the known recall values, which depend on the object’s distance from the sensor, the

instantaneous detection probability function is determined from (4.10) as

Γ(||R||) =−
ln(1−µ(||R||))

tscene
. (4.11)

In cases where scene changes result from both camera motion and dynamic elements within

the frame, tscene can be adjusted to capture the combined effect of both camera and object

motion.

4.5 Combined sensing effect in static target search

To effectively search the area, information about the most probable location of the search target

is required. This information is represented by the undetected target probability density function

m, as presented in Section 4.2. The function m(x, t) defines the probability that a target exists

at position x and remains undetected at time t. Its computation differs depending on whether

a static or dynamic probability model is used. In the static model, m evolves only due to the

effects of sensing and is not influenced by other external factors. The formulation in this section

is presented for the static case, while m will be extended to include external dynamics later in

Chapter 10.

In order to determine the search performance achieved during the mission, the sensing effect

is applied to the domain. For the definition of the sensing process, the UAV trajectories Yi(t) are

assumed to be known. The combined sensing effect of all UAVs until time t, for the static target

case, is assembled as a convolution of sensing ψ along UAV flight paths. This accumulation is

referred to as coverage density, and defined as:

c(x, t) =
∫ t

0

n

∑
i=1

ψi(Ri))dτ.

Note that R implicitly depends on the UAV position Y(t) and orientation θi(t), for every domain

point x. The probability density of undetected stationary target presence at any point x and time
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t is described with undetected target probability density field

m(x, t) = m0(x) · e
−c(x,t).

Here, m0(x) represents the probability that a stationary target exists at x, and e−c(x,t) represents

the probability that a target at x has not been detected during time t.

The undetected target probability density m at any given time combines the assumed ini-

tial probability density of the target with the probability of detection resulting from the search

conducted up to that point. This constitutes an exact probabilistic model for the search of a

stationary target.

4.6 Search task and search evaluation

The ergodic search system is configured to dynamically regulate ω(t) over time in order to

directly minimize undetected target probability density m across the search domain. Since

the search time window is unspecified, in other words, the search continues until the target

is found, the objective corresponds to the asymptotic definition of ergodicity. Accordingly, an

ergodic search task can be defined as minimization of the spatial probability of undetected target

occurrence

lim
t→∞

∫

Ω2D

m(x, t)dx = 0, (4.12)

where the sensing effort asymptotically aligns with the initial undetected target distribution over

time.

To asses the overall search performance, the function m is integrated over the entire domain

to compute the survey accomplishment metric

η(t) = 1−
∫

Ω2D

m(x, t)dx. (4.13)

The ergodic task, equivalent to (4.12), can also be described as maximization of the survey

accomplishment metric with η in time, asymptotically achieving

lim
t→∞

η(t) = 1.
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It should be noted that, although the search cannot continue indefinitely, its duration can not

be predetermined. Due to this uncertainty, the dynamic exploration of the probability distribu-

tion cannot be formulated as a conventional optimization problem and is instead treated as an

ergodic search task.
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5 ERGODIC CONTROL

In the context of this thesis, the ergodic methods are employed as a key component in the UAV

control feedback loop. The ergodic method determines how the two-dimensional search space

Ω2D (a horizontal plane) should be explored by computing the UAVs’ heading direction. Since

the UAVs cannot instantaneously change their orientation due to motion dynamics, the desired

heading is converted into yaw angular velocity ωi(t). The obtained ωi(t) serves as the UAVs’

control parameter, determining the appropriate change in UAV orientation.

5.1 Heat Equation Driven Area Coverage – HEDAC

HEDAC is an ergodic search method that employs the heat equation to guide agents toward an

imaginary heat source. As the agents move along the simulated temperature gradient toward

regions of higher heat, their sensing effectively cools heat source. Essentially, the HEDAC

method aims to minimize the source term in the stationary heat equation.

It was initially introduced in [76], and applied to multi-agent spraying task in [32], where it

was originally formulated to drive the exploration by using the non-negative difference between

the goal density φ and the achieved coverage density c,

max(φ(x)− c(x, t),0),

as the source term in the heat equation. However, this formulation is not appropriate for the

direct minimization of m.

The approach was later extended in [35] through the integration of a probabilistic search

model, where the source term was directly defined with the undetected target probability den-

sity m(x, t). This formulation supports direct ergodic exploration of the underlying probability

distribution, leading to near-optimal search behavior. It is employed throughout the thesis and

directly corresponds to the ergodic search task defined in (4.12).
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Following the approach in [35], the potential field u(x, t) is used to direct the UAVs toward

regions of the highest undetected target probability. In the context of the heat equation, u repre-

sents temperature. However, to avoid possible confusion with physical phenomena unrelated to

the present study and to align with other methods, it will be referred to as potential throughout

this work. It is obtained by computing the solution to the partial differential equation

α ·∆u(x, t) = β ·u(x, t)−m(x, t), (5.1)

under the imposed Neumann zero-flux boundary condition

∂u

∂n
= 0, (5.2)

with n defined as the outward normal vector on the domain boundary ∂Ω2D. The parameters

α > 0 and β > 0 are used to influence the search behavior. The parameter α , interpreted as a

conduction coefficient, controls the smoothness of the probability field and therefore determines

whether the search focuses on local areas or explores more globally. In contrast, β mainly serves

to ensure numerical stability and has little effect on the search behavior.

The heading direction that the UAV needs to follow from any point x to pursue the ergodic

task is defined by the vector field

u(x, t) =
∇u(x, t)
||∇u(x, t)||

. (5.3)

Following the gradient of the potential ∇u, the UAVs, or search agents in general, are guided

towards the higher values of the underlying probability density m. The change in heading over

the interval ∆t is determined by the angle between the current direction vector vi(t) and the

vector u(yi, t). To change the heading direction, the UAV performs a yaw rotation with the

angular velocity

ωE
i =

1
∆t

arccos

(

vi(t)∗u(yi, t)

||vi(t)||

)

, (5.4)

where ∗ denotes the dot product, and yi the current position of the UAV.
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5.2 HEDAC implementation

When the method was first introduced and in several later works [32, 35, 76], the HEDAC

partial differential equation 5.1 was solved using the finite difference method. In [77], the

Finite Element Method (FEM) was introduced instead, bringing three main improvements. The

first benefit is that FEM makes it possible to solve the equation 5.1 on non-rectangular domains.

This removes the need to embed irregular domains within larger rectangular grids, which was

previously necessary and resulted in unnecessary computation. The second advantage is that

FEM enables strict enforcement of domain boundaries. In earlier implementations, obstacles

and regions outside the area of interest were assigned a search importance of zero by setting

m = 0. These regions were mostly avoided by the UAVs due to no search benefit, but there

was no hard constraint preventing the UAV from passing through them to reach other parts of

the domain. With FEM, the inner domain boundaries can be explicitly defined, allowing the

implementation of constraints that ensure UAVs remain within the domain and do not enter

obstacle regions. Finally, the third benefit is FEM’s built-in calculation of the potential and its

gradient at any point in the domain, eliminating the need for additional interpolation or gradient

computation methods.

Due to its advantages, the FEM is chosen to solve for potential u in the search control

procedures within this study. FEM is used to numerically approximate the solution of a given

PDE on the computational domain. In order to solve the PDE (5.1) using FEM, it is multiplied

by a smooth test function w ∈ H1(Ω2D) and integrated over Ω2D. If the Neumann boundary

condition defined in equation (5.2) is applied, the weak formulation of the PDE is obtained and

is given by equation

∫

Ω2D

α∇u(x, t) ·∇w(x)+βu(x, t)w(x)−m(x, t)w(x)dΩ2D = 0.

The continuous domain space Ω2D is then discretized into N non-overlapping triangular

elements {T1, . . . ,TN}. Each element is defined in a local, simplified coordinate system and

is mapped to the domain using an affine transformation, preserving the straight element edges.

Over each node of the element T , the scalar field of the unknown variable u and the test functions

are approximated by

uh =
nnodes

∑
j=1

N ju j (5.5)
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where N j are the Lagrange polynomial interpolation functions and u j are the nodal values. In

this implementation the second order polynomial degree is used, along with triangular elements

discretized with 6 nodes, three vertices and three mid-edge nodes.

To approximate the solution over the whole domain, the system of linear equations is defined

with

Ku = F.

Because the PDE coefficients do not vary in time, the system matrix K is constant for all time

steps. Consequently, its inverse can be computed once during algorithm initialization, and the

solution at each time step can be reduced to a matrix-vector multiplication given by

u = K−1F.

However, matrix inversion is computationally inefficient. Efficiency can be improved by

applying matrix factorization, for example, LU decomposition (K = LU). Solving the resulting

triangular systems proceeds with a forward substitution for n:

Ln = F,

and a backward substitution for u:

Uu = n,

Given that K is sparse, the computation can be further accelerated by using specialized frame-

works for sparse linear algebra.

5.3 Spectral Multiscale Coverage – SMC

The SMC method, introduced in [72], computes ergodic trajectories by minimizing the dif-

ference between the achieved coverage density c(x, t) and the goal density φ(x), using the

weighted Sobolev norm

‖c(x, t)−φ(x)‖2
Hs = ∑

k∈Z∗ns

Λ(k) |ck(t)−φk|
2

where s is the Sobolev index, ns is the spatial dimension, k is the wave-number vector, and

Z
∗ns = [0,1,2, . . . ]ns . The terms ck(t) and φk are the Fourier coefficients of c(x, t) and φ(x),
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respectively. The term Λ(k), which weights the contribution of small-scale and large-scale

frequency modes, is given by

Λ(k) =
1

(1+‖k‖2)s
.

In the original formulation of the SMC method [72], for Sobolev space norm of negative index,

exponent s is defined as

s =−
ns +1

2
,

which yields s =−3/2 for a two-dimensional domain.

To calculate the potential field u, Fourier basis functions are defined for a rectangular two-

dimensional domain [0,L1]× [0,L2] as

fk(x) =
1
hk

cos

(

k1πx1

L1

)

cos

(

k2πx2

L2

)

, (5.6)

where the wave-number vector is defined as k = (k1,k2), and

hk =
∫ L1

0

∫ L2

0
cos2

(

k1πx1

L1

)

cos2
(

k2πx2

L2

)

dx1 dx2.

The cosine basis functions satisfy the condition

∂ fk

∂n
= 0,

on the domain boundary ∂Ω2D. The potential field u it then calculated by

uSMC(x) = ∑
k

Λ(k)(ck(t)−φk) fk(x),

and the corresponding gradient of u is calculated by

∇uSMC(x) = ∑
k

Λ(k)(ck(t)−φk)∇ fk(x).

The UAVs’ ωE values are then calculated analogously to the HEDAC method, using equa-

tion 5.3 to obtain the normalized gradient of the potential field and equation 5.4 to compute the

yaw angular velocity.

A variation of the SMC method, called mSMC [74], generally demonstrates improved per-

formance over the original and differs only in the choice of Sobolev index, adopting s =−1/2
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for the two-dimensional case. However, in contrast to SMC, whenever mSMC is used in this

thesis, it is applied in the context of solving the ergodic search task defined in (4.12) by mini-

mizing

‖m(x, t)‖2
Hs = ∑

k∈Z∗ns

Λ(k) |mk(t)|
2

where mk(t) are the Fourier coefficients of m(x, t). Consequently, the gradient of the potential

field is calculated by

∇umSMC(x) = ∑
k

Λ(k)(mk(t))∇ fk(x).

Since the Fourier basis functions (5.6) are inherently defined on rectangular domains, a

limitation of both the SMC and mSMC methods is that they can only be applied to rectangular

domains with no internal obstacles.
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6 YAW CONSTRAINTS AND COLLISION
AVOIDANCE PROCEDURE

Before being applied to the UAVs, the yaw angular velocities ωE , computed using the ergodic

method via equation (5.4), are validated against UAV motion constraints and checked for poten-

tial collisions. Collision avoidance involves verifying and adjusting the ωE values to guarantee

a collision-free trajectory. The procedure builds upon the technique presented in [77], incor-

porating certain modifications. Despite the ability to adjust UAV altitude, collision avoidance

between UAVs and with domain boundaries is strictly enforced within the two-dimensional

search space, meaning flyovers are excluded from consideration and not allowed.

6.1 Yaw control constraints

A limit angular velocity ωlim is defined for each UAV, representing its physical constraint. As a

result, the condition |ω| ≤ωlim must be met. Furthermore, the value of ω is linked to horizontal

velocity and path curvature constraints. The horizontal velocity is computed by evaluating

multiple candidate velocities along a given path segment, as detailed in Chapter 7. To ensure

the UAV can follow the computed path at any selected velocity, a constraint on the UAV’s path

curvature is imposed based on the minimum turning radius Rmin. This curvature restriction

is commonly referred to as the Dubins constraint. Consequently, the maximum ω is required

when the UAV navigates a turn with radius Rmin at its maximum horizontal velocity. To satisfy

all the previously defined ω constraints, maximal yaw angular velocity ωmax is defined with

ωmax = min

(

ωlim,
vs,max

Rmin

)

,

and is enforced through the constraint

|ω| ≤ ωmax. (6.1)
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6.2 Collision avoidance optimization problem formulation

The collision avoidance strategy is based on the principle that, at any given moment, a UAV

must have at least one collision-free circular trajectory with radius Rmin available. The adopted

procedure from [77] evaluates the circular escape trajectory only at the final position after a fixed

time interval ∆t, since that position is known for a given ω and a constant moving velocity. The

control approach in this thesis considers variable UAV velocity, and the UAV’s future position

cannot be determined at this stage, as the horizontal velocity is unknown and is calculated later

in the control procedure. To address this, the collision avoidance strategy from [77] was adapted

by defining an enlarged collision-free region that guarantees that all potential future positions –

achieved using horizontal velocities within the operational range [0,vs,max] – have at least one

circular escape trajectory free.

Based on the curvature constraint defined in (6.1), two extreme turning maneuvers can be

identified: a maximum-rate right turn with ω = ωmax and a maximum-rate left turn with ω =

−ωmax. These maneuvers correspond to circular paths of radius Rmin, centered at points f+ and

f−, respectively (depicted as blue circles in Figure 6.1). The centers of the escape maneuver

paths can be computed as

fm
i (t) =





xi(t)

yi(t)



+Rmin,i





m · sinθi(t)

−m · cosθi(t)



 ,

where m = ±1 indicates the left or the right escape route, with m = 1 corresponding to f+ and

m = −1 to f−. These circular escape paths, or their arc segments, act as emergency turning

options and form the foundation of the collision avoidance strategy in the two-dimensional

domain Ω2D.

A clearance distance δi is defined to ensure a safe gap between the i-th UAV search agent

and any static obstacle or a moving UAV. Accordingly, clearance circles C+ and C−, each with

radius Ri + δi are introduced. They are centered at f+ and f−, respectively. In Figure 6.1,

the clearance circles corresponding to the current UAV positions, depicted as green arrows,

are shown as yellow shaded circles, whereas those representing possible future positions at

the next control time step – depending on the horizontal velocity values used – are depicted

as gray circles. Since the horizontal velocity of a given UAV is not predetermined, clearance

must be guaranteed for all supported velocities within the range [0,vs,max]. To achieve this,

41



Figure 6.1: UAVs executing the collision avoidance maneuver.

bounding circles B+ and B− (depicted as purple circles in Figure 6.1), centered at b+ and b−,

are constructed. These bounding regions encompass all possible clearance circles that may

occur due to variations in speed, and thus ensure that an escape trajectory is always available

regardless of the selected velocity. In the special case where ω = ωmax or ω =−ωmax is applied

indefinitely, the UAV maintains a steady circular path around f+ and f−, respectively. Under

such conditions, the corresponding clearance and bounding circles overlap, and their centers are

identical (as can be seen from the bounding circle B−i in Figure 6.1). To ensure feasibility of

the maneuver, at least one of the bounding circles, B+ or B−, must be free of collisions.

It is important to note that the collision avoidance method presented below makes use of the

full range of the allowed values for the yaw angular velocity ω ∈ [−ωmax,ωmax]. Within this

range, there are typically multiple sub-intervals that provide collision-free movement during the

control step ∆t. However, the goal is not only to ensure feasibility over a single control step, but

also to maintain continuous, safe motion that uses a minimal amount of space and preserves the

ability to consider the full range of alternative directions in future steps.

To ensure collision-free motion it is necessary to verify that a collision-free escape circle will

be available at the end of the current control interval ∆t, regardless of the horizontal velocity

used. Since the horizontal velocity is unknown at this stage, bounding circles representing sets

of escape circles are considered for both ωmax and−ωmax, covering all UAV positions reachable

at the end of the current control interval using ωi and velocities within the range [0,vs,max,i].

Therefore, it is necessary to verify whether the yaw angular velocities ωi result in at least one
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collision-free bounding circle for each agent. This is completed by evaluating the collision

area generated when applying yaw angular velocities ωi from the UAVs’ current positions and

orientations over the control interval ∆t. The vector containing a set of yaw angular velocities

for all UAVs is denoted by ~ω = (ω1, . . . ,ωn).

To ensure collision-free motion for all UAVs, it is necessary to verify whether the set ~ω

contains ω values that result in at least one collision-free bounding circle for each UAV. The

bounding circle centers, if ωi 6= 0, are computed with

bm
i (ωi, t) = fm(t)+

(∣

∣

∣

∣

vs,max,i

ωi

∣

∣

∣

∣

−m ·Rmin,i

)

·







sin
(

ωi·∆t
2

)

cosθi(t)−
(

1− cos
(

ωi·∆t
2

))

sinθi(t) · sign(ωi)

sin
(

ωi·∆t
2

)

sinθi(t)+
(

1− cos
(

ωi·∆t
2

))

cosθi(t) · sign(ωi)







where m = ±1 indicates the left or the right bounding circle, with m = 1 corresponding

to b+ and f+, and m = −1 to b− and f−. The term sign(ωi) indicates the turning direction

associated with ωi, taking the value +1 for counter-clockwise (left) turns and −1 for clockwise

(right) turns. If ωi = 0, the bounding circle centers are computed with

bm
i (t) = fm(t)+

vs,max,i ·∆t

2





cosθi(t)

sinθi(t)



 .

The radius of the bounding circle is equal to

Rmin,i +δi + ||b
m
i (t)− fm(t)|| .

For each agent, there are two possible escape route sets (to the left or the right, corre-

sponding to B− or B+ bounding circles, respectively) leading to 2n possible combinations of

maneuver sets. All possible combinations of escape route sets can be systematically represented

using

B j,i(~ω) =







B−i , if qi( j) = 0

B+
i , if qi( j) = 1,

where j ∈ 0, . . . ,2n−1, and the binary vector q( j) of length n represents a unique combination

of escape route sets for all agents.

Any combination is potentially collision-free and B j,i indicates which of the two bounding
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circles, B+ or B−, associated with the escape route set, is selected for each agent i. Each escape

route configuration can be checked for safety by computing its associated collision area as

A j(~ω) =
n−1

∑
i=1

n

∑
k=i+1

‖B j,i(~ω)∩B j,k(~ω)‖+
n

∑
i=1

‖B j,i(~ω)\Ω2D‖ (6.2)

where the collision area between UAVs is computed by summing intersections of their bounding

circles in the first term, and the domain collision area is computed by summing intersections

between bounding circles and the domain boundary in the second term. To determine whether

at least one combination is feasible, a minimum intersection area is defined as

Amin(~ω) = min(A0(~ω),A1(~ω), . . . ,A2n−1(~ω)) .

An optimization problem can now be formulated as follows:

minimize
~ω

J(~ω) = ∑
i

(

ωE
i −ωi

)2

subject to Amin(~ω) = 0,

|ωi| ≤ ωmax
i .

(6.3)

The ω values computed using the ergodic method, via equation (5.4), guide effective inspec-

tion of the area corresponding to m. Accordingly, for each UAV, a feasible yaw angular velocity

is selected to remain as close as possible to this value, denoted by ωE
i . This is accomplished by

minimizing the sum of squared differences between the trial angular velocities and their ergodic

counterparts, which defines the objective function J. Although the solution obtained using the

ergodic method is optimal in the absence of constraints, enforcing collision avoidance by set-

ting the total collision area Amin to zero imposes further requirements. This may necessitate

adjustments to the computed ωE
i values to prevent collisions with obstacles and other UAVs. At

least one feasible solution to (6.3) is always guaranteed because a set containing limit turning

velocities ±ωmax, which generate bounding circles free of collisions (Amin = 0), was confirmed

in the previous control step. As a result, the solution to (6.3) ensures collision-free UAV motion

in the Ω2D domain.
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6.3 Decomposing and solving the optimization problem

With each additional agent, the number of possible combinations in (6.2) increases exponen-

tially. This presents a significant drawback, as the equation is repeatedly evaluated as a con-

straint within the optimization process. This is handled by decomposing the optimization prob-

lem (6.3) into separate sub-problems based on potential collisions and UAV interactions, which

can be anticipated from the distances between the UAVs. Therefore, individual UAVs or groups

that do not interact with others are optimized independently, resulting in significant computa-

tional efficiency gains.

The optimization problem (6.3) is decomposed by forming groups within the UAV swarm.

Interaction groups are formed by evaluating all pairs of UAVs, where each UAV in a pair is

indexed by i1 and i2, and checking whether they satisfy a distance-based condition

‖(xi1 ,yi1)− (xi2 ,yi2)‖ ≤ 2Rmin,i1 +δi1 + vs,max,i1 ·∆t +2Rmin,i2 +δi2 + vs,max,i2 ·∆t. (6.4)

When the condition in (6.4) is met, agents i1 and i2 are placed in the same group, isolated

from other groups. This allows the optimization problem (6.3) to be solved independently

for each group, significantly reducing the number of optimization variables and leading to a

considerable speedup of the collision-avoidance procedure.

Each group is optimized independently and in sequence using a modified Cyclic Coordinate

Search (CCS) algorithm, as used in [77]. The modifications include direct integration of con-

straints within the optimization procedure and the replacement of the traditional Line Search in

CCS with the Golden Section Search for one-dimensional optimization. The Golden Section

Search was selected because its bracketing strategy guarantees that feasible solutions, particu-

larly those at the boundaries of the variable ~ωi, are preserved during optimization.

Golden Section Search traditionally addresses bounded, unconstrained one-dimensional

problems by comparing objective values at different trial points. When applied to the one-

dimensional coordinate search in CCS for solving the proposed problem (6.3), the collision

area constraint must be incorporated. As a result, the operator used to compare trial solutions
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has been modified to consider both objective metrics and the constraint, as expressed by

f (~ωk1)< f (~ωk2) =











































if Atotal(~ωk1) = Atotal(~ωk2) :

J(~ωk1)< J(~ωk2)

otherwise:

Atotal(~ωk1)< Atotal(~ωk2)

,

where the expression f (~ωk1)< f (~ωk2) is used to determine if the trial solution ~ωk1 outperforms

~ωk2 . It is performed for a minimum of 20 iterations or until a feasible solution satisfying Atotal =

0 is found.
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7 UNEVEN TERRAIN EXPLORATION

When conducting searches over uneven terrain, the UAV’s altitude must be controlled to main-

tain a safe distance from the ground while staying low enough to ensure effective target detec-

tion. This chapter presents how these objectives are achieved. First, it outlines the problem,

highlighting the key considerations and the proposed approach. Next, it describes how the ter-

rain is perceived. Finally, it presents the formulation of the MPC, which enables both altitude

and velocity control.

7.1 Problem formulation – UAV control over uneven terrain

The three-dimensional trajectory of the UAV is determined by the combined influence of its hor-

izontal and vertical motion. The yaw angular velocity ω(t), presented in Chapter 5, combined

with a forward velocity defines a two-dimensional trajectory suitable for exploring the search

domain Ω2D. While this is sufficient for flight over flat terrain at a constant altitude, exploring

uneven terrain requires dynamic altitude adjustment. To ensure a smooth and efficient trajectory

over obstacles and terrain alterations/variations, both the horizontal and vertical velocities must

be varied. Altitude control allows safe horizontal movement by keeping the UAVs above the

specified minimum height hmin above the terrain, while also aiming to maintain the goal height

hgoal that ensures good area coverage and detection performance. Velocity control ensures the

UAVs can follow the planned three-dimensional path by taking into account both horizontal

and vertical movement, as well as the UAVs’ motion constraints. This is achieved by the MPC

procedure described in this chapter, which is responsible for computing the regimes of ρ(t) and

ϕ(t), and for performing altitude and velocity control necessary for exploring uneven terrain.

The distinction between UAV height and altitude must be clarified to ensure precise under-

standing of flight parameters. Throughout this thesis, the UAV’s height refers to its vertical

distance above the terrain directly beneath it, while altitude denotes the vertical distance above

mean sea level. Additionally, terrain elevation is defined as the height of the ground surface

relative to mean sea level.
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7.2 Digital elevation model and elevation function

To account for terrain, the algorithm requires a method of perceiving the surface topography.

This is achieved through an elevation function, zT , which is generated by interpolating data from

a Digital Elevation Model (DEM), a digital representation of the Earth’s surface topography. It

is typically arranged in a grid format and consists of elevation data that describes terrain height

at specific points. It is usually saved as a grayscale image, where each pixel corresponds to a

real-world location, and the pixel value represents the elevation at that location. An example of

a geographical region and its corresponding DEM is shown in Figure 7.1.

Figure 7.1: Geographical region (left) and the corresponding Digital Ele-
vation Model (right).

There are two types of DEMs: the Digital Terrain Model (DTM), which contains elevations

of the bare-earth surface excluding vegetation and man-made objects, and the Digital Surface

Models (DSM), which includes the elevations of all surface features such as trees, buildings and

other structures.

The DEM files used in this research, specifically EEA-10 DSMs with the resolution of

0.3 arc seconds, are provided by Copernicus [103]. They cover the European Economic Area

(EEA) and include buildings, infrastructure and vegetation. Copernicus provides two more

DEM instances with global coverage: GLO-30 with the resolution of 1 arc second and GLO-90

with 3 arc second resolution. The DEMs are created based on the satellite data collected during
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the TanDEM-X mission [104] funded through a Public Private Partnership involving Airbus

Defence and Space and the German Aerospace Centre (DLR).

7.3 Trial trajectories and control functions

The horizontal control strategy from Chapter 5 is used to generate a two-dimensional path

projected to the horizontal plane, as illustrated in Figure 7.2, or later in Figure 7.3, panel A). The

corresponding terrain elevation profile is then extracted for this path using zT . To meet mission

objectives while satisfying dynamic and environmental constraints, the two-dimensional path

is supplemented with ρ and ϕ parameters, computed via MPC over the prediction window

[t, t + τmax], to generate an optimal three-dimensional flight path. Here, τ represents relative

time from the current time t, and τmax is the duration of the MPC prediction time horizon.

Figure 7.2: Visual representation of the predicted two-dimensional path
generated along the potential field gradient.

Initially, a predicted horizontal path is introduced under the assumption of maximum veloc-

ity (ρ = 1) and no vertical movement (ϕ = 0). Its coordinates and derived variables are denoted

with ¯̇ . The following equations define this predicted path:

dx̄i

dτ
= vs,max,i · cos θ̄i,

dȳi

dτ
= vs,max,i · sin θ̄i,

dθ̄i

dτ
= ω̄i.
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Assuming a constant potential field u over the time interval [0,τmax], obtained at time t, the

UAVs’ trial yaw angular velocity is calculated using

ω̄i(τ) =
1
∆t

arccos

(

v̄i(τ)∗u(x̄i(τ), ȳi(τ), t)

||v̄i(τ)||

)

,

where ∗ denotes the dot product, and v̄i represents the heading direction vector. The computed

ω̄i(τ) is validated to satisfy constraint (6.1) and ensure collision avoidance over the time interval

[0,∆t] with procedure described in Chapter 6.

Based on the predicted horizontal path, the trial trajectory is introduced to describe the

UAV’s arbitrary three-dimensional flight regime within the predicted time window. The pre-

dicted path length function s̄(τ) is defined based on

ds̄i

dτ
= vs,max,i,

resulting in s̄i = vs,max,i · τ , which allows the trial trajectory to be parametrized as x̄i(si) and

ȳi(si). Based on ρ̃ and ϕ̃ , the trial trajectory length function s̃ is defined by

ds̃i

dτ
= vs,i (ρ̃i(τ), ϕ̃i(τ)) , (7.1)

By combining the length-based parametrization of x̄ and ȳ with equation (7.1), the horizontal

components of the trial trajectory over the interval [0,τmax] are expressed as

x̃i(τ) = x̄i (s̃i(τ)) ,

ỹi(τ) = ȳi (s̃i(τ)) .

Typically, the UAV trial trajectory does not cover the entire predicted path length over

[0,τmax] due to potential reductions in velocity intensity (ρ(τ) < 1) or flight in climbing or

descending modes(ϕ(τ) 6= 0). Using the parametrization ω̄i(s), the trial yaw angular velocity is

defined as

ω̃i(τ) =
vs,i(ρ̃i, ϕ̃i)

vs,max,i
· ω̄i(si(τ)),

which guarantees that the trial trajectory follows the predicted path and maintains its curvature,

while allowing variations in trajectory length due to the influence of ρ̃ and ϕ̃ . Employing the

50



trial regimes ρ̃ and ϕ̃ , the vertical component of the trial trajectory is expressed by

dz̃i

dτ
= vz,i(ρ̃i, ϕ̃i).

The trail velocity intensity ρ̃(τ) and trail incline angle ϕ̃(τ) are optimized within the MPC

framework, while the trial yaw angular velocity ω̃(τ) is adjusted with trial control functions

ρ̃(τ) and ϕ̃(τ) to ensure that the resulting trajectory preserves the original curvature.

7.4 Optimization problem formulation

An optimal trial flight regime for the time interval [t, t +τmax] is required to compute the neces-

sary horizontal and vertical velocity controls, managed by ρ and ϕ . To set up the optimization

problem, the trial control functions ρ̃ and ϕ̃ are parameterized using quadratic polynomial in-

terpolation. The interpolation is based on three time points: τ0 = 0, τ1 = τmax/2, and τ2 = τmax.

Since τ0 corresponds to time t, the values of the trial control functions at τ0 are determined by

the current UAV state

ρ̃(τ0) = ρ(t),

ϕ̃(τ0) = ϕ(t),

which is known. The optimization vector W ∈ R
4 is then defined using values of ρ̃ and ϕ̃ at τ1

and τ2 as

Wi ≡ [ρ̃i(τ1), ρ̃i(τ2), ϕ̃i(τ1), ϕ̃i(τ2)]
T . (7.2)

The trial control functions, although defined over the relative time variable τ , are also expressed

as functions of the optimization vector Wi. For clarity and simplicity, a notation

(·)
⌊

Wi
(τ)

is used, meaning that any trial function (·) is simultaneously a function of the optimization

vector Wi and relative time τ .

Two primary objectives are established for the flight regime: to maximize the UAV’s veloc-

ity and to maintain its height as close as possible the goal search height hgoal . Increasing the

UAV’s velocity improves area coverage efficiency and consequently reduces the total inspection
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time. This is achieved by incorporating the first minimization objective

ov,i(Wi) = 1−
1

τmax

∫ τmax

0
ρ̃i

⌊

Wi
(τ)dτ.

The second objective focuses on maintaining the desired goal search height, which helps achieve

an effective balance between area coverage and sensing performance. It is formulated by intro-

ducing the terrain elevation function

z̃T,i

⌊

Wi
(τ) = zT

(

x̃i

⌊

Wi
(τ), ỹi

⌊

Wi
(τ)
)

.

The second objective is now defined as

oh,i(Wi) =
1

hgoal,i · τmax

∫ τmax

0

∣

∣

∣
z̃i

⌊

Wi
(τ)− z̃T,i

⌊

Wi
(τ)−hgoal,i

∣

∣

∣
dτ,

and quantifies how closely the trial height function z̃− z̃T aligns with the target height hgoal .

Since both objectives are normalized they can be summed directly without the need for weight

factors, as they are considered equally important. The optimization goal is now formulated as

the minimization of the objective function

oi(Wi) = ov,i(Wi)+oh,i(Wi).

Constraints are imposed to ensure adherence to physical and operational limits during flight.

These trial trajectory constraints are formulated as inequality conditions c(W) ≤ 0. To ensure

that the UAV maintains a safe flight height, a minimum height constraint

z̃i

⌊

Wi
(τ)− z̃T,i

⌊

Wi
(τ)≥ hmin,i. (7.3)

is imposed, preventing the height from falling below the specified limit hmin. This condition

must hold throughout the full τ interval, which is verified by

ch,i(Wi) =
1

hmin,i · τmax

∫ τmax

0
max

{

hmin,i− z̃i

⌊

Wi
(τ)+ z̃T,i

⌊

Wi
(τ), 0

}

dτ.
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To comply with the UAVs’ velocity specifications, the following constraints must be met, as

given by

vs,min,i ≤ ṽs,i

⌊

Wi
(τ)≤ vs,max,i, (7.4)

vz,min,i ≤ ṽz,i

⌊

Wi
(τ)≤ vz,max,i, (7.5)

where ṽs,i

⌊

Wi
(τ) is the horizontal trial velocity function and ṽz,i

⌊

Wi
(τ) is the vertical trial ve-

locity function, derived from (4.1) and (4.2). Horizontal velocity limits are checked using

cvs,min,i(Wi) =
1

vs,min,i · τmax

∫ τmax

0
max

{

vs,min,i− ṽs,i

⌊

Wi
(τ), 0

}

dτ,

cvs,max,i(Wi) =
1

vs,max,i · τmax

∫ τmax

0
max

{

ṽs,i

⌊

Wi
(τ)− vs,max,i, 0

}

dτ,

and similarly, vertical velocity limits are evaluated using

cvz,min,i(Wi) =
1

vz,min,i · τmax

∫ τmax

0
max

{

vz,min,i− ṽz,i

⌊

Wi
(τ), 0

}

dτ,

cvz,max,i(Wi) =
1

vz,max,i · τmax

∫ τmax

0
max

{

ṽz,i

⌊

Wi
(τ)− vz,max,i, 0

}

dτ.

Considering the UAVs’ dynamic limitations, acceleration within trial trajectories is also

constrained to account for thrust capacity, pitch control, and inertia. Horizontal and vertical

accelerations are restricted by basic limits

as,min,i ≤ ãs,i

⌊

Wi
(τ)≤ as,max,i, (7.6)

az,min,i ≤ ãz,i

⌊

Wi
(τ)≤ az,max,i, (7.7)

where the trial acceleration functions, denoted by ãs,i

⌊

Wi
(τ) and ãz,i

⌊

Wi
(τ), are derived through

numerical differentiation of the respective trial velocity functions ṽs,i

⌊

Wi
(τ) and ṽz,i

⌊

Wi
(τ). The

constraints on horizontal acceleration and deceleration are enforced through

cas,min,i(Wi) =
1

as,min,i · τmax

∫ τmax

0
max

{

as,min,i− ãs,i

⌊

Wi
(τ), 0

}

dτ,

cas,max,i(Wi) =
1

as,max,i · τmax

∫ τmax

0
max

{

ãs,i

⌊

Wi
(τ)−as,max,i, 0

}

dτ,
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and in a similar fashion, the vertical acceleration constraints are enforced with

caz,min,i(Wi) =
1

az,min,i · τmax

∫ τmax

0
max

{

az,min,i− ãz,i

⌊

Wi
(τ), 0

}

dτ,

caz,max,i(Wi) =
1

az,max,i · τmax

∫ τmax

0
max

{

ãz,i

⌊

Wi
(τ)−az,max,i, 0

}

dτ.

For simplicity, the vector notation is introduced to combine all define constraints:

ci(Wi) = [ch,i(Wi), cvs,min,i(Wi),cvs,max,i(Wi),

cvz,min,i(Wi), cvz,max,i(Wi),cas,min,i(Wi),

cas,max,i(Wi), caz,min,i(Wi),caz,max,i(Wi) ]
T .

Finally, the MPC optimization problem for each agent i can then be formulated as follows:

minimize
Wi

oi(Wi) = ov,i(Wi)+oh,i(Wi)

subject to ci(Wi)≤ 0,

where ≤ is applied element-wise to all constraints in the vector c, while 0 is the null vector.

7.5 MPC optimization procedure

The optimization routine begins with an initial value, W0, of the optimization vector W, which

is defined by equation (7.2). The initial value is chosen from several possible initialization

options:

W0a = [1,1,0,0]T ,

W0b = [1,1,1,1]T ,

W0c = [0.5,0.5,1,1]T .

Candidates from a to c are assessed in order, and the first one yielding a feasible outcome is

designated as W0. The vector W0a is designed to promote maximum forward velocity along

the horizontal search direction with no change in altitude, while W0b and W0c are configured

to increase altitude with 2 distinct velocity intensities. If no feasible solution is found within

the initialization options, the optimization step is bypassed, and the UAV proceeds with the

collision avoidance procedure, described in Section 7.6.
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Figure 7.3 illustrates the optimization procedure along with a set of candidate initial vec-

tors. Starting from the UAV’s current position, a predicted path is generated by following the

gradient of the potential field u and simulating the maximum attainable horizontal motion over

npts prediction time steps, as illustrated in panel A) of Figure 7.3. Along the predicted path, the

terrain elevation zT is sampled and used to construct two reference curves: a minimum altitude

(zT +hmin) and a goal altitude (zT +hgoal) curve. The optimization stage, visualized in panel B)

of Figure 7.3, begins with the first viable candidate among the initial vectors W0a,W0b,W0c.

The objective is to determine an optimal control regime over npts steps that balances maxi-

mizing velocity with maintaining the goal height, while adhering to velocity, acceleration, and

minimum height constraints. Once the optimal regime is identified, the UAV executes it for a

duration of ∆t, resulting in an updated position from which the entire process is repeated.

Figure 7.3: Graphical representation of the predicted path (A) alongside
the corresponding MPC optimization process (B).

Optimization is carried out using a modified version of the GPS-MADS algorithm [105],
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referred to as Multi-Scale Grid Search (MSGS), implemented in the Indago Python module

[106]. The optimization process is configured to run for up to 30 iterations, with stopping

criteria defined by a maximum of 10 stalled iterations and a target fitness threshold of 10−3. The

resulting optimal vector, Wopt, provides the candidate control parameters governing velocity

intensity, incline, and yaw angular velocity denoted as

ρopt,i = ρ̃i

⌊

Wopt,i
(∆t),

ϕopt,i = ϕ̃i

⌊

Wopt,i
(∆t),

ωopt,i = ω̃i

⌊

Wopt,i
(∆t),

respectively.

7.6 Terrain collision avoidance

The flight control parameters ρopt,i, ϕopt,i, and ωopt,i computed through MPC optimization do

not inherently guarantee a circular, collision-free trajectory that can be immediately executed

as a collision avoidance escape maneuver. While collisions with other UAVs and the domain

boundary are addressed within the two-dimensional trajectory in Ω2D, as described in Chap-

ter 5, terrain collisions must also be accounted for in this context. A terrain collision is defined

as a violation of the minimum height constraint hmin, which must be satisfied throughout the

entire collision avoidance escape maneuver. Given the high computational cost, embedding this

constraint in the MPC optimization makes the algorithm unsuitable for real-time UAV control.

Therefore, the flight control parameters from MPC are reviewed and corrected as needed before

execution.

The escape maneuver is a controlled UAV response designed to fulfill the following flight

criteria:

• The escape maneuver may be initiated at any time from arbitrary UAV positions, states,

and control parameters. In this context, the UAV is considered either at time t +∆t with

optimized control inputs or, if necessary, at the present time t with the control parameters

currently in use.
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• The horizontal projection of the escape path is a circular arc (or a complete circle) with a

radius ±Rmin,i, achieved by adjusting ωesc,i to match one of the escape circles defined in

Chapter 6.

• The UAV engages in the most aggressive deceleration it can perform i.e. ρem,i→ ρmin,i.

• The UAV climbs at the steepest rate permitted by its dynamic limits, i.e. ϕem,i→ ϕmax,i.

• The feasibility of the escape route is evaluated based on previously defined constraints:

minimum height (7.3), horizontal velocity (7.4), vertical velocity (7.5), horizontal accel-

eration (7.6), and vertical acceleration (7.7).

• The escape maneuver is evaluated until either zero horizontal velocity is reached or the

entire escape circle is completed.

Provided that a feasible escape maneuver can be performed using the optimal control pa-

rameters at time t +∆t, the optimal control parameters

ρi(t +∆t) = ρopt,i,

ϕi(t +∆t) = ϕopt,i,

ωi(t +∆t) = ωopt,i,

are utilized by the UAV. When no valid escape maneuver exists at time t +∆t, implying that the

current control parameters are invalid, the UAV executes the escape maneuver with alternate

control inputs

ρi(t +∆t) = ρem,i(t +∆t),

ϕi(t +∆t) = ϕem,i(t +∆t),

ωi(t +∆t) = ωem,i(t +∆t),

which are determined for t +∆t based on the escape maneuver verified in the previous compu-

tation step, simulating the regime starting from time t.
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8 TERRAIN SEARCH SIMULATIONS

This section begins with an overview of three simulated search scenarios used for validating

the proposed control methodology, followed by the introduction of the CV detection model and

its integration into the sensing framework. Each scenario is then described in detail, including

visualizations of the terrain, the UAV trajectories achieved, an evaluation of search performance,

and comparisons with other methods. Finally, a robustness analysis is conducted by introducing

uncertainty into the simulations to approximate realistic real-world operating conditions.

8.1 Simulated search scenarios overview

Each simulated search mission is performed with a specific UAV configuration, composed of

units selected from three available types: UAV A, UAV B, and UAV C. The characteristics of

each UAV type are presented in Table 8.1.

Table 8.1: Motion, vision/sensing and control UAV parameters used in
simulations [107].

UAV parameters UAV A UAV B UAV C Units
Type Multi-rotor Multi-rotor Fixed-Wing –
Min turning radius Rmin 25 25 100 m
Min clearance distance δ 7 7 60 m
Min search height hmin 30 30 100 m
Goal search height hgoal 50 100 300 m
Max horizontal velocity vs,max 10 10 15 m/s
Min horizontal velocity vs,min 0 0 5 m/s
Max ascending velocity vz,max 5 5 1.2 m/s
Max descending velocity vz,min -3 -3 -1.2 m/s
Max horizontal acceleration as,max 2 2 2 m/s2

Min horizontal acceleration as,min -3.6 -3.6 -2 m/s2

Max vertical acceleration az,max 2.8 2.8 1 m/s2

Min vertical acceleration az,min -2 -2 -1 m/s2

Min incline ϕmin -90 -90 13.5 ◦

Max incline ϕmax 90 90 13.5 ◦

Camera FOV γ1 62.8 33.94 23 ◦

Camera FOV γ2 37.9 19.48 13.06 ◦

Zoom factor Z 1× 2× 3× –
Sensing function Γ ΓA ΓB ΓC –

Prediction time steps npts 25 25 30
time
steps
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UAVs A and B are modeled after the DJI Matrice 210 v2 multi-rotor aircraft. Their velocity

characteristics are derived from technical specifications, with the horizontal velocity set close

to the optimal battery endurance speed for a large UAV, according to [66]. The acceleration

values were obtained through real-world manual flight tests. The minimum search height was

set to 30 m to ensure a safe clearance from potential natural or man-made objects at the terrain.

Although the two UAVs are essentially identical, they operate at different goal search heights

(hgoal), which results in different sensing functions (defined in the following section) and FOV.

Both utilize the same camera sensor, with UAV A operating without zoom (1×) and UAV B

employing a 2× zoom. They are configured to cover the same ground area from their respective

altitudes.

UAV C represents a fixed-wing aircraft and is therefore more constrained. Due to its lower

maneuverability, it performs the search at a goal height of 300 m, with a minimum search height

set to 100 m. Its specifications are approximated based on typical operational characteristics

and constraints. Its horizontal velocity is higher, while its other velocities and accelerations are

lower than those of the multi-rotor aircraft. Its sensor covers an area equivalent to that of the

multi-rotor aircraft and is designed to maintain comparable sensing performance by adjusting

the sensing function for the higher search height.

To ensure feasible flight over complex terrain, the MPC horizon for each UAV is tailored to

its specifications, flight parameters, and the terrain complexity. The duration of the prediction

horizon is defined by the number of predicted time steps npts, resulting in a total prediction time

window of τmax = npts ·∆t.

Three test cases were designed with varying area sizes and terrain complexity. The UAV

fleet configurations and associated parameters for each case are summarized in Table 8.2.

Table 8.2: Overview of simulated test cases and their parameters [107]

Test case parameters Plastic world Mt. Vesuvius Star dunes Units
Domain size 0.72 7.44 7.5 km2

Number of mesh nodes 8380 21825 21946 -
Number of mesh elements 16300 43098 43340 -
Elevation difference 421 608 221.4 m
Alpha α 1000 2300 2900 -
Beta β 0.1 1 1 -
Time step ∆t 1 2 2 s
Search duration 30 60 60 min
Number of UAVs A 3 3 0 -
Number of UAVs B 0 2 0 -
Number of UAVs C 0 0 2 -
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Multiple methods were employed to compute trajectories for each case, and their perfor-

mance was evaluated using the survey accomplishment metric η . The proposed HEDAC +

MPC method was compared against: HEDAC without the MPC framework (with UAVs flying

at fixed altitude), the lawnmower method with MPC, SMC with MPC, and mSMC with MPC.

All methods shared the same settings and initial UAV configurations at the start, except for the

lawnmower method, where UAVs were approximately positioned to ensure near-optimal search

performance. Additionally, for the lawnmower method, the MPC acceleration constraints were

relaxed to enable feasible trajectories, as it does not support the collision avoidance method pre-

sented in the earlier chapter. The mSMC and SMC methods were not applied in certain cases

because they do not support inter-domain obstacles or no-fly zones. Finally, the search altitude

for the HEDAC method without MPC was set as the maximum terrain elevation plus the goal

search height.

The simulations were computed on a system equipped with a CPU having a base clock speed

of 3.7 GHz and a maximum boost frequency of 5.4 GHz. All computations were performed

using a single thread. Visualization of flight data and analytical plots were created utilizing

Matplotlib [108] and PyVista [109].

8.2 Sensing characteristics

Parameters such as the zoom factor Z and the respective FOV for each zoom level were defined

for every camera sensor combined with a UAV, as shown in Table 8.1. Corresponding detec-

tion rate functions were constructed for all utilized camera configurations based on detection

metrics provided by the YOLOv4 model in [61]. Although developed for animal detection, the

model reports performance metrics across various altitudes, making it possible to link detection

accuracy to image capture height.

Recall values from [61] were used and reduced by approximately 30% to account for dif-

ferences in the apparent size of objects, specifically between humans and large mammals in

images taken at the same height, as well as other operational factors that may reduce detection

performance, such as image degradation caused by motion blur, focus errors, or haze [55].

The acquired recall–height data was extended by introducing an additional height point

which assumed zero recall, implying that detection is impossible. According to the research

in [110], the detection threshold was established as the minimum number of pixels a person
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must occupy in an image, which was set to 25 pixels. This defines the smallest size at which

humans can reliably recognize objects in images, and because CV models are trained using

human annotations, they typically fail to learn to detect objects below this size. The height at

which recall reaches zero was estimated by assuming that an average person occupies an area

of about 0.5 by 0.25 meters when observed from above. Using this information, the height

corresponding to an individual covering roughly 25 pixels in a 4K image with an aspect ratio of

16 :9 was calculated. Based on the FOV and parameters for UAV A, utilizing no magnification

(1× zoom), detection is determined to be impossible when the image is taken from heights

greater than 222 meters. Because altitude control is implemented, the zero-recall point lies

outside the intended sensing height range and is not particularly relevant. Despite this, it is

specified to enable a fair comparison with a method that does not employ altitude control but

uses the same sensing principle. Recall values from [61] and estimated recall values for humans,

both in relation to height, along with the estimated zero-recall point are shown in Figure 8.1,

panel (A).

Figure 8.1: Dependence of recall on image capture height (A) and detec-
tion rate functions for UAVs used in the simulations (B).

Equation (4.11) was applied to determine the detection rate function, in which the recall

function µ(||R||) was produced by quadratically interpolating the measured recall-height points.

It was assumed that ||R|| for the area within the captured image closely corresponds to the

UAV’s height. The value of tscene was computed using equation 4.9, under the assumption that

the average horizontal velocity vs,avg is 70% of the maximum horizontal velocity vs,max.

To ensure equivalent detection performance when transitioning from UAV A to UAVs B and

C, the Ground Sampling Distance (GSD) of the captured imagery must remain constant. GSD

defines the real-world distance represented by a single pixel and it can be used to determine
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the level of detail in the image. When using the same camera sensor at higher flight heights,

optical zoom is employed to maintain the original GSD, ensuring the same coverage area and

detection capability. Optical zoom, in contrast to digital zoom, magnifies the scene through

lens optics without degrading resolution, effectively replicating the effect of lowering altitude

by narrowing the FOV and enhancing image detail. For a zoom factor Z, the recall function is

modified to µ(||R||/Z), and the FOV angles are recalculated with

γZ = 2 · arctan

(

tan γ
2

Z

)

,

where γ denotes the FOV angle with zoom factor 1×, while γZ corresponds to the FOV angle

at zoom Z. The detection rate of all UAV types, together with the interpolated recall-height

functions for human targets across different optical zoom settings, are shown in Figure 8.1.

In each test case, the control interval ∆t is equal to the sensing interval ∆ts. The undetected

target probability is updated every ∆t seconds by applying the sensing effect using ψ . The

function ψ , defined in equation 4.8, is essentially the Γ function constrained to the visible area

of the sensor. With each application of sensing, the captured snapshot of the area is considered

observed for a duration of ∆ts seconds.

8.3 Plastic world

The first test case, named "Plastic world", consists of an artificially generated domain that con-

tains key features of natural terrain modeled with simplified shapes. It is deigned to provide a

a controlled environment with enough complexity to evaluate the algorithm’s robustness. The

initial probability of undetected targets is primarily concentrated over the depression and sum-

mit features. Access between these features is restricted by a no-fly zone positioned between

them. In Figure 8.2, the terrain incline of the domain surface is shown together with the initial

target probability distribution.

The domain is explored using 3 identical multi-rotor UAVs of type A, operating at a goal

height of 50 m and a minimum height of 30 m. A detailed analysis of a trajectory flown by one of

the UAVs from 600 s to 1600 s is presented in Figure 8.3. Panel (A) shows a three-dimensional

representation of the terrain and all UAV trajectories, with the analyzed trajectory highlighted

in red. Panels (B), (C), and (D) present the control parameters, velocities, and accelerations
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Figure 8.2: Illustration of terrain incline (A) and initial target probability
density (B) for the Plastic world case.

for the same time window, respectively. Panel (E) depicts the terrain elevation and the UAV

trajectory, with the corresponding goal and minimum flight height plotted in reference to the

terrain elevation profile.

As shown in Figure 8.3, the control method frequently varies the control parameters and

the velocities are adjusted accordingly. The velocities and accelerations are constantly within

the operating limits, which indicates that the constraints are respected. As the terrain elevation

profile becomes more complex, the complexity of the goal trajectory increases accordingly,

since it is defined as an offset from the terrain. However, the UAV’s executed trajectory starts

to slightly diverge from the goal trajectory as complexity increases to create a smoother path,

facilitating flight speed and efficiency (see Figure 8.3, panel (E), around 1200 s, 1300 s, and

1500 s).

The search mission simulation was conducted using three methods: HEDAC and lawn-

mower methods with MPC, and HEDAC without MPC (with UAVs flying at a constant altitude).

The HEDAC + MPC framework achieved the best performance, accomplishing 98% survey

accomplishment by the end of the 30-minute search mission. The lawnmower + MPC method

ranked second, while the plain HEDAC method performed significantly worse. It stalled around

100 seconds into the search because the inspection height was too high for the equipped sensor,

highlighting the importance of altitude control in search missions over hilly terrain. Survey ac-

complishment metrics for all tested methods are presented in panel (A) of Figure 8.4, alongside

computation times for each procedure of the HEDAC + MPC framework over the time steps in

panel (B). The total computation time per time step throughout the search remained more than

50% below the control interval ∆t = 1 s, indicating the feasibility of real-time UAV control.
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Figure 8.3: Analysis of a 1000-second trajectory for UAV A during explo-
ration of the Plastic World case.

Figure 8.4: Survey accomplishment (A) and computation times (B) for the
Plastic world case.
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8.4 Mount Vesuvius

This scenario uses real terrain data from Mount Vesuvius located near Naples, Italy. It covers

the area of the summit and the volcanic crater. Due to its popularity as a tourist site, it offers a

realistic test environment for evaluating UAV-based missing person search methods. Figure 8.5

shows the terrain representation with incline and the initial probability distribution.

Figure 8.5: Mount Vesuvius terrain slope (A) and undetected target proba-
bility at t = 0 s (B).

The search mission is conducted using 5 multi-rotor UAVs, three of type A and two type B.

While their flight characteristics are identical, they utilize different sensor configurations and

operate at different goal heights. Nevertheless, their sensors cover the same ground area at the

designated heights and maintain identical detection capabilities, as their FOV and detection rate

functions are adjusted accordingly.

The flight trajectories of all UAVs at 1400 s into the search, computed using the coupled

HEDAC MPC framework, are shown in Figure 8.6, panel (A). The trajectory of a type B UAV

between 100 s and 1100 s, operating at a goal height of 100 m, is highlighted in red and ana-

lyzed in detail in panels (B–E), which present the control parameters, velocities, altitudes, and

UAV height relative to the underlying terrain, respectively. The UAV generally maximizes its

velocity intensity ρ while respecting velocity and acceleration constraints, and adjusts the in-

cline parameter ϕ to follow the goal height. When encountering consecutive terrain elevation

peaks, it prioritizes maintaining its current velocity over strict adherence to the goal height.

This results in a smoother trajectory, with a slight altitude reduction at the peak to maintain

good detection performance in the following valley, before preparing to climb the next peak,

visible in panel (E) around 200 s and 550 s.
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Figure 8.6: UAV trajectories at 1400 s of the Mount Vesuvius survey (A),
with detailed analysis of the red-highlighted trajectory shown in panels

(B–E) [107]

The area survey was performed using multiple methods, and the computed trajectories of

all UAVs at the end of the 60-minute search are shown in Figure 8.7. Their performance was

evaluated using η , and the results are shown in Figure 8.8, panel (A). The highest performance

was achieved with the HEDAC + MPC method, reaching η = 96% by the end of the search. The

mSMC method delivered a very similar overall performance, and although the η(t) curves for

both methods appear nearly identical, a notable difference is observed when comparing the time

required to reach η = 90%, indicated by the vertical lines in the plot. The SMC and lawnmower

methods achieved lower overall performance, while the plain HEDAC method performed the

worst, stalling as in the Plastic World case. The computation time for the HEDAC + MPC

method consistently remained under 0.5 s per iteration, well below the control interval of ∆t = 2

s, further demonstrating the method’s feasibility for real-time UAV control.
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Figure 8.7: UAV trajectories for the Mount Vesuvius survey case across all
compared methods.

An additional variant of this case was created by introducing a no-fly zone within the vol-

cano crater area to demonstrate the capability of the HEDAC + MPC method to handle inter-

domain obstacles and perform collision avoidance. The UAV configuration remained identical
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Figure 8.8: Mount Vesuvius case η across compared methods (A) and
computation time per step for the HEDAC + MPC method (B).

Figure 8.9: UAV trajectories during the Mount Vesuvius survey with a no-
fly zone at 1400 s (A), including a detailed analysis of the red-highlighted

trajectory shown in panels (B–E)
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to that of the original case, with the only modification being the presence of the restricted area.

The scenario analogous to the original case shown in Figure 8.6 is presented for the case in-

cluding the no-fly zone in Figure 8.9. The trajectory highlighted in red corresponds to the same

UAV, and behavioral differences are apparent when comparing the two figures. As seen in panel

(A) of Figure 8.9, all UAVs successfully respect and avoid the no-fly zone. Although the ana-

lyzed trajectory differs, it exhibits similar dynamic characteristics to those in the original case,

as demonstrated in panels (B-E).

8.5 Star dunes

This scenario features a specific desert terrain in Algeria. Due to environmental influences,

the sand dunes develop star-like shapes with several arms branching out from the central peak,

hence the name Star Dunes. The terrain does not have a large elevation difference between

its highest and lowest points, and the slopes are moderate, as illustrated in Figure 8.10, panel

(A). Therefore, this case is used to demonstrate a search operation using fixed-wing UAVs. The

area is similar in size to the Mount Vesuvius case. However, since a different UAV type that can

cover a larger area in the same amount of time is employed, only two UAVs are deployed instead

of five. Both UAVs operate at a target altitude of 300 m, with sensor footprint and detection

performance matched to the previous test cases by adjusting the detection rate function, sensor

zoom level, and corresponding FOV angles. The search simulation is conducted for 60 min,

and the initial undetected target probability is shown in Figure 8.10, panel (B).

Figure 8.10: Star dunes terrain with incline representation (A) and initial
undetected target probability density (B).

The UAV trajectories at t = 1300 s, computed with the HEDAC + MPC framework, are

shown in Figure 8.11, panel (A). As in the previous cases, the red-highlighted trajectory is
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analyzed over a 1000 s period, in panels (B-E) of the same figure. As displayed in panel (B), the

UAV maintains the highest possible velocity intensity ρ throughout the observed time period,

while adjusting the incline angle ϕ to distribute the velocity between horizontal and vertical

components, as shown in panel (C). The velocity changes are applied gradually, as seen in the

acceleration plot in panel (D), reflecting the lower maneuverability characteristics of fixed-wing

UAVs. Given the UAVs’ dynamic characteristics and the variability of the terrain elevation, the

selected UAV would not be able to maintain the target search height precisely at all times.

However, the optimization within the MPC framework smooths the trajectory, allowing the

UAV to traverse the terrain while utilizing the maximal ρ , adhering to the minimum height

constraint, and maintaining effective sensing performance by avoiding large deviations from

the target altitude.

Figure 8.11: Star dunes survey UAV trajectories at t = 1300 s (A), along
with analysis of flight parameters over the duration of the red-highlighted

trajectory (B-E).
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The search simulation was conducted using multiple methods, and the results showing η(t)

are displayed in Figure 8.12, panel (A). The HEDAC + MPC method again achieved the best

results, while the mSMC method performed comparably. Since the η(t) curves of the two

best-performing methods are relatively close, vertical dotted lines in the corresponding colors

are plotted to clearly indicate the time difference required for both methods to reach η = 70%.

All other methods showed a notable decrease in performance, as reflected by their η(t) curves.

Because the terrain elevation difference is not very large, the search using the HEDAC method

at a constant altitude was able to perform sensing effectively and did not stall, as in the previous

two cases.

The computation times for each time step of the HEDAC + MPC method are displayed in

Figure 8.12, panel (B). It can be seen that the use of fixed-wing UAVs increases the time required

for performing the collision avoidance procedure compared to the multi-rotor UAVs from the

previous test cases, since they cannot reduce their horizontal velocity to zero and must plan the

entire circular escape route. However, this does not pose significant issues because, given the

lower maneuverability of fixed-wing UAVs, they do not require such frequent commands, and

the control time step can be increased if necessary. Considering all of this, with a control time

step of ∆t = 2 s, the computation times never exceed 0.4 s, demonstrating that the feasibility of

real-time UAV control is not compromised.

Figure 8.12: Star dunes case, η across methods (A) and HEDAC + MPC
computation time per step (B).
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8.6 Robustness analysis

In practical applications, there are numerous uncertainties that must be accounted for, such

as potential flight control and localization errors. Flight control errors refer to deviations be-

tween the intended flight trajectory and the flight path actually executed by the UAV. They may

occur due to external factors like wind disturbances and/or inaccuracies caused by the flight

controller’s response. On the other hand, localization errors involve discrepancies between the

UAV’s reported state (e.g., position, orientation, and velocity) and its actual state. Sensors, like

GPS, barometers, or compasses are typically the source of those inaccuracies which lead to

incorrect assessments of the UAV’s position and heading.

To estimate the performance of the proposed method in a real-world scenario, the previ-

ously mentioned uncertainties are incorporated into the simulation by introducing error to the

relevant variables. The errors are included in the corresponding control and location variables

as additional random values, sampled from a Gaussian distribution with zero mean value, at

each time step. The error range for each variable is represented by its standard deviation, as

shown in Table 8.3. The minimum and maximum error values for each variable are capped at

three times the standard deviation values.

Table 8.3: Variables’ uncertainty error

Error source Parameter Standard deviation Units

Flight control
vs 0.1 m/s
vz 0.05 m/s
ω 1 ◦/s

Localization

x 0.5 m
y 0.5 m
z 1 m
θ 1 ◦

A total of 50 simulations of Mount Vesuvius UAV search simulations with included uncer-

tainties are computed. The results are statistically evaluated and compared with the reference

solution (presented in Section 8.4) in Figure 8.13. Graphs (A-1) and (B-1) showcase 1000 s of

flight time for one UAV within one randomly selected simulated error test case, while the his-

tograms (A-2) and (B-2) are generated using data from all simulated error cases, for all UAVs

across the entire simulation duration. It can be concluded that the UAVs violated the velocity

constraints for less than 10% of the simulation time, with the error intensity consistently re-

maining below 0.5 m/s. The altitude constraint was violated in less than 0.1% of the time, with

the deviation consistently staying under 5 m. Graphs (C-1) and (C-2) are also computed using

data from all simulated error cases, for UAVs throughout the simulation duration. They display
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the distance of the UAVs’ paths to those from the ideal reference simulation, showing the ab-

solute separation between the UAVs at each time step, highlighting the method’s sensitivity to

error and its impact on overall path accuracy. However, this has no significant effect on search

success, as evident from the survey accomplishment graphs (D-1) and (D-2). Graph (D-1) was

generated using all simulated error cases over the entire duration of the simulation, while the

histogram (D-2) focused only on the values recorded after the search was completed.

Figure 8.13: Statistical analysis of method robustness demonstrated on the
Mount Vesuvius test case.

As expected, in the simulated error test cases, the UAVs occasionally break the altitude

and velocity constraints. However, this did not significantly impact their flight performance

since they corrected their velocity and altitude in subsequent time steps, converging back to the

specified operational range. The UAVs exhibited dynamic fluctuations in their paths relative

to the corresponding UAVs in the referent simulation, demonstrating the chaotic nature of the

HEDAC method and its sensitivity do disturbances. Yet, this divergence did not adversely
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affect the survey accomplishment metric, indicating the robustness of the method concerning

uncertainty.
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9 TERRAIN SEARCH EXPERIMENTS

This chapter presents the experimental validation of the proposed HEDAC + MPC control

framework over terrestrial environments, chosen both for achieving the best performance in

prior numerical tests and for its capability to operate within irregularly shaped search domains.

First, the motion control strategy is evaluated to verify its ability to satisfy flight constraints and

generate feasible trajectories over complex terrain. Following that, an additional experiment

incorporating the UAV camera sensor, CV detection model, and search targets is conducted to

validate the search methodology in a real-world scenario.

9.1 Experimental validation of UAV motion control

The first real-world flight tests were conducted to evaluate the HEDAC + MPC motion control

in a complex terrain environment. The experiment was carried out in the Raša River valley in

Istria County, Croatia (45◦ 09′N,14◦ 03′E), depicted in Figure 9.1. This location was selected

because the flat riverbed area is bordered by steep, rugged slopes, making it a challenging

environment for UAV motion control and navigation.

Figure 9.1: Illustration of the Raša River valley.

The three-dimensional representation of the terrain at the experimental site, including in-

cline information, is shown in Figure 9.2, panel (A).
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Figure 9.2: Motion control validation case: domain incline (A) and area of
interest encoded in the undetected-target probability density field (B).

The domain is enclosed by an approximately rectangular polygon with an area of about

1.17 km2. The mission aims to systematically fly over a nearly rectangular (top-down view)

area of interest of approximately 0.21 km2, maintaining a uniform trajectory density until the

UAV’s battery is depleted. The area of interest is represented by a polygon with a uniform

undetected target probability density, as shown in Figure 9.2, panel (B). The motion control is

based on the undetected target probability field, and the algorithm models the sensing process

even though no actual inspection is conducted. The UAV’s sensing characteristics, including

camera FOV angles, zoom factor, and sensing function, match those of UAV A (Table 8.1) used

in the simulated test cases Mount Vesuvius and Plastic World.

A total of four single-UAV flight missions were conducted using the DJI Matrice 210 v2

aircraft. The control interval was set to ∆t = 3 s, while the HEDAC parameters were set to

α = 5000 and β = 0.1. All UAV motion characteristics were configured to match those of UAV

A (Table 8.1), except for the maximum horizontal velocity, prediction time steps, and minimum

and goal heights. For safety reasons, the maximum horizontal velocity was reduced to vs,max = 5

m/s, while the minimum and goal heights were increased to hmin = 35 m and hgoal = 55 m. For

additional analysis, two different values of the MPC prediction horizon τmax were tested: 15 s

and 30 s, corresponding to prediction step counts npts of 5 and 10, respectively. For both values

of τmax, simulation results were computed and compared with the executed real-world flights.

All comparisons were performed over a flight duration of 20 minutes, as the actual durations of

the real-world flights slightly exceeded this interval.

A representative flight mission with a prediction horizon of τmax = 30 s is shown in Fig-

ure 9.3. Panel (A) presents the UAV trajectory and the terrain from two views, while panels
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(B–E) show analysis graphs of the trajectory over the full flight duration. As seen in panel (B),

the UAV tends to maintain high velocity intensity ρ when flying horizontally or descending,

while ρ decreases during steep ascents. The velocity and acceleration values remain within

the prescribed constraints (panels C and D, respectively), and the absence of sudden, intense

jumps in the acceleration curve indicates that the executed flight trajectory is smooth. Although

the manufacturer specifications state that the Matrice 210 v2 has a maximum flight time of 34

minutes, the mission lasted only about 22 minutes before the UAV reached a critical battery

state and automatically initiated the Return To Home (RTH) procedure. The high energy con-

sumption may be attributed to the ∼ 100 m elevation difference within the area of interest and

the UAV’s tendency to follow the goal search height, which resulted in frequent ascents and

descents, as seen in panel (E).

Figure 9.3: UAV trajectory for a single flight mission during motion-
control validation with prediction horizon τmax = 30 s (A), and correspond-

ing trajectory analysis (B-E).
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As the UAV moves from its position at time t to the position at t +∆t during uninterrupted

flight, the flight regime is simultaneously computed for the next control interval, from t +∆t to

t + 2∆t. To perform this computation, the position at t +∆t is required to sample the potential

field for determining the new heading direction and calculating the yaw angular velocity, as

well as for the MPC procedure and collision avoidance. Since only the current position at time

t is known, the future position at t + ∆t is approximated by simulating movement from the

current position using the commanded control parameters ρ(t) and ϕ(t). Since the UAV cannot

perfectly execute the commanded flight regime and external factors such as wind may introduce

deviations, an error arises between the calculated position and the actual position at t + ∆t.

This predicted position error is defined as the Euclidean distance between the planned and

achieved positions. Figure 9.4 presents a histogram of these errors computed using data from

all executed flight missions, where each bin represents an error range and the height indicates

how frequently that error occurred. Note that the UAV position is measured using GPS and

a barometric altimeter, both of which are subject to measurement errors. These localization

errors are present both as inputs when calculating the next position and in the reported achieved

position used to evaluate the predicted position error. As shown in Figure 9.4, the predicted

position error is within 1 m for the majority of the time and remains below 3 m in nearly

all cases, which is acceptable considering that the UAV can traverse a 15 m trajectory when

utilizing the maximum horizontal velocity vs,max over the 3 second control interval ∆t. However,

in some cases the observed error increases to almost 8 m.

Figure 9.4: Predicted UAV position errors during all real-world flight ex-
periments.

To assess how the system handles both UAV localization errors and predicted position errors,
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the trajectories from the executed real-world flights were compared to the corresponding sim-

ulated trajectories. The location error is defined as the Euclidean distance between the UAV’s

position in the real-world flight and the position in the simulation, where the simulated trajectory

is considered to have zero location error. Comparisons for both τmax = 30 s and τmax = 15 s with

their respective reference simulations are shown in Figure 9.4. It can be observed that flights

with a shorter prediction window of τmax = 15 s achieve lower errors, and the two real-world

flights are fairly consistent with each other. In contrast, a longer prediction window results in

higher errors, and the corresponding simulations are less consistent. These deviations between

the simulated and real-world trajectories arise from the combination of UAV localization errors

and prediction errors, causing the potential field u to be sampled at different points, which in

turn produces variations in the yaw angular velocities ω . However, even though the errors reach

relatively high values (considering the area of interest of 0.21 km2), these errors do not affect

the search performance, as shown in Figure 9.6. In all cases, whether simulated or real-world

and regardless of the prediction horizon, the η(t) curves exhibit similar behavior, indicating the

method’s robustness to localization errors.

Figure 9.5: Location error between the simulated trajectory (zero error)
and the executed real-world trajectory for both prediction horizon lengths

of 15 s and 30 s.

Additionally, a detailed analysis of flight height for all executed real-world flights, compared

with simulation results, is shown in Figure 9.7. Panel (A) presents the results for τmax = 30 s,

while panel (B) presents the results for τmax = 15 s. The shorter prediction horizon achieved

better results with respect to adherence to the target flight height, both in simulation and in the

real-world tests. Additionally, the total number of instances in which the height constraint was
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Figure 9.6: Survey accomplishment for all simulated missions and real-
world missions, for both prediction horizon lengths of 15 s and 30 s.

breached during the two executed flights was 2, compared to 6 instances for the larger prediction

horizon. Nevertheless, these minor breaches of the height constraint do not pose a significant

issue for real-world operation, as they remained below 2 m.

Figure 9.7: Flight height analysis and comparison with simulation results
for τmax = 30 s (A) and τmax = 15 s (B).

The shorter prediction horizon achieved slightly better results in several of the conducted
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analyses, but reducing the prediction time indefinitely is not a viable option. An excessively

short prediction horizon, relative to the aircraft’s velocity and acceleration limits, may prevent

the UAV from traversing complex terrain or climbing steep obstacles. Therefore, the MPC

horizon must be determined with consideration of both the aircraft’s dynamic characteristics

and the terrain complexity. In practice, selecting a longer prediction horizon is preferable for

safety, as it still provides good search performance, as shown in Figure 9.6.

9.2 Experimental validation of UAV search methodology

In order to validate the implemented search methodology, it is necessary to assess whether the

actual target detection performance aligns with the survey accomplishment metric η . To achieve

this, search targets and a corresponding detector must be introduced into the experiment.

A total of 100 experimental targets are made from 0.5×0.5 m cardboard sheets. Each of the

100 targets is uniquely patterned marked with two colors selected from the following palette:

white, black, green, orange, red, blue, and yellow. The color combinations were chosen to

simulate the variety of clothing and appearances that real humans may have, aiming to achieve

detection performance comparable to that for actual humans. The targets are practical because

they can be positioned within the area such that their distribution matches the undetected target

probability density, and they remain stationary throughout the experiment. Examples of the

targets are presented in Figure 9.8.

Figure 9.8: Representative custom cardboard targets used in the experi-
ment.
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Target detection is achieved by having the UAVs capture images with the onboard camera.

The acquired images are then processed with a CV detection model to identify which targets

have been successfully detected. Since no detector existed for the custom targets, a model

was specifically trained to enable their detection. The YOLO detection algorithm was chosen

because it provides fast detection and is widely used for UAV imagery [58, 111].

For model training and performance analysis at varying image capture heights, a data set

was collected consisting of 1840 images, containing a total of 34135 target instances. A subset

of 1166 images, containing 27600 object instances, was used to train the model. This subset

was split into training and validation sets in an 80-20 ratio. The YOLOv8 architecture was

employed, and training was initialized with the extra-large pre-trained model yolov8x.pt, previ-

ously trained on the COCO dataset. The model was trained for 500 epochs with a batch size of

2, with the original images automatically scaled down to 1280 pixels by the YOLO algorithm.

The remaining images from the data set were grouped into bins corresponding to capture

heights in the range [30, 90] m, with each bin spanning 10 m. For each bin, validation was

performed to compute the recall metric, and the recall value for the bin was assigned to the

mean height of the bin. To obtain recall values for the full operational height range of the

aircraft, a quadratic polynomial regression was performed. The discrete recall values for each

bin and the corresponding recall regression function µ are shown in Figure 9.9, panel (A).

Two types of UAVs were used in the experiments: DJI Matrice 210v2 and DJI Mavic 2

Enterprise Dual. Their motion, sensing, and control parameters are listed in Table 9.1. For

each UAV type, the average velocity vs,avg during autonomous flight over the search domain

was experimentally determined. The Matrice achieved an average velocity of 7.515 m/s, while

the Mavic achieved 7.449 m/s. Based on the measured vs,avg, the goal search altitude hgoal , and

the camera FOV angle γ2, the scene duration tscene was computed according to equation (4.9).

The resulting tscene was 5.736 s for the Matrice 210v2 and 8.775 s for the Mavic 2 Enterprise

Dual. Finally, the detection rate function Γ was computed for each UAV type using the recall

function µ and the scene duration tscene according to equation (4.11). The resulting detection

rate functions are illustrated in Figure 9.9, panel (B).

The experiment was conducted on Učka Mountain, Croatia (45◦ 14′ 30′′N,14◦ 12′ 00′′E),

and consisted of two search missions. The first mission employed two Matrice UAVs, while

the second mission utilized one Matrice UAV and one Mavic UAV. Both Matrice UAVs were

equipped with the DJI Zenmuse X5S RGB camera, whereas the Mavic UAV used its integrated
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Figure 9.9: Recall values of the cardboard target detection model at dis-
crete heights and the corresponding regression curve (A), along with de-

tection rate functions Γ for the UAVs used in the experiments (B).

Table 9.1: Motion, sensing, and control parameters of the UAV used in the
search methodology validation experiment [107].

UAV parameters DJI Matrice 210 v2 Mavic 2 Enterprise Dual Units
Type Multi-rotor Multi-rotor -
Min turning radius Rmin 30 30 m
Min clearance distance δ 50 50 m
Min search altitude hmin 40 40 m
Goal search altitude hgoal 60 60 m
Max horizontal velocity vs,max 8 8 m/s
Min horizontal velocity vs,min 0 0 m/s
Max ascending velocity vz,max 5 3 m/s
Max descending velocity vz,min -3 -2 m/s
Max horizontal acceleration as,max 2 2 m/s2

Min horizontal acceleration as,min -3.6 -3.6 m/s2

Max vertical acceleration az,max 2.8 2.8 m/s2

Min vertical acceleration az,min -2 -2 m/s2

Min incline ϕmin -90 -90 ◦

Max incline ϕmax 90 90 ◦

Camera FOV γ1 64.7 72.5 ◦

Camera FOV γ2 39.2 57.58 ◦

Sensing function Γ ΓM210 ΓMavic2 -
Prediction time steps npts 5 5 time steps

RGB camera. More detailed specifications of the cameras, as well as the UAV control imple-

mentation, are provided in Section 3.4. Both search missions continued until one of the UAVs

reached its critical battery level. The experimental site on Učka mountain, along with two

Matirce UAVs, is shown in Figure 9.10.

The control time step ∆t was set to 3 s, which corresponds to the the sensing interval ∆ts.

This interval accounts for the time required by the camera to generate an image, including per-

forming auto-focus, capturing the image, and storing it in memory. In case a new image capture

command is issued before the previous command has completed, the command is ignored and

the subsequent image is not recorded. The sensing interval ∆ts = 3 s allowed successful image

83



Figure 9.10: Experimental area on Učka Mountain including two Matrice
210 v2 UAVs.

captures in most cases. However, if an image was not acquired for any reason, the correspond-

ing sensing effect was not applied to the domain. The values of the HEDAC parameters were

set to α = 5000 and β = 0.1.

The search domain was defined as a circular area with a radius of 550 m, corresponding to an

area of 0.95 km2. The terrain elevation variation within the domain is approximately 100 m, and

the terrain, including incline representation and elevation isolines, is illustrated in Figure 9.11,

panel (A). A total of 100 search targets were distributed across three concentric zones. Within

each zone, the targets were uniformly scattered, and the initial undetected target probability

density m0 matched the target distribution. 20 targets were placed in Zone 1 (rz1 < 150m), 30

targets in Zone 2 (150 < rz2 < 300m), and 50 targets in Zone 3 (300 < rz3 < 450m), where

rz defines the radial limit of each zone. The probability within each zone was uniform and

calculated as the ratio of the number of targets in the zone to the corresponding zone area. The

resulting distribution was then normalized to satisfy the condition defined in equation (4.4). The

initial undetected target probability distribution and the locations of the search targets, shown

as black dots, are illustrated in Figure 9.11, panel (B).

After the images are taken, they are processed with the detection model to determine the

detected targets. The model is trained to detect only one class, named Target, which represents

a binary classification problem of object versus background. The detection model can produce

four possible classification outcomes: a True Positive (TP) occurs when the target object is
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Figure 9.11: Učka experiment terrain (A) and the initial undetected target
probability density with target locations shown as black dots (B).

correctly detected, a False Positive (FP) is the result of the model indicating a target when

none is present, a False Negative (FN) occurs when there is a target present and the model

fails to detect it, and a True Negative (TN) represents the case where no target is present and

no detection is indicated by the model. Examples of classification outcomes on the collected

images from the experiment are shown in Figure 9.12. True positives and false positives are

marked with blue labels produced by the model in panels (A) and (B), respectively. False

negative detections are manually marked in red, while true negatives correspond to regions with

no annotations.

Figure 9.12: Detection model classification outcomes: true positives (A)
and false positives (B) annotated by the model in blue, and false negatives
(C) manually annotated in red. True negatives are represented by regions
with no annotations in the images. Numbers next to the annotations in

(A,B) indicate the model’s detection confidence.
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Flight trajectories during Mission 1, along with a trajectory analysis for one of the Matrice

UAVs, are shown in Figure 9.13. The search was conducted for 25.26 minutes, and the targets’

detection status and trajectories at the end of the search are displayed in panel (A). The green

dots represent the detected targets, while the black dots represent the undetected targets. Flight

parameters along the blue trajectory are presented in graphs (B–E). All set constraints for flight

parameters (B), velocities (C), accelerations (D), and flight height (E) were respected. The UAV

generally maintained the target height, balancing area coverage and sensing performance, while

executing a relatively smooth trajectory at high velocity.

Figure 9.13: Mission 1 trajectories and marked targets (A) and flight pa-
rameters graphs (B-E) for the red trajectory executed by the Matrice UAV.

Mission 2 is presented in Figure 9.14. The search was conducted for 19.36 minutes, and

the search trajectories at the end of the mission are shown in panel (A), along with the search

domain containing the targets, which are colored according to their detection status, with green

indicating detected targets and black indicating undetected targets. Some undetected targets
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were never observed by the camera, as the undetected target probability density in their regions

remained the same as at the start of the search. This is visible in the small region in the upper part

of the domain in the top-down view shown in panel (A). Other undetected targets, located within

the observed area, were missed due to limitations of the detection model, which failed to identify

them. The search was performed with one Matrice UAV and one Mavic UAV. The yellow

trajectory in panel (A) and the corresponding flight parameter graphs (B–E) correspond to the

Mavic UAV. Similar to the Matrice trajectory analyzed in the previous mission (Figure 9.13),

the Mavic UAV respected all given constraints (B–E) and maintained good adherence to the

target flight height (E).

Figure 9.14: Mission 2 trajectories (A) and flight parameters graphs (B-E)
for the yellow trajectory executed by the Mavic UAV.

Finally, to validate the search methodology, the survey accomplishment metric η is com-

pared to the achieved target detection rate κ . The target detection rate is defined as the ratio

of detected targets to the total number of targets in the experiment. During the search mission,
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multiple images may capture the same target, and the detection model may detect the same tar-

get multiple times. However, only the first detection of each target is counted toward the total

number of detected targets, so repeated detections of the same target do not affect κ . Figure 9.15

shows η(t), κ , and their relative error for both search missions. The η parameter is presented

as a continuous curve, while κ is plotted discretely as dots. Each dot corresponds to the time

when κ increases, caused by the detection of a new target. The mean absolute relative error

over the entire search duration is 0.094 for Mission 1 and 0.073 for Mission 2. Under realistic

field conditions, the achieved relative error is considered acceptable, which suggests that η can

serve as a reliable indicator of search performance.

Figure 9.15: Survey accomplishment η , target detection rate κ , and their
relative error over the duration of both search missions.
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10 SEA SURFACE EXPLORATION

This chapter presents the modifications and enhancements on the static target search method-

ology in order to adapt the method for the search of a dynamic sea surface environment. First,

the problem is defined, detailing the differences between terrain and sea surface exploration.

Then, the behavior of drifting sea targets is discussed, and a dynamic probability model using

the advection-diffusion equation is introduced, along with uncertainty compensation through

diffusion. Finally, the implementation of the dynamic probability model using OpenFOAM is

detailed.

10.1 Problem formulation – Search in maritime environments

With the search focus shifting from land to sea, certain aspects of the methodology can be

simplified, while others present new challenges that require further development. Since the sea

surface is flat, there is no need to account for terrain obstacles, and the search can be executed

at a constant flight altitude. Therefore, the MPC optimization detailed in Chapter 7 can be

omitted, as the UAV flight is effectively conducted in the Ω2D domain, which is offset from

the sea surface to the goal flight height hgoal . The velocity intensity and incline parameters

are set to constant values of ρ = 1 and ϕ = 0, respectively. This implies that the UAVs fly

at their maximum velocity intensity, maintaining a constant velocity of vs,max, and the vertical

velocity vz = 0. Since the UAVs maintain a constant velocity, the acceleration constraints are

automatically satisfied. A change in velocity occurs only if the UAVs begin the search from

a non-moving state, in which case the acceleration constraint is not considered. In practice,

this introduces an initial deviation between planned and actual positions. However, since the

method tolerates such errors and corrects them over time, as shown in sections 8.6 and 9.1, this

simplification does not compromise performance.

Given the flatness of the sea surface, the sensing model (detailed in Section 4.3) can be

slightly simplified by omitting the ray-tracing observation check. In the absence of terrain ele-

vation or occluding structures, any point within the field of view is guaranteed to be observable.
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The main challenge this search problem presents is dynamic nature of the search targets,

whose positions evolve due to environmental factors. Targets at the sea surface drift due to the

movement of the surface water layer. This movement is caused by a combination of several

natural effects such as sea currents, tides, wind, and waves. In order to determine the way

that the targets move, the sea surface flow field must be obtained. It can be estimated through

various approaches, such as numerical ocean simulation models, satellite data, high-frequency

radar measurements, or surface drifters equipped with GPS sensors. The appropriate method is

chosen based on the needed spatial resolution, geographic coverage, and real-time data avail-

ability. For the purpose of defining the dynamic target search methodology, the surface flow

field, represented with the vector field w(x, t), is considered known.

10.2 Dynamic target probability distribution

The movement of surface targets can be simulated by the effects of advection in the velocity

field w and diffusion. Advection represents the transport of a substance or target due to the

fluid flow, while diffusion models the spreading of a substance on a molecular level, driven by

differences in concentration. In many real-world problems, both processes occur together. For

example, a pollutant in a river is advected downstream by the current while it is simultaneously

being diffused sideways and vertically. A similar principle applies to a group of people in

the sea: they are carried by the currents through advection, while their individual swimming

movements and other stochastic impacts can be approximated as uncertainty using a diffusive

process.

Advection and diffusion can be modeled using either the Lagrangian and Eulerian approach.

The Lagrangian approach focuses on tracking individual particles and observes how they move

and evolve over time. Advection is in this case captured naturally by the moving particles

effected by the flow field, governed by the Lagrangian motion law

dz
dt

= w(z, t), (10.1)

where the particle location is represented with z(t) ∈Ω2D. Diffusion is modeled as a stochastic

process, such as Brownian motion. Brownian motion is represented by a stochastic differential

equation

dz(t) = σ dξ (t), (10.2)
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where σ represents the standard deviation of the Brownian motion and ξ denotes a stochastic

Wiener process. Both advection and diffusion can be modeled together by combining 10.1 and

10.2 resulting in

dz(t) = w(z, t)dt +σ dξ (t). (10.3)

Numerical implementation of the method is executed by simulating a large number of particle

trajectories. While this approach is well suited for tracking individual particles, it can struggle

to compute smooth field approximations as it requires many particles and can become compu-

tationally expensive, especially for large-scale problems.

In contrast, the Eulerian approach monitors how the field variables, for example pollution

concentration, change at fixed points within the domain. In this case, the observed variable is

the probability of undetected target presence m. The advection, using the example of m(x, t), is

modeled with the term w ·∇m in the PDE, while diffusion is represented D ·∇2m, where D is

the diffusion coefficient. The resulting advection-diffusion PDE is given by

∂m

∂ t
= D ·∇2m−w ·∇m. (10.4)

Since the positions of the targets are uncertain in a search scenario, they need to be repre-

sented by a probability density field. This also enables certain regions to be probabilistically

prioritized based on the constructed field. Due to the need to model both advection and diffu-

sion of the field, the Eulerian approach was chosen. While the Lagrangian approach can also

generate a probability field, by discretizing the domain into a grid and counting the number

of particles in each cell, it requires an additional processing step. Furthermore, incorporating

diffusion in the Lagrangian framework demands a significantly larger number of particles to

provide a statistically representative probability field. The Eulerian model directly computes

the field and diffusion can be included with practically no additional computational cost.

Diffusion is used to model the cumulative uncertainty of the system, which may arise from

the inaccuracies in the advection flow field, initial probability distribution of undetected targets,

UAV localization errors causing sensing inaccuracy, or other sources of uncertainty in the drift

of targets. The diffusion coefficient D is estimated using the mean square displacement formula

for two-dimensional Brownian motion, given by

E2(t) = 4 ·D · t,
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where the variable E denotes the average displacement of a particle over time t. To align the

model with real-world uncertainty, the diffusion coefficient is computed using the estimated

positional drift error Ee of targets over time t. That estimate can either be measured directly or

computed based on the error in the measured flow field, if that information is available. For the

two-dimensional flow, the diffusion coefficient is defined as

D =
E2

e

4 · t
. (10.5)

To conduct an efficient search of the dynamic sea surface area, the drift model for m must be

integrated into the sensing process to account for the influence of sea dynamics on the targets,

and consequently on m. To achieve this, the sensing term, given by equation (4.5), is incor-

porated into the advection-diffusion PDE (10.4). Considering the collective sensing effect of

all search agents, based on the sensing function defined in equation (4.8), the resulting PDE

describing the dynamic behavior of m can be formulated as

∂m

∂ t
= D ·∇2m−w ·∇m−

n

∑
i=1

ψi(Ri) ·m. (10.6)

In practical implementation, given realistic sea surface layer flow velocities, the advection-

diffusion effects can be considered negligible over the duration of a single sensing interval ∆ts.

Since the behavior of m is dynamic, it must be modeled starting from the time the initial

probability distribution of the targets is established, at t = 0. If the search is delayed, the

probability field needs to be evolved up to the search start time and then continuously modeled

during the search. The undetected target probability density at t = 0, denoted as m0, needs to

satisfy the condition (4.4).

The exploration of evolving m is managed by the ergodic search control defined in Chapter 5,

and the resulting search performance is evaluated using equation (4.13). The search agents are

controlled using constant values of ρ and ϕ , while the ω values are computed using the selected

ergodic search method (Section 5.1 or Section 5.3), and later adjusted through the collision

avoidance procedure detailed in Chapter 6.
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10.3 Numerical implementation

The dynamic behavior of m, described by equation (10.6), is implemented by integrating Open-

FOAM with the proposed sensing and ergodic search framework. OpenFOAM is an open-

source software suite for Computational Fluid Dynamics (CFD), capable of modeling various

physical processes such as heat transfer, fluid flow, and scalar transport.

The evolution of the m field at each time step ∆t, begins with the application of the UAVs’

sensing effects, followed by advection and diffusion. The advection-diffusion effects are mod-

eled using the OpenFOAM solver scalarTransportFoam, which solves the equation

∂m

∂ t
+∇ · (wm)−∇(D∇m) = Sm. (10.7)

where Sm is the source of the scalar m. Since the sink/source representing sensing is considered

with the sensing function applied externally, the scalarTransportFoam sink term Sm = 0. Addi-

tionally, considering that the flow field w is incompressible (implicating that ∇w = 0), and that

the diffusion coefficient D is a constant scalar, the equation (10.7) can be rewritten as

∂m

∂ t
= D ·∇2m−w ·∇m,

which relates to the equation (10.6) without the sensing term

n

∑
i=1

ψi(Ri) ·m. (10.8)

In contrast to the ergodic control framework which employs FEM, OpenFOAM utilizes

the Finite Volume Method (FVM). In FVM, numerical discretization is performed by dividing

the physical domain into non-intersecting control volumes, also known as cells. Although the

proposed problem is two-dimensional (in Ω2D), a three-dimensional mesh with only a single

cell in the third dimension is required. To lay the groundwork for implementing the governing

equation (10.7) in FVM, it is rewritten in integral form for each cell volume as

∫

V

∂m

∂ t
dV +

∫

AV

mw ·nVdAV =
∫

Acs

D∇m ·nVdAV +
∫

V
SmdV,

where V is the control volume, AV is its boundary surface, and nV is the outward normal vec-

tor on AV . To solve the equation using FVM, each term must be discretized. This involves
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approximating the integrals over control volumes and their boundaries. The time derivative is

typically approximated using finite difference schemes such as the Euler scheme. The fluxes

through each face of the control volume, due to advection, can be approximated using various

interpolation schemes, including upwind interpolation, linear interpolation, quadratic upwind

interpolation, and other higher-order methods [112]. Gradients responsible for diffusion, are

commonly computed using the central difference theorem or the Gauss’s divergence theorem.

The source is treated as constant within each cell, which requires the cells to be reasonably

smaller than the scope of the sensing function. Using the discretized forms, a algebraic system

of equations can be formed for each cell as

aPmP +∑
N

aNmN = bP,

where aP represents the coefficient and mP denotes the value at the center of the current cell P,

while aN and mN represent the coefficients and values for the neighboring cells N, respectively.

The term bP accounts for contributions from the source term and possible boundary condition

contributions.

The main advantage of the FVM is that it naturally satisfies the conservation laws govern-

ing fluid flow, including mass, momentum, and energy, at both local and global levels [112].

Another advantage is that it can be extended to multi-physics problems, such as solving the

fluid dynamics Navier-Stokes equations and the advection-diffusion equation simultaneously to

model both fluid flow and scalar transport.

Since the coupled methods are discretized differently, they use different numerical meshes.

The FEM method within the HEDAC control framework employs a two-dimensional triangular

mesh, whereas the FVM utilizes a three-dimensional hexahedral mesh with a single cell layer

in the third dimension. Additionally, FEM stores the data at mesh nodes, while FVM stores the

data at cell centers. To avoid the introduction of additional numerical error, the undetected target

probability density field m is handled entirely within the FVM mesh. The UAV control frame-

work reads the OpenFOAM scalar field m and directly applies sensing using the term (10.8) via

the Euler scheme

m j = m j−1−
n

∑
i=1

ψi (Ri) ·m j−1,

where j denotes the time step. The m field is then projected to the FEM mesh to compute the

potential u, utilizing the nearest neighbor interpolation method. This method is chosen for its
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high computational efficiency, and since u is recalculated at each time step from the current

values of m, error does not accumulate through the simulation time. The detailed procedure

for the HEDAC FEM method with dynamic probability field incorporated using OpenFOAM is

provided in Algorithm 1.

Algorithm 1 Procedure for ergodic sea exploration using HEDAC
procedure UAV MOTION CONTROL WITH DYNAMIC PROBABILITY DENSITY FIELD

function INITIALIZATION

Initialize general parameters, UAVs, and FEM system
Normalize and set the m field in the finite element system ⊲ Equation (4.4)
Save normalized m field to OpenFOAM case for t = 0
Initialize OpenFOAM vector field w
Initialize diffusion coefficient field in OpenFOAM
Set initial time: t← 0

end function
function PRE-SEARCH ADVECTION-DIFFUSION

Perform scalar transport of m until search start time ⊲ Equation (10.4)
t← search start time

end function
while search not complete do

function COMPUTE TRAJECTORIES

Retrieve scalar field m(t) from OpenFOAM case
for i = 1 to n do ⊲ For all agents

Apply sensing: m(t)← m(t)−ψi (Ri) ·m(t)
end for
Save updated m field with applied sensing to OpenFOAM case
Update m field in the finite element system
Compute potential u ⊲ Equation (5.1)
Compute UAVs’ yaw angular velocities ⊲ Equation (5.4)
Execute collision avoidance procedure ⊲ See Chapter 6
Update UAVs’ positions
Perform scalar transport of m in OpenFOAM for time step ∆t ⊲ Equation (10.4)
Advance time: t← t +∆t

end function
end while

end procedure

A similar procedure is used for the mSMC method, with the primary differences being that

they do not use FEM or a triangular mesh. Instead, the m field is represented on a structured

rectangular grid. Furthermore, field m is used to compute the UAVs’ yaw angular velocities by

employing Fourier basis functions, as detailed in Section 5.3.

Additionally, in the method’s implementation, UAV motion control is executed with a period

of ∆t, while the OpenFOAM scalar transport advection-diffusion simulation for the duration of

∆t is performed with the integration time step of ∆t/10. Numerical simulations of the advection-

diffusion process are performed using OpenFOAM v2406 [113].
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11 SEA SURFACE SEARCH SIMULATIONS

This chapter presents the results of sea search simulations conducted using the proposed control

methodology for dynamic target search. The first test is performed on a synthetically generated

domain, and the results are compared to a baseline simulation employing the static probability

model. This case is also used to examine the effect of different relative velocities between the

UAVs and the flow field on search performance, as well as the robustness for search parameter

selection. The second case represents a realistic search scenario in a coastal sea region and

demonstrates uncertainty compensation using diffusion. The third case applies the method to

a large-scale ocean search operation, evaluating its performance under long search delays and

complex transient flow conditions.

11.1 Modeling motion and detection of dynamic targets

To evaluate how well the probability distribution reflects search success in a dynamic scenario,

simulated search targets are introduced into all test cases. The sensor simultaneously applies its

sensing effect to the domain and performs target detection using the same detection rate func-

tion. In each test case, 1000 simulated targets are introduced at t = 0, and distributed throughout

the search domain according to the initial target probability density m0. They are advected with

the flow field w according to the Lagrangian motion law given by the equation (10.1), or (10.3)

when considering uncertainties.

Each simulated search scenario is evaluated using two metrics: the survey accomplishment

metric η , representing the system’s estimate of survey completeness, and the target detection

rate κ , representing the ratio of detected targets to the total number of targets, providing an

accurate assessment of survey completion.

96



11.2 Synthetic case – Cavity flow

The first test case consists of a synthetically generated scaled domain featuring a cavity lid-

driven flow, a common benchmark problem in fluid dynamics. It is very convenient because

the geometry and boundary conditions are simple, but the resulting flow is relatively complex.

The fact that the probability cannot escape the domain makes it ideal for testing the proposed

search methodology with dynamic probability, even over longer durations. The domain is de-

fined by a 1× 1 m square centered at (0.5,0.5) m, containing an internal rectangular obstacle

described with two opposite corners located at (0.7,0.2) and (0.8,0.6). The flow field is gen-

erated using the simpleFoam, a steady-state solver for incompressible, turbulent flow included

in OpenFOAM. The velocity boundary condition on all surfaces is set to the no slip condition,

implying that the fluid in contact with the boundary has zero velocity with respect to it. The

flow is driven by moving the upper domain boundary at 2 ·10−2 m/s, with the kinematic viscos-

ity of the fluid set to 1 ·10−6. The pressure boundary condition is set to zero gradient on all the

boundaries, and the turbulence is modeled with k−ω Shear Stress Transport (SST) model. The

resulting flow field is shown in Figure 11.1, where the black arrows represent the flow vector

field w and the contour plot represents the velocity magnitude. The average velocity magnitude

of the computed flow is 3 ·10−4 m/s, and the flow remains steady during the search simulation.

The simulated targets are distributed across five differently shaped areas within the domain,

according to m0. In the two upper areas, they are scattered following a normal distribution

centered within each respective area, while in the remaining areas the targets are distributed

uniformly. The target distribution is shown in Figure 11.1, where the targets are represented as

red dots.

The search is conducted for T = 900 s using three identical search agents moving at a

constant velocity of vs = 0.015 m/s, with a minimum turning radius of Rmin = 0.01 m, and a

minimum clearance distance of δ = 0.01. The control and sensing interval is defined as ∆t = 0.2

s, and the HEDAC parameters are set to α = 5 · 10−2 and β = 1. Each agent is equipped with

a conical sensor defined by γc = 90◦, and the sensing is executed from a constant height of

hgoal = 0.015 m. The detection probability in one flyover directly below the search agent is

equal to µa = 0.65, and it diminishes laterally relative to the agent’s trajectory, following a

normal distribution with a standard deviation of 0.015. The resulting detection rate function is
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Figure 11.1: Cavity flow field during the simulation and the distribution of
simulated targets at t = 0.

given by

Γ =
ln(1−µa)

tscene
· e
−0.5

(

||R||2−h2
goal

0.0152

)

where tscene = 2 s according to equation (4.9), as constant velocity implies vs,avg = vs.

The search is conducted using the proposed method, which employs a dynamic probability

distribution model, where the probability evolves according to the combined effects of the flow

field w and sensing. The results are compared with a baseline method that utilizes a stationary

probability distribution, in which the probability is influenced solely by the effects of sensing.

Essentially, the baseline method corresponds to the proposed method with w = 0. Figure 11.2

shows the UAVs’ trajectories and the undetected target probability distribution at t = 450 s,

along with the evolution of η and κ throughout the search for both the proposed and baseline

methods. The undetected targets are shown as red dots, while detected targets are represented

in green. In contrast to the baseline method, the spatial distribution of undetected targets in

the proposed method is in line with the undetected target probability density. This consistency

is further confirmed by the relatively good agreement between the η and κ metrics through-

out the search. Compared to the baseline, the proposed method achieves approximately 50%

better performance in terms of κ . Notably, although the baseline method reports a higher η ,

it substantially overestimates actual performance since it is unaware of the probability density

advection. In contrast, the proposed method not only achieves superior detection performance
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but also provides a more reliable estimate of survey completion, as reflected by the alignment

of η with κ .

Figure 11.2: Undetected target probability field, simulated targets, and
UAV trajectories for both the proposed and baseline methods at t = 450,

together with η and κ values throughout the search.

To evaluate the influence of search agent speed and flow field velocity on search perfor-

mance, a new parameter, λ , is introduced. This parameter represents the ratio between the

search agents’ velocities and the average velocity magnitude of the flow field w. Large λ val-

ues indicate that search agents move considerably faster than the flow field, while small values

correspond to cases where the flow field velocity dominates. Specifically, λ = 1 represents the

condition in which the average flow field velocity equals the UAV velocity. Different λ values

are obtained by scaling the flow field from the original case, while keeping the velocities of the

search agents constant. For reference, λ value in the order of 50 would be representative for a

realistic search scenario performed in a coastal sea region. This estimate assumes multi-rotor

UAVs operating at 10 m/s and the average velocity of a submesoscale flow around 0.2 m/s [114,

115].

99



The performance of both the proposed and baseline methods is assessed and compared

across λ values in the range [0.25,1000]. Figure 11.3 displays the results at the midpoint of the

search (0.5T ) and at the end of the search (T ). At very high λ values, no significant difference

is observed between the performance of the baseline and proposed methods, as the influence of

the flow field becomes negligible. In this regime, both methods perform similarly well, and η

closely corresponds to κ . For λ < 1 the flow moves faster relative to the search agents making

it effectively impossible to conduct the search. Detections are largely caused by the circulation

effect as targets are transported beneath the search agents and detected. The resulting κ is sim-

ilar for both methods but the proposed method provides an advantage by accurately estimating

κ through the η metric, while the baseline method significantly overestimates it. The primary

results of interest correspond to λ values around 50, indicated by a black vertical dashed line

in the graphs, which represent realistic operational conditions. The proposed method achieves

considerably higher κ , and unlike the baseline method, κ aligns with η , indicating an accurate

performance estimate.

Figure 11.3: Performance comparison of the proposed and baseline meth-
ods across different λ values.

Additional performance analysis of the proposed method was conducted by varying the

HEDAC parameter α and the number of agents performing the search while keeping all other

parameters of the original case unchanged. The results are shown at the midpoint of the search

(0.5T ) and at the end of the search (T ) in Figure 11.4. The results demonstrate that the method is

generally robust with respect to the selection of α and achieves slightly better performance with
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a lower α than the originally selected value. As expected, search performance improves with

the addition of more search agents. However, beyond a certain point, adding additional agents

yields only marginal gains. Furthermore, at the end of the search (T ), across all combinations of

α and agent count, the mean discrepancy between κ and η is approximately 3%. This difference

can be considered as a statistical error due to the stochastic nature of the initial distribution of

targets and detection process.

Figure 11.4: Performance analysis of the proposed method across different
α values and varying numbers of UAVs conducting the search.

11.3 Realistic search scenario – Unije Channel search

The second test case simulates a survey taking place in the Unije Channel, located between

the islands of Unije and Lošinj, Croatia (44◦ 37′N,14◦ 19′E). The search domain covers a total

of 95.9 km2. To reflect realistic operational conditions, the start of the search is delayed by

3 hours to account for the travel time of the response team. The mission is carried out using

five identical multi-rotor UAVs over six consecutive search waves. Each wave has a duration

of 25 minutes, corresponding to the approximate duration of one battery charge, followed by a

5-minute pause to simulate battery replacement.

The UAVs operate at a constant velocity of vs = 10 m/s, with a minimum turning radius of

Rmin = 100 m and a minimum clearance distance of δ = 50 m. The survey is performed from

a constant height of hgoal = 100 m using a sensor with a pyramidal FOV defined by γ1 = 77.3◦
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and γ2 = 48.5◦. Under this sensing configuration, each image covers a rectangular ground area

of 160 × 90 m, corresponding to an aspect ratio of 16 : 9. Since the search is performed at a

constant height over the flat sea surface, the recall (representing detection probability) is defined

as a constant value of µb = 0.75. The corresponding detection rate function is obtained using

equation (4.11), resulting in

Γ =−
ln(1−µb)

tscene
,

where tscene = 9 s, as defined in equation (4.9), under the assumption of constant velocity,

implying vs,avg = vs. The sensing interval ∆ts is set equal to the control interval, ∆t = 3 s, and

the HEDAC parameters set to α = 1e5 and β = 1.

To represent the realistic behavior of the sea surface flow, this case models a transient flow

field w(x, t). The flow is computed using simpleFoam OpenFOAM solver, and its transient

behavior is introduced following the procedure described in [114]. The velocities of the flow

filed are within the range [0,0.4] m/s, which is consistent with the surface layer velocities mea-

sured in domains with similar characteristics [114, 115]. Snapshots of the flow field at t = 0,

at the start of the search (t = 10800 s), and at the end of the search (t = 21300 s) are shown in

Figure 11.5.

At t = 0, the undetected target probability density is uniformly distributed within a circular

area of radius 2 km, with 1000 targets scattered uniformly inside the circle. To model realistic

target drift, uncertainty is incorporated into the advection of the targets by introducing Brownian

motion. By extrapolating the measured drift error of buoys on the sea surface reported in [114],

the drift error after 3 h (the midpoint of the simulation) is estimated to be approximately 330

m. To reproduce this effect, the target motion is modeled using the equation (10.3), with the

standard deviation of the two-dimensional Brownian motion σ = 3.889 m and an advection time

step of 3 s. The positions of the simulated targets at t = 0, at the start of the search (t = 10800

s), and at the end of the search (t = 21300 s) are shown as red dots in Figure 11.5.

To compensate for target drift error, diffusion is introduced into the simulation. The diffu-

sion coefficient, corresponding to a drift error of Ee = 330 m over t = 3 h, is calculated using

equation (10.5), yielding D = 2.521. The search simulation is performed both with diffusion (to

account for uncertainty) and without diffusion. The computed results for both cases are shown

in Figure 11.6. The figure illustrates the search domain with UAV trajectories from the final

search wave, target positions and their detection status, the flow field, and the undetected target

probability at t = 21150 s, near the end of the search. The lower plots present the evolution
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Figure 11.5: Flow field and target positions at t = 0, at search start t =
10800 s, and at search end t = 21300 s.

of η and κ for the compensated and the uncompensated cases over the search duration. Both

cases perform similarly in terms of κ during the first search wave, but the performance of the

uncompensated method declines over time. This decline is caused by the increased drift error

over time and the lack of error compensation. The uncertainty compensated method achieved

higher performance detecting 941 targets, while the uncompensated method detected 926 out

of the total 1000 targets. An additional advantage of the compensated case is a more accurate

survey accomplishment estimate. The compensated method achieved η = 0.944, closely corre-

sponding to κ = 0.941, while the uncompensated method achieved η = 0.985 and κ = 0.926,

overestimating survey performance by 6%. Correct performance estimation is crucial in search

missions, as it ensures that the mission continues until a certain level of certainty is reached that

the target is not within the search domain, which is represented by η . If the survey competed

with η = 0.98, the use of the uncompensated method would result in premature termination

of the search, potentially leaving the target undetected, whereas continuing the survey until the

actual η value is reached could result in detection of the target.

The search domain was discretized using a FEM mesh with 18289 triangular elements and

9357 nodes, as well as a FVM mesh with 61340 hexahedral cells and 124628 points. The case

was computed on a PC equipped with a 6-core 2.6 GHz CPU, 16 GB of RAM, and an SSD.

The mean, median, and maximum time step computation times are reported in Table 11.1. As
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Figure 11.6: Unije Channel search at t = 21300, showing UAV trajectories
from the final search wave, target locations and detection status for both
the uncompensated and compensated cases, along with the evolution of η

and κ over time.

evident from the table, the majority of the computation time is allocated to coverage convolu-

tion, which involves solving the OpenFOAM advection-diffusion simulation. Additionally, the

maximum computation time does not exceed the control time step ∆t, indicating the feasibility

of real-time UAV control.
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Table 11.1: Computation time for the Unije Channel search scenario [116].

Computation time Max Mean Median Units
Coverage convolution 2.0101 1.8141 1.8133 s
Potential field 0.0817 0.0399 0.0404 s
Collision avoidance procedure 0.8688 0.0151 0.0 s
Total 2.6805 1.8691 1.8573 s

11.4 Complex search scenario – MH370 search

To represent a complex scenario, a search simulation is conducted for the MH370 aircraft that

disappeared in the Indian Ocean in March 2014, replicating the splash area A scenario from

[74]. The complexity of this case arises from the sheer size of the domain, spanning 1000×900

km, combined with a long search delay of 20 days within a complex transient flow field.

The aircraft went missing on March 8, marking the starting point for the diffusion-advection

of m0 from the initial splash area. Within this area, 1000 targets are introduced and advected

with the flow, while uncertainty is modeled analogously to the Unije Channel search scenario.

The search began on March 28 and consisted of 3-hour missions conducted on each of the

following five days. The search is performed with search agents flying at constant velocity of

vs = 105 m/s, employing Rmin = 100 m and δ = 100 m. They perform sensing from a constant

height of hgoal = 1500 m, utilizing a conical FOV defined with γc = 90◦, which corresponds to

a 1.5 km circular sensing radius as in the original case [74]. The probability of detection in a

single flyover is set to µc = 0.75, and the sensing function is given by

Γ =−
ln(1−µc)

tscene
,

where tscene = 28.57 s, calculated using vs,avg = vs and equation (4.9). The control interval is set

to ∆t = 10 s, while sensing is performed more frequently, at intervals of ∆ts = 2 s. The HEDAC

parameters are set to α = 1e8 and β = 1.

The search simulation was performed using the HEDAC and mSMC methods, and the com-

puted results are compared. Figure 11.7 shows the UAV trajectories, targets’ positions and their

detection status at the end of the first day search mission (9:00, March 28, 2014) computed

with HEDAC, along with the underlying flow field and the evolution of κ and η throughout

the search. The methods achieved comparable results at the search end, with mSMC yielding

η = 0.739 and κ = 0.693, while HEDAC achieved slightly better performance with η = 0.748

and κ = 0.718. Both methods slightly overestimated the search performance, but the error is
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considered tolerable given the long advection times and the complexity of the flow field.

This test case demonstrates that the method can handle prolonged search simulations in

highly variable flow conditions, delivering fairly accurate performance metrics even under real-

istic large-scale operational conditions.

Figure 11.7: UAV trajectories, targets’ positions and their detection status
at the end of the first search mission in the MH370 simulation executed
with HEDAC, along with the underlying flow field and the evolution of κ

and η over all five search missions [116].
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12 SEA SURFACE SEARCH EXPERIMENTS

This chapter presents the experimental validation of the sea surface exploration methodology. It

begins by detailing the methodology for obtaining the sea surface flow field and the equipment

used for this purpose. Following this, the custom search targets and the machine vision detec-

tion model used are described. The chapter concludes with a description of the experiment,

including the search area, UAV setup, procedure, and results.

12.1 Surface flow reconstruction

In order to perform the search, the flow field w representing the flow of the sea surface layer

needs to be obtained. There are various ways of obtaining sea surface flow, including High-

Frequency (HF) radars, satellite measurements, numerical ocean circulation models, and GPS-

equipped floating buoys, commonly known as drifters. Each method offers specific benefits and

has its constraints. For example HF radars provide a dense grid of surface flow measurements,

but are expensive and their coverage is limited to specific coastal areas determined by their

location. Satellite measurements provide wide area coverage, but the temporal resolution and

real-time data availability is limited. Numerical models can simulate flows over large domains,

but require numerous input parameters and relatively long computation time. Drifters provide

reliable surface flow point measurements with relatively high frequency in real-time, but their

spatial coverage is limited by deployment logistics and they face limitations in independently

approximating the flow over large areas.

For this application, real-time data availability and area coverage are crucial. Therefore,

drifters are chosen, since they provide measurements immediately after deployment and their

coverage is flexible, as they can be deployed in any location. In this research, custom-made

drifters were used, consisting of a floating buoy equipped with an Alltek Marine Electronics

Corp TB-560 tracking beacon. They provide GPS location and velocity data at 10 s intervals

through radio communication. Figure 12.1 shows a drifter deployed in the sea.
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Figure 12.1: Deployed drifter used in the experiment for obtaining surface
flow velocity measurements.

Since drifters provide velocity values at coarse scattered points, a continuous velocity field

w must be approximated over the entire domain. This is achieved by fitting a surrogate model

that combines optimization and CFD to compute a simulated two-dimensional velocity field

matching the measured values at corresponding points [114]. The procedure is described in

this Section. The advantage of this approach, compared to the interpolation, is that it preserves

the physics of a realistic turbulent flow, and the flow field optimization can be completed in a

relatively short amount of time, since the simulated flow field is two-dimensional.

Modeling the sea flow is challenging because the flow can vary significantly across depth

layers and tidal dynamics can lead to significant outflow or inflow of water within the domain.

Therefore, an isolated two-dimensional simulation of the surface layer flow cannot realistically

reproduce the actual state, since it is constrained by mass-conservation laws. To address this

issue, the resulting surface layer flow field is obtained by combining the outputs of two separate

two-dimensional flow simulations. The first flow simulation, referred to as bounded flow wb,

includes the coastline with a no-slip boundary condition and the open sea with an inlet-outlet

boundary condition. The second simulation, referred to as open flow wo, is defined over a

circular domain enclosing the bounded flow domain, with inlet-outlet condition applied along

the entire domain boundary. The resulting fused flow field, representing the surface layer flow,
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is obtained by combining the bounded and open flow simulations

w f = wb +wo. (12.1)

The boundary conditions for the bounded and open flow simulations are encoded in the op-

timization vector h, which contains the pressure and tangential velocity values at control points

defined along the inlet-outlet boundaries. The complete boundary profiles are then obtained by

interpolating these values. The size of the optimization vector is twice the number of control

points. In this case, the bounded flow contains three control points, while the open flow contains

four control points.

Using the specified boundary conditions, the bounded and open flow simulations are com-

puted with the simpleFoam solver implemented in OpenFOAM, employing the k−ω SST turbu-

lence model. The fused flow w f is then obtained using equation 12.1. The bounded, open, and

fused flow fields are shown in Figure 12.2, along with the defined boundary condition control

points.

Figure 12.2: Visual representation of the bounded, open, and fused flow
fields, along with the positions of the boundary control points and the
drifter measurement locations. The figure also displays the measured ref-
erence velocity vectors and the optimized velocity vectors within the fused

flow.

The optimization goal is to minimize the error between the point measurements obtained

from the drifters and the corresponding values of the fused flow field. The error is defined as

εd(h) =
1
nd

nd

∑
i=1

(wr,i−ws,i(h))
2,
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where nd is the number of drifters, wr is the vector containing the reference velocity values

obtained from the drifters, and ws is the vector of simulated velocities obtained from w f at the

positions corresponding to the drifter locations.

To ensure numerical stability of the computed flow simulations, optimization constraints

are imposed on the simulation residuals. The pressure residuals are limited to a maximum

of 1 · 10−3, while the velocity components and turbulence variables are constrained to remain

below 1 ·10−4.

The lower and upper bounds of the optimization vector are denoted by hl and hu, respec-

tively. The limits of the tangential velocity optimization variables are set from -0.5 to 0.5 m/s,

and the pressure bounds are set from -0.05 to 0.05 m2/s2, based on measurements provided in

[115, 117].

An optimization problem is now formulated as follows:

minimize
h

εd(h) =
1
nd

nd

∑
i=1

(wr,i−ws,i(h))
2

subject to hl ≤ h≤ hu.

(12.2)

The solution to the optimization problem (12.2) is obtained through a PSO algorithm, as it

has been proven effective for this class of problems [118]. The PSO implementation used is

provided by the Indago optimization module for Python [106]. The optimization is performed

for 10 minutes or until the defined error satisfies the condition εd ≤ 10−4, representing the mean

squared difference between measured and computed velocities at drifter locations in m/s.

To reproduce the transient behavior of the flow field, a new flow field is obtained trough sur-

rogate model fitting every 10 minutes, which is generally sufficient given the realistic dynamics

of the coastal flow. Within each 10-minute period, the flow is considered constant.

To compensate for the error of the approximated flow field, the diffusion coefficient is cal-

culated using equation (10.5), where Ee is calculated as the mean distance error for all drifters

over a 10-minute interval on the constant flow field. It is defined as the difference between

the actual drifter positions and the simulated positions obtained by advecting the drifters using

equation (10.1) on the computed flow field.
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12.2 Custom sea targets and detection model

In order to conduct the search experiment, four custom identical floating targets were created.

They were constructed from 0.5× 0.5 m wooden planks painted yellow. Each target featured

marking tape to enhance target visibility for other participants in maritime traffic, attached to a

1 m metal rod mounted at the target center. Figure 12.3 shows an example of a custom target

deployed in the sea.

Figure 12.3: Example of a floating target used in the experiment.

To train the sea target detection model and evaluate its performance, a data set of 522 aerial

images captured at altitudes ranging from 60 to 100 m were collected. The images contained

instances of sea targets, drifters, and boats, with a total of 447 target instances, 45 drifter in-

stances, and 132 boat instances. The data set was uniformly split into training, validation, and

test sets in an 80 : 10 : 10 ratio, taking into account both the number of images and the distri-

bution of target instances. For object detection, the YOLOv8 algorithm was employed. The

training was initialized with the large pre-trained YOLO model yolo8l.pt, pre-trained on the

COCO data set. It continued for 100 epochs, with a batch size of 4 and an image size of 640

pixels. It was trained to detect the three mentioned classes.

The performance of the model was then analyzed on the test data set. The model achieved

the mean average precision of 0.723 with the intersection-over-union (IoU) threshold of 0.5.

For the default detection confidence threshold of 0.001, the model achieves the precision value

of 0.861, and the recall of 0.643 across all classes. Since the focus of the experiment is on sea

target detection, only the performance metrics corresponding to this class are considered when
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constructing the sensing function. The relevant metric is recall, yielding µst = 0.68 for the tar-

get class, considering the default detection confidence threshold of 0.001. Example detections

of sea targets are shown in Figure 12.4, with the corresponding detection confidence values

displayed next to the class labels.

Figure 12.4: Example detections of sea targets, with detection confidence
indicated.

12.3 Experimental search mission

The search experiment took place on 04 June 2025, in Valun Bay, located on the western coast

of Cres Island, Croatia (44◦ 55′N,14◦ 22′E). The team conducting the experiment was divided

into two groups: a sea unit onboard a vessel responsible for target and drifter deployment, and

a land unit responsible for processing drifter data, approximating the flow field, and performing

the UAV search. The land unit was positioned at the UAV base station, located on the central part

of the eastern coastline of Valun Bay at an elevation of 85 m, in order to ensure a good overview

of the search domain and reliable signal coverage for receiving drifter data and controlling the

UAV. Figure 12.5 shows the UAV base station and the surrounding view of Valun Bay.

Figure 12.5: UAV base station overlooking the Valun Bay search domain.
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To conduct the search mission using the current state of the flow field, a custom experimental

search framework was developed to simultaneously approximate the flow field using real-time

drifter measurements and conduct the search based on the computed flow. In the experimental

search framework, drifter measurements are obtained via a laptop connected to a dedicated

radio receiver module. Since the flow field approximation requires significant computational

resources, the drifter data is processed on-site and then forwarded to a remote workstation,

where the flow field and drift error are computed. The resulting flow field is transferred to the

UAV Ground Control Station (GCS), where advection-diffusion of m is performed and UAV

control is executed using HEDAC ergodic guidance. Data sharing between the drifter data

acquisition system, the remote workstation, and the GCS is facilitated through Dropbox file

synchronization. The complete framework is illustrated in Figure 12.6.

Figure 12.6: Diagram of the experimental dynamic target search frame-
work.

The complete computational domain representing the bay area covers 55.8 km2. The flow

field was approximated using nine drifters distributed throughout the domain. Four drifters
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were evenly scattered around the bay, while the remaining five were placed near or at the target

deployment site to achieve a more accurate approximation of the flow field in that region.

The search was conducted using the DJI Matrice 210v2 UAV coupled with the DJI Zenmuse

X5S camera, presented in Section 3.4. To prevent overexposure from intense sunlight and water

reflections during the experiment, the camera was equipped with an ND16 neutral density filter.

The UAV utilized a constant velocity of vs = 8 m/s, minimum turning radius of Rmin = 30 m and

a minimum clearance distance of δ = 50 m. The search was conducted from a constant height

of hgoal = 75 m using a pyramidal FOV sensor defined by γ1 = 64.7◦ and γ2 = 39.2◦. Utilizing

this configuration, each captured image covered roughly 95×53.4 m2 of sea surface area. Both

the sensing interval ∆ts and the control interval ∆t were set to 3 s and the HEDAC parameters

were set to α = 5000 and β = 0.1.

In this mission, for each captured image, the probability of undetected target presence within

the observed area was discretely reduced according to the recall of the detection model, as

m j+1(x) =











m j(x) · (1−µst) if x ∈ΩFOV

m j(x) otherwise.

In this context, the index j denotes the discrete time steps when sensing is applied, each corre-

sponding to UAV image capture.

The target deployment area was defined as a circular region with a radius of 300 m, located

approximately 1.4 km west of the UAV base station. Four targets were deployed in a plus-

shaped pattern, with each target positioned approximately 120 m from the center. At 10:15,

corresponding to t = 0, the targets were successfully deployed in the search area. Figure 12.7

illustrates the deployment of a sea target.

The undetected target probability density at t = 0 was distributed uniformly within the cir-

cular target deployment area. The search domain at t = 0, including the approximated flow

field, target locations, and the undetected target probability density, is shown in Figure 12.8.

The search mission was delayed 30 minutes from the time of target deployment, and started

at 10:45. The undetected target probability was advected and diffused to account for the delay.

The targets were not equipped with GPS trackers, so their positions were estimated using La-

grangian particle advection given by equation (10.1). Figure 12.9 displays the undetected target

probability, estimated trajectories of the targets during the 30-minute delay and their estimated
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Figure 12.7: Sea unit deploying the experimental target.

Figure 12.8: The search domain containing the approximated flow field,
target locations, and the undetected target probability distribution immedi-

ately after target deployment (t = 0).

positions at the start of the search.

The search was initialized by manually flying the UAV to the start position, after which

the search was conducted autonomously. It continued until the UAV reached a critical battery
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Figure 12.9: Undetected target probability and estimated target positions
at the start of the search, including estimated target trajectories during the

30-minute delay.

depletion level, at approximately 11:45. After the search concluded, the images were processed

using the detection model to identify detected targets. The position of each detected target was

determined based on the UAV state at the time of image capture and the location of the detected

target label within the image. The situation at the end of the search is shown in Figure 12.10,

illustrating the undetected target probability, UAV trajectory, target detection locations, esti-

mated target positions, and estimated target trajectories starting from t = 0. It is important to

note that the detections and their corresponding positions were recorded at various times during

the search and therefore do not necessarily correspond to the estimated target positions, which

are presented for the search end state. Based on the few rightmost target detection locations, it

is assumed that they correspond to the rightmost target, even though the estimated trajectory of

that target does not fully align with the detections. This indicates that the flow field approxima-

tion exhibits a degree of inaccuracy. Nevertheless, the target was detected multiple times in that

area, as the probability field was diffused to account for errors in the flow field approximation.

Since the targets were not equipped with GPS trackers, detections could not be reliably as-

sociated with specific targets, and therefore an accurate assessment of the target detection rate

could not be obtained for comparison with the estimated survey accomplishment. Moreover,
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Figure 12.10: Undetected target probability, UAV trajectory, detected tar-
get locations, and estimated target positions and trajectories at the end of

the search.

even if such an assessment is possible, the sample size of four targets would not provide strong

statistical significance. Nevertheless, by analyzing the estimated target trajectories and the lo-

cations of detected targets, assuming each detection corresponds to the target with the closest

trajectory, it can be concluded that all targets were detected.

Given the results, the experiment can be considered a successful validation of the method,

as the probability field closely followed the target distribution, and a target was detected out-

side its estimated trajectory, providing a valid confirmation of the uncertainty compensation

methodology.
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13 LIMITATIONS AND DISCUSSION

If the UAV and search control parameters are poorly configured, the UAV can get stuck in an

indefinite circular motion, as shown in Figure 13.1. This usually happens when a relatively large

turning radius is combined with a sensor that has an excessively narrow FOV, or when the search

is conducted from insufficient height. To prevent this, the UAV should be configured such that,

at the operational search height, the lateral coverage of the sensor relative to the UAV’s heading

is at least twice the minimum turning radius.

Figure 13.1: Improper parameter configuration causes the UAV to remain
in constant circular motion [107].

Another limitation of the method is that the minimum clearance constraint is explicitly en-

forced only between multiple UAVs or between the UAVs and the domain boundaries. It is not

directly checked against the terrain within the area because doing so would be too computation-

ally demanding and would hinder real-time control.

Instead, terrain and structure clearance is ensured by considering the worst-case scenario.

By taking into account the desired horizontal clearance δ and the minimum height constraint

hmin, the maximum terrain incline that the UAV can safely handle is calculated as

αT = arctan

(

hmin

δ

)

.

If the UAV satisfies the condition αT ≥ βT , where βT is the steepest terrain slope in the domain,

the minimum clearance is guaranteed throughout the domain. Figure 13.2 depicts the UAV

approaching the area of maximal terrain incline, with the relevant parameters marked.
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Figure 13.2: Illustration of the UAV approaching the area of maximum
terrain slope, with key parameters indicated [107].

The only way to increase the UAV’s maximum supported incline is by raising its minimum

flight altitude. However, this can only be done to a limited extent, as increasing altitude reduces

detection performance. Furthermore, due to the way minimum clearance from the terrain is

ensured, the method cannot handle near-vertical or vertical slopes. To address this, future re-

search could consider overlaying a smoothed terrain model on the real terrain. The UAV could

then conduct searches based on the smoothed surface, maintaining clearance while allowing

operation over steep inclines. In practice, this limitation is not critical for modern UAV plat-

forms, which often include horizontal distance sensors and can maintain the required horizontal

separation with the UAV’s low-level control rather than with the search control.

Another limitation of the method is that, although it operates in three-dimensional space, it

effectively explores only the two-dimensional terrain surface. A key limitation is that it cannot

differentiate between vertical levels, such as flying above or below treetops.

In the effort to test the search framework in a realistic scenario including human targets,

two experiments with volunteers were conducted on Učka Mountain. The first experiment was

carried out to collect a data set used to train the detection model and validate its performance at

various search heights. Shortly after, a second experiment was conducted with the goal of val-

idating the search framework. The experimental search area was divided into three zones with

uniform probability, where the probability within each zone was determined as the ratio be-

tween the number of people in the zone and the zone area. To encourage participants to remain

in their designated zones, thereby maintaining the intended probability distribution, volunteers

were tasked with finding hidden markers within the area. Each of the three zones contained 50

markers, with each marker serving as a ticket for a chance to win a prize in a tombola held after

the experiment. An example of a marker, the zones with indicated marker locations, and the

volunteers who participated in the experiment are shown in Figure 13.3.
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Figure 13.3: Example of a marker (A), zone layout with indicated marker
locations (B), and volunteers that participated in the second Učka search

experiment (C).

Although the experiment was successfully executed and some valuable conclusions were

drawn, as presented in [119], the results were not suitable for validating the proposed framework

for several reasons:

• The recall metrics of the YOLO detection did not align with those from the previously

collected training database (where people were mainly on roads, and the background

environment differed significantly due to seasonal changes between early summer and

late autumn).

• The targets (persons), although within the search area, were moving throughout the dura-

tion of the search, whereas the proposed framework assumes stationary targets.

• First detection of each individual could not be accurately determined – required for cal-

culating the target detection rate κ – due to similar clothing among participants and some

low-resolution images (good enough for detection, but not for identification).

This led to the design of a new experiment with stationary cardboard targets to validate

the method. However, the results of the previous experiment provided valuable information

for designing this new setup, which was successfully used to validate the proposed method.

Furthermore, the experiment with volunteers highlighted a promising direction for future re-

search, indicating that a proper dynamic probability model describing human movement is such

scenario is needed to further increase search effectiveness.

Another promising direction for future research is to consider multiple camera sensor ori-

entations, which could improve detection performance and provide a better balance between
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detection and area coverage. Additionally, in this study, all objects within the same image were

assumed to be at the same distance from the sensor when validating the machine vision detec-

tion model, and all targets were treated equally regardless of their position within the image.

Future work could account for the target’s relative position in the image and the corresponding

distance from the sensor, since the proposed probabilistic model already allows for this. This

would allow for more accurate evaluation of sensing performance, considering that detection

probability may vary if an object is directly beneath the sensor or at an angle.

During the real-world flights over hilly terrain, the system occasionally breached the min-

imum height constraint, but the violations were minor relative to real-world operational con-

ditions and did not affect overall performance or safety. Additionally, occasional Wi-Fi com-

munication dropouts occurred between the ground station and the android smart device that

sends the flight commands to the UAV, highlighting the need for smooth error handling and the

implementation of appropriate UAV actions under such conditions for practical deployment.

Furthermore, UAV communication cutoffs occurred when the line of sight between the remote

controller and the UAV was obstructed by terrain during autonomous missions in hilly areas.

This demonstrated the importance of accounting for line-of-sight conditions between the UAV

and the ground station. Additionally, a valuable improvement could be achieved by implement-

ing automatic search domain reduction when communication is lost, ensuring that the UAVs

avoid revisiting areas with weak signal.

The UAV signal dropouts also occurred during the testing phase of the sea surface search

experiment. During flights at an altitude of 75 m above sea level, conducted from the UAV

base station situated at an elevation of 85 m, the locations where the UAV began to lose signal

were recorded. Figure 13.4 shows the observed signal coverage across the Valun Bay area, with

the UAV base station also marked on the image. Similar to land-based flights, the UAV lost

signal when the line-of-sight condition was obstructed, as observed in the area south of the base

station, where terrain and vegetation still blocked the signal. The flight range remained reliable

when line-of-sight was maintained, until the critical range limit was reached.

Another limitation is the complexity of the complete sea surface search framework. The

system requires multiple on-site PCs, a central workstation, UAVs, and drifters, all of which

must be coordinated during operations. In addition, substantial logistical support is necessary

for the deployment of drifters and the transport and setup of UAV base station equipment.

This complexity increases the planning effort, operational time, personnel requirements, and
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Figure 13.4: Observed UAV signal range during the Valun Bay sea surface
search experiment.

financial demands associated with conducting the experiments. Furthermore, it is impossible to

provide statistical validation of the dynamic sea target search methodology due to operational

constraints, as there is no feasible way to deploy and recover 100 targets from the sea after each

experiment.
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14 CONCLUSION

UAVs provide a versatile and efficient solution for search operations, combining mobility and

adaptability with the ability to operate in complex terrains and dynamic sea environments. Mo-

tivated by this capability, the research in this thesis undertook a comprehensive approach, in-

cluding the development of theoretical foundations, algorithm implementation, and numerical

and experimental validation for searching both static and dynamic targets.

The search control governed by the potential field has proven to be both flexible and robust,

demonstrating strong performance across distinctly diverse search problems, including hilly ter-

rain and maritime environments. The approach is compatible with the developed enhancements,

allowing for seamless integration of the velocity and altitude control achieved via MPC, and the

probabilistic model supporting dynamic target search. By extending the search algorithm to

account for all environmental and technical conditions, a fully autonomous multi-UAV search

procedure was achieved.

Autonomous multi-UAV search control is implemented through a communication bridge

between the ground station PC and the UAVs, realized using the DJI’s ecosystem. Multi-UAV

motion control is extensively validated in simulations over varying terrain, with the MPC frame-

work generating smooth trajectories that closely follow the target search height while maintain-

ing the desired balance between area coverage and detection performance. The motion control

consistently produces collision-free flights while adhering to specified velocity, acceleration,

and height constraints, and is further validated experimentally over challenging terrain, demon-

strating robustness under real-world conditions with multiple sources of uncertainty.

Numerous manual and autonomous multi-rotor UAV flights are conducted to collect a data

set of aerial images. These images are used to train multiple detection models based on the

YOLO architecture, which are subsequently employed in search missions. The detection models

are validated to assess their performance, confirming the influence of image capture height on

detection effectiveness. The resulting quantitative performance data are then used to define the

detection characteristics for the experimental sensor configurations.
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The presented search missions are conducted based on the belief regarding the targets’ lo-

cations. This belief is represented by a probabilistic model capturing the uncertainty of target

positions and adapts according to the achieved search effort, as reflected by the probabilistic

sensor model. The static target search methodology is experimentally validated in a hilly envi-

ronment. The results show considerable agreement between the estimated search performance

and the actually detected targets. In the dynamic sea target search methodology, the probability

field evolves based on the achieved search effort and additionally accounts for the drift effects

caused by the velocity field of the sea surface layer. Advection describes the impact of the veloc-

ity field, while diffusion compensates for the uncertainties of target drift. The method is tested

numerically, and the computed results show notable agreement between the estimated search

performance and the detected targets, validating the approach both with and without introduced

uncertainty in target drift. Furthermore, compared to a method that does not account for the

dynamic behavior of the sea, the proposed method demonstrates a significant improvement in

performance, particularly within the operational range of realistic sea surface velocities and

UAV flight speeds. The model was validated through a real-world maritime search experiment,

indicating its promising potential to improve SAR operations at sea. The dynamic probabilistic

model accounts for the targets’ drift and UAV sensing, while simultaneously compensating for

errors in the velocity field approximation.

Both the numerical simulations and real-world experiments showcase the benefits of the

ergodic search control. Each search mission attains the desired area coverage as represented

by the probability distribution. Given sufficient time, it achieves complete coverage of the

probability distribution, demonstrating robustness to uncertainties in the targets’ location belief.

Furthermore, the method’s robustness to uncertainty in UAV control and localization errors is

demonstrated both numerically and experimentally.

Overall, the presented numerical and experimental results indicate that the potential field

methods can be utilized to conduct effective autonomous multi-UAV area search missions in

both complex natural and maritime environments, thereby confirming the proposed hypothesis.
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for 3d visual inspection of complex structures,” Automation in Construction, vol. 147,

p. 104 709, 2023.

[79] C. Bilaloglu, T. Löw, and S. Calinon, “Whole-body ergodic exploration with a manipu-

lator using diffusion,” IEEE Robotics and Automation Letters, 2023.

132



[80] C. Bilaloglu, T. Löw, and S. Calinon, “Tactile ergodic coverage on curved surfaces,”

IEEE Transactions on Robotics (T-RO), vol. 41, pp. 1421–1435, 2025. DOI: 10.1109/

TRO.2025.3532513.

[81] T. Löw, J. Maceiras, and S. Calinon, “Drozbot: Using ergodic control to draw portraits,”

IEEE Robotics and Automation Letters, vol. 7, no. 4, pp. 11 728–11 734, 2022.

[82] Y. Lun, H. Wang, J. Wu, Y. Liu, and Y. Wang, “Target search in dynamic environ-

ments with multiple solar-powered uavs,” IEEE Transactions on Vehicular Technology,

vol. 71, no. 9, pp. 9309–9321, 2022.

[83] L. Li, X. Zhang, W. Yue, and Z. Liu, “Cooperative search for dynamic targets by mul-

tiple uavs with communication data losses,” ISA transactions, vol. 114, pp. 230–241,

2021.

[84] T. Yang, Z. Jiang, R. Sun, N. Cheng, and H. Feng, “Maritime search and rescue based on

group mobile computing for unmanned aerial vehicles and unmanned surface vehicles,”

IEEE transactions on industrial informatics, vol. 16, no. 12, pp. 7700–7708, 2020.

[85] M. A. Alanezi et al., “Dynamic target search using multi-uavs based on motion-encoded

genetic algorithm with multiple parents,” IEEE Access, vol. 10, pp. 77 922–77 939,

2022.

[86] H. Coffin, I. Abraham, G. Sartoretti, T. Dillstrom, and H. Choset, “Multi-agent dy-

namic ergodic search with low-information sensors,” in 2022 International Conference

on Robotics and Automation (ICRA), IEEE, 2022, pp. 11 480–11 486.

[87] Airmobi. “Skyeye 2600 fixed-wing uav platform.” Accessed: 2025-07-30. (n.d.), [On-

line]. Available: https://www.airmobi.com/product/skyeye- 2600- fixed-

wing-uav-platform/ (visited on 07/30/2025).

[88] I. Technology. “The galaxy uav.” Accessed: 2025-07-30. (2025), [Online]. Available:

https://innoflighttechnology.com/the-galaxy/ (visited on 07/30/2025).

[89] Aeromotus. “Dji phantom 4 pro+ obsidian edition.” Accessed: 2025-07-30. (2025),

[Online]. Available: https://www.aeromotus.com/product/phantom-4-pro-

plus-obsidian/ (visited on 07/30/2025).

[90] KOREC Group. “Image of wingtraone uav.” Product image. (n.d.), [Online]. Available:

https://www.korecgroup.com/product/wingtraone/ (visited on 07/30/2025).

133

https://doi.org/10.1109/TRO.2025.3532513
https://doi.org/10.1109/TRO.2025.3532513
https://www.airmobi.com/product/skyeye-2600-fixed-wing-uav-platform/
https://www.airmobi.com/product/skyeye-2600-fixed-wing-uav-platform/
https://innoflighttechnology.com/the-galaxy/
https://www.aeromotus.com/product/phantom-4-pro-plus-obsidian/
https://www.aeromotus.com/product/phantom-4-pro-plus-obsidian/
https://www.korecgroup.com/product/wingtraone/


[91] AMain Hobbies. “Rc airplanes: Understanding transmitter flight controls.” Image re-

trieved from webpage. (n.d.), [Online]. Available: https://www.amainhobbies.

com/rc-airplanes-understanding-transmitter-flight-controls/cp1090

(visited on 08/01/2025).

[92] DJI. “Zenmuse x5s.” Accessed: 2025-07-31. (n.d.), [Online]. Available: https://www.

aviteh.hr/dji-zenmuse-x5s.html (visited on 07/31/2025).

[93] Yusense. “Image of aq600 pro 5-bands multispectral camera.” Image taken from the

product page, accessed 2025-07-31. (n.d.), [Online]. Available: https://www.ghostysky.

com/product/aq600-pro-5-bands-multispectral-camera/ (visited on 07/31/2025).

[94] DJI. “Flir zenmuse xt2 thermal camera - 640x512 30hz 25mm.” Accessed: 2025-07-31.

(n.d.), [Online]. Available: https://www.dronenerds.com/products/dji-flir-

zenmuse-xt2-thermal-camera-640x512-30hz-25mm-zxt2a25fr-dji (visited on

07/31/2025).

[95] ——, “Image of zenmuse l2 lidar camera (2-year coverage).” Image taken from the

product page, accessed 2025-07-31. (n.d.), [Online]. Available: https://dronovishop.

hr/dji-zenmuse-l2-lidar-2y/ (visited on 07/31/2025).

[96] J. Hollesen, M. S. Jepsen, and H. Harmsen, “The application of rgb, multispectral, and

thermal imagery to document and monitor archaeological sites in the arctic: A case

study from south greenland,” Drones, vol. 7, no. 2, p. 115, 2023.

[97] M. Sharon. “Image from “demystifying lidar point cloud data”.” Image taken from the

Medium article, accessed 2025-07-31. (2024), [Online]. Available: https://medium.

com/@matt-sharon/lidar-point-cloud-data-guide-62c126101c08 (visited on

07/31/2025).

[98] M. D. Services. “Image of approved used dji matrice 210 rtk.” Image taken from the

product page, accessed 2025-07-31. (n.d.), [Online]. Available: https://munsterdroneservices.

com/product/approved-used-dji-matrice-210-rtk/ (visited on 07/31/2025).

[99] V. Drones. “Dji mavic 2 enterprise dual thermal drone.” Accessed: 2025-07-30. (2025),

[Online]. Available: https://volatusdrones.com/blogs/posts-without-blog/

dji-mavic-2-enterprise-dual-thermal-drone (visited on 07/30/2025).

134

https://www.amainhobbies.com/rc-airplanes-understanding-transmitter-flight-controls/cp1090
https://www.amainhobbies.com/rc-airplanes-understanding-transmitter-flight-controls/cp1090
https://www.aviteh.hr/dji-zenmuse-x5s.html
https://www.aviteh.hr/dji-zenmuse-x5s.html
https://www.ghostysky.com/product/aq600-pro-5-bands-multispectral-camera/
https://www.ghostysky.com/product/aq600-pro-5-bands-multispectral-camera/
https://www.dronenerds.com/products/dji-flir-zenmuse-xt2-thermal-camera-640x512-30hz-25mm-zxt2a25fr-dji
https://www.dronenerds.com/products/dji-flir-zenmuse-xt2-thermal-camera-640x512-30hz-25mm-zxt2a25fr-dji
https://dronovishop.hr/dji-zenmuse-l2-lidar-2y/
https://dronovishop.hr/dji-zenmuse-l2-lidar-2y/
https://medium.com/@matt-sharon/lidar-point-cloud-data-guide-62c126101c08
https://medium.com/@matt-sharon/lidar-point-cloud-data-guide-62c126101c08
https://munsterdroneservices.com/product/approved-used-dji-matrice-210-rtk/
https://munsterdroneservices.com/product/approved-used-dji-matrice-210-rtk/
https://volatusdrones.com/blogs/posts-without-blog/dji-mavic-2-enterprise-dual-thermal-drone
https://volatusdrones.com/blogs/posts-without-blog/dji-mavic-2-enterprise-dual-thermal-drone
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