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ABSTRACT

The adoption of deep learning techniques in medical imaging has the potential to
improve diagnostic accuracy and speed up clinical decision-making. However, the devel-
opment of such techniques is slowed down by the scarcity of annotated datasets, as manual
labelling of medical data is time-consuming, costly, and expert-dependent. For this rea-
son, transfer learning has been widely adopted as a solution: a model is first pretrained on
a large dataset, and then fine-tuned on downstream tasks (which are often data-scarce).
However, publicly available large-scale medical datasets often focus narrowly on specific
imaging modalities or anatomical regions (e.g. chest X-rays), thereby restricting their
usefulness in constructing general-purpose models for transfer learning. The reliance on
natural image datasets (e.g. ImageNet) for pretraining has shown mixed results in medical
transfer learning, which underscores the need for large and diverse meaningful medical

datasets that can be used in the development of pretrained models.

This thesis addresses the lack of domain-relevant annotated data by introducing an
unsupervised framework for labelling medical imaging datasets using a combination of
Digital Imaging and Communications in Medicine (DICOM) images, structured metadata,
and narrative diagnoses. The pipeline was applied to a large-scale multimodal medical
dataset, RadiologyNET, with feature extraction and clustering techniques used to group
images into semantically meaningful categories without relying on manual annotation.
These pseudo-labels were then used to pretrain several widely used convolutional neural
network architectures, including ResNet, EfficientNet, DenseNet, MobileNet, Inception
and VGG.

The pretrained models were evaluated on a wide range of downstream tasks (classi-
fication, regression, and segmentation) across multiple publicly available medical imag-

ing datasets. Comparative analyses were conducted against both ImageNet-pretrained



models and models trained from randomly initialised weights. The findings show that
RadiologyNET-pretrained models are effective when training resources are limited (i.e. re-
duced training data and training time), however, they did not consistently outperform Im-
ageNet in normal training conditions. ImageNet-pretrained models achieve strong perfor-
mance when fine-tuned, but the overall benefits of transfer learning (regardless of source)
decrease as the amount of available training data increases, confirming that the impact
of pretraining becomes less prominent in problems with sufficient data.

Keywords: Transfer Learning, DICOM, Foundation Models, Pretraining,

Medical Image Analysis, Machine Learning
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PROSIRENI SAZETAK

Primjena tehnika dubokog ucenja u medicini moze poboljsati dijagnostiku i ubrzati
donosenje klinickih odluka. Medutim, razvoj takvih modela je usporen zbog nedostatka
oznacenih podatkovnih skupova, budu¢i da je ru¢no oznacavanje medicinskih podataka
skupo, vremenski zahtjevno i mogu ga odraditi samo medicinski stru¢njaci (lijecnici).
Ucenje s prijenosom znanja je postala siroko-prihva¢ena metoda za ublazavanje efekta ne-
dostatka podataka, a u tom procesu se prvo model predtrenira na velikom podatkovnom
skupu, nakon ¢ega se njegovi parametri koriste za treniranje na ciljnim podacima (kojih
¢esto nema dovoljno). Medutim, javno dostupni medicinski skupovi podataka ¢esto su us-
mjereni na mali raspon modaliteta snimanja ili anatomskih regija, ¢ime se ogranicava nji-
hova korisnost u razvoju siroko-namjenskih predtreniranih modela u medicini. Oslanjanje
na velike skupove podataka prirodnih slika (primjerice ImageNet) za predtreniranje je
pokazalo neujednacene rezultate u kontekstu prijenosa znanja na medicinskim zadacima,
sto dodatno naglasava potrebu za dovoljno velikim i raznolikim medicinskim skupovima

podataka za razvoj temeljnih modela.

Ovaj doktorski rad pokusava rijesiti problem nedostatka (dovoljno velikih) oznacenih
medicinskih skupova uvodenjem nenadgledanog okvira za oznacavanje medicinskih po-
dataka koriste¢i kombinaciju radioloskih slika, pripadaju¢ih metapodataka i tekstualnih
dijagnoza. Navedeni se sustav sastoji od razli¢itih tehnika ekstrakcije znacajki i grupiranja
s ciljem svrstavanja slika u semanticki sliéne kategorije bez potrebe za ru¢nim oznacavan-
jem, te je primijenjen na veliki multimodalni medicinski skup podataka RadiologyNET.
Dobivene pseudo-oznake koristene su za predtreniranje nekoliko Siroko rasprostranjenih
arhitektura konvolucijskih neuronskih mreza, ukljucujucéi ResNet, EfficientNet, DenseNet,

MobileNet, Inception i VGG.

Predtrenirani modeli vrednovani su na razli¢itim zadacima (klasifikacija, regresija i
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segmentacija) koristeé¢i vise javno dostupnih medicinskih slikovnih skupova podataka.
Provedena je analiza s modelima predtreniranim na ImageNetu, kao i s modelima treni-
ranima iz nasumicno inicijaliziranih parametara. Rezultati pokazuju da modeli predtreni-
rani na skupu podataka RadiologyNET postizu dobre rezultate u uvjetima gdje su resursi
za treniranje ograniceni (primjerice, smanjeni broj podataka ili vrijeme treniranja). Pri
tome, u standardnim (neogranic¢enim) uvjetima modeli RadiologyNET nisu signifikantno
nadmasili modele predtrenirane na ImageNetu, nego su pokazali slicne performanse. U
eksperimentima se pokazalo da se opcéa korisnost ucenja prijenosom znanja (bez obzira
na izvor) smanjuje $to je vise dostupnih podataka za treniranje, potvrdujuéi da je utjecaj
prijenosa znanja manji kod problema s dovoljno podataka.
Kljucne rijeci: Ucenje prijenosom znanja, DICOM, Temeljni modeli, Predtreni-

ranje, Analiza medicinskih slika, Strojno ucenje
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1. Chapter

INTRODUCTION

Over the past decade, machine learning and deep learning have seen increasing adop-
tion in medical diagnosis and treatment [l]. Computer-aided diagnosis systems [2] based
on neural networks have demonstrated performance on par with or even exceeding that
of human experts in certain tasks, such as melanoma detection [3] or COVID-19 clas-
sification from chest radiographs [4, b]. Convolutional neural networks (CNNs) have
become a popular choice for medical image classification, segmentation, and regression
[6]; and more recently, vision transformers are emerging as an alternative [[7, 8, 9]. Despite
these advances, the development of robust machine learning models in medical imaging
remains limited by the (un)availability of annotated datasets [[10]. High-quality annota-
tion requires specialised clinical expertise, making the process time-consuming and costly
[11, 12]. Furthermore, different hospital centres may have different terminology or la-
belling practices, making the process inconsistent across institutions. To mitigate this
overall lack of high-quality annotated medical data, there is a consensus among researchers

that leveraging transfer learning (TL) is the path forward in machine learning [12].

In TL, a model is first pretrained on large datasets with sufficient amounts of data, and
then retrained or fine-tuned on the actual specific dataset of the target task. Fine-tuning
is the process of adapting a pretrained model to a new task by continuing the training on
the target dataset. This typically involves adjusting the model weights to better align with
the characteristics of the new data while retaining the general knowledge acquired during
pretraining. This approach is highly effective in medical imaging tasks where domain-

specific data is often limited, and it often leads to better model stability [10] (thereby
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lessening the impact of annotated data scarcity). These pretrained models, which can
be used as starting points in a wide range of downstream tasks, are often referred to as
foundation models.

ImageNet [13, 14], a large-scale dataset comprising millions of natural images, has
become a standard resource for pretraining deep learning models. Its use in medical
machine learning remains widespread, largely due to its accessibility and demonstrated
performance improvements in a variety of downstream tasks [15, 16]. However, some
studies question its suitability for medical applications, with the reason being that the
domain shift between natural and medical images (i.e. in semantics and structure) limit
the effectiveness of ImageNet-based TL in clinical settings [11, 17, [18]. In response, re-
cent research has seen a rise of medical foundation models such as RadlmageNet and
BiomedCLIP [19, 20], which offer pretrained models better aligned with the requirements
of medical tasks. Nevertheless, ImageNet remains a prevalent starting point in many med-
ical machine learning pipelines [15], with a recent study by Woerner et al. [16] showing
that, when ImageNet-pretrained models are fine-tuned, their performance is on-par with
many medical foundation models. While numerous studies explore different pretraining
strategies, ranging from supervised learning on medical datasets to self-supervised and
contrastive approaches [21, 22|, the rationale behind selecting a particular dataset or
pretraining method is seldom explicitly stated [11, 17]. Although some studies do offer
guidance, comprehensive repositories of pretrained medical models across diverse archi-
tectures and tasks remain scarce [22, 23].

To this end, this thesis proposes the use of a custom, large-scale medical imaging
dataset called RadiologyNET, which contains 2.3 million examinations conducted at the
Clinical Hospital Centre Rijeka between 2008 and 2017. RadiologyNET spans multiple
imaging modalities (e.g. computed tomography - CT, magnetic resonance - MR, Com-
puted Radiography - CR) and anatomical regions (e.g. head, abdomen), making it a

large-scale medical dataset suitable for building domain-specific foundation models.

1.1. Related Work

The use of foundation models has become increasingly prevalent in medical machine

learning as a means of addressing challenges related to data (un)availability, domain speci-
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ficity, and generalisability. Altough TL-based strategies have demonstrated improvements
in medical imaging tasks, building such models requires a significant amount of resources:
sufficient data and time, as well as meeting high computational demands of modern deep

learning.

A central challenge in developing medical foundation models lies in the availability
of high-quality annotations. Supervised learning, which forms the basis of most clinical
diagnostic models, depends on these labels to learn mappings from input data to clinically
relevant outputs. Although models pretrained using supervised learning can capture the
semantic meaning of each pixel through linking pathologies with patterns found in images,
acquiring expert-labelled medical data is a difficult task. To overcome this, alternative
pretraining strategies have gained popularity. Unsupervised learning leverages the data
structure without requiring labels, often using clustering or dimensionality reduction to
extract patterns. Self-supervised learning creates pseudo-labels from the data itself, and an
example of this is contrastive learning, which trains models to distinguish between similar
and dissimilar data points. These approaches allow foundation models to be pretrained
on large unlabelled datasets, which is particularly valuable in the medical domain where

annotated data is scarce.

This section is organised into three parts to systematically address the landscape

of medical foundation models and the datasets utilised their development. The first

subsection, |Overm'ew of available medical foundation modelJ, presents a review of recent

notable models specifically designed for medical applications, describing their training

strategies, target domains, and limitations. The second subsection, lEJ:istmg annotated

Imedz’cal datasetéj, provides a comparative analysis of existing large-scale datasets that

have been (or could be) used in model pretraining, discussing their scope, annotation

strategies, and modality/anatomical region coverage. The third subsection,

annotation and pseudo-labeH7 examines methods whose goal is to overcome the limitations

of manual labelling through, for example, unsupervised and self-supervised approaches,
including clustering, contrastive learning, and representation learning without explicit
annotations. Together, these subsections provide a background on the current state of

medical foundation models for TL.
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1.1.1.

Overview of available medical foundation models

Table 1.1: Examples of publicly available medical foundation models.

Foundation Model

Training Data

General Purpose / Ap-
plication

BioMedCLIP [19] Radiology images paired Vision-language retrieval,
with text reports classification, multimodal

tasks
GatorTron [24] 90 billion words of clini- Clinical language process-
cal text (e.g. from medi- ing, concept extraction,

cal literature)

question answering

TotalSegmentator [25]

Multi-organ CT datasets

Multi-organ segmentation,
anatomical structure delin-
eation

nnU-Net [26]

Diverse medical image
segmentation datasets

Self-configuring segmenta-
tion across multiple modal-
ities and organs

SAM-Med  Family [27]

Over 1.5M 2D image-

Promptable 2D /3D segmen-

(MedSAM, SAM-Med2D, mask pairs; 22,000 3D tation, zero-shot segmenta-

SAM-Med3D) images with 143,000 tion across modalities
masks

Me-LLaMa [2§] Instruction-tuned on Clinical dialogue genera-

medical question—answer
datasets  (based  on

tion, medical question an-
swering, decision support

LLaMA)

The development of foundation models has significantly accelerated progress in nat-
ural image analysis and natural language processing. In recent years, similar approaches
have been extended to the medical domain, where the objective is to pretrain large, gen-
eralisable models on diverse datasets, thus improving fine-tuning across a wide range of
clinical tasks. Several foundation models specifically tailored for medical imaging and
medical text analysis have been built and released, with several examples presented in
Table and described here.

BioMedCLIP is an example of a vision-language foundation model adapted for the
medical domain. Inspired by Contrastive Language-Image Pretraining (CLIP) in the nat-
ural image space, BioMedCLIP pretrains its vision encoder and text encoder jointly using
paired radiology reports and images using contrastive learning. The model has demon-
strated strong performance across multiple retrieval and classification tasks, particularly

in matching medical images with clinical text [19]. BioMedCLIP represents a key step
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towards multimodal understanding in healthcare applications, as it is suitable for various
downstream adaptations in vision-language problems in medicine.

In the field of medical language processing, GatorTron [24] is a large-scale foundation
model trained on over 90 billion words of clinical text. GatorTron leverages transformer-
based architectures similar to Bidirectional Encoder Representations from Transformers
(BERT) [29] but is adapted specifically for medical applications such as clinical concept
extraction, medical question answering, and document classification. By pretraining on
domain-specific corpora, GatorTron has achieved state-of-the-art performance across a
variety of medical language processing benchmarks, which highlights the value of domain-
specific pretraining in text-based clinical tasks. Me-LLaMa [2§] also represents one
such initiative, building on the LLaMA model family through domain-specific instruction
tuning. Rather than training from scratch, MeLLama fine-tunes general-purpose large-
language models using clinical datasets and medical question—answer pairs, making it
suitable for medical dialogue and clinical decision support.

nnU-Net [26] has become a widely recognised framework in medical image segmen-
tation. Although it is not a foundation model in the strictest sense, nnU-Net can auto-
matically adjust itself to new segmentation tasks (without manual configuration), which
makes it highly generalisable. Its design principles (automatic pre-processing, architec-
ture selection, and hyperparameter tuning) have established strong baselines across many
medical imaging challenges, and the success of nnU-Net’s task-adaptive model design has
influenced subsequent work on building scalable and widely applicable models in medical
imaging. This led to the developmnent of TotalSegmentator [25], which was built upon
the basis of nnU-Net. Trained on extensive multi-organ CT datasets, TotalSegmentator
is designed to perform full-body organ segmentation across more than 100 anatomical
structures. Unlike traditional segmentation models focused on single-organ tasks, To-
talSegmentator demonstrates strong generalisability without retraining or fine-tuning,
which makes it a valuable tool for a wide range of clinical and research applications.

Beyond task-specific segmentation frameworks, recent work has also focused on de-
veloping fully generalisable segmentation foundation models capable of zero-shot perfor-
mance across modalities and anatomical targets. To this end, the SAM-Med family [27]

is another step forward in medical image segmentation. This model family consists of

MedSAM, SAM-Med2D, and SAM-Med3D, and its goal is to address the generalisability
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across varying imaging modalities and disease types in addition to anatomical structures.
MedSAM was trained on over 1.5 million image—mask pairs spanning 10 imaging modal-
ities and more than 30 cancer types, resulting in a model capable of robust and accurate
segmentation across diverse clinical contexts. Building on this, SAM-Med3D extends
the concept to volumetric (3D) medical data, utilising a fully learnable 3D architecture
trained on a dataset comprising 22,000 3D images and 143,000 segmentation masks. In-
corporating prompt-based segmentation, SAM-Med3D demonstrates good transferability
to unseen anatomical targets and imaging modalities without additional retraining or
fine-tuning.

Despite recent progress, many medical foundation models remain constrained to nar-
row domains (e.g. chest X-rays, brain MRI, CT scans) or specific tasks (e.g. segmen-
tation of anatomical regions). At the same time, existing foundation models are often
large (complex), contain millions (or billions) of parameters, and are highly-demanding
in terms of hardware, which can limit their practicality, portability and ease-of-use. As a
consequence, TL based on traditional, widely used network architectures (e.g. ResNet [30],
DenseNet [31], EfficientNet [32]) remains popular. Although these traditional models may
not always achieve state-of-the-art performance (as state-of-the-art performance usually
comes with mechanisms specifically tailored to the targeted task), they offer noticeable

advantages in simplicity and accessibility [11].

1.1.2. Existing annotated medical datasets

Training foundation models for TL in the medical domain requires access to large-
scale, diverse medical datasets, which circles back to the issue of medical data scarcity.
Furthermore, such datasets are rarely made publicly available due to the difficulty of
anonymising medical records. While some large datasets do exist, they tend to be limited
in scope, focusing on specific imaging modalities or anatomical regions (e.g. the popular
CheXpert dataset includes only chest X-ray images [33]). This lack of coverage restricts
the development of general-purpose models applicable across a broader clinical spectrum.

Over the years, several datasets have been released that serve as benchmarks for vari-
ous tasks such as classification, segmentation, and report generation. However, they often

differ widely in terms of modality coverage, annotation granularity, and their suitability
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for general-purpose model pretraining. Table provides an overview of several popular
medical imaging datasets.

The DeepLesion dataset [34] is a large, publicly available collection of over 32,000
annotated lesions on CT images which covers a wide range of lesion types and anatomical
regions. Annotations were extracted from routine radiologist bookmarks, making the
dataset highly representative of actual practice. Although this dataset is diverse in terms
of anatomical regions, it is limited to a single imaging modality (CT), which restricts its
utility in cross-modality model development.

The aforementioned CheXpert dataset is a large, publicly available dataset compris-
ing 224,316 chest radiographs from 65,240 patients, collected at Stanford Health Care
[B3]. It includes both frontal and lateral views, with each image labelled for the pres-
ence of 14 observations, such as various lung diseases, using a system that accounts for
uncertainty in radiological interpretation. Similarly, ChestX-ray14 [35] includes over
100,000 frontal-view chest X-rays, labelled with eight disease categories extracted auto-
matically from radiology reports using natural language processing. MIMIC-CXR [36]
offers over 370,000 chest X-ray images, paired with free-text radiology reports. This
pairing makes it well-suited for multimodal tasks such as report generation, cross-modal
retrieval, and vision-language pretraining. While these datasets have contributed towards
thoracic disease classification and content-based image retrieval, their focus on a single
imaging modality and anatomical region limits their applicability for developing general-
purpose medical models. Similarlyy, MURA [38] is another example of an X-ray image
dataset, but it is focused on musculoskeletal pathologies and contains over 40,000 im-
ages labelled as normal or abnormal. It targets classification tasks involving the upper
extremities and has been used in studies focusing on wrist, elbow, finger, and shoulder ab-
normalities. Although it covers a wider range anatomical regions compared to CheXpert
or ChestX-ray, it is still limited solely to X-ray images.

MedPix 2.0 is a freely available biomedical dataset featuring over 12,000 clinical cases
and nearly 59,000 medical images. It pairs images with detailed text such as findings and
diagnoses, and contains images captured in different radiology imaging modalities (CT
and MR imaging). However, it is not as large as some other datasets in terms of raw
image volume.

It was specifically designed for neuroimaging research, and newer versions of OASIS
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(OASIS-3 [40]) include longitudinal scans, making the dataset well-suited for research
studying disease progression (i.e. changes in the brain over time, such as Alzheimer’s
progression).

Out of the presented datasets, RadlmageNet is the largest and most suitable for
building general-purpose models for TL in the medical domain, which is precisely the
purpose it was created for. It includes over 1.3 million images across modalities such as
CT, MR, and ultrasound, annotated with 165 pathology labels. It marks a significant
effort in terms of building a dataset for TL, as it required a team of 20 expert radiologists
to label each of the 1.3 million images. RadlmageNet was used to pretrain several CNNs,
which were then fine-tuned on downstream medical tasks. Initial results have shown

performance gains over ImageNet-pretrained models in several tasks.

1.1.3. Automated annotation and pseudo-labels

As demonstrated by RadlmageNet [20], annotating over one million images with high-
quality pathology labels required the dedicated effort of 20 expert radiologists. This level
of manual annotation, while achievable for a limited set of predefined labels, is not scalable
for increasingly diverse, multimodal clinical datasets.

RadiologyNET [41] is a large medical dataset collected from the Clinical Hospital Cen-
tre Rijeka, which was acquired through standard clinical practice between 2008 and 2017.
The entire dataset consists of 2.3 million examinations and nearly 25 million Digital Imag-
ing and Communications in Medicine (DICOM) [42] files. Its total size is approximately
13 terabytes, spanning multiple imaging modalities commonly encountered in clinical
practice, including CT, MR, CR, X-ray angiography (XA), nuclear medicine (NM), and
radiofluoroscopy (RF), among others. Manual annotation of a dataset of this magnitude
would not be feasible, and it would exceed the resources invested in previous datasets
such as RadlmageNet (as there are 25 million images in the total RadiologyNET dataset,
versus the 1.3 million in RadlmageNet).

Although DICOM files store both the image data and structured metadata [42], the
latter is often manually entered by clinicians and can be inconsistent or error-prone.
Errors range from typographical mistakes to inconsistent labelling practices (e.g. one

physician may indicate an image depicts a leg, while the other may label it as extrem-
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ity or lower extremity). As a result, metadata alone is often insufficient for reliable
labelling, and raw pixel data typically lacks the semantic context required to differentiate
between similar images; for example, elbow and knee X-ray images often have similar pixel
value distributions. As manual annotation of large datasets remains both time-consuming
and resource-intensive [[12, 20], this has prompted growing interest in label-efficient ap-
proaches, particularly self-supervised and unsupervised learning methods. By identifying
patterns within the data, these methods can group semantically similar images together,
reducing the reliance on manual input. While self-supervised and unsupervised methods
may not achieve the same level of precision as manual labelling by experts, they can
provide a valuable starting point for annotation tasks and accelerate the annotation pro-
cess [20]. For example, contrastive learning (which is self-supervised) has been shown to
effectively group images based on semantic similarity, later enabling classification using
learned feature embeddings [43]. Similarly, Guo et al. demonstrated that autoencoders
combined with k-means clustering can be used to extract relevant features and group
images, facilitating annotation for subsequent tasks [44].

The choice of feature extraction technique often depends on the data type. For struc-
tured tabular data, methods such as principal component analysis (PCA) [45] or autoen-
coders [46] are widely used for feature extraction. In natural language processing, Bag
of Words remains a common approach for converting text into feature vectors [47]. For
image data, simple methods like Histogram of Oriented Gradients have been used in the
past, though neural networks have risen in popularity in recent years due to their ability

to learn complex representations [4§].

1.2. Scientific Hypotheses and Contributions

Large-scale medical imaging datasets are difficult to annotate manually due to the
substantial time, cost, and clinical expertise required. To overcome this bottleneck, this
research explores whether unsupervised annotation techniques can be used to organise a
multimodal imaging dataset into semantically coherent groups. By extracting and com-
bining features from raw DICOM images, structured metadata, and narrative diagnostic
reports, the goal is to produce clusters that retain clinical meaning without the need for

manual labelling, thereby enabling scalable dataset preparation for model pretraining.
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Furthermore, this work examines whether CNN architectures pretrained on the Radiolog-
yNET dataset offer advantages over models pretrained on general-purpose datasets such
as ImageNet, or models trained from randomly initialised weights ( Baseline models). The
evaluation includes model generalisation, convergence speed, and stability, particularly in
settings where the amount of annotated training data is limited or training resources are

limited.

The key research hypotheses addressed in this thesis are as follows:

1. Unsupervised annotation of medical data is a viable method of labelling
medical data and grouping semantically similar data points together,

facilitating the dataset’s use for building foundation models.

2. Transfer learning from RadiologyNET foundation models can improve

model performance, especially in medical tasks that are resource-scarce.

In order to test these hypotheses, the following research aims are defined. First, the
RadiologyNET dataset should be analysed, and semantically similar data points should
be grouped together. Second, the generated pseudo-labels should be used for building
RadiologyNET foundation models by pretraining several popular deep learning topologies
as supervised pretraining tasks. Third, the impact of RadiologyNET pretrained weights
should be evaluated on a variety of downstream tasks, with an evaluation extending to

resource-limited tasks.

From the presented hypotheses and research aims, this thesis makes the following

contributions to the field of transfer learning in medical machine learning:

1. A method for the automated grouping and labelling of semantically similar medical

radiology images;

2. Development of RadiologyNET foundation models for transfer learning;

3. Evaluation of RadiologyNET foundation models against those pretrained on Ima-

geNet and baseline models.
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1.3. Research Methodology

The general research pipeline consists of four phases described below, with their general

overview presented in Figure .

(1) Data analysis, preprocessing and labelling (3) Evaluation on downstream tasks
® Query-capable database framework o Evaluation against ImageNet and training from
e Missing data analysis randomly initialised weights
. Featur'e extractorsv o On publicly available medical datasets
e Grouping / clustering e Testing in resource-limited conditions
T Phase 2 Phase 4
Phase 1 Phase 3
(2) Pretraining foundation models (4) Dissemination of pretrained
weights
e Using preprocessed dataset from Phase 1
e Popular neural network architectures o Provide the pretrained models’ weights
o akin to ImageNet models on torch / publicly
tensorflow / Medical Open Network for e Aim: facilitate medical ML and CAD
Al (MONAI) repositories system development through TL

Figure 1.1: The general research phases and pipeline.

The first research phase involved a detailed analysis of the RadiologyNET dataset.
Given the dataset’s substantial size of approximately 13 terabytes, a query-capable database
framework was established to enable efficient searching and analysis. This framework al-
lowed for detailed examination of DICOM attributes, narrative diagnoses, and image
content. From the full collection of approximately 25 million DICOM files, a high-quality
subset was extracted based on defined criteria, filtering out incomplete, corrupted, or noisy
data. Each data source was examined separately and subjected to dedicated preprocessing
pipelines, including a missing-data analysis [49]. Appropriate feature extraction methods
were applied to each data type to identify relevant patterns. These features were subse-
quently combined into unified embeddings, which were then grouped using unsupervised
clustering techniques to automate the annotation process by producing pseudo-labels.
This enabled the grouping of semantically similar examinations while segregating dis-
parate ones, forming the basis for subsequent model pretraining.

The second research phase focused on building foundation models for TL. Several
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widely used deep learning architectures were selected and pretrained on the RadiologyNET
dataset, following a strategy analogous to the use of ImageNet [[13, 14] in natural image
processing. The pretrained models included InceptionV3 [60], VGG [b1], DenseNet [31],
various ResNet [30] configurations, EfficientNet [32], and MobileNet [52] variants. The
objective of this phase was to produce models capable of extracting domain-relevant
features from medical images.

The third research phase centred on evaluating the pretrained RadiologyNET
models across a wide range of publicly available medical imaging datasets. The evaluation
datasets were chosen to cover diverse imaging modalities (CT, MR, X-ray) and anatomical
regions (extremities, lung, brain). The models were assessed on different tasks and task

types, including:

— Binary classification, on the GRAZPEDWRI-DX [53] (detecting the presence of
osteopenia in wrist radiographs) and COVID-19 [4, p] (detecting COVID-19 in chest

radiographs) datasets, with both datasets containing X-ray images;

— Multiclass classification, on the Brain Tumor MRI [54] dataset, where the goal is to

classify between different types of tumours;

— Regression, on the Pediatric Bone Age Challenge [55] where the goal is to predict

skeletal age from hand X-ray images;

— Semantic segmentation, on the LUng Nodule Analysis [56, b7] dataset, with the goal

of segmenting lung nodules in CT images.

The performance of the RadiologyNET-pretrained models was compared against ImageNet-
pretrained models and baseline models trained from randomly initialised weights. Each
TL approach was tested across a range of hyperparameter values (e.g. learning rates),
with multiple independent runs per each setting. Statistical tests were conducted to de-
termine whether differences in performance across the three pretraining approaches were
statistically significant.

The fourth research phase was dedicated to the dissemination of the Radiolog-
yNET pretrained weights. These pretrained models were made publicly available to

researchers and practitioners in the medical machine learning community at https://
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github.com/AIlab-RITEH/RadiologyNET-TL-models. By providing access to domain-
specific pretrained models, this work aims to contribute towards the development of med-

ical machine learning systems and the overall understanding of TL in the medical domain.

1.4. Thesis Structure Overview

Chapter provides an introduction to the field of medical foundation

models. The problem of annotated data scarcity in medicine is discussed, as are the
approaches often used to mitigate this problem.

To make this thesis and the research presented here easier to follow, the subsequent
chapters mirror the research phases shown in Figure @ Specifically, chapter |2 describes
the first phase, and chapter |3] the second phase. The third and fourth phases are addressed
in parallel across chapters m and .

— Chapter @ lBuildz'nq the RadiologyNET datasel} refers to the first phase, introducing

the RadiologyNET dataset in detail. From the entire dataset (which is substantial
in size), a high-quality subset was extracted and pseudo-labelled using a fully au-
tomated process which requires no manual annotation. This chapter includes an
extensive ablation study comparing and benchmarking different feature extractors
for three data types (DICOM metadata, images and narrative diagnoses), detailing
how each data source impacts the final pseudo-labels. The pseudo-labelled dataset

is presented and discussed.

— Chapter lRadiologyNET Pretraining and Fxperimental Desz’gﬁ details the process

of pretraining on the pseudo-labelled data. Multiple popular neural network archi-
tectures are pretrained to be used in medical downstream tasks. The experimental
setup is described here, with a given overview of metrics and statistical tests to be

used in analysing the performance on downstream tasks.

— Chapter m |The Efficacy of RadiologyNET Foundation Modele{ describes the chosen

medical downstream tasks as well as the rationale for choosing each task. The
results of TL from RadiologyNET are presented and discussed in this chapter, as

well as the performance of TL in resource-limited conditions.


https://github.com/AIlab-RITEH/RadiologyNET-TL-models
https://github.com/AIlab-RITEH/RadiologyNET-TL-models
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— Chapter lDomam Influence on Performance and ]nterpretabilitgj focuses on the

impact of patterns learned during pretraining, e.g. whether pretrained weights have
an influence on downstream model interpretability. Also, this chapter presents the
influence that pretraining on specific medical imaging modalities might have on the

performance on downstream tasks.

Chapter summarises the research presented in this thesis, reiterating

the limitations of this work and possible future research directions.
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2. Chapter

BUILDING THE RADIOLOGYNET
DATASET

2.1. Dataset origin and structure

The dataset consists of approximately 2.3 million unique exams completed between
2008 and 2017 and performed through standard clinical practice at Clinical Hospital Cen-
tre Rijeka. The data were retrospectively collected in 2017 and anonymised during the
extraction process to ensure the removal of all personally identifiable (sensitive) informa-
tion. Ethical approval for data collection and processing was obtained from the relevant
Ethics Committee. As mandated by the approval, the dataset must remain private and
may not be publicly released in its current form.

Each examination could result in a respective diagnosis and at least one (often more
than one) DICOM file, which was then stored at Clinical Hospital Centre Rijeka’s Pic-
ture Archiving and Communication System (PACS). The diagnoses were written in the

Croatian language, while each DICOM file was composed of two parts:
1. the file body, which contains pixel data (the actual radiology image),

2. the file header, which stores structured metadata describing the imaging con-
text (e.g. modality of image acquisition, body part examined, imaging protocol).

Example DICOM tags are given in Table El!

An example examination is illustrated in Figure Ell
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Table 2.1: Overview of selected DICOM tags, their data types, and common usage in
medical imaging workflows.

DICOM Tag Data Usage / Application
Type
BodyPartExamined Code Indicates the anatomical region imaged. Example
String values: EXTREMITY, ANKLE, ABDOMEN
Modality Code Specifies the modality of image acquisition. Ex-
String ample values: CT, MR, CR, RF, XA
StudyDescription Long Provides a brief textual summary of the imaging
string study. Example value: T Ankle joint 2 views
ProtocolName Long User-defined description of the conditions under
string which imaging was performed. Example value:
T107al Ankle joint a.p.
RequestedProcedure e .. . o
Description Lopg Institution-generated administrative description
string of the requested procedure. Example value: RTG
GLEZANJ (en. ankle radiograph)
WindowCenter Numeric Represents the centre of the display intensity
(Float) range; used in preprocessing and display window-
ing for consistent visualisation; e.g. can be used
in C'T images to highlight different anatomical ar-
eas (lung, soft tissue, bone...)
WindowWidth Numeric Defines the width of the display intensity range;
(Float)  used alongside WindowCenter.
RescaleType Long Describes the units of pixels after applying the
string rescale step. Example value: HU (Hounsfield
Units, used in CT images)
Rescalelntercept Numeric Used to rescale the image into units specified by
(Float)  RescaleType
RescaleSlope Numeric Used to rescale the image into units spec-
(Float)  ified by RescaleType; used  alongside
Rescalelntercept.

2.2. Query-capable database framework

The total number of DICOM files obtained from Clinical Hospital Centre Rijeka PACS
reached approximately 25 million [41] (24,969,869, to be exact), with ~ 13 terabytes of
space required to store the entire dataset (images and diagnoses). Working with large
volumes of DICOM data introduces inherent complexities, primarily stemming from the
amount of time required to read and process all files. In addition to the number of files
involved, the sheer size of DICOM files also poses a challenge, as the size can range from

several kilobytes to hundreds of megabytes in size, especially in the case of high-resolution
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EXAM
|
v v
ligiel v il e, Narrative diagnosis
(one or more)
|
v v
DICOM tags Pixel data
(file header) (file body)
I
Y.
DICOM File D DIAGNOSIS
ID = XXXXX587
DICOM Tag Value
% Modality CR +
:?:J BodyPartExamined ANKLE —
..g (hr.) "Radiogrami desnog
o ] gleZnja i stopala.
° Bez znakova za [...]"
i;._< (en.) "Right ankle and
foot radiographs.
No signs of [...]"

Figure 2.1: Structural overview of a single examination in the RadiologyNET dataset.
The example diagnosis was originally written in Croatian; an English translation is in-
cluded in the figure for illustrative purposes.

images or multi-frame studies. For this reason, a query-capable framework was built, to

allow easy, efficient and fast retrieval (and filtering) of data points.

The folder structure of raw, gathered images is as follows. Each DICOM file is named
after its unique identifier from Rijeka PACS, for example, the DICOM file whose ID is
12345678 is named 12345678.dcm. The root directory issa/ contains 28,660 subfolders,
where each subfolder contains up to a thousand DICOM files. Each subfolder is named
as the prefix of the DICOM files stored inside it. For example, if a DICOM file is named
12345678 .dcm, then it will be saved at issa/12345/12345678.dcm. The directory 12345/

is named as the DICOM filename prefix, containing all but the last three digits. An
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illustration of the full directory structure is given below.

issa/

| 10000/
10000000.dcm
10000001 .dcm

10000999 .dcm
| 12345/

12345000.dcm

12345999 .dcm
| 9999/

9999000 .dcm

9999001 .dcm

9999999 .dcm

The two-phase process of building the query-capable database framework is shown
in Figures @ and @ In the first phase (shown in Figure @) the contents of each
issa/ subfolder were parsed using the pydicom [58] library, which is a python package
used in DICOM file reading and processing. For each readable DICOM file, metadata
attributes were extracted and stored in a Comma-Separated Value (CSV) file. During
this process, corrupted files or those with entirely empty metadata were excluded from
further processing. Additionally, attributes capturing the structure of the pixel data, such
as PizelDataShape and a boolean IsRGB indicator, were computed based on the shape of
the pixel data found in the file body. These were stored alongside standard DICOM tags
to enable filtering of red-green-blue (RGB) images, and multi-frame/volumetric studies,
which typically differ in dimensionality from (for example) single-frame CR images. Each
subfolder yielded one CSV file containing one row per DICOM file. The output CSV
adopted the name of its corresponding folder. For example, a folder named 12345/
containing three DICOM files would result in a file 12345.csv with three metadata rows.
In total, 25,632 such CSV files were produced, a number lower than the original 28,660
folders due to the exclusion of empty folders or folders containing only invalid files.

In the second phase (shown in Figure @), the exported CSV files were subsequently
aggregated into a single metadata table using the dask python package [p9], which is
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. . o
Directories £ Drop from result Ve ™
in issa/ T Gather DICOM attributes
— - BodyPartExamined
o NO NO i
o | \ - Modality
£ | > -
7 C image metadat
| » . Is at least one Ly
10000/ o g CanPYAICOM _yes> DICOM attribute —YES - oinateshare
Files in 12345/ ) LT non-empty? - IsRGB
[ o | g
(=] 12345000.dcm K T /
(=] 12345001.dcm 12345.csv
12345/ El CFor each... 12345000 MR ABDOMEN (512, 512) NO
[..] El 12345999.dem 12345001 CR CSPINE .| (256,256 | NO
Input Output
file value | Join
\ outputs | 123459% | cT HEAD .| (1024,1024,3) | YES

9999/

Figure 2.2: The process of reading DICOM files and exporting metadata into CSV files.

typically used for parallelised reading and processing of tabular data. The combined table
was then analysed to remove non-informative columns. The DICOM metadata content
differs depending on the imaging modality used to capture the image — for example,
PlatelD is a DICOM attribute which is present only in CR images. With this in mind,
sample-wise selection of useful DICOM attributes was impossible, requiring the selection
process to be performed on the entire dataset. Thus, all of the table’s columns were
analysed to see if they contain useful information (or rather, if they contain any at all).
Any column containing empty data throughout all of the DICOM instances was dropped
from the table completely. However, if a column had at least one non-empty value in any

row, then it remained in the table.

Drop from result
NO
- - Does it contain at | >

\\C For each column... '—} least one non-empty —YES Keep in
Exported —_—  — value? data frame
CSV files
g 10000.csv
[]
10000000 RF URINARYTRACT | ... 10000000 RF URINARYTRACT
(5] 12345.05v
[ 123456789 MR ABDOMEN 123456789 MR ABDOMEN . —p
@ 9999.csv
9999999 XA GITRACT 9999999 XA GITRACT Exported SQL table

Figure 2.3: The process of joining multiple CSV files, dropping empty columns, and
exporting into the final result.
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Figure 2.4: Distribution of imaging modalities in the RadiologyNET dataset [@]

The table was stored as a Structured Query Language database table. The exported
file requires approximately 85 gigabytes of space and contains queryable information of
23,753,712 distinct DICOM files (i.e. rows) with 653 DICOM tags (i.e. columns), each
with at least one non-empty value. Once the query-capable metadata framework was
established, it served as the foundation for subsequent analysis, data sampling and feature

extraction.

2.3. Data analysis

The most prevalent modalities in the dataset were CT, MR, XA, NM (Nuclear Medicine),
and RF, as shown in Figure @, with 95.5% of the entire dataset being comprised solely of
CT and MR images. A majority of the images, comprising 99.35% of the dataset, were in
greyscale format, while only a small portion (0.65% of the data) consisted of RGB images,
captured mostly using CT (70.9% of cases) and MR (27.9% of cases) imaging techniques.
Although radiology images are mostly captured and stored in grayscale, RGB images can
be a result of overlaying colour-mapped positron emission tomography on top of other
image sources to allow a clear correlation between anatomical and functional imaging

[@] Examples of images captured across different modalities (CR, CT, MR, XA, and
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RF) are shown in Figure @ There were 75 distinct values in the BodyPartExamined tag.
Among these categories, the most commonly examined body parts in the dataset were
the Abdomen (24.5%), Head (23.2%), Chest (16.5%), and Breasts (6.9%). The BodyPar-
tExamined tag was left empty in approximately 8.4% of the instances, suggesting either
missing or unspecified information regarding the examined body part.

Not all of the 2.3 million examinations contained an associated diagnostic report;
approximately 6.96% of entries had an empty or missing diagnosis, while 93.03% included
a non-null, non-empty value. Upon further inspection, it was discovered that some of
the non-empty diagnoses were less than 5 characters long. These were presumed to be
anomalies as such short diagnoses could seldom carry useful information. Empty diagnoses
and diagnoses which had less than 5 characters were excluded from the further use.

Some of the examinations contained over 1,000 associated DICOM files. This can
occur when radiologists use multiple projections or views, or in continuous image capture
— such as in flouroscopy. As flouroscopy captures real-time moving images (i.e. time
series), the Clinical Hospital Centre Rijeka PACS system would sometimes store them as
separate DICOM files instead of storing them in a single multi-frame file. This behaviour

varies depending on the imaging device and its DICOM implementation.

2.3.1. Data subsampling

Each data point was defined as a unique triplet comprising a DICOM image, its asso-
ciated DICOM metadata (tags), and the corresponding narrative diagnosis. An example
of two data points extracted from a single exam is illustrated in Figure @ In this figure,
two data points were extracted during the same examination, therefore the images were
were associated with the same diagnostic report. The diagnosis was originally written in
Croatian (hr.), and a portion of this diagnosis is displayed in the figure, along with its
English (en.) translation.

From the full dataset, a subset of 135,775 DICOM files and corresponding narrative
diagnoses was sampled for building the unsupervised annotation pipeline. As there were
over examinations with 1,000 associated DICOM files, special attention was given to
include as many complete diagnoses as possible during the sampling process. To maintain

balance between the number of images and distinct diagnoses, a maximum of 15 DICOM
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Figure 2.5: Examples of images found in the RadiologyNET dataset. Each subfigure

represents images captured in the specified modality.
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Figure 2.6: An example of two data points obtained from a single examination, which
included two CR images of the right ankle and foot [41].

Table 2.2: The sizes of train, test and validation subsets used for building the unsuper-
vised annotation pipeline [41]

Exam (diagnoses) DICOM file

Subset
count count
Train 50,528 (80.00%) 108,542 (79.94%)
Validation 6,316 (10.00%) 13,596 (10.01%)
Test 6,316 (10.00%) 13,637 (10.05%)
Total 63,160 (100.00%) 135,775 (100.00%)

files per examination was allowed; exams exceeding this threshold were excluded, i.e. there
were no examination where more than 15 data points could be extracted. The resulting
subset included images from five modalities: CT, MR, CR, XA, and RF. Although initially
included in the subsampling process, images from the NM modality were later removed
due to frequent association with missing or low-quality (short, uninformative) diagnostic

reports. Table @ shows the extract sizes of each sampled subset.

2.3.2. Missing data and preprocessing

A general pipeline of each data source (DICOM tags, images, diagnoses) preprocess-
ing is shown in Figure @ In short, each of the three data sources required a distinct
preprocessing approach, for example, DICOM tags required additional filtering and miss-
ing data analysis. Images come in different radiology imaging modalities, each requiring

specific preprocessing steps; and are often stored in different bit-depths, thus needing ad-
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Pﬁure 2.7: The process used for exporting images, DICOM tags and narrative diagnoses
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ditional scaling and resizing. On the other hand, medical diagnoses were written as free
text, therefore the words were stripped to their roots to capture the core meaning. To
create a representation of the diagnosis, text-processing algorithms often require a corpus
based on frequently used words, which was built using the training set (Table @) The

preprocessing of each data source is described in more detail in the following subsections.

DICOM tags

The first encountered problem was DICOM tags with missing BodyPartExam-
ined, which contained an empty value in 59.4% cases. On the other hand, tags such as
ProtocolName, StudyDescription and RequestedProcedureDescription (described in Table
@) faired better, having empty values in only 10.9%, 7.39% and 33.8% of instances, re-
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spectively. Wherever BodyPartExamined was empty, at least one of the mentioned tags
contained a value from which one can infer the examined body part, which is why these
three particular tags were chosen. In order to solve the missing values for BodyPartEz-
amined tag, there were 53 regular expressions written, a snippet of which is shown in
Code Listing @ These regular expressions contained rules for imputing BodyPartExam-
ined from the ProtocolName, StudyDescription and RequestedProcedureDescription tags,
and were written in a way that accounts for possible typographical errors (e.g. torax and
thoraz), multiple languages used by physicians (e.g. Latin: calcaneus; English: heel bone;
and Croatian: petna kost), possible abbreviations (e.g. cervical spine: c-spine, ¢ _spine,
or cspine), and which procedures impact which body part (e.g. chemoembolization is tied
to the liver). These rules were written under a radiologist’s guidance, as there is no

straightforward ruleset for perfect BodyPartExamined mapping.

Code Listing 2.1: Regex-based mappings for inferring BodyPartExamined (BPE)

BPERegex (to_val='WRIST', regexpr='wrist|rucni')
BPERegex (to_val='FINGER', regexpr='finger|prst')
BPERegex (to_val='ARM', regexpr='forearm|upper extrem|gornj(7:ilihleg)
ekstrem| (7:nad|pod)laktic|humerus|ruk(?:alelu) ')
BPERegex (to_val='HAND', regexpr='sakal|sake|hand"')
BPERegex (to_val='ELBOW', regexpr='lakat|elbow')
BPERegex (to_val='HEEL', regexpr='calcaneus|heel|petn(?7:ale)|peta')
BPERegex (to_val='ANKLE', regexpr='glezanjl|gleznjalankle|skocni')
BPERegex (to_val='KNEE', regexpr='knee|koljen')
BPERegex (to_val='F00T', regexpr='stopall|foot')
BPERegex (to_val='LEG',
regexpr="'lower (7:legl|limb|extrem) |nog(?:alelu)|femoral(?:|ne) art|do
(?7:11j)nj(?:ilihleg) ekstrem')
BPERegex (to_val='CSPINE',
regexpr='vratna(?: |_|-)kralc(?:-|_|)spinel|cervikalne kralj')
BPERegex (to_val='LSPINE', regexpr='lumbaln(?7:ale)|l-spine|l_kralj')
BPERegex (to_val='TSPINE', regexpr='torakaln(?:ale) kraljlt-spine')
BPERegex (to_val='CHEST',
regexpr='thorax|lung|torax|toraks|src(?:ale)|sternum|ribs|rebralpluc(?:
alna) |[myocardial|cardiac|subklavij|pulmonary|pulmonal|lung|heart')

BPERegex (to_val='HIP',
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regexpr='sa kukom|hip joint|(7:desni|lijevilrtglrdg) kuk')
BPERegex (to_val='PELVIS',

regexpr='pelvis|zdjelic|ilijak|iliac|sacrum|si zglob')
BPERegex (to_val='ABDOMEN', regexpr='abdom(?7:en|inal)"')
BPERegex (to_val='WHOLEBODY',

regexpr='cijelo tijelolcijelog tijelalwhole body|wholebody|total body')

The final result of BodyPartExamined imputation (based on knowledge, decision rules,
and regular expressions) resulted in an increase from 40.6% to 100% non-empty instances.
However, it should be noted that there was still a possibility of erroneously imputing
BodyPartEramined from other tags. Specifically, DICOM tags StudyDescription, Proto-
colName and RequestedProcedureDescription are input manually by a performing physi-
cian. As such, other than typographical errors, it is possible that other types of errors
could lead to mislabelling of a body part that was not accounted for. However, these
cases were presumed to be anomalies and only present in a few DICOM files.

The next group of tags needing additional care are stringified arrays - DICOM tags
with multiple values. Some DICOM tags can contain multiple values, for example,
WindowWidth and WindowCenter can have a single value such as "1134", but also mul-
tiple values, e.g. "[1134, 423]", which can occur when the performing physicians wants
to highlight multiple tissue types within the same image. Such tags were parsed from
a single stringified array-like tag into multiple tags, which resulted in WindowCenter
dissolving into WindowCenter0) and WindowCenterl, etc.

Another challenge was selection of appropriate DICOM tags. There were 654
different DICOM tags that appeared at least once in the whole subset. However, many
proved to be uninformative due to either being empty in most instances or having only
one distinct value. A fill rate threshold was imposed on each tag, and each tag with
less than 35% non-empty values was removed. Furthermore, all DICOM tags with less
than 2 distinct values were discarded, along with tags containing unique identifiers, such
as SOPInstanceUID. After this, continuous and categorical DICOM tags were separated,
and categorical variables were further examined. In particular, some of the tags contained
natural language, which fell out of the scope of DICOM tag processing. The eliminated

tags include the aforementioned ProtocolName, StudyDescription and RequestedProce-
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dureDescription, accompanied by AdmittingDiagnosesDescription, ImageComments, etc.
The remaining categorical variables had no more than 50 unique values. After this, 55
tags remained, of which 28 were continuous and 27 were categorical variables.

The final problem to solve regarding DICOM tags was missing data analysis. As was
mentioned before, BodyPartEramined can be directly imputed from other tags via regular
expressions, but other values’ imputation is not as straightforward. Before imputing these
values, the DICOM tags with missing data were analysed further, to test whether their
missingness was completely random, or there is a pattern from which it is possible to

infer the missing values [61]:

— Missing-at-completely-random: the probability of a value being missing is inde-
pendent of both observed and unobserved data. In this case, the distributions of

observed and missing values are expected to be similar.

— Missing-at-random: the probability of a value being missing depends only on ob-
served data. Differences between missing and observed values can be accounted for

using other variables.

— Missing-not-at-random: the probability of a value being missing depends on un-
observed data (including the missing value itself), and thus the difference between

missing and observed values cannot be accounted for by other variables.

Missing-at-completely-random and missing-at-random data can be imputed without in-
troducing bias. However, data that are missing-not-at-random are more challenging,
as the mechanism behind the missingness cannot be addressed using observed variables,
making unbiased imputation generally impossible. While missing-at-random and missing-
at-completely-random can be statistically tested, there is no statistical test that can con-
clusively determine whether a variable is missing-not-at-random, as this would require
access to unobserved values.

To determine if data were missing-at-completely-random or missing-at-random [61,
62], univariate statistical tests were performed as described by Enders [49]. Statistical
tests differed based on whether the observed variable was discrete or continuous and,
in the latter case, if it was normally distributed. If a continuous variable was normally

distributed (Shapiro-Wilk, p > 0.05), then an Independent samples t-test was performed,
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while a Mann-Whitney U was applied otherwise. In the case of categorical data, a x? (chi-
square) test was used. A variable would not be considered missing-at-completely-random
if its missingness influenced the distribution of at least one other variable, i.e. there was
a statistical difference in the distribution where said variable was missing versus where
it was not. Although the used approach has its drawbacks if multivariate interactions
exist (and Little’s missing-at-completely-random test can be more appropriate) [49], it
can bring attention to dependencies between variables. Consulting with the DICOM
standard [42, 63| strengthens the assumption that data is likely missing-at-random and
not missing-at-completely-random, as most of the DICOM tags depend on the modality
used to capture the image. The missing values were imputed using MissForest [62, 64],
which uses random forests to impute missing data and had been previously shown to
work well with missing-at-random data [65]. Mean Squared Error (MSE) was used as the

criterion for continuous and Gini impurity for categorical variables. MSE is calculated as:

n

1 X
MSE = =" (5: ~ )° 21)
=1

where n is the number of instances, y; is the ground truth value for the i-th sample, and

y; is the predicted value. Gini impurity is calculated as:

Cini(t) =1 — Z P2 (2.2)

where C' is the number of classes and p; is the proportion of instances of class ¢ in node t.
Node t is a node in a decision tree from the MissForest algorithm; a lower Gini impurity
indicates a purer node, which in turn leads to more reliable imputations for the missing
categorical values. After imputation, the categorical variables were one-hot encoded, and

continuous variables were scaled to fit the range [0.00, 1.00].

Images

In order to export images from DICOM files, the presence (and the corresponding val-
ues) of several DICOM tags must first be checked, as certain modalities require different
preprocessing techniques. Medical radiology imaging does not often capture ready-to-

view images and is highly dependent on the diagnostic context. An example of context-
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depending imaging is CT, where images differ significantly based on the observed tis-
sue (e.g. bone versus soft tissue). This means that the stored pixel values have to be
transformed into display-ready values, and there are several steps to achieving this: (i)
rescaling the image, and (ii) windowing the image. For example, the pixel intensity of
images can be scaled to map raw image values to ranges that preserve (or enhance) diag-
nostically relevant regions [66, 67]. As a first step in this process, the values of DICOM
tags RescaleSlope and Rescalelntercept are checked and used to scale the raw pixel image

2 using the formulation:

2y =R, 1+ R; (2.3)

where x7, and z; are raw pixel values (the input image) and the rescaled pixel values,
respectively; Ry is the rescale slope, and R; is the rescale intercept. If RescaleSlope and
Rescalelntercept are not available in DICOM metadata, then the default values R, = 1 and
R; = 0 are used, which essentially preserve the original pixel values (i.e. these parameters

leave the pixels unchanged).

The equation @ assumes that the transformation is linear. However, there are cases
where DICOM metadata contains look-up tables for non-linear transformations, for ex-
ample, there is a DICOM tag called Modality LUT Sequence. In cases where the transfor-
mation from stored pixel values to meaningful output requires the use of a look-up-table
(e.g. Modality LUT Sequence) — these data points were excluded from further process-
ing. Implementing LUT-based transformations is context-dependent and may vary across

modalities (and capturing devices / vendors) [68].

DICOM images are captured in various bit depths. For example, CR images can be
captured in 10-, 12- or 16-bit depth [67], and different bit depths lead to a different range
of possible pixel values. A 10-bit image can have pixel values in the range [0, 1023], while
a 16-bit image can contain pixel values in the range [0, 65,535]. As machine learning
algorithms and neural networks are sensitive to data ranges, the images were mapped
to 8-bit depth to mirror ImageNet’s bit depth (i.e. range [0,255]) and stored in Portable
Network Graphics (PNG) format. Although scaling with the maximum pixel value is a
valid solution as it essentially normalises the image, this can lead to a loss of clinically

relevant information (and preservation of irrelevant information). For this reason, there
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is an established practice in medical radiology, where the performing physician can deter-
mine the clinically relevant pixel values and store them in DICOM as WindowCenter and
WindowWidth tags. These windowing parameters can be used to remove the clinically
irrelevant pixel intensities, thus reducing the necessary bit depth required to store the
image. This process is shown in Figure @, where the original image (on the left) is in
12-bit depth and the output image (on the right) is the windowed image in 8-bit depth.
As standard common-purpose displays cannot show more than 8-bit colour depth, for
visualisation purposes, the image on the left was scaled via division with the maximum
possible pixel value. The differences are noticeable: the windowed image (on the right)

highlighted the bones and removed irrelevant shades of gray.

DICOM Attributes
Modality = CR

DICOM File BodyPartExamined = WRIST

HighBit = 11

WindowCenter = 1323

WindowWidth = 1584

PixelData

Original Pixel Intensity Histogram Window Scaling Windowed Pixel Intensity Histogram
8000 - 8000 - |
: Mapped to 0 6000 -
1 Mapped to 255
. 6000 - 6000 - : === Window Center 5000 -
1
o
= L i . 4000 -
1
S 4000 - 4000 - Window Width
g 1 3000 -
b= 1
* | 2000 -
2000 - 2000 - H
H 1000 -
0- ! ] ) ) 0- g ] g g 0 Pttt )
0 1000 2000 3000 4000 0 1000 2000 3000 4000 0 50 100 150 200 250
Pixel Intensity (12-bit) Pixel Intensity (12-bit) Pixel Intensity (8-bit)

Figure 2.8: The process of windowing, which uses the DICOM tags WindowCenter and
Window Width to remove uninformative pixel values from the pixel value histogram. This
process follows the Equation [67].

The windowing transformation is defined as follows [@, @]

(

0, if 27 < Wmin

T1 = { 255, if 2, > Wmax (2.4)

z,—Wmin .
\ (m) . 255, otherwise
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where:

— a7 is the rescaled pixel intensity after applying rescale slope and intercept as given

in Equation @;
— xy is the final 8-bit output pixel intensity;

— Whin and Wiay represent the lower and upper bounds of the window, calculated as:

Wy, W,
Wmin = Wc - 75 Wmax = WC + T (25)

Here, W, is the window centre, and W,, is the window width. The piecewise function
ensures that pixel values below W, are clipped to 0, and those above W,,.. are clipped
to 255, with linear scaling in between.

WindowCenter (W.) and WindowWidth (W,,) are read out from the DICOM meta-
data. Some modalities can have multiple windowing values present, e.g. a physician might
want to highlight parts of the bone tissue and parts of the soft tissue in a single CT im-
age. This can result in multiple pairs of WindowCenter and WindowWidth values in
the DICOM header. In such cases, only the first valid value was used. The windowing
parameters were considered valid if the resulting image was not entirely single-coloured
(e.g. completely black or completely white). For multi-slice imaging modalities such as
MR (where the image can essentially be a volume), only the first slice containing diag-
nostically meaningful data was used. Slice validity was determined using two filtering

policies:

— Value policy: The ratio ry of distinct pixel values to the maximum possible number
of distinct values was computed, and a slice was deemed wvalid if ry > ty. The
threshold ¢y, = 0.1 was determined empirically through trial-and-error, by observing
the pixel histograms of images dropped by the policy. The value policy resulted in
the removal of images that contained very few distinct shades, i.e. images that were

not completely single-coloured, but were almost single-coloured.

— Shape policy: Some DICOM files were possibly corrupt or erroneously saved, leading
to images not being stored as images, but as vectors. To exclude non-image content

(e.g. 1D vectors), the ratio rg of image width to height was computed, and a slice



Foundation Models for TL Trained on the RadiologyNET Medical Dataset 34

was retained only if rg > tg. The threshold ts = 0.1 was determined empirically

through trial-and-error, by observing the shapes of images dropped by the policy.

These filtering criteria ensured that only informative images were included in the exported
dataset.

In summary, the raw pixel data is subjected to a three-step transformation. First,
intensity values are adjusted using the RescaleSlope and Rescalelntercept parameters to
convert raw pixel values into meaningful intensity units. Second, the rescaled values are
mapped to the standard 8-bit display range using the WindowCenter and Window Width
parameters, and then stored in PNG format. Finally, the uninformative images were
removed through applying the following criteria: the value policy, which ensures sufficient
pixel intensity variation, and the shape policy, which filters out improperly shaped or
non-image slices. The remaining images were resized to 256 x 256 pixels and zero-padded

where necessary to preserve aspect ratio.

Narrative diagnoses

The preprocessing pipeline for narrative diagnoses is shown in Figure @ These
diagnoses, written in Croatian, describe patient conditions and medical findings. In com-
parison to the English language, the Croatian language differs as it has grammatical cases
and verb suffixes, meaning that the same word can be written in different forms. By using
different grammatical cases or changing the verb suffix, the entire context of a sentence
can be changed; and vice-versa, words with the same semantic meaning can appear in
different forms. To address this, the initial step involved reducing words to their root
forms, to better capture their core meaning and to allow grouping based on semantic
similarity.

Diagnosis preprocessing was carried out in several stages. First, (i) all diagnoses in
the training set were tokenised into individual words, while removing special characters
such as commas, colons, and semicolons. Next, (ii) words were stemmed using a rule-
based Croatian stemmer developed by Ljubesi¢ et al. [69]. Then, (iii) a vocabulary of
54,790 unique words was compiled from the training subset, which includes all words
that appeared at least once. Upon a closer inspection of the obtained corpus, it was

observed that there were words which appeared only once, and were often the result of
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typographical errors made by physicians during manual entry. Hence, to improve the
generalisation capabilities of text-based models, (iv) a parameter which regulates the
minimal number of occurrences (i.e. minimum frequency threshold) was introduced to

exclude such anomalies from the corpus.

2.4. Unsupervised annotation

Each data source presented limitations in terms of semantic clarity, completeness, or
consistency. For example, inconsistencies were observed in metadata fields such as Body-
PartEzamined, where identical anatomical regions were labelled with varying specificity,
such as FOOT and LEG, or more generic entries like EXTREMITY or EXTREM. Despite
using regular expressions (an example of which were given in Code Listing @), sometimes
there were no ways to further define anatomical regions if the given value was non-specific.
The example shown in Figure @ shows an examination where both images contain valid
BodyPartExamined values (each correctly referencing the observed body part); however,
the accompanying narrative diagnosis refers only to the combined set of images (“an-
kle and foot radiographs”). Had the BodyPartEzamained been set as EXTREMITY in
both cases, it would be impossible to discern which image depicts which body part based
solely on the narrative diagnoses, thus requiring manual inspection (which, in a dataset
of this scale, would not be feasible). Although the example diagnosis at least mentions
the general antomical area (“ankle and foot radiographs”), there were diagnoses lacking
any anatomical or procedural reference altogether (e.g. “Kontrola nakon mjesec dana, bez
vidljivih promjena”, en. “Regular check-up after a month, no visible changes”; or “Bez
znakova kostane destrukcije”, en. “No signs of bone destruction”).

Given the absence of consistent and complete ground truth annotations, none of the
available data sources (DICOM metadata, image data, or narrative diagnoses) were indi-
vidually suitable for direct use as supervisory labels. Instead, the unsupervised annotation
pipeline was designed to identify and exploit latent patterns in the data to group seman-
tically similar examinations and (potentially) identify outliers and anomalies.

This section is structured as follows. First, the feature extraction strategies applied to
each data source are described in detail. Each data source was processed independently

using type-specific techniques to capture its underlying structure and semantic content.
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The extracted features were then combined and used to group data points based on
similarity, thereby generating pseudo-labels through unsupervised clustering. To assess
the contribution of each data source to the quality of the resulting groups, an extensive
ablation study was conducted, evaluating the effect of including or excluding individual
data sources. Finally, the composition and characteristics of the generated pseudo-labels

are presented.

2.4.1. Feature extraction methods

After preprocessing, each data source underwent feature extraction, with different
feature extraction techniques being applied depending on the data type.

The DICOM tag feature extraction process was performed using two dimen-
sionality reduction techniques: principal component analysis (PCA) [45] and autoencoders
(AEs) [44, 46]. For each method, an extensive grid search was conducted over their re-
spective hyperparameters. Multiple AE configurations were trained, varying in learning
rate, encoder—decoder architecture, and bottleneck dimensionality. All AE encoders com-
prised three fully connected (dense) layers with progressively decreasing dimensionality,
each followed by a rectified linear unit (ReLU) activation [70]. The encoder output was
passed through a central bottleneck layer, which served as the low-dimensional latent
representation. The decoder mirrored the encoder layout. Model training was performed
using MSE (Equation El]) as the loss function, Adam [71] as the optimiser, a mini-batch
size of 32, and a maximum of 100 epochs. An early stopping criterion was applied, halting
the training process if validation loss failed to improve for 5 consecutive epochs. Hyper-
parameter value ranges used in the grid search are summarised in Table @ Although
a wide range of learning rates was initially explored, empirical results from the first few
hundred trained models indicated that 1072 and 1073 yielded lower reconstruction error.

To extract features from image data, several deep learning architectures widely
used in medical image analysis were evaluated [72]. The candidate models included a
convolutional autoencoder (CAE), the original U-Net [[73], the recurrent residual U-Net
(R2U-Net)[[74], and an attention-enhanced U-Net (AttU-Net)[75]. These architectures
were selected for their effectiveness in learning spatially coherent representations and their

proven performance across various medical imaging tasks [72]. All models were trained
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using mini-batches of size 32, and validation was performed two times per epoch to monitor
convergence given the large volume of image data. The Adam [71] optimiser was used
alongside MSE as the loss function. Models were trained for a maximum of 40 epochs,
with early stopping applied if the validation loss did not improve over 5 consecutive
validation steps. To see whether any further dimensionality reduction could improve
clustering results, PCA was applied with an extensive grid search of hyperparameters, as
shown in Table @

The U-Net, R2U-Net, and AttU-Net implementations followed the original architec-
tural specifications as described in their respective publications (73, 4, 75]. The convo-
lutional autoencoder architecture was designed to mirror the encoder layout of U-Net.
Specifically, the CAE encoder consisted of four convolutional layers with 3 x 3 kernels,
each followed by a ReLU activation and 2 x 2 max pooling. These layers comprised
64, 128, 256, and 512 filters, respectively. A final convolutional layer with 1,024 filters
formed the bottleneck representation, which was then passed to a decoder mirroring the
encoder’s structure. For all architectures, the extracted image features were flattened
prior to clustering.

To extract feature vectors from narrative diagnosis texts, three commonly
used text embedding methods were evaluated: Bag of Words (BoW) [[76], Term Frequency—
Inverse Document Frequency (TF-IDF) [77], and Doc2Vec [78]. These methods were se-
lected based on their popularity and proven effectiveness in prior surveys focused on text
representation in clinical contexts [79, 80, 81, 82]. Each approach was applied to the cor-
pus of narrative diagnoses present in the training subset of the dataset. Hyperparameter
value ranges for all tested methods are listed in Table @ Each embedding method has
its own benefits and caveats. BoW offers a simple and computationally efficient represen-
tation but fails to account for word frequency or contextual semantics. TF-IDF improves
on BoW by weighting terms according to their relative frequency, thus reducing the in-
fluence of commonly used words, though it still lacks a mechanism for capturing word
order or context. Doc2Vec, a neural embedding method, addresses these limitations by
learning fixed-length vector representations of entire documents (in this case, diagnostic
texts). Two variants of Doc2Vec were tested: Paragraph Vector-Distributed Memory
(PV-DM), which predicts a target word based on its context and the paragraph vector;
and Paragraph Vector-Distributed Bag of Words (PV-DBOW), which predicts randomly
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sampled words in the paragraph using only the paragraph vector. The dimensionality of
the output embeddings was controlled via the embedding size hyperparameter. In PV-
DM, the input includes both the paragraph vector and a context window of words, while

PV-DBOW relies solely on the paragraph vector.

2.4.2. Grouping

Clustering was conducted independently on each of the three data sources (DICOM
tags, images, and textual diagnosis). In each case, the raw input data were first pre-
processed and transformed using the feature extraction methods described previously.
The resulting feature embeddings served as input to clustering algorithms: k-means [86]
and k-medoids [87]. The difference between these two algorithms is that k-means uses the
mean of points in a cluster as the centroid, which may or may not correspond to an actual
data point and makes it sensitive to outliers. In contrast, k-medoids selects a medoid,
an actual data point with the lowest total distance to others in the cluster, making it
more robust to outliers. An intuitive analogy to conceptually comparing k-means and
k-medoids is to consider the difference of mean versus median value. K-means finds the
mean value (centroid) in multidimensional space, while the goal of k-medoids is to find
the median value (medoid). To compute centroids, k-means always uses the Euclidean
(L2) distance, while k-medoids can compute medoids based on different distance metrics.
In this case, for k-medoids, Euclidean and cosine distance metrics were tested to account

for potential differences in the structure of the feature space.

Clustering was performed for x € {5, 10, 15, 20, 25, 30,40, 50, 75, 100, 150}; while higher
values of xk were initially considered, they were ultimately excluded due to issues encoun-
tered during experimentation, including a large number of empty clusters, significant
inter-cluster overlap, or other signs of overfitting. As clustering outcomes can be sensitive
to the initialisation of centroids or medoids, robustness was assessed by performing 11
independent runs of the best-performing configurations. No statistically significant vari-
ation was observed across these runs, suggesting stability of the clustering solutions with

respect to initialisation.
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Evaluation metrics

To evaluate the quality of the resulting cluster assignments, particular emphasis was
placed on assessing cluster homogeneity with respect to imaging modality and body region.
Accordingly, homogeneity score (HS) and normalised mutual information (NMI) were
computed based on the Modality and BodyPartExamined DICOM tags. Both metrics
range from 0.00 to 1.00, where higher values indicate greater alignment between the cluster
assignments and the reference labels. Let y,, denote the ground truth imaging modality, ¢
the predicted cluster label, I(yys,y) the mutual information between the two, and H (yar)
and H(7) their respective entropies. The NMI score with respect to modality, denoted
NMIy;, is defined as [88]:

Q'I(yM,Z?)
H(yn)+ H(y)

NMIy = (2.6)

I(yar, y) can be calculated as I(yar, 9) = H(yar) — H(yar|9), where H(yp|9) is the condi-
tional entropy. HS regarding modality (HS)y;) can be calculated as:

H(?JM’?J)

HSy=1- .
M H(yM)

(2.7)
It is important to note that the denominator in the homogeneity score calculation for
modality (HS)) is guaranteed to be non-zero, as the label distribution in the observed
subset is not perfectly balanced (i.e. the subset is not monotonically pure). The same
procedure applies when computing NMI and HS for the body part examined (NMIp
and HSp), respectively. In this case, yys is replaced with yp, corresponding to the
BodyPartExamined tag. The predicted cluster assignments ¢ remain unchanged across all

calculations.

Finally, the overall clustering quality was summarised by computing the harmonic
mean of the four evaluation metrics: HSg, HSy;, NMIg, and NM1I,;. This aggregate
score (denoted as S), provides a single, comprehensive measure of clustering performance
that accounts for both modality- and anatomy-based homogeneity and mutual informa-
tion.

In addition to cluster homogeneity with respect to imaging modality and anatomical

region, high-quality clustering should also reflect semantic and visual coherence across
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Figure 2.9: Evaluation pipeline for all three data sources []

other modalities — specifically, the image content and associated narrative diagnoses. It is
expected that data points grouped within the same cluster will exhibit visual similarity in
terms of image structure and semantic similarity in their textual diagnoses. To evaluate
this, cosine distances were computed for both image and diagnosis embeddings. The
procedure for evaluating intra-cluster image similarity is as follows. Let k data points be
assigned to a cluster indexed by ¢, where 0 < ¢ < k. For each distinct pair of data points
(,7) such that i # j and both i,j € ¢, let :r;([i) and svgj) denote the corresponding image
instances, and f (chi)), f (xy )) their respective feature embeddings. The cosine distance d

between the two embeddings is given by:

(NT ()
d(x(i),x(j))zl— f(xf ) f(xl) .
o LF - L))

The possible number of pairs in cluster ¢ is u(® = 4(k —1). To find the dissimilarity of

images in cluster D§c), calculate the mean cosine distance of all pairs from cluster c:

(2.8)

k—1 k-1

¢ 1
D( w© d( x[ ,x§ ))a (2.9)
=0 j=i+1
and finally, overall image similarities across all clusters were computed as D; = Z” 'D C).

The same process was applied to get diagnoses similarities Dp from diagnoses embed-
dings. Ideally, D; and Dp should be close to 0, i.e. the distances between embeddings in
the same cluster should be as small as possible, which indicates that diagnoses / images

in the same cluster exhibit clear similarities.
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Evaluation process

To identify the most informative data source embeddings, clustering performance was
compared across all feature extractors and data modalities using the validation set. The
overall evaluation workflow is illustrated in Figure @ To determine the optimal number
of clusters for each data source, the elbow method [89] was applied by analysing the sum
of squared distances from each data point to its nearest cluster centre. Elbow points were
detected using the Kneedle algorithm proposed by Satopaa et al. [90]. Having too few
clusters could result in a heterogeneous grouping, while having too many clusters might
lead to groups that are homogeneous but show evidence of incompleteness.

Different sources of data were evaluated using different metrics, as illustrated in Fig-
ure @ The best feature extractors for images and textual diagnoses were chosen based
on the highest S score. These feature extractors were later used to evaluate the efficiency
of DICOM tag clustering, i.e. to compute image (D) and diagnosis (Dp) (dis)similarities.
Finally, to rank the efficiency of DICOM tag feature extraction models, D,.,.. was calcu-
lated as the harmonic mean of D; and Dp. The primary objective is to create clusters that
exhibit the highest degree of data similarity. Therefore, the model obtaining the lowest
Dyore value at the elbow would be selected as the best DICOM tag feature extraction

model.

Feature fusion

After selecting the optimal feature extractor for each data source, the resulting em-
beddings were fused using three distinct strategies: (i) direct concatenation of raw embed-
dings, (ii) concatenation of cluster-space distances, and (iii) concatenation of soft cluster
probability assignments. In each of the approaches, the resulting vector of a single data
point i was flat, and in the format of f(2()) = [f(x%)), f(atgf)), f(:tgl)) T, where f(xg)) is
the diagnosis embedding, f (:zrgf)) is the DICOM tags embedding, and f (xgz)) is the image
embedding.

The first fusion strategy involved straightforward concatenation of the raw embeddings
from the three sources into a single feature vector. This simple approach was also used
in related work, such as [91], where embeddings from tabular data and clinical text were

combined to form a unified representation.
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The second strategy, henceforth referred to as clusterdists, used distances in cluster
space as feature representations. During clustering, distances to each of the cluster centres
are computed, and then the point is assigned to the nearest cluster. Embeddings carrying
similar information should also have similar distances to each of the cluster centres. Hence,
instead of using the extracted embeddings, the computed distances to each cluster centre
were used and subsequently concatenated together. All distances were normalised to fit
the range [0.00,1.00] before concatenation.

The third strategy, denoted as clusterprobs, extended the clusterdists approach by
converting distances to soft cluster assignment probabilities using a softmax function.

For a given data point 4, the probability of belonging to cluster ¢ is computed as:

(2.10)

where £ is the number of clusters, and d. and d; are distances to c-th and j-th cluster of
the respective source embeddings.

Alternative fusion strategies were considered, such as those involving attention-based
joint encoders or contrastive pretraining frameworks as proposed by Radford et al. [92].
However, these methods were ultimately excluded due to the computational demands
imposed by the scale of the dataset and hardware limitations. At the time, the available
hardware included a server with 2x AMD EPYC 7702 64-Core Processor and 1 terabyte
of RAM memory, but with limited GPU power. While two Gigabyte GeForce RTX 3090
GPUs were present, GPU-based workloads were limited due to stability and memory
allocation issues. As a result, the computational decisions in the experimental setup were

made to optimise performance within the available resources.

2.4.3. Results

Each of the described feature extractors were tested across multiple hyperparameter
values with an extensive ablation study. The results are presented here, with the first
subsection presenting the performance of each feature extractor for each data type. This
is followed by a subsection detailing a thorough ablation study, where all possible combi-
nations of feature extractors were tested and evaluated, to compare how the features of

each data source contributed towards the final pseudo-labels.
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Optimal embeddings

A total of ten models were trained for feature extraction across the three data modal-
ities: four models for narrative diagnoses (TF-IDF, BoW, PV-DM, PV-DBOW), four
models for image data (CAE, U-Net, AttU-Net, R2U-Net), and two models for DICOM
metadata (AE and PCA). The embeddings produced by each extractor were evaluated
across all tested hyperparameter configurations and clustering strategies. The optimal
hyperparameter values for each of the four model categories are summarised in Table @,
while the clustering performance of the best-performing models is reported in Table @

Results show that CAE was the best-performing image feature extractor. Compared
to U-Net, AttU-Net, and R2U-Net, CAE achieved superior cluster homogeneity with
respect to both imaging modality and examined body part, yielding the highest scores
across all four evaluation metrics (H.Sy, HSp, NM Iy, and N M Ig) on the validation set.
Consequently, it also achieved the highest aggregate score S. Among the feature extractors
for narrative diagnoses, the PV-DBOW model produced the best overall performance. It
attained the highest HS);, HSg, and NM1I,, scores, while its N M Ig was slightly lower
than that of TF-IDF. Nonetheless, the aggregate S score confirmed PV-DBOW as the
most effective text embedding method in this context.

To calculate image (D;) and diagnoses (Dp) distances and the corresponding Do for
DICOM tag evaluation, the best-performing feature extractors from images and diagnoses
were used, i.e. CAE and PV-DBOW. As it can be seen in Table @, the best image and
diagnosis similarity on the validation subset was achieved using AE.

A more detailed analysis of the clustering performance for the best models is provided
in Figure . Specifically, Figure a shows CAE performance for image embeddings,
Figure b shows PV-DBOW results for textual diagnoses, and Figure c shows the
AE performance for DICOM metadata. From the shown metrics, it is evident that the

models perform nearly the same on the validation and test set.

Source fusion ablation study

Based on the obtained results, the selected models for feature fusion were: AE for
DICOM tags, CAE for images and PV-DBOW for narrative diagnoses. The next goal

was to thoroughly investigate the relationship between clustering results and embedding
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Figure 2.10: Diagrams showing individual evaluation metrics values on validation (top)
and test (bottom) subsets, when clustering optimal image embeddings (CAE, subfigure
a), optimal diagnoses embeddings (PV-DBOW, subfigure b) and DICOM tag embeddings
(AE, subfigure c) [@]
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sources included in clustering. To this end, a comprehensive hyperparameter analysis was
conducted using the validation set, leading to the selection of the optimal hyperparameter
values. These values are shown in Table @, while the corresponding performance on the
validation set is presented in Table @.The primary criterion for selecting the optimal
hyperparameters was the aggregate score S, while the metric D,.,.. was also considered
when the S score alone was insufficient to distinguish between the best results.

DICOM tags and images ([AE]-[CAE]): When examining the combination of DI-
COM tags and images, the results in Table @ compared to those in Table @ indicate
that combining DICOM tags with image features leads to an improvement in the Dg.y.e
relative to using AE alone. Furthermore, all three fusion methods (embeddings, cluster-
dists, and clusterprobs) achieved higher S scores compared to using image features alone,
demonstrating improved modality and anatomical region homogeneity.

Diagnoses and DICOM tags ([PV-DBOW]-[AE]): Following a similar pattern to
[AE]-[CAE], combining DICOM tags with diagnoses results in an improvement in the
Dyeore compared to using DICOM tags alone. When applying the embeddings combination
method, the S score is higher than that obtained using diagnoses alone (and represents the
highest overall score on the validation subset), with a noticable improvement, particularly
in HSp and HS);. Moreover, when employing the clusterdists and clusterprobs methods,
the combined approach shows a notable increase in modality homogeneity compared to
using diagnosis embeddings alone. However, a trade-off is observed in terms of examined
body part homogeneity, as NMIg and HSpg are lower in the clusterdists and clusterprobs
approaches compared to the HSp and N M Iz obtained by diagnoses alone.

Diagnoses and images ([PV-DBOW]-[CAE]): Combining images with diagnoses,
particularly using the embeddings method, results in the most accurate grouping by ex-
amined body part, yielding the highest overall NM Iz and HSp. The S score obtained
through this combination is higher than the S scores achieved when using images and
diagnoses independently.

Diagnoses, DICOM tags, and images ([PV-DBOW]|-[AE]-[CAE]): Finally, when
all three data sources are combined using the embeddings method, the highest overall S
score is achieved. This score matches the S score obtained using the [PV-DBOW]-[AE]
combination (diagnoses and DICOM tags) with the embeddings method; however, there

is a noticeable difference in the D,.,.. between them. Alternatively, when all three data
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Figure 2.11: Grouping quality regarding modality and examined body part, when group-
ing by [PV-DBOW]-[AE]-[CAE] using clusterprobs (subfigure a) and embeddings (subfig-
ure b) combine methods [41].

sources are combined using the clusterprobs method, a perfect HS), score is obtained.
Figure a and Figure b illustrate the variation in grouping quality achieved through
these two combination methods (clusterprobs versus embeddings). In these figures, each
bar represents the mixture ratio within a specific cluster, where the images on top show
how homogeneous the clusters are when observing the body part (i.e. how mixed the
clusters are with regard to anatomical region), while the bottom images show the dif-
ferent modalities in each cluster (i.e. how mixed the clusters are with regard to imaging
modality).

Finally, the performance of all individual data sources, as well as all feature combina-

tions and combination methods on the test subset, is presented in Table @

2.4.4. Discussion

As shown in Table @, among the three data sources, image clustering using CAE
exhibited the poorest performance with respect to both modality and examined body

part homogeneity. Upon visual inspection of the resulting groups, it was observed that
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although images within the same cluster can appear visually similar, they often depict
different body regions captured by the same modality or vice-versa, the same body region
captured using different modalities. Furthermore, variations in windowing parameters
can significantly affect the visual appearance of images, contributing to inconsistencies
in clustering. An illustrative example is shown in cluster 2 (Figure ), where all
images represent parts of the abdomen but are clearly visually different. These suggests
that images alone do not provide sufficient information for reliable semantic clustering.
However, as indicated in Table @, integrating image data into the clustering process
reduces the D,.,.. and enhances the visual similarity within clusters. Thus, while images
alone may lack the necessary semantic information for optimal grouping, their inclusion
contributes to improved cluster representation when combined with other data sources.

Diagnoses (PV-DBOW) demonstrated good performance in terms of anatomical re-
gion grouping. This outcome can be attributed to the fact that the content diagnoses
often explicitly references the anatomical region being examined, typically by describing
pathologies (illnesses or injuries) or procedures affecting a specific body part. As shown in
Table @, when diagnoses are integrated with other data sources, the quality of grouping
by examined body part shows a noticeable improvement. Therefore, it can be inferred
that the inclusion of narrative diagnoses enhances anatomical region homogeneity within
clusters.

Wherever DICOM tags (AE) were used, a noticeable improvement in modality homo-
geneity was observed in Table @ When combined with DICOM tags, image embeddings
demonstrated superior NM Iy, and HS); scores compared to using images alone. A sim-
ilar trend was observed for diagnoses, where the inclusion of DICOM tags resulted in
an increase in HSy;. These findings indicate that DICOM tags contribute to improved
modality homogeneity. This can be attributed to the structure of the DICOM stan-
dard [42], as the DICOM tags frequently contain modality-specific values.

Three different feature fusion approaches were evaluated, each demonstrating satis-
factory performance. Two alternative methods for feature fusion, namely clusterprobs
and clusterdists, were introduced and tested. Compared to the conventional embed-
dings approach, both clusterprobs and clusterdists exhibited a tendency to prioritise high
modality homogeneity. In particular, three model configurations presented in Table @
([PV-DBOWI-[AE]-[CAE] clusterprobs, |[AE]-[CAE] clusterprobs, and [PV-DBOW]-[AE]
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clusterprobs) achieved perfect scores for HS);. Nevertheless, the embeddings approach
consistently outperformed in terms of anatomical region homogeneity. This difference is
especially evident in Figure a and Figure b, where the former prioritises modality
homogeneity, while the latter demonstrates better grouping by anatomical region.

As is visible in Table @, some models achieved comparable S scores. However, among
these models, there is a noticeable difference in D,.,.., where a lower D,.,,.. indicates that
the clusters are more visually homogeneous and contain diagnoses with higher semantic
similarity (which is considered favourable). Therefore, in this context, the approach that
combines all three data sources using the embeddings method can be regarded as the most
effective for achieving optimal grouping with respect to modality, examined body part,

and the similarity of both images and diagnoses.

2.5. Pseudo-labels and the annotated dataset

From the original dataset (described in section ), a total of 1,337,926 data points
that satisfied the specified criteria related to image quality, diagnosis completeness, and
DICOM tag consistency were extracted. The selected labelling algorithm, illustrated in
Figure , was used to cluster this expanded set of data points into 50 groups, whose sizes
are shown in . As it can be seen in Figure , the resulting clusters exhibited variable
sizes, with the largest containing 341,083 data points, and the smallest consisting of only
6 data points. Small clusters of this nature can be considered as outliers or anomalies,
indicating data points that do not fit into the patterns present in larger groups.

The overall quality of the obtained clusters is shown in Figure , which demonstrates
that the grouping quality remains consistent with that observed in Figure b. This
consistency indicates that incorporating previously unseen data did not significantly affect
the quality of the clusters. Groups which were heterogeneous on the smaller set (16, 32,
35 and 39) remained the same after labelling the larger set, and the same applies to
homogeneous clusters such as 2, 3, 8, 25, 43 and 44. Random instances of images from
these (and other) clusters were provided in Figure .

Next, considering the quality of the obtained groups presented in Figure , it is
evident that most clusters exhibit a high degree of homogeneity with respect to imaging

modality. In contrast, anatomical region homogeneity reveals that neighbouring anatom-
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Figure 2.12: Randomly sampled images from twelve selected clusters. Cluster indices
are indicated to the left of each row [41].
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Figure 2.13: The fully unsupervised labelling algorithm. From an example data point,
each data source was processed independently and then fused together to form a single
embedding. Afterwards, this embedding was used to assign this data point to a group
[1].
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Figure 2.14: Sizes of obtained groups in the pseudo-labelled RadiologyNET dataset [41].

ical areas are frequently grouped together. This phenomenon is particularly noticeable
in the torso region, where discerning between the abdomen, gastrointestinal tract, and
pelvis can be challenging (e.g. cluster 33), as well as between the abdomen and chest
(e.g. cluster 2). Such groupings can be attributed to the difficulty in distinguishing pre-
cise anatomical boundaries within body regions, as it is not unusual that a single study
contains multiple parts of the torso — for example, an MR image capturing both the ab-
domen and the pelvis. A similar pattern is observed in spine groupings, where different
spinal segments are often clustered together (e.g. clusters 30 and 37). Additionally, im-
ages of body extremities (e.g. hands and feet) were frequently grouped together (cluster
49), despite their visual dissimilarity and differences in anatomical location. On the other
hand, clusters 16, 32, 35 and 39 displayed evidence of containing outliers, as they included

images depicting anatomically unrelated regions (e.g. leg, abdomen, head, urinary tract).
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Figure 2.15: Grouping quality regarding modality and examined body part, for the
labelled RadiologyNET dataset. The first image shows how homogeneous the clusters are
when observing the body part, while the second one shows the different modalities in each
cluster [41].
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Such heterogeneity suggests that these clusters may contain anomalies or cases where the

anatomical or diagnostic context is ambiguous.
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Figure 2.16: t-SNE visualisation of the generated embeddings, showing clustering pat-
terns by imaging modality (top), examined body part (centre), and generated pseudo-
labels (bottom).

The discussed clustering patterns and tendencies can also be seen in the t-SNE visu-

alisation shown in Figure , which depicts the embeddings with respect to modality,
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examined body part, and the generated pseudo-labels.
After the pseudo-labels were generated, they were used for supervised pretraining of

RadiologyNET foundation models which is described in the following chapter.
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3. Chapter

RADIOLOGYNET PRETRAINING
AND EXPERIMENTAL DESIGN

Transfer learning, in the context of deep learning, leverages knowledge from models
pretrained on large datasets to improve training progress and stability on downstream
tasks. This process is particularly valuable in medical imaging, where obtaining large
labelled datasets can be challenging, and therefore, transferring knowledge from previously
trained models can serve as a good starting point for downstream tasks (that are usually
resource-limited).

The process of TL is shown in Figure El! In the context of TL, pretraining refers to
the initial phase of model training where the network learns a set of feature representa-
tions from a large (ideally diverse) dataset. After pretraining the models, the next step is
to evaluate their effectiveness in TL by testing their performance on various downstream
tasks. In medical TL, these downstream tasks vary in complexity and may involve classi-
fication, regression, or segmentation, depending on the nature of the medical images and

the clinical questions being asked.

— Classification. The objective is to assign a specific label to an input image based on
its visual features. In medical imaging, classification tasks often involve identifying

the presence or absence of a specific pathology.

— Binary Classification. The model predicts one of two possible classes, such

as “disease present” or “disease absent”. This type of classification is particu-
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Figure 3.1: The general process of pretraining, transfer learning and fine-tuning on
downstream tasks.

larly useful for diagnostic tasks where the goal is to determine the presence of

a specific condition (e.g. detecting osteopenia in wrist X-ray images).

— Multiclass Classification. The model assigns an image to one of several
possible classes. This approach is useful when differentiating between multiple
conditions or subtypes of a disease (e.g. classifying different types of brain

tumours on MR images).

— Regression. In regression tasks, the model predicts a continuous numerical value
rather than a discrete label. An example in medical imaging can include estimating

the skeletal age based on an X-ray image.
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— Segmentation. The goal is to partition an image into meaningful regions, usually
by labelling each pixel (or voxel, if working with three-dimensional volumes) accord-
ing to the anatomical structure or pathological area it represents. In radiological
applications, segmentation is commonly used to distinguish between organs, lesions,
or tumours (e.g. segmenting the liver from an abdominal MR image, or identifying

cancerous cells in a CT image).

The first part of this chapter describes the process of pretraining foundation models
on the RadiologyNET dataset. After describing the process of pretraining, the process of

TL and fine-tuning is detailed, as is the performed statistical analysis.

3.1. Model Pretraining

This section details the process of pretraining RadiologyNET foundation models and is
structured as follows. Firstly, the dataset preparation process for pretraining is described,
including image export and data filtering. The next subsections outlines the pretraining
setup, covering the selection of model architectures, hyperparameter optimisation, and
the computational environment (i.e. the available hardware). In this section, it is also
described that models were pretrained on two distinct task types: (i) classification and (ii)
reconstruction. Additionally, pretraining was conducted on different subsets of the Radi-
ologyNET dataset: (i) the primary models were pretrained on the entire multi-modality
dataset, while (ii) several models were also pretrained on single-modality data (e.g. CT-

only pretrained models). Finally, the use of ImageNet-pretrained models is detailed.

3.1.1. Preparing the dataset for pretraining

The dataset used in this phase is the one annotated and grouped as described in
the previous chapter, where an unsupervised labelling algorithm was built and used to
generate pseudo-labels. These pseudo-labels, presented in Figures and , repre-
sent distinct groups of semantically similar data points, forming the basis for supervised
pretraining tasks. Some of the clusters obtained in the automated annotation process
exhibited high heterogeneity, and any groups where the entropy of obtained labels ex-

ceeded an empirically determined threshold were excluded from further use. As a result,
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14 clusters were removed from the dataset, leaving a total of 36 pseudo-labels suitable for

the pretraining task.
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Figure 3.2: Cluster (pseudo-class) distribution in the dataset used for pretraining.

To prepare data for pretraining of RadiologyNET foundation models, images were
exported to an 8-bit format, to match ImageNet’s colour depth. The windowing process
used for this 8-bit conversion follows the same methodology described in Section
It is important to note that the data points shown in Figure represent individual
DICOM files. However, a single data point can contain multiple images, as a single
DICOM file may hold several slices or frames (e.g. CT images can be three-dimensional
volumes). Consequently, multiple PNG images can be extracted from each DICOM file.
Processing all valid data points led to a total of 1,902,414 PNG images, with sizes of each
group shown in Figure @

The distribution of medical imaging modalities present in the pretraining dataset is
shown in Figure @a. The dataset encompasses a wide range of anatomical regions and
body parts, including hands, ankles, the abdomen, and the brain. Figure @b presents the
distribution of the BodyPartExamined attribute, as recorded in the DICOM file headers.
Although this attribute is manually entered by physicians and is therefore susceptible to
errors, it can still offer insight into the anatomical diversity of the dataset. As depicted in
Figure @, the pretraining dataset consisted mostly of chest, abdominal and head images,
captured mostly using MR and CT.
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Figure 3.3: The overall distribution of different imaging modalities (a) and anatomical
regions (b) found in the dataset used for pretraining.

3.1.2. Pretraining setup

A variety of neural network architectures were employed for pretraining, chosen based
on their previous proven effectiveness in various medical imaging tasks [4, B, 55, 93]. The
selected architectures included CNNs and segmentation networks. A comprehensive list

of pretrained models used in the experiments is presented in Table El]

The primary objective of the pretraining phase was to train models to predict one of the
36 classes shown in Figure @ These classes correspond to the pseudo-labels obtained
through unsupervised annotation and represent semantically similar groups of medical
imaging data. An exception to this classification task was the U-Net architecture which
was used for segmentation tasks, and was therefore pretrained as a reconstruction-based
task. In this type of pretraining, the aim was to reconstruct the initial (input) image, with
the aim that features learned during reconstruction (such as textures and patterns) would
help in downstream segmentation tasks. To summarise, all models provided in Table Ell
were pretrained as classification tasks using the generated pseudo-labels, except for

U-Net, which was pretrained as a reconstruction task.

The pretraining process incorporated data augmentation to enhance model gener-
alisation. Augmentation techniques included rotation, scaling, flipping, and intensity
variation. Due to different group sizes within the dataset (which is visible in Figure @),
oversampling techniques were applied to mitigate the potential impact of class imbalance.

Learning rates were selected based on the optimal values reported in the original studies
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Table 3.1: Overview of neural network architectures pretrained in this research.

Architecture Pretrained on Overview
ResNet18 Multi-modality,
CR-only .
— . Known for robust feature extraction
Multi-modality, . . .
ResNet34 * using residual connections.
CR-only Widel din i ing [B(]
NMultmodality, idely used in image processing [30].
ResNetb0 CT-only,
MR-only.
EfficientNetB3 lé[Pliizrlnodahty, Scales depth, width, and resolution
Y efficiently. Achieves high accuracy
EfficientNet B4 Multi-modality with few parameters [32].
Classic deep convolutional network
VGG16 Multi-modality Wlt}.l uniform lz'xyers.. Widely used
for image classification,
feature extraction [51], etc.
IncentionVa Multi-modality, Incorporates multi-scale feature
pLion CR-only extraction using inception modules [50].
Multi-modality, Uses dense connectivity
DenseNet121 CR-only for improved gradient flow [31].
MobileNetV3Small Multi-modality, Optimised for mobile and embedded
MR-only .. .. . .
' vision applications. Lightweight and
. . efficient thanks to depth-wise
. Multi-modality, .
MobileNetV3Large CR-only separable convolution [52].
P . Designed for medical image segmentation.
U-Net Multi-modality, Uses an encoder-decoder architecture

ImageNet

with skip connections [73].
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of each architecture [30, 81, B2, 50, b1, 52, [73]. Early stopping was implemented to stop
training when the validation loss did not improve for 10 epochs, with validation being
performed after every 5% of training data was processed (meaning that validation was
performed 20 times per epoch).

The pretraining process was conducted on a server equipped with four NVIDIA RTX
A6000 GPUs, each with 48 GB of VRAM, and a system with 512 GB of CPU RAM. Due
to the substantial size of the RadiologyNET dataset and the complexity of the models,
pretraining typically required approximately seven days per model. Multiple models were

often trained concurrently (in parallel).

3.1.3. Single-modality pretraining

Primary models were pretrained on the entire multi-modality dataset to exploit the
diversity of imaging modalities and anatomical regions. However, to evaluate whether
TL benefits more from diverse data or from modality-specific data, additional models
were pretrained on single-modality subsets. The goal of this experiment was to determine
whether using modality-aligned pretrained models would obtain better performance com-
pared to multi-modality pretrained models, thus testing the importance of pretraining
data diversity. For example, when evaluating downstream tasks involving MR images,
models were pretrained exclusively on MR data, and data from other modalities were
excluded (in this example, only images captured in the same modality as those shown in
Figure @c were used).

The choice of modality for each architecture was guided by the specific downstream
tasks, which will be described in the following chapter. Consequently, not all architectures
were pretrained for each single modality; and the architectures that were pretrained on
single-modality data are specified in Table El] and emphasised in different colours. For
single-modality pretraining, only images from the selected modality were used, while data

from other modalities were excluded.

3.1.4. ImagelNet pretraining

As is visible in Table El!, U-Net was (in addition to being pretrained on the Radi-

ologyNET dataset) also pretrained on ImageNet, due to the lack of publicly available
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ImageNet-pretrained weights for U-Net. For this reason, the entire ImageNet dataset
was downloaded and a pretraining pipeline built for U-Net ImageNet pretraining. This
ImageNet-pretrained U-Net was pretrained as a reconstruction task.

For the remaining architectures shown in Table @, ImageNet-pretrained weights were
directly obtained from the official PyTorch repositories. These weights were selected as

they represent the standard initialisation used in previous studies.

3.2. Transfer Learning and Fine-Tuning

After selecting the downstream tasks, three approaches were tested to evaluate model
performance: (i) training from randomly initialised weights, (ii) fine-tuning on ImageNet,
and (iii) fine-tuning on RadiologyNET. For simplicity, any model trained from scratch
(i.e. with randomly initialised weights) will henceforth be referred to as Baseline. The
experimental setup was designed to closely follow the configurations proposed in previous
studies for similar tasks, including model architecture, optimiser, and loss functions. Ad-
ditionally, task-specific adjustments (e.g. incorporating auxiliary information when/where
relevant) were implemented to ensure consistent evaluation across approaches.

It is important to note that the primary aim of this research was not to achieve
state-of-the-art performance, but to systematically compare the effectiveness of different
TL strategies and pretrained models, while making use of network architectures that
performed well on the tasks in previous studies.

All models were trained in equal conditions, with the training process running for a
maximum of 200 epochs, with an early stopping criterion applied if the validation perfor-
mance did not improve over 10 consecutive epochs. During training, all model parameters
were unfrozen and subject to fine-tuning. Although partial (un)freezing of model param-
eters was considered and tested, the results did not yield any improvements. Regarding
the train-valid-test splits, some publicly available datasets already have a dedicated train,
validation and test subsets, and if those were available, then those existing subsets were
used. Otherwise, if pre-determined subset splits were unavailable, the train, validation
and test subsets were randomly split in a 75% : 12.5% : 12.5% ratio.

To account for variability in model optimisation, each model was trained five times

using learning rates logarithmically sampled from the range [1072,107°], with a base-
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10 step size. Initially, higher (> 0.1) and lower (< 1079) learning rates were also tested.
However, they were later excluded due to consistently lower performance across all models
and challenges. Models trained with lower learning rates often failed to converge within
the specified number of epochs, while those with higher learning rates demonstrated worse

overall performance.

After training multiple models for each downstream challenge, hyperparameter selec-
tion was guided by their performance on the validation set. Specifically, the optimal
hyperparameter configuration for each model architecture was identified as the one that
achieved the highest evaluation metric on the validation subset. Once the best-performing
configuration was selected, the corresponding model using those hyperparameters was sub-
sequently evaluated on the test set. Final statistical analyses were conducted using these
test set results, meaning that all models were evaluated under their most effective settings

on unseen data.

Downstream tasks were evaluated on the same machine used to build the unsupervised
pipeline, which was previously described in Section . However, this time the server
was upgraded with 2x NVIDIA L40S (which was shortly thereafter expanded to 4x L40S
GPUs), each with 48 gigabytes of VRAM memory. Completing all processes required for
a single challenge took several days, which includes TL from three approaches, on multiple
learning rates and neural network topologies, in five independent runs. The total time
varied between architectures, with smaller networks requiring significantly less time than

larger neural networks.

3.3. Metrics and Statistical Analysis

In classification machine learning tasks, the predictions can be sorted into the following
categories: true positive (TP), true negative (TN), false positive (FP) and false negative
(FN). True positives and true negatives together represent the total number of correct
predictions, while false positives and false negatives add up to the total number of incorrect

predictions. The overall accuracy of a classification tasks is therefore calculated as:

TP+TN
TP+TN+ FP+ FN

(3.1)

accuracy =
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In addition to the overall accuracy of a model, it is possible to calculate its precision,
which can be considered equivalent to answering of all instances predicted as positive,
how many were actually positive?; and recall, i.e. of all actually positive examples, how

many were predicted as positive?. Precision and recall are formulated as:

sion = ——— =" (3.2)
pT@C@SZOn—TP+FP, reca _TP+FN .

Precision and recall are frequently used metrics in machine learning classification tasks.
They are also often combined into a single metric: the Fl-score. The F1-score is calculated

as the harmonic mean of precision and recall:

2 - precision - recall 2-TP
precision +recall ~ 2-TP+ FP+ FN'

Fl-score = (3.3)

Similarly, semantic segmentation tasks can be considered as pizel-wise classification,
i.e. each pixel is attributed to a specific class. Commonly used metrics in segmentation
tasks include Intersection-over-Union (IoU) and Dice-Sgrensen coefficient [94], with the

latter often abbreviated as Dice score. They are formulated as follows.

Dice — 2 - Area of Overlap 2-TP (3.4)
T T Total Area  2-TP+ FP+ FN’ '
ol — Area of Overlap TP (3.5)

Area of Union TP+ FP + FN’

The Dice score is mathematically equivalent to the F1l-score given in Equation @, but
applied on a per-pixel basis in semantic segmentation tasks. All of the previously presented
metrics (accuracy, precision, recall, Fl-score, IoU and Dice) have a maximal score of 1
(indicating perfect overlap with the ground truth), with 0 being the minimal possible

obtainable value (completely incorrect predictions).

Regression-based tasks use different metrics to measure the goodness-of-fit. Commonly
used metrics include Mean Absolute Error (MAE), MSE and Root Mean Squared Error
(RMSE). They are calculated by measuring the distance between the predicted value ¢
and the ground truth y:
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l & X
MAE == |y — iil. (3.6)

i=1

n

1
RMSE = VMSE = | = " (yi — i), (3.7)
n
i=1
where n is the number of instances. RMSE is the square root of MSE and penalises larger

errors more than MAE.

For the segmentation task, IoU and the Dice score were calculated to measure the
quality of the predicted masks [94]. In the regression task, MAE and RMSE were used
to quantify the difference between predicted and actual values. Classification tasks were
evaluated using Accuracy and Fl-score. Out of the listed metrics, the Dice score was used
for statistical tests on segmentation tasks, MAE was the primary metric for comparison on
regression tasks, and the F1-score was used for statistical comparison of the classification-

based tasks.

To evaluate the statistical significance of the obtained results, a Levene test [95] was
first performed to determine whether significant differences in variance exist. If the test
indicated significant variance differences (p < 0.05), non-parametric Kruskal-Wallis tests
[06] were used to compare the performance across three or more groups. Where the
Kruskal-Wallis test showed potential significant differences, pairwise comparisons were
computed using the Mann-Whitney U (MWU) test, with Bonferroni correction applied to
account for multiple comparisons. If the Levene test did not indicate significant variance
differences, parametric one-way Analysis of Variance (ANOVA) would be performed when
comparing three or more groups. If the ANOVA test identified significant differences, post-
hoc pairwise comparisons would be conducted using the Tukey’s Honestly Significant
Difference test. If the Levene’s test did not indicate significant difference in variance

between two groups, then an Independent instances t-test would be performed.

The initial results revealed no significant performance differences between models pre-
trained on ImageNet and those pretrained on RadiologyNET. To further investigate po-
tential differences in resource efficiency, the codecarbon package [97] was implemented
to measure emissions and energy consumption during training for selected downstream

tasks. As expected, the recorded emissions were strongly correlated with the number of
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training epochs required to reach convergence. Given this direct relationship, the number
of epochs was adopted as an additional evaluation metric and is reported in the results.
More details on the chosen downstream tasks and the obtained results is given in the

following chapter.
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4. Chapter

THE EFFICACY OF RADIOLOGY-
NET FOUNDATION MODELS

Following the pretraining phase, RadiologyNET foundation models were evaluated
across a variety of downstream tasks to evaluate their effectiveness in TL. These datasets
were chosen to ensure diversity in radiological imaging modalities, anatomical regions, and
task types. The selected tasks encompass segmentation, regression, binary classification,
and multiclass classification, covering a wide range of medical imaging problems and
challenges.

This chapter is structured as follows. First, each of the selected downstream tasks
is described, along with the motivation for their inclusion. The results of TL evalua-
tion using RadiologyNET models are then presented, with performance compared against
ImageNet-pretrained and randomly initialised (Baseline) models. Given the minimal per-
formance differences observed, the evaluation was extended to resource-limited conditions
by limiting both training time and training data. Finally, the implications of these find-
ings are discussed. The complete experimental workflow, from the pretraining phase to

transfer learning, fine-tuning, and evaluation, is depicted in Figure [1!

4.1. Chosen Challenges

The selected challenges were: LUng Nodule Analysis Challenge (LUNA) — segmenta-
tion; Radiological Society of North America (RSNA) Pediatric Bone Age Challenge (PBA)
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Figure 4.1: A workflow of the conducted experiment, from the pretraining phase to
transfer-learning, fine-tuning and evaluation on the downstream tasks.
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— regression; GRAZPEDWRI-DX and COVID-19 — binary classification; and Brain Tu-
mor MRI (BTMR) — multiclass classification). The selected challenges covered different
problem types, and as the RadiologyNET dataset is imbalanced with regard to imaging
modalities and anatomical regions (Figure @), the datasets were chosen to include (i)
data which aligns with the pretraining dataset’s domain, and (ii) data which shows less
overlap with the original pretraining dataset. It is important to note that overlap in this
context refers only to domain relevance, and that the RadiologyNET dataset and down-
stream tasks were completely independent, i.e. the patient scans found in downstream
tasks were not a part of the RadiologyNET dataset. All of the downstream models were
trained using the process and hyperparameters previously described in Section
Example images from each dataset can be seen in Figure [1! The list of metrics,
neural network topologies and pretraining domains used for each challenge is given in
Table El] Metrics used for statistical tests are emphasised. The following subsections
detail the selected publicly available datasets and the architectures evaluated for each

dataset.

LUng Nodule Analysis Challenge (LUNA)

The LUng Nodule Analysis Challenge (LUNA) [57] is based on the Lung Image
Database Consortium and Image Database Resource Initiative (LIDC-IDRI) dataset [56],
which contains a total of 1,018 CT lung scans. The challenge comprises two tasks: (i)
nodule classification, where the objective is to determine whether specified locations in a
scan correspond to nodules, and (ii) nodule segmentation, where the goal is to generate a
mask from a full CT scan that marks the nodule regions. For this study, the segmentation
task was selected.

The winning solution for the LUNA segmentation task relied on the U-Net architec-
ture [73]. Motivated by the success of the U-Net-ResNet50 variant [98], which replaces the
encoder branch with ResNet50, this research used several other classification-pretrained
models in a U-Net-like topology to perform nodule segmentation. The selected architec-
tures included VGG16 [51], EfficientNetB4 [32, 99], and the aforementioned ResNet50
[B0]. To preserve U-Net’s signature multi-resolution feature fusion, skip connections were

used to link outputs from intermediate encoder layers to their corresponding decoder
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layers.

The LUNA dataset consists of CT images of the lungs. When comparing this dataset
with the distribution of modalities and anatomical regions present in the RadiologyNET
pretraining dataset (Figure @), it can be observed that there is a significant domain

overlap.

Pediatric Bone Age Challenge (PBA)

The RSNA Pediatric Bone Age dataset [b5] comprises 14,236 hand radiographs labelled
by expert radiologists. The primary objective is to estimate skeletal age (a regression task)
where the predicted output represents bone age expressed in months.

The winning solution in this challenge used the InceptionV3 architecture [50], where
the network output was concatenated with the sex information also provided in the public
dataset. This concatenated feature vector was then passed through additional dense
layers to produce the final bone age prediction. Motivated by the success of CNNs in this
challenge [55], this study used EfficientNetB3 following a similar approach. Specifically,
the output from EfficientNet B3 was concatenated with the available sex information before
being processed through fully connected layers to predict skeletal age.

It is important to note that this dataset consists exclusively of CR images of hands,
while only 2.65% (Figure @) of the RadiologyNET pretraining dataset is comprised of CR
images (and images of hands are also scarce compared to other body regions). Therefore,
this dataset exhibits limited domain alignment with the pretraining dataset. This could
be a potential challenge for effective TL, as patterns learned during pretraining might not

resemble those found in this downstream task.

GRAZPEDWRI-DX

The GRAZPEDWRI-DX dataset [53] contains 20,327 digital radiographs of wrists, an-
notated by expert radiologists. These annotations are suitable for various detection and
classification tasks; however, for the purposes of this study, the task of osteopenia clas-
sification was selected, defining this challenge as a binary classification problem. Among
the available images, 2,473 are labelled as showing osteopenia. To address the class im-

balance, undersampling of non-osteopenia cases was performed, resulting in a balanced
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dataset of 4,946 images.

Previous studies [93] have demonstrated the effectiveness of various ResNet and DenseNet
architectures in classifying osteopenia using the GRAZPEDWRI-DX dataset. These find-

ings guided the selection of similar CNN-based architectures for the current study.

It is important to note that, similarly to the RSNA Pediatric Bone Age dataset,
GRAZPEDWRI-DX contains only wrist radiographs (CR images). Since wrist radio-
graphs are scarce in the RadiologyNET pretraining dataset (Figure @), this results in
limited domain overlap between the pretraining and downstream datasets, which also

marks this dataset as challenging for RadiologyNET transfer learning.

COVID-19 Radiography Database

The COVID-19 Radiography database [4, b] consists of chest CR images from patients
diagnosed with COVID-19 (3,616 images) alongside normal chest radiographs (10,192 im-
ages). While the dataset also includes images depicting lung opacity (non-COVID-19 lung
infection) and viral pneumonia cases, the current study focuses on the binary classification
task of distinguishing between COVID-19 and normal cases. Due to the inherent class
imbalance between normal and COVID-19 cases, similarly to process performed in the
GRAZPEDWRI-DX dataset, the normal cases were undersampled to match the number
of COVID-19 cases.

The original research [5] evaluated several popular architectures, identifying ResNet18
as one of the best performers, with MobileNetV2 achieving a comparable score (0.01%
difference). As a part of this research, the newer MobileNetV3Large [52] was selected
alongside ResNet18 [30] for evaluation.

Although this dataset primarily comprises radiographs, which are relatively scarce in
the RadiologyNET pretraining dataset, it consists of chest images. Since chest imaging
represents the most prevalent anatomical regions within the RadiologyNET dataset (as
it can be seen in Figure @b), this downstream dataset serves as a midpoint in terms of

domain alignment with the pretraining data.
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Brain Tumor MRI (BTMR)

The Brain Tumor MR Imaging dataset [b4] consists of 7,023 MR images of the brain
where the objective is to correctly identify the tumour type (or its the absence). The
dataset is annotated with four class labels: glioma, meningioma, pituitary, and no tumour,
making this a multiclass classification problem. This dataset originated from a Kaggle
competition, which featured submissions in various popular network topologies, including
MobileNet architectures [52] and ResNet variants [30].

Among the imaging modalities present in the RadiologyNET pretraining dataset, MR
is the second most prevalent (accounting for 22.7% of the data), and images of the head
were among the most common in the pretraining dataset (second only to chest images,
as shown in Figure @b) Therefore, this downstream dataset exhibits a high degree of
domain alignment with the pretraining data. This strong alignment suggests that the
patterns learned during pretraining are likely to contribute positively during fine-tuning

on this dataset.

4.2. Results

The results presented in this section were obtained on the test subsets of each down-
stream task, using models that demonstrated the best performance on the validation
subset of each respective dataset. Validation results are provided in the Appendix, specif-
ically in Tables @, @, @, and @ The only exception is LUNA, where the reported
results (shown in Table @) were computed on the validation subset (as reported in [100]).

The best-performing models for the PBA, GRAZPEDWRI-DX, COVID-19, and BTMR
datasets are summarised in Tables @, @, @, and @, respectively. Each table presents
the average performance across five independent runs, along with the best recorded per-
formance on the test subset. The exact p-values for metric comparisons are reported in
the Appendix, in Table @, while the comparison of training length (in terms of the
number of epochs) is given in Table @

Additionally, examples of model predictions for the BTMR, GRAZPEDWRI-DX,
COVID-19, and PBA datasets are presented in Figure @ The figure shows both con-

sensus cases (where all models correctly predicted the target class) and more challenging
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ResNet50 ResNet50 MobileNetV3Small MobileNetV3Small

(consensus) (consensus)

(disagreement) (disagreement)

BTMR
Type of tumour detected

True Label: meningioma True Label: meningioma True Label: meningioma True Label: meningioma
ImageNet: meningioma (99.89%) ImageNet: no tumour (71.70%) ImageNet: meningioma (47.54%) ImageNet: meningioma (46.52%)
RadiologyNET: meningioma (95.74%) RadiologyNET: meningioma (75.23%) RadiologyNET: meningioma (47.54%) RadiologyNET: no tumour (41.01%)
Baseline: meningioma (99.53%) Baseline: pituitary (45.16%) Baseline: meningioma (47.54%) Baseline: pituitary (36.73%)

ResNet18 ResNet18 MobileNetV3Large MobileNetV3Large

(consensus) (disagreement) (consensus) (disagreement)

CovID19
Is COVID19 present in the image?

True Label: Yes True Label: Yes True Label: Yes True Label: Yes
ImageNet: Yes (73.11%) ImageNet: Yes (73.06%) ImageNet: Yes (73.11%) ImageNet: Yes (73.11%)
RadiologyNET: Yes (73.08%) RadiologyNET: Yes (73.05%) RadiologyNET: Yes (73.11%) RadiologyNET: Yes (73.11%)
Baseline: Yes (73.11%) Baseline: No (51.96%) Baseline: Yes (73.11%) Baseline: No (63.63%)
ResNet34 ResNet34 DenseNet121 DenseNet121

(consensus) (disagreement) (consensus)

(disagreement)

GRAZPEDWRI-DX
Is osteopenia present in the image?

D —— B ———

True Label: Yes True Label: Yes True Label: Yes True Label: No
ImageNet: Yes (73.07%) ImageNet: No (52.15%) ImageNet: Yes (73.10%) ImageNet: Yes (51.78%)
RadiologyNET: Yes (73.07%) RadiologyNET: Yes (55.65%) RadiologyNET: Yes (73.10%) RadiologyNET: No (66.00%)
Baseline: Yes (54.66%) Baseline: Yes (53.20%) Baseline: Yes (73.07%) Baseline: Yes (55.06%)
InceptionV3 InceptionV3 EfficientNetB3 EfficientNetB3
(consensus) (disagreement) (consensus) (disagreement)

L

PBA
Estimated skeletal age in months

True Label: 56.73 True Label: 201.06 True Label: 157.32 True Label: 11.21
ImageNet: 67.36 ImageNet: 64.18 ImageNet: 153.0 ImageNet: 18.21
RadiologyNET: 70.06 RadiologyNET: 211.87 RadiologyNET: 152.67 RadiologyNET: 15.83
Baseline: 71.0 Baseline: 204.22 Baseline: 153.57 Baseline: 148.63

Figure 4.2: Mosaic of example predictions illustrating (dis)agreement among models.
For classification tasks, the predicted class is accompanied by its associated probability
(i.e. softmax output), which implies the models’ confidence in their predictions.
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instances where predictions were inconsistent or incorrect (the models had different pre-

dictions).

LUng Nodule Analysis Results

Table 4.2: Results on the LUNA dataset are shown for U-Net, U-Net-ResNet50, U-Net-
EfficientNetB4, and U-Net-VGG16 models; for Reconstruction (R) and Classification (C)
pretraining strategies. Best results are emphasised.

gffjfﬁg TL Model LR  Dice Score ToU

R ImageNet 107 0.111 £ 0.002 0.063 £ 0.002

U-Net R RadiologyNET 10~%  0.111 £ 0.002 _ 0.063 & 0.001
N/A Baseline 10* 0.616 £ 0.012 0.500 & 0.011

UoNet. C ImageNet  10~%  0.685 + 0.016  0.582 + 0.017
Eﬂiden&etB A C RadiologyNET 107 0.695 + 0.022 0.593 + 0.026
N/A Baseline 10 0.688 £ 0.013  0.586 & 0.014

U-Net. C ImageNet 107 0.692 £ 0.026 0.593 £ 0.03
ReeNet50 C RadiologyNET 10° 0.715 + 0.017 0.616 & 0.017
eSNe N/A Baseline 102  0.646 £ 0.027  0.538 + 0.03
UoNet. C ImageNet 10~ 0.729 + 0.01 0.632 + 0.015
VAo C RadiologyNET 10~%  0.706 = 0.015 _ 0.605 & 0.019
N/A Baseline 10F  0.704 £ 0.03  0.601 + 0.033

Among the results obtained for the basic U-Net (shown in Table @), the Baseline
model demonstrated superior performance compared to both TL strategies, achieving
the highest Dice and IoU scores. In contrast, U-Net models pretrained on ImageNet
and RadiologyNET using reconstruction tasks exhibited significantly lower performance
(MWU, p = 0.024 for both ImageNet and RadiologyNET compared to Baseline). In
comparison, U-Net-ResNet50, U-Net-EfficientNetB4, and U-Net-VGG16 demonstrated
improved performance over the basic U-Net, obtaining higher Dice and IoU scores. Among
these architectures, the performance of the three TL approaches was comparable, with
the only statistically significant difference observed between the U-Net-ResNet50 model
pretrained on RadiologyNET and the Baseline model (MWU, p = 0.024).

Figure shows the difference in model outputs between reconstruction-pretrained
models and classification-pretrained models. Reconstruction-pretrained models merely

replicated the input image, indicating a lack of learned discriminative features despite

attempts to impart valuable features to the U-Net models.
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U-Net U-Net-ResNet50

Input image Ground truth (Reconstruction) (Classification)

- -

Figure 4.3: A figure showing the impact of different pretraining strategies of U-Net
models on four randomly selected images from the LUNA dataset.

Pediatric Bone Age Challenge Results

As shown in Table , the RadiologyNET-pretrained EfficientNetB3 model achieved
the lowest MAE, outperforming the ImageNet-pretrained counterpart. However, Ima-
geNet models exhibited significantly faster convergence (ImageNet vs. RadiologyNET,
MWU, p = 0.033).

Table 4.3: Metric mean and standard deviation calculated on the test subset of Pediatric
Bone Age Challenge, across five runs. Best results are emphasised.

Challenge TL Model LR RMSE MAE Epochs
PBA ImageNet 1072 11.77£14 937+13 226 +£7.4
EfficientNetB3 RadiologyNET 10~3 10.8 £ 0.3 8.23 £ 0.2 412+ 1.1
(avg.) Baseline 1073 31.98 +£17.2 2524139 308 +£9.7
PBA ImageNet 107 11.56 + 1.1 9.08 = 1.0 28.0 + 8.2
InceptionV3  RadiologyNET 10~2 1217 £0.4 931 £0.3 46.6 + 9.9
(avg.) Baseline 1073 1216 £0.2 936 £0.3 454+ 9.1
PBA ImageNet 1073 9.91 7.56 32.0
EfficientNetB3 RadiologyNET 1073 10.971 8.261 41.0
(best) Baseline 1073 12.572 9.2 41.0
PBA ImageNet 1074 11.154 8.587 41.0
InceptionV3  RadiologyNET 1072 12.126 9.086 51.0
(best) Baseline 1073 12.028 9.296 55.0

For the InceptionV3 architecture, ImageNet-pretrained models attained lower MAE
compared to both RadiologyNET and Baseline models, but the results between the
approaches were not statistically significant (Kruskal-Wallis, p = 0.185). ImageNet-
pretrained models exhibited faster convergence than those pretrained on RadiologyNET,
although this difference was not statistically significant (ImageNet vs. RadiologyNET,
MWU, p = 0.139). RadiologyNET-pretrained InceptionV3 models demonstrated com-
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parable performance to Baseline models in terms of convergence time (RadiologyNET

vs. Baseline, MWU, p = 1.00).

GRAZPEDWRI-DX Results

Table 4.4: Metric mean and standard deviation calculated on the test subset of
GRAZPEDWRI-DX, across five runs. Best results are emphasised.

Challenge TL Model LR  Acc (%) F1-Score (%) Epoch

GRAZPEDWRI ImageNet 1072 93.1 £1.0 93.1 £1.0 24.6 £+ 9.0
DenseNet121 ~ RadiologyNET 10=% 92.0 & 0.8 92.0 £ 0.8 152+ 1.1
(avg.) Baseline 102 90.6 £24 90.6 + 2.4 38.6 + 104
GRAZPEDWRI ImageNet 10 92.6 £ 0.3 92.6 = 0.3 24.4 + 5.3
ResNet34 RadiologyNET 10~% 91.5 £ 1.1 91.5 £ 1.0 204 + 2.1

(avg.) Baseline 1072 815+ 11.6 80.4 + 13.6 33.8 + 144
GRAZPEDWRI ImageNet 1073 92.6 92.6 17.0
DenseNet121 RadiologyNET 10~* 92.9 92.9 16.0
(best) Baseline 1073 93.2 93.2 51.0
GRAZPEDWRI ImageNet 1073 92.4 92.4 28.0
ResNet34 RadiologyNET 1073 92.9 92.9 22.0
(best) Baseline 1072 91.0 91.0 51.0

Acc — Accuracy

The results for GRAZPEDWRI-DX are given in Table Q For the DenseNet121 ar-
chitecture, ImageNet-pretrained models attained higher average F1-scores compared to
other approaches; however, the differences in scores between the three methods were not
statistically significant (Kruskal-Wallis, p = 0.063). RadiologyNET-pretrained models
demonstrated the fastest convergence which, while not significantly different from Ima-
geNet (ImageNet vs. RadiologyNET, MWU, p = 0.07), was significantly faster than the
Baseline models (RadiologyNET vs. Baseline, MWU, p = 0.033).

The performance of Baseline ResNet34 models diverged between runs. When com-
paring F'l-scores, ImageNet-pretrained models significantly outperformed Baseline mod-
els (ImageNet vs. Baseline, MWU, p = 0.024), while the difference between Radiology-
NET and Baseline was less pronounced and not statistically significant (RadiologyNET
vs. Baseline, MWU, p = 0.095). In terms of convergence, no statistically significant

differences were observed between the approaches (Kruskal-Wallis, p = 0.199).



Foundation Models for TL Trained on the RadiologyNET Medical Dataset 82

COVID-19 Results

Table 4.5: Metric mean and standard deviation calculated on the test subset of COVID-
19, across five runs. Best results are emphasised.

Challenge TL Model LR  Acc (%) F1-Score (%) Epoch
COVID-19 ImageNet 1072 97.1+£1.0 97.1+ 1.0 23.6 £ 13.5
MobileNetV3Large RadiologyNET 10~* 97.7 £+ 0.1 97.8 + 0.1 254 £ 5.9
(avg.) Baseline 107" 945+ 1.6 94.5 + 1.6 32.0 £ 5.5
COVID-19 ImageNet 1074 97.9 +£ 0.7 98.0 £ 0.7 16.0 = 0.0
ResNet18 RadiologyNET 10~* 98.0 £+ 0.1 98.0 + 0.1 26.6 + 6.1
(avg.) Baseline 1073 96.5 £ 0.5 96.5 + 0.5 39.8 £ 6.9
COVID-19 ImageNet 1073 97.5 97.5 45.0
MobileNetV3Large RadiologyNET 10~% 97.8 97.8 23.0
(best) Baseline 1071 96.0 96.0 40.0
COVID-19 ImageNet 10~4 97.3 97.3 16.0
ResNet18 RadiologyNET 10~% 98.2 98.2 26.0
(best) Baseline 1073 96.5 96.5 47.0

Acc — Accuracy

While CR images represent a minority within the RadiologyNET dataset, chest ra-
diographs constitute the most prevalent subtype (Figure @b) As a result, ImageNet
and RadiologyNET models demonstrated comparable performance on MobileNetV3Large,
with no statistically significant differences observed (ImageNet vs. RadiologyNET, MWU,
p = 1.00). In contrast, models trained from scratch (Baseline) consistently underper-
formed compared to both ImageNet and RadiologyNET, achieving significantly lower
Fl-scores on the test subset (MWU, p = 0.047 and p = 0.024 for ImageNet and Radi-
ologyNET, respectively). The number of epochs required for convergence did not dif-
fer significantly between the approaches when using MobileNetV3Large (Kruskal-Wallis,
p = 0.326).

Regarding the evaluation of ResNet18 models, ImageNet and RadiologyNET pre-
trained models exhibited nearly identical F1-scores, with no statistically significant dif-
ference between them (ImageNet vs. RadiologyNET, MWU, p = 1.00). Both TL ap-
proaches significantly outperformed the Baseline models (MWU, p = 0.035 for both
ImageNet and RadiologyNET). Notably, all ImageNet models converged consistently at
the 16th epoch, which was significantly faster than both RadiologyNET and Baseline
models (MWU, p = 0.020 and p = 0.022, respectively). The difference in convergence

time between RadiologyNET and Baseline models was not statistically significant (Radi-
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ologyNET vs. Baseline, MWU, p = 0.103).

Brain Tumor MRI Results

Table 4.6: Metric mean and standard deviation calculated on the test subset of Brain
Tumor MRI, across five runs. Best results are emphasised.

Challenge TL Model LR Acc (%) F1-Score (%) Epoch
BTMR ImageNet 107* 98.1 £ 0.4 98.1 + 0.4 41.4 £7.2
MobileNetV3Small RadiologyNET 10~* 97.9 £ 0.3 979 + 0.3 394 + 5.7
(avg.) Baseline 107% 953 +£ 2.3 95.1 £ 24 60.0 £ 17.8
BTMR ImageNet 107> 98.7 &£ 0.1 98.7 £ 0.1 41.6 £+ 8.0
ResNet50 RadiologyNET 10~% 98.9 £ 0.4 98.9 £+ 0.4 21.2 + 3.0
(avg.) Baseline 107% 975 £ 0.8 97.4 £ 0.8 44.4 + 10.7
BTMR ImageNet 1074 97.6 97.4 46.0
MobileNetV3Small RadiologyNET 10~* 98.0 98.0 46.0
(best) Baseline 107* 97.6 97.6 83.0
BTMR ImageNet 107° 98.6 98.6 47.0
ResNet50 RadiologyNET 10~% 99.2 99.2 23.0
(best) Baseline 107* 98.2 98.2 51.0

Acc — Accuracy

Out of all the downstream tasks, the Brain Tumor MRI dataset exhibits the highest
overlap with the original pretraining dataset, as it comprises MR images of the brain
(which are prevalent in the RadiologyNET dataset). The results for the BTMR dataset
are presented in Table @ For the MobileNetV3Small architecture, ImageNet and Ra-
diologyNET models achieved nearly identical Fl-scores (ImageNet vs. RadiologyNET,
MWU, p = 1.00). In contrast, Baseline models displayed significantly lower classification
metrics compared to both TL approaches (MWU, p = 0.048).

Similarly, for the ResNet50 architecture, ImageNet and RadiologyNET models demon-
strated comparable performance (MWU, p = 1.00), while Baseline models performed
significantly worse (MWU, p = 0.024 and p = 0.036 for ImageNet and RadiologyNET,
respectively). However, RadiologyNET-pretrained models exhibited an advantage in con-
vergence time, requiring significantly fewer epochs compared to Baseline (RadiologyNET
vs. Baseline, MWU, p = 0.028). The difference in convergence time between ImageNet
and RadiologyNET was insignificant (ImageNet vs. RadiologyNET, MWU, p = 0.052).
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Figure 4.4: Average performance of best-performing models on the validation subset
across the first 10 epochs on the PBA and GRAZPEDWRI-DX datasets. F1l-score five-
run mean and standard deviation is show per each epoch.

4.3. Training Progress and Resource-limited

Conditions

Although the initial findings indicated minimal performance differences between the
three approaches when models reached convergence, there were observed differences dur-
ing the early stages of training (i.e. in the first few epochs, shown in Figures Q and @)
This observation led to the hypothesis that the three approaches might exhibit differ-
ent behaviours when in resource-limited conditions, i.e. when training time and training
data are significantly reduced. To investigate this potential difference and examine any
advantages in initial model training, a small-scale experiment was conducted using the
GRAZPEDWRI-DX and Brain Tumor MRI datasets. GRAZPEDWRI-DX was selected
due to its minimal overlap with the RadiologyNET pretraining domain, while Brain Tu-

mor MRI was chosen for its closer alignment with the pretraining data.

In this resource-limited experiment, training time was reduced to 10 epochs, while



85 M. Napravnik - Doctoral Thesis
(a) COVID-19
ResNet18 MobileNetV3Large
1.0- ——t : i 1.0-
0.9 -
v ) 0.8 -
© 0.8- o
O O
p Q
— 0.7 2 0.6-
- —— ImageNet - —— ImageNet
0.6 - —— RadiologyNET —— RadiologyNET
—— Baseline 0.4~ —— Baseline
0.5 i r r r r r ! T T T . . . . I I I I I I
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10
Epoch Epoch
(b) BTMR
ResNet50 MobileNetV3Small
& - & 1.0-
0.95 - ‘r,/"—" C S :::::§:::§:=:i
0.8 -
0.90 -
g 1
O 0.85 o 0.6-
O |9}
" "
2, 0.80 N 0.4-
" 075 —— ImageNet = —— ImageNet
—— RadiologyNET 0.2 - —— RadiologyNET
0.70 —— Baseline —— Baseline
1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9 10

Epoch Epoch

Figure 4.5: Average performance of best-performing models on the validation subset
across the first 10 epochs on the COVID-19 and Brain Tumor MRI datasets. F1l-score
five-run mean and standard deviation is show per each epoch.

the training subsets were randomly undersampled to 5%, 25%, and 50% of their original
size (Figure @a). As is visible in the figure, only the training subset was changed, with
the validation and test subsets remaining untouched. This undersampling process was
performed in a way that does not change the distribution or overall quality of data, to
avoid introducing any additional bias. An example distribution of undersampling at each
level is shown in Figure @b. Models were trained using the learning rates specified in
Tables @ and @ Each approach was trained in five independent runs, and the mean
F1-scores along with the standard deviation are presented in Figure @

4.4. Discussion

In most cases, RadiologyNET and ImageNet models exhibited similar performance,
particularly when the training process was not constrained by data or time. Statistically
significant differences were mainly observed between these two approaches against the

Baseline models, with the latter generally demonstrating worse performance compared to
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Figure 4.6: (a) Undersampling process performed on the
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undersampling on the BTMR dataset.

both ImageNet and RadiologyNET models.
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When observing each challenge separately, an interesting pattern appeared in the

LUNA dataset. Models pretrained as reconstruction tasks significantly underperformed

compared to those pretrained as classification tasks. The reason behind this could be

that reconstruction pretraining merely focused on replicating textures and patterns rather

than capturing the semantic meaning of each pixel, resulting in outputs that only mimic

the input image (Figure @) In contrast, classification-pretrained encoders (ResNet50,

VGG16, and EfficientNetB4) appeared to be better suited for segmentation tasks where

pixel-wise semantic meaning is important, as is the case in LUNA nodule segmentation.
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Figure 4.7: Results over 10 epochs for MobileNetV3Small and ResNet50 (on BTMR);
and DenseNet121 and ResNet34 (on GRAZPEDWRI-DX), with training data reduced to
5%, 25%, and 50% of the original training set. The F1-score is reported as the mean and
standard deviation across five runs for each epoch.
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While reconstruction-pretrained models showed significantly worse performance, it is pos-
sible that they may perform better on other task types, such as image compression or
denoising. However, evaluating this hypothesis was beyond the research scope in this
context.

Other challenges also demonstrated the influence of the pretraining domain on TL ef-
ficacy. In the RSNA PBA and GRAZPEDWRI-DX tasks, the pretraining dataset (Radi-
ologyNET') mainly consisted of CT and MR images of the head and abdomen, with limited
representation of wrist and hand radiographs. Although ImageNet does not include med-
ical images, its diverse range of natural images may have enabled ImageNet-pretrained
models to learn more generalisable features compared to the more domain-specific Radi-
ologyNET models. This observation was supported by the COVID-19 and BTMR results,
where RadiologyNET models demonstrated comparable performance to ImageNet and,
in some cases, better training progress compared to both ImageNet and Baseline mod-
els (Figure @) Both ImageNet and RadiologyNET pretrained models demonstrated
performance improvements within the first 10 epochs, particularly when compared to
Baseline. The most notable boost from ImageNet was observed with the InceptionV3
architecture on the RSNA PBA Challenge, where it achieved a lower MAE than the other
two approaches. On the other hand, RadiologyNET pretrained weights showed improved
performance on DenseNet121, ResNet50, and MobileNetV3Small architectures, which is
further supported by the overall reduction in the number of epochs required to reach
convergence (as reported in Tables @ and @) An important thing to note is that the
extent of this improvement may vary depending on the specific architecture and task, and
it does not always result in statistically significant differences in final performance, which
is a limitation of RadiologyNET models in their current form.

The greatest performance differences were observed under resource-limited conditions.
As there were cases where Baseline models achieved comparable results when resources
were not restricted, this indicates that the original challenges may have had sufficient
training data, and that when the training pool is large enough, the advantages of TL
become less impactful [101]. In Figure @, it is clear that models where TL was applied
show better performance against training from randomly initialised weights. Although

RadiologyNET models did not outperform ImageNet in less-restricted resource conditions

on the GRAZPEDWRI-DX dataset (i.e. the results shown in Table @), they showed com-
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petitive performance when training data and time were limited. However, it is important
to note that as more training data becomes available (e.g. when the dataset is reduced
to 50% instead of 5% of its original size), the performance differences between Radiolog-
yNET and ImageNet become less pronounced. This suggests that the relative advantage
of RadiologyNET pretraining may decrease as the availability of training data increases
(as does the advantage of TL in general).

In the RadImageNet study [20], which evaluated TL on a dataset of comparable scale
to RadiologyNET but annotated by 20 expert radiologists, statistically significant per-
formance improvements were reported. The authors observed area-under-curve improve-
ments of 1.9%, 6.1%, 1.7%, and 0.9% over ImageNet-pretrained models across five medical
imaging tasks. While RadiologyNET-pretrained models demonstrated performance com-
parable to ImageNet in the experiments presented here, the results from RadlmageNet
underscore the benefits of expert supervision in improving TL efficacy. Although both
datasets are similar in size, RadImageNet includes 165 pathology-specific labels, compared
to the 36 pseudo-labels derived in RadiologyNET. This richer label space likely encour-
ages models to learn more generalisable features, and features that are pathology-focused.
Nevertheless, RadiologyNET achieved competitive performance without manual annota-
tion, thereby avoiding the considerable annotation effort required for RadImageNet, which
involved 20 radiologists.

The pretrained weights for all RadiologyNET models, along with code for TL, fine-
tuning, and evaluation on downstream tasks, are publicly available at https://github.
com/AIlab-RITEH/RadiologyNET-TL-models. This repository enables full reproducibil-

ity of the experiments described in this chapter.

From the obtained results, we attempt to answer the following questions:

1. Does the domain of pretrained models affect performance?
Yes. RadiologyNET models demonstrated competitive performance; however, ImageNet-
pretrained models exhibited a slight advantage on tasks such as the RSNA Pedi-
atric Bone Age Challenge and the GRAZPEDWRI-DX dataset. This is can be

attributed to (i) the greater diversity of images in ImageNet (which may contribute
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to more generalisable feature representations), as well as (ii) the limited presence
of wrist radiographs in the RadiologyNET dataset. In contrast, the Brain Tumor
MRI dataset showed that RadiologyNET-pretrained models exhibited better train-
ing progress (and faster convergence), likely due to a better alignment between the
pretraining domain and the downstream task. These results suggest that when
selecting pretrained models for medical machine learning tasks, it is important to
account for potential domain biases in the pretraining dataset (e.g. the distribution

of anatomical regions in the pretraining data).

2. Does the pretraining task matter?
Yes, the choice of pretraining task may play a key role. Selecting an appropri-
ate pretraining task should align with the types of features relevant to the down-
stream task. Results from the LUNA Challenge demonstrated that models pre-
trained on classification objectives significantly outperformed those pretrained on
image reconstruction when applied to semantic segmentation. This suggests that
reconstruction-based pretraining may not be the best for segmentation tasks, likely
due to the fundamentally different features learned. The ability to learn gener-
alisable representations from diverse tasks is one of the foundations of multi-task
meta-learning, in which models learn to learn. This approach, alongside multi-task

learning, is the underlying principle for many foundation models [102].

3. Is TL always beneficial?
The results indicate that TL generally improves model performance, especially un-
der resource-constrained conditions (limited training data and training time). How-
ever, in some cases, Baseline models (trained from randomly initialised weights)
achieved performance comparable to pretrained counterparts, and there is evidence
to show that when sufficient data and training time are available, the benefits of TL
may decrease [[16, 101]. Notably, in the case of the reconstruction-pretrained U-Net,
Baseline models significantly outperformed both ImageNet and RadiologyNET-
pretrained variants, indicating that in some settings, TL may even hinder per-
formance. These observations relate closely to the importance of pretraining task
and domain alignment. The effectiveness of TL is dependent not only on the gen-

eralisability of learned features but also on how well the pretraining configuration
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matches the requirements of the downstream task.

. What should be considered when collecting data for pretraining medical

models for TL?

The results suggest that pretraining datasets with higher variability offer greater
utility than homogeneous datasets. This observation aligns with trends in natu-
ral language processing, where general-domain corpora have been used to improve
domain-specific performance. For instance, GatorTron [24] incorporated data from
sources such as Wikipedia, and Med-PaLM [[102] was developed by adapting general-
purpose language models to the medical domain. In the same manner, the integra-
tion of diverse data (e.g. non-medical sources such as ImageNet) may contribute
positively to the development of medical foundation models. This raises an impor-
tant direction for future research: how can diverse data sources, both intra- and

cross-domain, be combined to maximise transferability in medical TL?
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5. Chapter

DOMAIN INFLUENCE ON PERFOR-
MANCE AND INTERPRETABILITY

In the previous chapter, it was observed that the pretraining dataset can have a signif-
icant impact downstream performance. Specifically, models pretrained on RadiologyNET
demonstrated better performance on tasks where the domain of RadiologyNET aligned
well with the target data (e.g. Brain Tumor MRI), rather than tasks where the domains
did not align (such as GRAZPEDWRI-DX). Models pretrained on ImageNet exhibited a
more generalisable performance across diverse downstream tasks, likely due to the diverse
nature of ImageNet (which consists of millions of natural images). Therefore, it is possi-
ble that ImageNet’s generalisation capabilities emerge from its exposure to diverse data,
while RadiologyNET’s domain-specific features can provide an advantage only when the
downstream task aligns with the pretraining data.

From these observations, it is clear that patterns learned during pretraining influence
downstream task performance, but the extent of this influence can be tested further. Two

questions arise:

1. Do the patterns learned during pretraining influence model interpretabil-
ity? For example, do these learned patterns affect which neurons are activated

during inference on downstream tasks?

2. Would TL models benefit more from being pretrained on modality-specific
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data (e.g. CR-only data for CR-based tasks), or would it be more beneficial to use

models pretrained on diverse, multi-modality datasets?

At the time of writing this thesis, there is no universally accepted method for ob-
jectively evaluating model interpretability, and neural networks remain considered black
boxes. In the context of image analysis, one of the most prevalent techniques is to examine
activation maps through visualisation methods such as Gradient-weighted Class Activa-
tion Mapping (Grad-CAM) [103]. This approach highlights areas within the input image
that activate specific neurons. Despite this approach not being perfect (being called false
hope by Ghassemi et al. [104]), it is still one of the most commonly used approaches to
examine model interpretability [93].

The second question can more easily be answered by pretraining several models on
single-modality data and subsequently benchmarking them against their multi-modality
counterparts. This was already described in the previous chapters, with the exact lists of

tested architectures and modality-specific pretraining being given in Tables El] and [1]

5.1. Grad-CAM Evaluation

To assess model interpretability, Grad-CAM [103] heatmaps were generated to vi-
sualise the areas of focus for each of the three approaches on the GRAZPEDWRI-DX
and BTMR datasets. These two datasets were chosen due to their alignment with the
RadiologyNET dataset, with BTMR being highly aligned and GRAZPEDWRI-DX be-
ing the opposite. In a Grad-CAM heatmap, warm colours indicate high activation, with
red colour representing the highest value. Warm-coloured areas are the regions in the
input image that contributed strongly to the model’s decision or prediction. On the other
hand, cool colours indicate low activation, with blue representing no recorded activation.
Cool-coloured regions had less influence or were largely ignored by the model during its
decision-making process.

The heatmaps were independently evaluated by two expert radiologists from different
clinical centres (who are also situated in two different countries), to ensure the evaluation
is as unbiased as possible. Each radiologist examined a sample of 20 randomly selected
heatmaps from the GRAZPEDWRI-DX test set (obtained using DenseNet121) and an-
other 20 heatmaps from the BTMR test set (generated using ResNet50). The evaluation
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Figure 5.1: Grad-CAM heatmap examples of randomly selected images from: (a) the
Brain Tumor MRI dataset (ResNet50); (b) GRAZPEDWRI-DX dataset (DenseNet121).
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Figure 5.2: Ratings of each radiologist given to randomly sampled Grad-CAM heatmaps
from the GRAZPEDWRI-DX and Brain Tumor MRI datasets.

involved rating each heatmap on a scale from 1 to 5, where 1 indicated that the model
concentrated on entirely irrelevant areas, and 5 indicated focus exclusively on relevant
regions. In addition to rating, the radiologists were encouraged to document any ob-
servations regarding the presented heatmaps. To eliminate potential bias, the source of
each heatmap was concealed; they were labelled as algorithms (a) - RadiologyNET, (b) -
ImageNet, and (c¢) - Baseline. This labelling ensured that the evaluation was based solely
on the visual information presented.

Examples of the generated heatmaps shown to radiologists are provided in Figure a
In this figure, there are four heatmaps presented for BTMR (one for each class, i.e. no
tumour, meningioma, pituitary and glioma), and two heatmaps for GRAZPEDWRI-DX
(one where osteopenia is present, and one where it is not). More heatmaps can be seen
in Figures @, @, , @, @, and @ which can be found in the Appendix. The
radiologists’ evaluation scores are presented in Figure @

Both radiologists noted that the BTMR heatmaps generated by Baseline models
were unreliable, whereas RadiologyNET’s heatmaps demonstrated the best focus on the
pathologies present in the images. One radiologist observed that ImageNet’s BTMR
heatmaps appeared to be slightly offset in some instances, while the other noted that they

were significantly less accurate in identifying tumour areas compared to RadiologyNET.
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Regarding the GRAZPEDWRI-DX heatmaps, one radiologist reported that the presence
of a cast puzzled all three models but noted that the Baseline model tended to “focus a
lot on the fracture [near osteopenia/, but also the carpal bones, which would be the most
relevant to look at.” The other radiologist stated that RadiologyNET’s GRAZPEDWRI-
DX heatmaps were generally the most reliable among the three, although they exhibited
excessively wide areas of focus. ImageNet’s heatmaps were described as inconsistent,
sometimes displaying a high degree of specificity and accuracy, while at other times fail-
ing to capture the relevant area entirely. Both radiologists agreed that all three algorithms
struggled with images where no pathologies were present.

To summarise, the radiologists’ evaluation of the generated heatmaps indicated that
RadiologyNET models were perceived as the most reliable overall, focusing on the present
pathologies better than ImageNet and (especially) Baseline. This result raises questions
about the influence of TL on model interpretability, as patterns learned during pretraining
might help models focus on relevant regions in the downstream tasks. While pretraining
on natural images can provide generalisable features, pretraining on medical data may
lead to models that are better adapted to the specific characteristics of medical images
(e.g. disease-related patterns and abnormalities). However, it is important to note the
limitations of this experiment, as there were only two radiologists and two datasets with
20 randomly sampled images. To accurately confirm the extent of these findings, this
experiment would have to be expanded upon by including more radiologists, a more

diverse set of datasets — and therefore a greater number of sampled images.

5.2. Multi-modality versus Single-modality

Pretraining

To evaluate the impact of modality-specific pretraining, an additional set of exper-
iments was conducted, where the goal was to compare the performance of models pre-
trained on single-modality data (MR-only, CR-only, and CT-only) against their multi-
modality pretrained counterparts. The evaluation was performed on the BTMR, RSNA
PBA, COVID-19, GRAZPEDWRI-DX, and LUNA datasets.

For the segmentation task in the LUNA dataset, a ResNet50 model was pretrained
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exclusively on CT images and integrated as the encoder in a U-Net-ResNeth0 architec-
ture. For the BTMR classification task, MR-only pretraining was performed using Mo-
bileNetV3Small and ResNet50 models. For the GRAZPEDWRI-DX, RSNA PBA, and
COVID-19 downstream tasks, CR-only pretraining was applied to multiple architectures,
including DenseNet121, ResNet34, EfficientNetB3, InceptionV3, MobileNetV3Large, and
ResNet18. This goal was to determine whether modality-specific pretraining offers a per-
formance advantage, particularly when the downstream task aligns with the modality
used during pretraining.

Figure @ illustrates the performance comparison between single-modality (MR-only,
CR-only, and CT-only) and multi-modality pretrained RadiologyNET models. The re-
sults are presented across five independent runs, with statistical significance evaluated
using Independent samples t-test. The results for all tested datasets and single-modality
pretrained models are presented in the following subfigures: PBA (subfigures a and b),
LUNA (subfigure ¢), GRAZPEDWRI-DX (subfigures d and e), COVID-19 (subfigures f
and g¢), and BTMR (subfigures h and ¢). Mean and standard deviation are shown on top
of (or above — as with PBA InceptionV3) each bar. Pairwise p-values are shown atop
each tested pair, with statistically insignificant results marked in gray, and statistically
significant results in blue.

Among the tested datasets (and architectures), U-Net-ResNet50 (LUNA dataset) was
the only case where no statistically significant differences were observed between single-
modality and multi-modality pretrained models. On the other hand, the PBA dataset
exhibited mixed results depending on the architecture: for EfficientNetB3, multi-modality
pretraining demonstrated significantly better performance than CR-only at all learning
rates; while the opposite is true in the case of InceptionV3. In the GRAZPEDWRI-DX
dataset, DenseNet121 models pretrained with multi-modality data generally achieved a
significantly higher Fl-score compared to CR-only models, with similar performance at
the highest tested learning rate, 1073. In contrast, ResNet34 models showed compara-
ble performance between multi-modality and CR-only pretraining, with CR-only demon-
strating a slight advantage at the lowest tested learning rate, 107°. In the COVID-19
dataset, both multi-modality pretrained architectures (MobileNetV3Large and ResNet18)
either outperformed CR-only models, or showed comparable performance with no sta-

tistically difference. In the BTMR dataset, MobileNetV3Small models pretrained with
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Figure 5.3: Comparison of TL performance across modality-specific (MR~only, CR-only,
CT-only) and multi-modality pretrained RadiologyNET models.
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multi-modality achieved significantly better performance compared to MR-only models
across all tested learning rate settings. For ResNet50, multi-modality pretraining showed
superior performance overall, although the differences were less pronounced at the highest
tested learning rate, 1073.

A total of 27 statistical comparisons were performed. Among these, 10 comparisons
showed no statistically significant differences. In four instances, single-modality pretrain-
ing exhibited superior performance, while multi-modality pretraining demonstrated better
results in 13 cases. In the MR-only comparisons, multi-modality pretraining outperformed
MR-only in five out of six cases. For CR-only comparisons, single-modality pretraining
demonstrated improved performance in four out of 18 cases, whereas multi-modality pre-
training proved better in nine cases. In the CT-only comparisons on the LUNA dataset,
no statistically significant differences were observed between CT-only and multi-modality
pretraining.

For the BTMR classification task, models pretrained on MR-only data showed a sta-
tistically significant drop in performance compared to their multi-modality counterparts,
suggesting that additional modality diversity enables the model to learn a broader and
more transferable set of visual patterns. A similar trend was observable in the COVID-
19 dataset, where multi-modality pretrained models (MobileNetV3Large and ResNet18)
generally outperformed CR-only models or showed comparable performance with no sig-
nificant differences. In the RSNA PBA dataset, the results were architecture-dependent:
for EfficientNetB3, multi-modality pretraining demonstrated significantly better perfor-
mance than CR~only across all learning rates, while for InceptionV 3, the opposite was true,
with CR-only pretraining consistently outperforming multi-modality. In GRAZPEDWRI-
DX, DenseNet121 generally exhibited better multi-modality performance, and ResNet34
showed mixed results. However, for the LUNA segmentation task, where CT is the
most prevalent modality in RadiologyNET (comprising 53.73% of the dataset), no signifi-
cant performance difference was observed between CT-only and multi-modality pretrained
models.

The results indicate that the choice of neural network topologies (and their internal
mechanisms) could be a factor, but there is also a general trend visible: modality diver-
sity is especially valuable when the single modality lacks sufficient internal variability or

representation. For example, CR-only models were pretrained on X-ray images, which,
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despite having less overall training data, exhibit high internal variability and do not nec-
essarily benefit from other modalities or anatomical regions (e.g. patterns found in lung
CT images do not consistently contribute to skeletal age prediction from hand CR im-
ages). On the other hand, MR-only models did not perform as well as multi-modality
models on the BTMR task, suggesting that patterns found in CT images of the brain
may contribute towards brain tumour classification in MR images. Either way, this fur-
ther contributes to the idea that diverse pretraining data improves TL generalisability;
i.e. using heterogeneous data did not consistently benefit from incorporating data that
is inherently homogeneous, but homogeneous data did benefit from incorporating other
modalities. This brings another question into focus: is it better to pretrain on multiple
anatomical regions captured in the same modality, or is it better to pretrain on a single
anatomical region captured in different modalities? However, testing this question fell

out of scope of the research presented here.
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6. Chapter

CONCLUSION

This thesis explored the construction and evaluation of domain-specific foundation
models for medical image analysis, with a focus on TL. The key contributions of this
research were to develop a method for automated grouping and pseudo-labelling seman-
tically similar medical radiology images; and to develop and evaluate RadiologyNET
foundation models for TL in medical images. The work presented here contributes new

insights into data curation and model pretraining.

A dataset of 25 million radiology images acquired from Clinical Hospital Centre Rijeka
was collected, totalling 13 terabytes and comprising three data types: images, metadata
and narrative diagnoses. A query-capable framework was implemented for fast data point
retrieval and filtering. Through examining the query-capable database, it was concluded
that none of the data types carried sufficient information to be used as de-facto labels,
leading to the hypothesis that feature extraction could be the path forward — and that pat-
terns within data points could be used to group semantically similar data points together.
To this end, multiple feature extractors were used on each data type, with an extensive
ablation study performed for each of them. This process resulted in 36 pseudo-labels

which would be used for supervised model pretraining without requiring expert labelling.

Multiple CNN architectures were pretrained on the constructed pseudo-labelled Radi-
ologyNET dataset. The pretrained architectures included U-Net, InceptionV3, DenseNet121,
and multiple topologies from the ResNet, MobileNet and EfficientNet families. The
pretraining was performed as a multi-class classification task using the pseudo-labels

generated in the first phase, with additional experiments involving reconstruction-based
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pretraining for the U-Net architecture. To this end, the entire ImageNet dataset was
downloaded and pretrained as a reconstruciton task using the U-Net model. Both multi-
modality and modality-specific subsets of the data were used to analyse the impact of
pretraining diversity.

The pretrained RadiologyNET models were evaluated across five publicly available
downstream medical datasets, covering a variety of imaging modalities (CR, CT, MR),
anatomical regions (lungs, chest, head, wrists/hands) and task types (segmentation, bi-
nary and multiclass classification, and regression). The three TL strategies compared
were: (i) training from randomly initialised weights (Baseline), (ii) fine-tuning from Ima-
geNet, and (iii) fine-tuning from RadiologyNET. The results showed that RadiologyNET
models performed comparably to ImageNet models overall, and offered a performance
advantage in resource-limited conditions (e.g. limited training data or reduced training
time), but it is also important to acknowledge that RadiologyNET did not consistently
outperform ImageNet, which is a limitation of RadiologyNET models in their current
form. This is particularly evident in downstream tasks where the target domain did not
align with the pretraining domain, such as wrist radiographs (which were scarce in the
pretraining data). Despite this, RadiologyNET models showed improved performance
when the downstream task aligned with the pretraining data, such as brain tumour clas-
sification in MR images.

The complete codebase for performing TL, fine-tuning, and evaluation on downstream
tasks, as well as the pretrained RadiologyNET weights, have been made publicly available
at https://github.com/AIlab-RITEH/RadiologyNET-TL-models. The goal of releasing
these pretrained models and the codebase publicly is to assist in the progress of medical
machine learning and computer-aided diagnosis systems. These weights provide the basis
for our future research in the field of medical TL; by iteratively improving the pretraining
task and/or pretraining data, future versions of RadiologyNET models can be compared
against the baseline provided here.

The main advantage ImageNet has over RadiologyNET is the diversity of pretrain-
ing data. While ImageNet does not contain medical radiology images, having diversity
in pretraining data leads to improved generalisation capabilities. Therefore, Radiolog-
yNET models did not outperform ImageNet in downstream tasks which did not align
with RadiologyNET’s domain, as the RadiologyNET dataset is relatively homogeneous
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considering the capturing modality and the observed anatomical regions. To further test
this, multiple experiments were conducted on single and multi-modality pretrained mod-
els, which confirmed this: using heterogeneous data where the intra-domain variability is
high did not consistently benefit from incorporating data that is inherently homogeneous,
but homogeneous data did benefit from incorporating other modalities.

Nonetheless, several limitations must be acknowledged. First, the unsupervised anno-
tation approach relied on clustering and no pathology labels were included (in contrast,
RadImageNet is labelled using pathology-oriented labels). Second, the dataset was de-
rived from a single clinical centre and, as standard practice may differ between hospitals,
this may limit generalisability. Third, although RadiologyNET models demonstrated ad-
vantages in training efficiency, they did not consistently outperform ImageNet in final
performance metrics. This suggests that further refinement is required to fully realise
the potential of RadiologyNET pretrained models. Nonetheless, labelling through a fully
unsupervised approach and then pretraining on the generated pseudo-labels did consis-
tently outperform training from randomly initialised weights, which suggests that the
generated pseudo-labels may be a good starting point for further research. Moreover, the
initial phases of this research were limited by the available hardware, which led to the
usage of simpler representation learning methods such as autoencoders and clustering.
In future iterations of RadiologyNET foundation models, more advanced unsupervised or
self-supervised annotation/pretraining could be tested, such as contrastive learning via
CLIP [19, 92].

In conclusion, the results presented in this thesis support the two central hypotheses:
(i) that unsupervised annotation of medical data is a viable method of labelling medical
data and grouping semantically similar data points together, facilitating the dataset’s use
for building foundation models, and (ii) that TL from RadiologyNET foundation models
can improve model performance, especially in resource-limited medical tasks. First, the
findings confirm that unsupervised annotation through clustering of semantically similar
data points based on multimodal features offers a viable strategy for constructing large-
scale labelled datasets in the absence of expert annotation. Pretraining from pseudo-labels
consistently outperformed randomly initialised models across a variety of tasks. Expert
annotation still remains the gold standard, but this approach to unsupervised labelling

can serve as a first step, and possibly be the basis towards more fine-grained expert labels.
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Second, the results show that transfer learning from RadiologyNET-pretrained models im-
proves performance under resource-constrained conditions (i.e. limited training data or
training time). While RadiologyNET models did not outperform ImageNet-pretrained
counterparts in final performance metrics, they provided significant advantages when
there was domain alignment and in early training phases. These findings underscore the
importance of pretraining data diversity, domain alignment, and task-specific considera-

tions in the development of medical foundation models.
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A. Performance on the validation set of downstream

tasks

Table A.1: RSNA PBA: results on the validation set, by learning rate. The shown
metric is Mean Absolute Error, averaged across five runs.

Learning Rate

Challenge Model =2 103 107 0= Avg.
PBA ImageNet 17.04 +£ 9.9 9.88+ 0.5 12.67+ 0.5 1396 + 0.2 13.39 + 2.6
EfficientNetB3 RadiologyNET 1219 £ 1.9 9.46 + 0.1 10.53 £ 0.1 12.61 £ 0.0 11.2 £ 1.3
(avg.) Baseline 34.35 + 9.4 2191 &+ 10.5 14.42 £ 2.0 2397 +£4.1 23.66 £ 7.1
PBA ImageNet 9.995 9.041 11.808 13.794 11.2 £ 1.8
EfficientNetB3 RadiologyNET 10.379 9.27 10.426 12.589 10.7 £ 1.2
(best) Baseline 25.411 9.882 12.435 20.901 172 + 6.3
PBA ImageNet 278.87 £469.2 1046 +£ 0.6 10.46 £1.3 11.97 £ 0.5 77.94 + 116.0
InceptionV3  RadiologyNET 10.16 + 0.2 10.54 £ 0.2 1283+ 0.2 3645+ 0.0 175+ 11.0
(avg.) Baseline 11.12 £ 0.8 9.83 + 0.2 1245+ 1.4 200+ 24 13.35 £ 3.9
PBA ImageNet 36.553 9.747 9.444 11.268 16.8 £ 11.5
InceptionV3  RadiologyNET 9.861 10.381 12.627 36.433 173+ 11.1
(best) Baseline 10.171 9.583 10.719 17.295 11.9 + 3.1

Table A.2: GRAZPEDWRI-DX: results on the validation set, by learning rate. The
shown metric is F1-score, averaged across five runs.

Learning Rate
1072 1073 1071 107
GRAZPEDWRI-DX ImageNet 914 +£02 9314+05 928+ 06 908+ 1.1 920=£1.0
DenseNet121 RadiologyNET 90.8 £ 0.8 91.84+04 920+10 924 +03 91.7+£0.6

Challenge Model Avg.

(avg.) Baseline 89.1+14 903 4+21 894+06 869+08 8.9+1.3
GRAZPEDWRI-DX ImageNet 91.6 93.5 93.5 92.1 92.7 £ 0.8
DenseNet121 RadiologyNET 91.7 92.2 93.0 92.6 92.4 + 0.5
(best) Baseline 90.8 92.6 90.0 88.2 90.4 £ 1.6
GRAZPEDWRI-DX ImageNet 89.6 04 9264+1.2 929+06 91.0+£ 1.7 915+ 1.3
ResNet34 RadiologyNET 86.9 £ 3.8 91.2+0.9 90.5+12 90.3£0.5 89.7+ 1.6
(avg.) Baseline 79.1 +£ 133 884 +0.8 888+06 84.8+22 853+39
GRAZPEDWRI-DX ImageNet 90.1 94.3 93.5 93.0 92.7+£ 16
ResNet34 RadiologyNET 90.1 92.4 91.4 90.6 91.1 £ 0.9

(best) Baseline 90.1 89.3 89.3 87.9 89.2 £0.8
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Table A.3: COVID-19: results on the validation set, by learning rate. The shown metric
is Fl-score, averaged across five runs.

Learning Rate

Challenge Model 102 103 107 105 Avg.
COVID-19 ImageNet 91.3£35 980x10 983+04 836=*02 928 +£6.0
MobileNetV3Large RadiologyNET 94.2 + 1.1 979 £0.8 983 +£04 97.7+0.1 97.0 £+ 1.6
(avg.) Baseline 83.7+42 950£1.1 955+19 932+£12 91.8+48
COVID-19 ImageNet 94.7 99.0 98.7 83.8 94.0 £ 6.2
MobileNetV3Large RadiologyNET 96.1 98.7 98.7 97.8 97.8 £ 1.1
(best) Baseline 91.1 96.7 97.5 94.2 94.9 + 2.5
COVID-19 ImageNet 93.3£55 99.0+03 993+02 98.6=+0.0 976+ 25
ResNet18 RadiologyNET 974 £04 983+ 0.2 984 +02 983+0.1 981404
(avg.) Baseline 95.1+£14 974+05 96.5+06 97.0£ 0.6 96.5+0.9
COVID-19 ImageNet 98.0 99.4 99.6 98.6 98.9 £ 0.6
ResNet18 RadiologyNET 97.9 98.5 98.6 98.3 98.3 £0.3
(best) Baseline 97.2 98.0 97.3 97.7 97.6 +£ 0.3

Table A.4: Brain Tumor MRI: results on the validation set, by learning rate. The shown
metric is Fl-score, averaged across five runs.

Challenge Model 102 %Sf\;‘nlng Rilgi 105 Avg.
BTMR ImageNet 95.1+13 992+05 996 +0.2 997+ 0.1 984 +19
ResNet50 RadiologyNET 96.0 £ 0.7 98.8 £0.5 99.6 £0.2 995+ 0.2 985+ 1.5
(avg.) Baseline 965+ 23 978+ 1.1 988405 956+ 18 972+ 12
BTMR ImageNet 96.4 99.6 99.9 99.9 98.9 £ 1.5
ResNetb0 RadiologyNET 96.9 99.2 99.8 99.6 98.9 + 1.2
(best) Baseline 98.3 98.8 99.4 97.4 98.5 £ 0.7
BTMR ImageNet 126 £6.7 973+£06 99.3+0.2 99.0+ 04 77.0+37.2
MobileNetV3Small RadiologyNET 20.2 +9.8 948 £14 993 +0.2 99.0+ 0.2 783 + 33.6
(avg.) Baseline 172 +£ 105 874 +£87 969+16 944 £18 74.0=£ 33.0
BTMR ImageNet 24.6 98.2 99.5 99.2 80.4 £ 32.2
MobileNetV3Small RadiologyNET 29.2 96.4 99.6 99.2 81.1 + 30.0
(best) Baseline 29.6 92.6 98.9 96.5 79.4 £ 28.8
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Table A.5: Results and p-values of statistical tests. PBA was compared using MAE,
LUNA using Dice score, and other challenges were compared using F1-score. Values with
significant differences (p < 0.05) are emphasised.

Challenge

Kruskal-Wallis

Mann-Whitney U test

MWU (p-value)

(p-value)

LUNA ImageNet vs RadiologyNET 1
U-Net 0.009 ImageNet vs Baseline 0.024
e RadiologyNET vs Baseline 0.024

.-

U-Net-Efficient Net B4 RadiologyNET vs Baseline -
ImageNet vs RadiologyNET 0.667

LUNA :

U-Net-ResNet50 0.011 ImageNet vs Baseline 0.095
TCLTResRe RadiologyNET vs Baseline 0.024

LUNA ImageNet vs Radlolog.yNET -

U-Net-VGGI6 0.108 ImageNet vs Baseline -

e RadiologyNET vs Baseline -
PBA ImageNet vs RadiologyNET 0.667
EfficientNet B3 0.014 ImageNet vs Baseline 0.167
clenae RadiologyNET vs Baseline 0.024

ImageNet vs RadiologyNET -

PBA :

I tionV3 0.185 ImageNet vs Baseline -

neeption RadiologyNET vs Baseline -

GRAZPEDWRILDX ImageNet vs RadlologyNET -

D Net121 0.063 ImageNet vs Baseline -

eHseRe RadiologyNET vs Baseline -
GRAZPEDWRILDX ImageNet vs Radlolog.yNET 0.286
ResNet34 0.008 ImageNet vs Baseline 0.024
ese RadiologyNET vs Baseline 0.095

BTMR ImageNet vs RadlologyNET 1
MobileNetV3Small 0.017 ImageNet vs Baseline 0.048
OPIICRE & RadiologyNET vs Baseline 0.048

ImageNet vs RadiologyNET 1
RE;FNl\gtRE)O 0.008 ImageNet vs Baseline 0.024
RadiologyNET vs Baseline 0.036

COVID-19 ImageNet vs RadlologyNET 1
MobileNetV3Lar 0.009 ImageNet vs Baseline 0.047
obriese arge RadiologyNET vs Baseline 0.024

ImageNet vs RadiologyNET 1
CROe;SeDt_lléég 0.008 ImageNet vs Baseline 0.035
RadiologyNET vs Baseline 0.035
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Table A.6: Results and p-values of statistical tests when comparing the total epoch
count until convergence. Values with significant differences (p < 0.05) are emphasised.

Kruskal-Wallis

Challenge (p-value) Mann-Whitney U test MWU (p-value)
PBA ImageNet VS RadiologyNET 0.033
Efficient NetB3 0.011 ImageNet VS Baseline 0.667
clenae RadiologyNET vs Baseline 0.122
PBA ImageNet VS RadiologyNET 0.139
IncentionV3 0.039 ImageNet VS Baseline 0.102
P RadiologyNET vs Baseline 1
GRAZPEDWRLDX ImageNet VS RadlologyNET 0.070
D Net121 0.005 ImageNet VS Baseline 0.225
CHSeRe RadiologyNET vs Baseline 0.033
GRAZPEDWRILDX ImageNet VS Rad1olog:yNET -
ResNet34 0.199 ImageNet VS Baseline -
ese RadiologyNET vs Baseline -
BTMR ImageNet VS Rad1ologyNET -
MobileNetVaSmall 0.063 ImageNet VS Baseline -
RadiologyNET vs Baseline -
BTMR ImageNet VS RadlologyNET 0.052
ResNet50 0.011 ImageNet VS Baseline 1
RadiologyNET vs Baseline 0.028
COVID-19 ImageNet VS RadlologyNET -
MobileNet V3Laree 0.326 ImageNet VS Baseline -
& RadiologyNET vs Baseline -
ImageNet VS RadiologyNET 0.020
%2;@3’1189 0.002 ImageNet VS Baseline 0.022
RadiologyNET vs Baseline 0.103
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B. Grad-CAM heatmaps
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Figure B.1: Brain Tumor MRI ResNet50: Grad-CAM heatmap examples of randomly
selected images from the Brain Tumor MRI dataset.
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Figure B.2: Brain Tumor MRI ResNet50: Grad-CAM heatmap examples of randomly
selected images from the Brain Tumor MRI dataset.
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Figure B.3: Brain Tumor MRI ResNet50: Grad-CAM heatmap examples of randomly
selected images from the Brain Tumor MRI dataset.
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Figure B.4: GRAZPEDWRI-DX DenseNet121: Grad-CAM heatmap examples of ran-
domly selected images from the GRAZPEDWRI-DX dataset.
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Figure B.5: GRAZPEDWRI-DX DenseNet121: Grad-CAM heatmap examples of ran-
domly selected images from the GRAZPEDWRI-DX dataset.
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Figure B.6: GRAZPEDWRI-DX DenseNet121: Grad-CAM heatmap examples of ran-
domly selected images from the GRAZPEDWRI-DX dataset.
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