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Abstract

Recently, progressive flooding simulations have been applied onboard to support decisions dur-
ing emergencies based on the outcomes of flooding sensors. To this end, both simulation ac-
curacy and low computational effort are essential. A new mathematical formulation based on
governing equations’ linearization can improve both these conflicting requirements, being more
easily applied when calculation time is limited or a large number of flooding simulation has to
be carried out. Besides, databases of flooding simulations together with machine learning al-
gorithms can be exploited to assess the consequences of a damage scenario (final fate, flooded
compartments time-to-flood) based only on the time evolution of the ship floating position (heel,
trim and sinkage). The proposed method can be the base for a new generation of onboard de-
cision support systems, which does not require the installation of flooding sensors, enabling
cheap retrofit on most of the existing fleet.

Keywords: damaged ship, progressive flooding simulation, emergency decision support, ma-
chine learning.
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Sažetak

Na temelju signala senzora naplavljivanja u posljednje se vrijeme simulira tijek naplavljivanja
kod hitnih slučajeva na brodu, a sve sa ciljem stvaranja podrške pri donošenju odluka odgov-
ornih članova posade. Da bi simulacija bila učinkovita, ista mora biti dovoljno točna, ali i
dovoljno brza bez značajnijih računalnih zahtjeva. Nova matematička formulacija temeljena
na linearizaciji jednadžbi modela naplavljivanja može poboljšati oba ova sukobljena zahtjeva.
Na taj se način predložena metoda znatno lakše može primijeniti kada je vrijeme izračuna
ograničeno ili kada se mora provesti velik broj simulacija naplavljivanja. Osim toga, baze po-
dataka koje sadrže rezultate simulacija naplavljivanja mogu se uz algoritme strojnog učenja
adekvatno koristiti za procjenu posljedica scenarija štete (konačni ishod, vrijeme naplavlji-
vanja odjeljaka) samo na temelju vremenskog zapisa položaja i orijentacije plutajućeg broda
(poprečni nagib broda, trim i uron). Predložena metoda može biti osnova za novu generaciju
sustava za donošenje odluka na brodu, koji ne zahtijevaju ugradnju senzora naplavljivanja, što
pak omogućuje jeftinu nadogradnju postojećih brodova.

Ključne riječi: oštećeni brod, brza simulacija naplavljivanja, podrška odlučivanju u nuždi, stro-
jno učenje.
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Chapter 1

Introduction

Nowadays, the continuous growth in the size of passenger vessels is raising new safety concerns,
since even more, human lives are at stake. Among the possible threats that can affect ship safety
during its operative life, flooding is one of the most dangerous. It means, a vessel might not
survive hull damage, requiring its evacuation and abandonment, which is a time-consuming
task when involving thousands of persons [101]. In case of emergency, all the responsibility
is in charge of the shipmaster, who often has to rapidly take hard decisions based on lacking
or incomplete information. Human error, which is widely recognised as the major cause of
maritime accidents [34], can then affect not only the accidents occurrence but also the control
and mitigation of the flooding consequences. A bad decision in the initial phases of progressive
flooding might compromise the crew and passenger safety, leading, in the worst case, to the loss
of the vessel and/or many casualties.

1.1 Motivation

In the last decade, the need to provide onboard decision support during a flooding emergency
has been highlighted by several accidents that occurred to passenger vessels. In particular, the
sink of Costa Concordia in 2012 highlighted the vulnerability of large cruise ships and the
difficulties associated with the prediction of flooding dynamics after an accident [30]. Large
passenger ships have a very complex non-watertight subdivision within the watertight compart-
ments as well as above the bulkhead deck. Such an internal subdivision may reduce the free
surface moment due to floodwater but lead to possible asymmetric flooding scenarios and a
difficult prediction of flooding sequences [6]. The vulnerability of a passenger vessel is also
worsened by the short freeboard up to the bulkhead deck and short metacentric radius, which
might lead the progressive flooding of intact watertight compartments and capsize, respectively.

Therefore, after a collision or grounding nor the ship final fate (new equilibrium position,
capsizing, foundering) neither the time-to-flood (i.e., the time to reach the final stage of flood-
ing) can be assessed without the aid of a proper tool. In particular, it is really handy for a
master to evaluate the ship dynamics in case of flooding going beyond the static assessment
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provided by a standard loading computer at the final stage of flooding. To this end, use can
be made of enhanced onboard Decision Support Systems (DSS) that, after the identification of
damage location and extent, are capable to simulate with fast simplified algorithms the flooding
dynamics. Currently, damage detection can be performed only using flooding sensors, which
are mandatory only for passenger ships built after 1 July 2010 [48]. Hence, on the older ships,
serious safety issues can arise due to knowledge lacking during a flooding emergency. Even
the number and location of damaged compartments might not be certain, forcing the master to
make decisions based on heuristics or wasting time in collecting more reliable information.

A possible solution is to install a modern DSS on the whole passenger fleet. However, on
the large majority of the current fleet, such a retrofit is hindered by its high cost since requires
to install a complete flooding detection system (wiring, flooding sensors, new hardware, etc.).
This is why cruise ship lines are seeking alternative solutions to improve the safety of their
older ships with lower investments. In this context, a flooding-sensor-agnostic DSS might find
application. Besides, such a system might be installed also on merchant ships, which are still
not required to carry any flooding detection system by the current international rules. The
present dissertation is moving in this context, proposing a methodology to improve the onboard
decision support, with special attention to safety enhancement of older passenger vessels.

1.2 Literature Review

Before defining how the present dissertation would impact the background introduced above,
the existing literature shall be analysed referring to two main topics: onboard decision support
during a flooding emergency and flooding simulation techniques.

1.2.1 Onboard decision support

Recently, growing attention has been given to onboard decision support, ranging from intact
ship condition [55, 4] to the operation and restoring of damaged vessel [26, 5]. Here, focus will
be made only on the decision support on the bridge during a flooding emergency. In such a con-
text, considering passenger vessels, several solutions are already available on the market. First,
the international regulations enlist the mandatory documentation to be carried onboard [47].
However, paperwork documents, such as damage stability booklets or damage control book-
lets, are not considered suitable to provide emergency decision support by many seafarers. In
fact, their consultation is very time-consuming and they encompass only the damage scenarios
checked during ship design in the standard loading conditions which are not likely met during
the ship’s operative life. To partially overcome these issues, document digitalization is under-
way while several tools have been developed to support damage control [69, 43, 20, 58] or ship
functionality restoring [22] at the final stage of flooding.

Besides, almost all the passenger ships are equipped with loading computers capable to
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assess the damage stability employing the lost buoyancy method, although they are mandatory
only since 1 January 2014 [50]. However, loading computers, as well as DSS for damage
control, do not consider the transient and progressive flooding, which could lead to ship capsize
before reaching the stable final floating position assessed statically. Furthermore, no time-to-
flood estimation can be provided and usually the user is required to manually input the damaged
rooms, which could be unknown on aged vessels not provided with flooding sensors. Finally,
many seafarers claimed the scarce user-friendliness of most loading computers, whose graphical
interface is not usually updated since the codes are subject to class societies approval [44].

These issues have been tackled through a direct onboard application of progressive flooding
simulation codes, leading to the so-called "emergency computers". A conventional emergency
computer exploits flooding sensors to assess the damage position and dimension [74, 89]. Then,
according to such an input, it simulates the progressive flooding process by means of fast algo-
rithms. The results are usually elaborated and presented with user-friendly interfaces [85, 73],
often exploiting the virtual reality to enhance their decision support capability [109]. Emer-
gency tools considering the time domain have been recently claimed to be the best option to
provide decision support during a flooding emergency [87].

However, all these DSSs rely on flooding sensors capable to measure the floodwater level
in all the main compartments of the ship or at least in the most critical [59]. As mentioned, the
flooding detection system is installed only on a small number of recent passenger ships. Hence,
on the large majority of the existing fleet, emergency DSSs based on flooding simulation can be
installed only provided that a costly retrofit of the flooding detection system is done. To enable
more economical solutions for older vessels, alternative damage recognition procedures shall be
developed relying on a more basic set of sensors. A viable solution could be performing damage
detection from the time records of the floating position of the damaged ship. Thus, the required
sensors are limited to inclinometers (usually present in most of the ships) and a level radar to
measure the ship lists and draught, respectively. Such a concept has been used in a system
comparing the current record of the floating position with offline simulations retrieved from a
very large database [102]. The most similar simulation was identified and provided as a forecast
of the next flooding phases. Although functional, such a scheme requires interaction with all
database items. Therefore, for complex geometries, it could lead to unreasonable response times
and, thus, to large crew reaction time, which is not desirable during a flooding emergency.

1.2.2 Progressive flooding simulation techniques

Flooding simulation is the core of a modern emergency DSS. Many flooding simulation pro-
grammes are present in the literature. They can be grouped into three main families having an
increasing precision and, consequently, computational effort too:

• the quasi-static (or quasi-dynamic) methods,

• the dynamic methods,
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• the Computational Fluid Dynamics (CFD) methods.

The quasi-static methods are based on the assumption of horizontal and flat free surface
inside the flooded compartments at each time instant during the flooding process. Furthermore,
hydraulic laws are used to assess the flowrates through damages and internal openings. Moving
from methods based on empirical formulations proposed since the ’80s [100], several quasi-
static methods were developed at the beginning of the Millennium, devoted to reproducing
the progressive flooding of ships with complex subdivision or asymmetric flooding scenarios,
e.g. [99, 105, 95]. Later on, the pressure correction technique was introduced to capture the
effect of air compression while assessing the flow rates of water and air through openings and
braches [79]. The method was validated against model [91, 80] and full-scale tests [83] wih
good results. Afterwards, it was improved by applying a variable time step [81] and taking into
account the roll motion. Another quasi-static method exploits a weighted predictor-corrector
integration scheme to solve the governing equations and a non-linear system of equations to
assess the pressure inside filled compartments [28]. Despite considering air pressure can im-
prove simulation accuracy, its practical adoption is not straightforward, as will be discussed
later on. Hence, it has been neglected in several recent simulations codes [84, 76]. In the
framework of quasi-static methods, the steady Bernoulli equation is usually adopted to model
the flowrate through the damages and internal openings. Recently an alternative technique
has been proposed based on the dynamic orifice equation [64, 65]. The objective is to overtake
some instabilities associated with the classical Bernoulli equation. However, a work that clearly
shows the advantages of this formulation comparing its outcomes to the Bernoulli-based ones
is lacking. For such a reason, most of the current flooding simulation methods are still based
on steady Bernoulli equation, which is supported by a quite large literature and experimental
validation [103].

The dynamic methods are mainly devoted to capturing the effect of waves and sloshing
of floodwater on a damaged ship. They are also capable to reproduce the dynamic transient
phases, i.e. the fast initial phase of flooding. Two methods are typically employed to assess
the dynamic behaviour of a damaged ship in waves: the lumped mass method or the shallow
water equations. The lumped-mass methods model the floodwater motions by concentrating
its mass in a point while assuming a moving non-horizontal free surface [72, 71, 36]. The
shallow water methods are based on the application of wave theory to model sloshing inside
a flooded room [32, 23, 93]. These techniques can be used within a dynamic code accounting
for floodwater spreading in internal spaces to simulate the transient flooding and/or progressive
flooding of a damaged ship in harsh weather. For instance, lumped-mass method with moving
free surface has been fully coupled with the ship motions, the inflooding jet, the floodwater
motions and the flow through the openings [66]. Although the good accuracy in transient phase
prediction, the main issue of dynamic codes deals with the computational time. It is usually
comparable or higher than simulated physical time. Simplified dynamic methods have been
also developed to reduce the computational effort being capable to reproduce a model-scale
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experiment almost three times faster than real-time [2, 1]. These performances, although being
remarkable for a dynamic method, are still not acceptable for decision support purposes on a
cruise vessel, since the evacuation, if required, could be triggered too late.

Eventually, the CFD methods are even more time consuming than dynamic ones [92].
Hence, they have been applied only to study very specific problems where computational time
was not considered a critical aspect. For instance, CFD methods have been employed to sim-
ulate the progressive flooding on a box-shaped barge [79, 37, 21, 16], to reproduce with high
accuracy the transient flooding [40], to study the coupled dynamics during all stages of flooding
on a very simple geometry [25] or the effect of air compression on a damaged river vessel [112].

In light of the previous review of flooding simulation methods, only the quasi-static ones
can be applied when the computational time shall be minimised, as happens in direct onboard
application or large dataset building up. Considering cruise ships having dense non-watertight
subdivision, these simulation methods are satisfactory for both operative environment and de-
sign application [86]. However, among them, only a few methods have been applied onboard
or specifically developed for this purpose. The fastest quasi-static method available in literature
was designed during FLOODSTAND project [88]. It is based on the reverse solution of flood-
ing chains and adopts several strong simplifications: air compression is neglected as well as all
the dynamic effects. Moreover, a decreasing floodwater level is assumed along each flooding
chain. Thus, flow reversals at breach or internal openings cannot be modelled. Nevertheless,
the obtained results, although having lower accuracy compared to other quasi-static methods,
were found sufficiently accurate for onboard application since they are capable to reproduce
qualitatively the progressive flooding process [84].

1.3 Objectives

The purpose of this dissertation is to improve the accuracy of quasi-steady progressive flooding
simulations while reducing the required computational effort. The first objective is achieved
through the algebraic solution of the linearised equations governing the progressive flooding
of the ship; the latter, by adopting an adaptive integration time step based on floodwater levels
derivatives. The new simulation methodology enables faster onboard simulation as well as an
easier generation of large databases of progressive flooding simulations in the design environ-
ment.

Besides, the present dissertation explores the application of machine learning algorithms to
predict the main damage consequences (final fate, flooded compartments, time-to-flood) based
only on the time evolution of the ship floating position. In the proposed process, water levels
inside flooded rooms are not considered, opening the path toward a flooding-sensor-agnostic
emergency DSS. In this context, different supervised algorithms and generation techniques for
training database have been tested and compared in order to assess the best options fitting the
studied classification and regression problems.
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1.4 Organisation of the Thesis

The present dissertation is divided into two main parts: the development of a new quasi-static
simulation technique and the application of machine learning algorithms to predict the damage
consequences.

The new simulation technique provides a good compromise between accuracy and com-
putational load compared to the simplified chain of flooding method [84]. In Chapter 2, the
theoretical basis of the proposed progressive flooding simulation technique is presented, focus-
ing on the flooding physics and modelling strategies. Then, in Chapter 3, the core of the new
simulation method is described, providing three different sub-methods to predict the progressive
flooding of a damaged vessel. Their advantages and limitations are introduced and discussed
in more detail in Chapter 4, exploiting a full-scale example. Besides, the assessment of the
integration time step is also presented, focusing on the control strategies to avoid the errors
coming from its excessive size. In Chapter 4 the new progressive flooding simulation method is
validated against model-scale experimental records. Then, as mentioned, it has been applied to
a large passenger ship in order to prove its capability to tackle complex geometries.

In the second part of the dissertation, the new simulation technique is employed to generate
large databases of flooding simulations to explore the adoption of machine learning algorithms
in flooding consequences prediction. In Chapter 5, after a brief introduction to machine learn-
ing, the proposed strategy to assess onboard damage consequences without flooding sensors
aid is presented. Then, the tested supervised algorithms (Decision trees, K-nearest neighbours,
support vector machines) and different database generation methods (three Monte Carlo meth-
ods and one parametric) are introduced. The proposed process is tested in Chapter 6. A simple
barge geometry has been designed to evaluate the accuracy of the tested algorithms and their
computational performances. Then the best method is employed to explore the effect coming
to the adoption of different training databases all validated against a large Monte Carlo dataset
built according to SOLAS probability distributions.

In Chapter 7 the conclusions related to both the parts of the dissertation are provided, in-
cluding the perspectives of the present dissertation. Focus will be made on the steps deemed
necessary to develop and install onboard a flooding-sensor-agnostic emergency DSS.
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Chapter 2

Theoretical bases of progressive flooding

In the present chapter, the theoretical bases of the proposed progressive flooding simulation
strategy are presented. First the whole flooding process is introduced focusing on the particular
case of a large passenger ship. Then the main assumptions and the equations governing the pro-
gressive flooding of a damaged ship are presented and discussed. Finally, the internal openings
modelling strategy is addressed, being a very critical aspect for large passenger vessels.

2.1 Flooding process

As a consequence of a collision or grounding the watertight surface of the hull can be compro-
mised, leading to flooding the ship’s internal spaces. The flooding process of a damaged ship
is a complex phenomenon that can be strongly affected by several aspects, e.g. the design of
the ship’s internal subdivision, the leakage or collapsing of internal openings and structures,
the development of air pockets, etc. Hence, a general introduction to the flooding process is
usefull to understand the problems that can be encountered in the simulation of the damaged
ship behaviour.

The floodwater flow is normally non-stationary, hence, the flooding process is characterised
by different pace during its time evolution. The flooding of a damaged ship is conventionally
divided into three main phases: the dynamic transient, the progressive flooding and the final
steady state [100]. In the first phase, the water rushes through the damage openings into the
damaged rooms. Then, during the progressive flooding, the floodwater spreads inside the other
internal rooms flowing through internal openings. As a consequence of flooding, three final
fates are possible: the ship can sink, capsize or reach a new steady-state, i.e. a new equilibrium
floating position where all the water levels inside the flooded rooms equalise the sea level. The
time taken by the ship to reach its final fate is named time-to-flood. The Figure 2.1 shows
the evolution of heel angle in three different flooding scenarios characterised by different fate,
highlighting the three phases of the flooding process. In the following, dynamic transient and
progressive flooding phases are discussed in more detail.
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Figure 2.1 Qualitative sketch of heel angle time evloution during multiple flooding processes
having different final fate

2.1.1 Dynamic transient

In the initial flooding phase, the floodwater rushes into the damaged rooms with a very fast pace.
If the breaches are sufficiently large and deeply submerged, the room-filling can be considered
almost instantaneous. In this phase dynamic phenomena usually arise, being non-negligible and
might lead to sudden the ship capsizing after a few seconds or a few minutes [76]. In fact, con-
sidering a side damage and a non-symmetric subdivision, large heeling moments can be applied
leading the vessel to rapidly heel towards the damaged side. Due to inertial effects, the heel
angle can exceed the static value related to the complete flooding of the damaged rooms. This
phenomenon is usually mitigated through cross flooding ducts having a proper cross-section to
let floodwater spreading rapidly towards the undamaged side. Such an equalization reduces the
heeling moments bringing back the ship close to the upright position. Cross flooding ducts are
usually fitted to connect side tanks in a passenger ship, where the large list can also significantly
slow down the evaluation process.

During the transient phase, flooding can be heavily affected by several factors. First, the
penetration of the damage might compromise also the internal watertight boundaries of the
ship, e.g. bulkheads. The damage penetration differs due to the accident: grounding [19] or
collision [51]. Moreover, the damage is not necessarily instantaneous but can be opened in
a finite time as the ship scrapes with the rocks/seabed or the striking ship draws back after a
collision.

In a simulation, these aspects are not easy to be tackled, hence, it is common practice to
neglect them [80]. Moreover, quasi-static simulation methods are not usually capable to prop-
erly reproduce the dynamic transient. To this end, dynamic methods can be applied with good
results [66], being also capable to identify fast capsize scenarios. However, aiming at onboard
application to provide decision support, the prediction of fast capsize cannot provide any useful
information to the crew since the time is not sufficient to save the ship and people onboard by
means of any active countermeasure.
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2.1.2 Progressive flooding

During the progressive flooding, the floodwater spreads from the damaged rooms to the other
internal spaces connected by open or non-watertight openings. Usually, due to the small size
of the openings, this phase can be considered more quasi-steady than the transient [80]. As the
floodwater spreads onboard, the floating position changes increasing the sinkage while the lists
can evolve more randomly due to the subdivision geometry (non-watertight boundaries, inter-
nal openings, cross-flooding ducts, downflooding devices). Usually, also the ship stability is
reduced during the progressive flooding until the vessel capsizes or sinks or, hopefully, reaches
a new steady state. The duration of this phase ranges from a few minutes to several hours, hence,
immediately after the damage it is hard to predict the time-to-flood without a flooding decision
system based on a progressive flooding simulation engine [87]. As mentioned, the time-to-flood
is essential on passenger ships, since it roughly corresponds to the available time for evacuation
in a fatal scenario. This is why the present work mainly focuses on the progressive flooding
simulation and the new ways to exploit these tools for onboard decision support.

The progressive flooding phase presents some main issues, especially on large passener
ships, which are caracterised by a dens and complex non-watertigh subdivision. First, the ge-
ometry and closure status of the internal openings (open/closed) has a very strong effect on the
progressive flooding [82]. The closure status could also lead to different fates in the same dam-
age scenario. Moreover, a closed non-watertight door under a critical effective waterhead, i.e.
the difference in waterhead between the rooms connected by the opening, might start leaking
floodwater and eventually might collapse. The collapse order assessment is not straightfor-
ward [6], especially when multiple doors are connected to corridors, but can anyway strongly
affect the process. Hence, in progressive flooding simulations, special attention shall be due to
internal opening modelling. The problem has been addressed by IMO which provided guide-
lines regarding internal spaces modelling for flooding simulations [45]. Then an experimen-
tal campaign on this topic carried out during FLOODSTAND project improved the modelling
methodology for leakage and collapse of several opening types [90]. Finally, some external
factors can affect the progressive flooding process and also the time-to-flood. The presence of
the striking ship for collisions and the sea bed/rocks for grounding might also change or distort
the behaviour of the damaged ship during the progressive flooding. As for the transient, these
interactions are usually neglected in all the flooding simulation methods. Besides, the effect of
the waves on progressive flooding should be discussed. Several studies addressed the flooding
of large passenger ships in waves [104, 70]. Due to the dense non-watertight subdivision, a
large passenger ship’s progressive flooding and survivability in waves were not proved to be
heavily affected by waves [86] as happens for RoRo and RoRo-Pax vessels, which can rapidly
capsize due to water accumulation on vehicle deck [94]. Large passenger ships mainly capsize
during the progressive flooding due to insufficient residual stability. This is why, for this kind of
vessel quasi-static methods can be applied with good results [30], especially for direct onboard

9



application.

2.2 Assumptions in progressive flooding simulation

The main assumptions of the proposed simulation technique are in line with most of the recent
tools applicable to large passenger ships having low computational load [84, 29, 76]. First,
in this work, the internal structures constituting the ship subdivision are assumed to be intact.
Hence, the damage is modelled only as an opening on the hull surface and does not affect the
internal boundaries, both watertight and non-watertight. Besides, the method assumptions deal
with two main additonal aspects: the process dynamics and the air compression, which has been
recently investigated by several studies [79, 29].

2.2.1 Process dynamics and reference systems

The progressive flooding process is considered quasi-static. This means that all the dynamic
phenomena (e.g. sloshing, ship motions in waves, wave pumping, etc.) other than floodwater
pouring are neglected. In this way, the computational effort required by the simulation method
is minimised improving the direct onboard applicability. The floating position of the ship is
considered fixed over a single integration time step and is evaluated taking into account the
initial loading condition and the actual floodwater distribution. The sea free surface and the
waterplanes of flooded compartments are assumed as flat and all the waterplanes are parallel to
the sea free surface.

With these assumptions, two reference systems can be defined as shown in Figure 2.2). The
first is the standard ship-fixed right-handed reference system OXY Z having the origin at the
intersection between baseline and after perpendicular. The second is an auxiliary earth-fixed
right-handed reference system O′xyz corresponding to the sea free surface. In such a system,
the flooded compartments’ waterplanes can be identified by a unique level indicated with z.

Z

z

Y
y

X

x
O

O'

Figure 2.2 Ship-fixed and auxiliary earth-fixed reference systems [8]
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This auxiliary system can be defined at each time step according to the fixed floating position
of the vessel, i.e its temporary equilibrium position.

The hull and all the internal subdivision (rooms and openings) are be modelled in 3D
through non-structured triangular meshes to apply a self-developed hydrostatic code based on
pressure integration technique [12]. The flooding chains are not considered [84], removing
the simplified hypothesis of decreasing level along the chain itself and, thus, permitting flow
reversal.

2.2.2 Discussion on air compression

In the proposed simulation technique, all the internal spaces are assumed to be fully-vented.
Air compression is significant only in rooms connected by small size vent openings, e.g. tanks
equipped with ventilation pipes (relevant effects have been observed when the sum of all venti-
lation openings’ areas is lower than the 10% of the area of the openings that pours floodwater
into the room) [80]. Usually, ship 3D models utilized for stability assessment do not include
such details, in order to streamline the flooding model configuration.

In the main compartments, stable air pockets can appear when all the openings are flooded.
The air pockets can affect the simulation process having a non-negligible effect on the ship
floating position and stability. However, the internal watertight boundaries are not always com-
pletely airtight [83], leading to a temporary presence of air pockets and a difficult assessment
of effective vent area.

In a real environment, ship model uncertainties (e.g. permeabilities, areas of the openings,
their constant discharge coefficients and leakage/collapse waterhead, etc.) might anyway affect
simulation reliability [77, 7], vanishing the accuracy enhancement coming from air compres-
sion modelling. Furthermore, the introduction of air compression complicates the governing
equations leading to higher computational loads. Therefore, especially when the simulation
technique is designed for the onboard application, it is reasonable to consider all compartments
as fully vented. Here, only air pockets are modelled employing a simplified method to con-
sider their effect on ship floating position which can affect the ship stability and the progressive
flooding simulation.

2.3 Progressive flooding governing equations

The progressive flooding dynamic is governed by two main equations: the conservation of mass
and the conservation of momentum, that have to be instantaneously satisfied for each flooded
room and for each connection among them.
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2.3.1 Conservation of mass

Considering the i-th flooded room, the conservation of mass states that the sum of incoming and
outgoing fluxes of floodwater is equal to the internal volume derivative:

V̇i =
Oi

∑
j=1

Q ji (2.1)

where V̇i is the time derivative of floodwater volume inside the room and Q ji are the flow
rates through the Oi openings connecting the selected room to other ones, denoted by index
j. Assuming a constant waterplane area and a constant permeability, the conservation of mass
can be written as:

żiµiSi =
Oi

∑
j=1

Q ji (2.2)

where Si, µi and żi are the waterplane surface of the i-th room, its permeability and its floodwater
level derivative respectively (Figure 2.3), all referred to the earth-fixed reference system. It
is worth to notice that this assumption is exact only for wall-sided spaces that are extremely
common in the subdivision layout of large passenger ships, but might introduce computational
errors in the spaces located in the fore and aft body considering slender hull forms.

Figure 2.3 Sketch of a three rooms geometry [9]

2.3.2 Conservation of momentum

The conservation of momentum describes the flowrates among different flooded rooms. Hence,
it shall be applied to each opening. Assuming a deeply submerged opening connecting two
rooms and a stationary flow through the opening, the Bernoulli equation can be utilized con-
sidering a streamline starting from the centre of the room’s free surface A and ending to the
opening centre B:

paB− paA

ρ
+

1
2
(
u2

B−u2
A
)
+g(zB− zA)+

1
2

kLu2
B = 0 (2.3)
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where pa is the air pressure, u the flow velocity and kL the opening’s pressure loss coefficient.
Neglecting air compression, the pressures paA and paB are equal. Moreover, due to the larger
value of free surface area compared to the opening cross-section, the flux velocity uA can be
considered negligible compared the the velocity uB measured at the opening. With these as-
sumptions, the flow rate Q ji through the opening can be evaluated as:

Q ji =Cd jiA ji sgn
(
ẑ j− ẑi

)√
2g|ẑ j− ẑi| (2.4)

where the level ẑ is evaluated as:

ẑ j = max
(
z j,zmin ji

)
(2.5)

where zmin ji is the distance of the lowest tip of the opening connecting i-th and j-th rooms
from sea free surface (i.e. the lowest level tip level in the earth-fixed reference system), A ji its
cross-section and Cd ji = 1/

√
1+ kL its non-dimensional discharge coefficients depending on the

orifice shape and edges. Despite some recent studies are questioning this assumption, it is still
common practice in quasi-static simulation methods to assume constant values of the discharge
coefficient ranging from 0.6 to 0.7 [77].

2.3.3 Simplified air pockets modelling

When a room is assumed airtight, air cannot flow through the room boundaries being forced to
flow out only by main openings. In airtight rooms, the floodwater level rising can block all the
openings by submerging their highest tip zmax ji measured in the earth fixed reference system.
At that time, the remaining volume of air is trapped inside the room creating an air pocket,
which has a constant air mass during the following phases of progressive flooding process. As
the waterhead continues rising, the fixed air mass is compressed affecting the actual floodwater
level inside the room. Hence, air pockets have several macroscopic effects on the progressive
flooding process. They reduce the stability of the flooded ship due to the additional free surface
moments. Moreover, air pockets usually slow down the progressive flooding since the water
level inside the airtight compartment is lower than the predicted level under the hypothesis of
fully-ventilation. The lower floodwater mass can reduce the sinkage and lists, thus reducing the
effective waterheads on the openings too. Aiming to the onboard application, the slower change
in floating position is a conservative error, while the stability reduction might be critical. This
is why, despite the already mentioned problems connected to ventilation, simplified modelling
of air pockets has been developed based on the correction of floodwater level.

Considering air an ideal gas and an isothermal process, the compression follows Boyle’s
law:

paVa = k (2.6)
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where pa and Va are the pressure and the volume of air respectively and k is constant during the
isothermal compression. The air pressure into the pocket can be considered as an equivalent
waterhead defined as:

za =
pa

ρg
(2.7)

Hence, the Equation 2.6 can be rewritten as:

zai =
z0Va0,i

Vai

(2.8)

where z0 is the atmospheric pressure equivalent waterhead, Va0i
is the volume of air trapped

inside the i-th room as the highest opening is submerged (Figure 2.4).

RjRiRjRi

z  = zi

Va

ji,max

a) b)

0,i

RjRi

zw

Va

i

i
zi

Vwi

z  – zai 0

Vw0,i

Figure 2.4 Sketch of an air pocket formation (a) and waterheads within the air pocket during
compression (b)

Within an airtight room having a total waterhead zi, the actual floodwater level zwi can be
calculated as:

zwi = zi− zai + z0 (2.9)

Combining Equations 2.8 and 2.9, the actual level of floodwater, taking into account the air
pocket effect, is obtained solving the following equation:

zwi = z−
z0Va,i0

Vei−Vwi(zwi)
+ z0 (2.10)

where Vei and Vwi(zwi) are the capacity and the volume of liquid corresponding to level zwi

respectively. The Equation 2.10 is non-linear but can be solved iteratively in zwi at each time
step for all the air pockets detected during the progressive flooding process. This approach
enables a proper assessment of ship displacement, mass centre and stability of the ship, without
introducing any complication in the formulation of the problem.
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2.4 Openings modelling

In progressive flooding simulations, special attention shall be due to the openings modelling.
The flowrate evaluated according to Equation 2.4 is valid for deeply submerged openings only.
Otherwise, especially large openings, the free outflow implies a different flowrate requiring
another formulation of the conservation of momentum [28]. Moreover, aiming at the onboard
application on large passenger ships, the behaviour of closed non-watertight doors shall be also
modelled since can have a strong effect of progressive flooding process [106, 82, 6]. Here, both
the problems are addressed introducing a correction on the effective area of the opening.

2.4.1 Area correction for free outflow

Considering a large opening, different submersion statuses can be identified as shown in Fig-
ure 2.5. As mentioned, the Equation 2.4 provides the flowrate for the deaply submerged opening
case, i.e. an opening which satisfy both the conditions zmax ji < zi and zmax ji < z j (Figure 2.5a)
and thus Ads ji = A ji. In the case shown in Figure 2.5d all the area is interested by free outflow,
whereas in the remaining cases the free outflow area A f o ji is calculated as:

A f o ji = A ji−Ads ji (2.11)

Assuming a flat rectangular opening, the free outflow flowrate can be evaluated as:

Sj

RjRi

zi

z j

Si Aji

z ji,min

Sj

RjRi

zi
z j

Aji

Si

Sj

RjRi

zi

z j

Aji

Si

Sj

RjRi
zi z j

Aji

Si

zji,max

a) b)

c) d)

Aji,ds

Aji,ds

Figure 2.5 Sketch of different submersion status of a large opening.
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Q f o ji =
∫ zt

zb

Cd
A f o ji

(zt− zb)

√
2g(z j− z) dz (2.12)

where zb = max(zi,zmin ji) and zt = min(z j,zmax ji). Integrating the equation 2.12, the flowrate is:

Q f o ji =Cd
√

2g
A f o ji

(zt− zb)

2
3

[(
z j− zb

) 3
2 −
(
z j− zt

) 3
2
]

(2.13)

The same flowrate can be evaluated using the deaply submerged formulation with a reduced
effective area Ae ji:

Q f o ji =CdAe ji

√
2g(z j− zb) (2.14)

Equating the Equation 2.13 and the Equation 2.14, a free outflow area correction factor can be
defined as:

γ ji =
Ae ji

A f o ji

=
2
[(

z j− zb
) 3

2 −
(
z j− zt

) 3
2
]

3
√
(z j− zb)(zt− zb)

(2.15)

If the equation z j ≤ zmax ji is satisfied, the general evaluation of the correction factor can be
further simplified as:

γ ji =
2
3

(2.16)

Hence, the deeply submerged formulation in Equation 2.4 can be applied in all cases shown in
Figure 2.5, provided that the opening area is assessed according to:

A ji = Ads ji + γ jiA f o ji (2.17)

It is worth to notice that this formulation is not applicable for horizontal openings in the
earth fixed reference system. In such a case, the unitary correction factor shall be used.

2.4.2 Leakage and collapse

In progressive flooding simulations, the openings’ leakage and collapse can have a very strong
effect on the ship dynamics [82]. All the openings, especially the non-watertight ones, are not
able to withstand high effective pressure heads ze ji = ẑ j − ẑi. As the effective pressure head
rises, closed doors start leak floodwater and then might collapse. Hence, this behaviour must be
modelled especially for large passenger ships, where the complex internal subdivision presents
a large number of non-watertight doors.

After some initial guidelines provided by IMO [45], this topic has been studied during the
FLOODSTAND project, including a quite large experimental campaign on several different
door’s types [90]. As a result of the project, also leakage modelling guidelines have been

16



issued [53]. The proposed approach defines two critical effective waterheads: the leakage one
zl and the collapse one zc. When the effective waterhead on a closed opening overtakes zl , the
effective area A ji considering leakage is modelled as:

A ji = Ao ji

(
α ji +β ji

∣∣ze ji

∣∣) (2.18)

where Ao ji is the open area of the opening’s submerged fraction whereas α and β are two
coefficients related to the opening type and water flow direction. In fact, especially hinged doors
usually better withstand the forces generated by the effective waterhead if they are opposite to
his opening direction (out), and thus can more easily leak and collapse if they are concordant
(into). When the waterhead overtakes zc the door collapses and the effective area A ji is assumed
equal to Ao ji .

In the present work, the applied coefficients and critical waterheads are reported in Table 2.1
for different doors types. The classification of doors has been defined according to IMO stan-
dards [45] which provide also the initial reference values. For light watertight doors, fire doors
and cold room doors, the values as been updated according to [90, 53] whereas, for the elevators
doors, values are taken from [60].

Table 2.1 Assumed leakage and collapse particulars for closed opening modelling

Type Code αinto αout βinto βout zl,into zl,out zc,into zc,out
Watertight Door A1 0.000 0.000 0.000 0.000 +∞ +∞ +∞ +∞

Light Watertight Door A2 0.000 0.000 0.000 0.000 +∞ +∞ 8.000 8.000
Semi Watertight Door A3 0.200 0.200 0.000 0.000 1.000 1.000 3.000 3.000
Weathertight Door B1 0.050 0.050 0.000 0.000 0.300 0.300 4.000 4.000
A-Class Sliding Fire Door B2-S 0.025 0.025 0.000 0.000 0.000 0.000 1.000 1.000
A-Class Hinged Fire Door B2-H 0.000 0.000 0.020 0.030 0.000 0.000 2.500 2.500
A-Class Double Leaf Fire Door B2-DL 0.025 0.025 0.000 0.000 0.000 0.000 2.000 2.000
Cold Room Sliding Door B2-C 0.000 0.000 0.010 0.010 0.000 0.000 3.500 3.500
Cold Room Hinged Door B2-CH 0.000 0.000 0.020 0.030 0.000 0.000 2.500 2.500
B-Class Joiner Door B3 0.000 0.030 0.030 0.000 0.000 0.000 1.500 1.500
Low Restriction of Flooding C 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Elevator E 0.090 0.090 0.000 0.000 0.000 0.000 1.000 1.000
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Chapter 3

Progressive flooding simulation method

In the present chapter, the proposed approach is described to simulate the progressive flooding
of a damaged ship in the time domain. Different mathematical formulations are presented, all
based on the linearization of the governing equations of the phenomenon to permit its algebraic
solution [8]. The linearised estimation of the floodwater level time-evolution inside the rooms
enables the application of large integration time steps capable to reduce the computational effort.
However, the application of a linearised technique requires special attention in dealing with
completely filled rooms [9]. Here, two different strategies to face the problem are presented and
qualitatively compared.

As already mentioned, aiming to the onboard application, it is essential to reach a satisfac-
tory balance between accuracy and computational time. The linearised methods can offer an
advantage in this sense compared to other techniques [80, 76]. Greater benefits can be achieved
by applying an adaptive time step, as it has been demonstrated in [81]. However, the errors
associated with too large time steps shall be taken under control in order to preserve simulation
accuracy.

In the present chapter, after a description of the overall simulation strategy, the proposed
mathematical formulations of the linearised problem are provided. Then, the adjustment strat-
egy for the adaptive time step is introduced, focusing also on its limitation to reduce computa-
tional errors.

3.1 Main simulation algorithm

The proposed simulation technique is based on a single loop over a fixed floating position of the
damaged ship. The main steps of the process are shown in Figure 3.1 and are briefly described
hereinafter. In the first stage, the quasi-steady floating position of the ship is evaluated through
a 3-DOF equilibrium [12], considering the loading condition of the ship at damage occurrence
(lightship, dry cargo, liquids in tanks) and the total amount of floodwater present onboard. If
the ship has not a sufficient residual buoyancy or stability, it sinks or capsizes respectively. In
such cases, the simulation process is stopped.
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Figure 3.1 Main loop of the progressive flooding simulation [9]

Otherwise, the water levels within flooded rooms are evaluated in the earth-fixed reference
system. The levels are obtained applying 1-dof equilibrium procedure on the room 3D mesh to
assure the conservation of floodwater volume in each room.

Then, according to floodwater levels, the status of the openings of the ship model is checked.
In detail, the unprotected openings connecting the ship’s internal spaces to the external environ-
ment and the internal openings connecting a flooded room to an empty one are considered. In
the following, these openings will be referenced as Progressive Flooding Openings (PFO). If a
PFO is submerged, a new room is flooded and thus shall be taken into account during the next
stages of progressive flooding simulation. Moreover, due to the complexity of the internal sub-
division of a large passenger ship, an initially submerged PFO might completely emerge during
the progressive flooding due to a change in heel angle, trim angle and/or sinkage. In such a case,
a non-empty flooded room can be isolated from the others and therefore shall not be considered
any more as a flooded room. Hence, in the subsequent phases of simulation, it is treated as an
ordinary tank being taken into account only for the assessment of the quasi-steady equilibrium
position of the ship.

Provided that no new flooded rooms have been detected, the quasi-steady floating posi-
tion of the ship is analysed to identify whether the steady-state has been reached or not. The
quasi-steady floating position is considered the final equilibrium position if four conditions are
simultaneously satisfied. The first three are related to the floating position rate of change: the
estimated velocity of the heel angle φ , trim angle θ and non-dimensional mean draught TM/TM0

shall be lower than the thresholds provided in Table 3.1. The last condition deals with the wa-
ter level into the flooded rooms that shall be close to the sea free surface. Since the levels are
defined in the earth-fixed reference system, they shall be null with a small tolerance to meet
this condition. In order to make the threshold independent from vessel size, the levels are nor-
malized with the mean draught TM0 at damage occurrence as shown in Table 3.1. If the four
conditions are met, the simulation is stopped and the ship survives the damage scenario. If
a new iteration is required, the new floodwater levels are assessed according to the linearised
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methodology. It is worth to notice that at this stage the integration time step is also adjusted
according to flooding pace. Then, the floodwater volumes corresponding to the new levels are
computed and utilized to update the damaged ship displacement and centre of mass. Formerly,
a new iteration of the main loop can start with the assessment of the new quasi-steady floating
position of the vessel.

Table 3.1 Applied thresholds for the stopping algorithm when the steady-state is reached.

Description Bounded Value Threshold
Heel Angle |φk−φk−1|/dt 0.00050 deg/s
Trim Angle |θk−θk−1|/dt 0.00005 deg/s
Mean Draught |TMk−TMk−1|/(TM0dt) 0.00001 1/s
Level |zi|/TM0 0.0001

3.2 Estimation of floodwater levels

In this section, the linearised methodologies are presented to assess the new levels within the
flooded rooms of the vessel. The most straightforward approach is to define an Ordinary Dif-
ferential Equations (ODE) system. The corresponding level estimation method is named Lin-
earised ODE (LODE). However, this formulation is inadequate to simulate the behaviour of
filled rooms, especially for flooding scenarios involving a large passenger vessel [6]. To over-
come these issues a viable approach is represented by filled rooms grouping [8] or, better,
considering a different mathematical formulation of the problem modelled through Differen-
tial Algebraic Equation (DAE) system [9]. The resulting level estimation methods are named
LODE with Grouping (LODEG) and Linearised DAE (LDAE) respectively.

3.2.1 Linearization of ordinary differential equations

At a defined time instant t∗ during the progresive flooding process, n flooded rooms are consid-
ered partially flooded. As mentioned, the amount of floodwater can be univocally defined by
the levels mesuared in the earth-fixed reference system z∗ = z(t∗) = (z∗1, ...,z

∗
n). Combining the

governing Equations (2.2) and (2.3) an ODE system can be defined that describes the evolution
in time domain of levels z = z(t− t∗) = (z1, ...,zn) during the progressive flooding in the form:

ż = f̃ (z) (3.1)

where

f̃i (z) =
n

∑
j=0
j 6=i

K ji

µiSi(t∗)
sgn
(
z j− zi

)√
|z j− zi| (3.2)

and
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K ji =Cd jiA ji
√

2g (3.3)

In the sum above, a level z0 = 0 also appears, i.e. the sea level that is always null in the earth
fixed reference system. The ODE system can be linearised in z∗ as:

ż′ = J f̃ (z
∗)z′+ f̃ (z∗) (3.4a)

z′ = z− z∗ (3.4b)

where J f̃ is the Jacobian matrix of the f̃ evaluated in z∗. The Jacobian matrix can be decom-
posed in two n×n matrices as:

J f̃ (z
∗) = S×Z(z∗) (3.5)

having

S = diag
(

1
µ1S1(t∗)

, ...,
1

µnSn(t∗)

)
(3.6a)

Zi j(z∗) =


if i = j −∑

n
k=0
k 6=i

Kki√
|z∗k−z∗i |

if i 6= j K ji√
|z∗j−z∗i |

(3.6b)

Both matrices S and Z(z∗) are symmetric. Moreover, S is positive-defined. Therefore,
the Jacobian matrix is diagonalizable and, by applying the single value decomposition, can be
rewritten as:

J f̃ (z
∗) = V×D×V−1 (3.7)

where D is the n×n diagonal matrix of the eigenvalues of J f̃ , V the n×n matrix whose columns
are its eigenvectors and V−1 the inverse of V.

Multiplying both sides of Equation (3.4a) by V−1, the linearised system can be simplified
as:

ṙ = Dr+v (3.8a)

r = V−1z′ (3.8b)

v = V−1 f̃ (z∗) (3.8c)

Since D is a diagonal matrix, the equations in System (3.8a) are decoupled. Hence, the
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initial value problem has the following algebraic solution:

ri =
vi

(
eDii(t−t∗)−1

)
Dii

(3.9)

Therefore, combining the Equations (3.4b), (3.8b) and (3.9), the time-domain evolution of the
level of the i-th flooded room can be estimated according to:

zi = z∗i +
n

∑
j=1

Vi jv j

(
eD j j(t−t∗)−1

)
D j j

(3.10)

This equation can be utilized to assess the new levels after an integration time step dt = t− t∗.

It is worth to notice that the linearised solution has an exponential trend. Hence, since the
eigenvalues of the Jacobian matrix are always negative, all the levels tend to the null level, i.e.
the sea level by definition. This behaviour is physically consistent with the progressive flooding
problem.

3.2.2 Grooping of filled rooms

The LODE formulation has been derived with the assumption of partially filled rooms. How-
ever, especially for complex non-watertight subdivision having multiple decks, during the pro-
gressive flooding, several rooms can be filled by water. In such a case, the left terms in the
Equation 3.1 related to the filled rooms are null (the level derivative and the waterplane are
both nulls). Hence, the system is no more ordinary and a straightforward application of the
Equation 3.10 assuming the free surface area Si equal to the room’s top area introduce a com-
putational error. In fact, with this assumption, the conservation of mass is no more respected
for the filled rooms where an amount of floodwater is still added and thus "disappears" from the
ship model. Aiming to onboard application, this kind of error cannot be considered conserva-
tive, since implies an overestimation of the time-to-flood.

A viable solution to overcome this problem is the filled rooms’ grouping [8]. Applying this
approach, as a k-th room is filled, it is removed from the equation system and it is grouped with
the i-th room connected by the opening having the largest value of Kki. Hence, in the subsequent
steps of the simulation, the rooms previously connected to the filled one are associated with the
group, which is modelled by means of a single level zi, a single waterplane area Si and a mean
permeability µi computed as the weighted average of the grouped rooms’ ones.

This method, called LODEG, reduces the dimension of the system in presence of filled
rooms. This can lead also to slightly reduce the computational effort required to compute the
linearized solution. However, the grouping assumptions still involve a theoretical error. In fact,
the pressure loss of the opening connecting the two grouped rooms is implicitly neglected. Nev-
ertheless, the LODEG error can be considered conservative, since drives to an underestimation
of the time-to-flood. Considering the onboard perspective, an underestimation is less critical
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provided that does not lead to rush ship evacuation inducing panic among crew or passengers.

The different behaviour of LODE and LODEG methods can be easily understood consid-
ering an example. Simulations have been carried out on the simple geometry reported in Fig-
ure 3.2. The box-shaped barge is 75 m long, has a breadth of 20 m and a fixed draught of
12 m. The 5 main rooms has a watertight tanktop located at 5 m from baseline to be progres-
sively filled by water. The rooms are connected through a set of openings specified in Table 3.2.
Two flooding scenarios called 1 and 2 can be simulated by opening the R1-R2-A or R1-R2-B
respectively.

In Figure 3.3 the simulations are compared on the two flooding scenarios applying both the
LODE and LODEG methods. It is worth to notice that applying the LODE formulation the
shape of the level curve is continuous after a room’s filling, i.e. when the level reaches the
tanktop level. As mentioned, this behaviour is caused by the inconsistent addition of floodwater
inside filled rooms.

On the other hand, applying the LODEG formulation, each room, after filling, is grouped
with the previous one in the flooding chain, i.e. the sea in both the flooding scenarios. Hence,
the assumed waterhead inside filled rooms is the sea level, which is null. The different ∆z lead
to a divergence of the results obtained with the two formulations after the room R1 filling. In
flooding scenario 1 the levels within R2 remain comparable only due to the fast increasing of
waterhead up to the sea level inside R1 experienced applying the LODE formulation. In terms
of time-to-flood the effect of the mathematical formulation is significant: in flooding scenario 1
the time-to-flood differs of about 287 s whereas in scenario 2 of about 187 s.

R1
0

R2 R3 R4 R51 2 3 4

A

A

A-A

R1-R2-A

R1-R2-B

Figure 3.2 Simple test arrangement for qualitative comparison of methods with flooding se-
quence [9]

Table 3.2 Main characteristics of the test case openings. C = (XC,YC,ZC) is the centre of
the opening in ship-fixed reference system

id h (m) w (m) XC (m) YC (m) ZC (m)
SEA-R1 1.000 20.000 0.000 0.000 4.500
R1-R2-A 1.900 0.800 15.000 0.000 4.500
R1-R2-B 2.500 2.000 15.000 0.000 4.500
R2-R3 1.900 0.800 30.000 0.000 4.500
R3-R4 1.900 0.800 45.000 0.000 4.500
R4-R5 1.900 0.800 60.000 0.000 4.500
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Figure 3.3 Comparison of the LODE and LODEG method on a simple test arrangement

3.2.3 Linearisation of differential algebraic equations

The LODEG mathematical formulation, despite validated with success against model experi-
ments [8], can be applied as long as the pressure loss on the openings connecting the grouped
rooms are negligible. This condition is satisfied only if the opening Kki has a higher order of
magnitude compared to the ones related to the other openings connecting the filled room to the
other internal spaces or the external environment. Considering a typical large passenger ship,
this hypothesis is not likely respected. In fact, the openings connecting the internal spaces are
usually light watertight doors, fire doors or light joiner doors having standard dimensions. This
can limit the application of the LODEG formulation in a real full scale environment.

This is why, a more reliable technique to consider completely filled rooms is here proposed.
The mathematical formulation of the problem has been changed, definying a non-linear semi-
explicit differential-algebraic equations system, instead the ODE one. Considering n partially
flooded rooms and m−n filled rooms, the DAE system is defined as:{

ż = f (z,ζζζ )
0 = g(z,ζζζ )

(3.11)

where the z are the floodwater levels in the earth fixed reference system inside the n partially
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filled rooms while ζζζ = ζζζ (t−t∗) = (ζn+1, ...,ζm) are the waterheads representing the hydrostatic
pressure within the m− n completely filled rooms. The functions f and g are again obtained
combining the governing Equations (2.2) and (2.3) and can be written as:

fi (z,ζζζ ) =
n

∑
j=0
j 6=i

K ji

µiSi
sgn
(
z j− zi

)√
|z j− zi|+

m

∑
j=n+1

K ji

µiSi
sgn
(
ζ j− zi

)√
|ζ j− zi| (3.12a)

gi (z,ζζζ ) =
n

∑
j=0

K ji sgn
(
z j−ζi

)√
|z j−ζi|+

m

∑
j=n+1

j 6=i

K ji sgn
(
ζ j−ζi

)√
|ζ j−ζi| (3.12b)

As mentioned, the DAE system cannot be solved analytically either in linearised form. Stan-
dard integration techniques can be applied, e.g. 4th order Runge-Kutta, ODE-45 or Runge-
Kutta-Fehlberg. However, these methods require short integration time steps compared to the
linearised techniques. Hence, to reduce the computational effort, the System 3.11 is solved
separating the differential and algebraic parts.

The differential part is linearised in (z∗,ζζζ ∗) and solved with the technique presented in
Section 3.2.1 obtaining an explicit solution of the problem for the partially filled rooms.

Once the levels z(dt) in partially filled rooms are defined at the next time step dt, the alge-
braic part of the System (3.11) can be solved in ζζζ . The resulting non-linear system of equation
is differentiable having a Jacobian matrix Jg(z(dt),ζζζ ) defined as:

Jgi j =


−

n

∑
k=0

Kki√
4|zk(dt)−ζi|

−
m

∑
k=n+1

k 6=i

Kki√
4|ζk−ζi|

if i = j

K ji√
4|ζ j−ζi|

if i 6= j

(3.13)

Therefore, the system can be solved as a least-square problem applying the Levenberg–
Marquardt algorithm and assuming as initial condition ζζζ

∗
= ζζζ (t∗). The waterheads which

satisfy the minimum condition are assumed as system solution ζζζ (dt). Thus, all the unknown
variables are computed without requiring the grouping of the filled rooms.

This so-called LDAE formulation is theoretically capable to assess the effective waterhead
inside the filled rooms even in case of openings having equal pressure loss (equal shape, area,
discharge coefficient, etc.). For instance, Figure 3.4 compares the application of LODEG and
LDAE methods on the simple test geometry introduced in Section 3.2.2. The example shows
how the LODEG method provides results comparable to LDAE until the openings connecting
filled rooms have non-comparable size. According to Equation (2.3), the pressure loss is pro-
portional to the square of the flow velocity through the opening and thus can be negligible for
the larger ones. For this reason, in scenario 1, the results are almost equal until the complete
filling of R2.
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Figure 3.4 Comparison of the LDAE and LODEG method on a simple test arrangement

Afterwards, the progressive flooding pace presents relevant differences: due to the room
grouping, the LODEG method underestimates the time-to-flood of about 25% compared to
LDAE one. In scenario 2, the opening R1-R2-B, being considerably larger than R2-R3 and
smaller than the breach, reduces the water head overestimate introduced by LODEG method
after R2 filling, extending the comparable results up to R3 filling. Then, again the grouping-
related issues can be noted, leading to an overall underestimation of time-to-flood of about
15% when the LODEG method is applied. Hence, the LDAE method results can be considered
physically more consistent than both the LODE and LODEG ones.

3.3 Adaptive integration time step

As mentioned in Section 2.1, the flooding process is characterised by a variable pace. During
the transient, a very fast shift from the intact floating position occurs. Even though the dynamic
phenomena other than floodwater pouring are neglected, the simulation of the initial flooding
phases requires a very small integration time step [76]. During the progressive flooding, the
process slows down until a new equilibrium position is reached, following in first approxima-
tion, an exponential trend. In this phase, larger time steps can be applied without affecting the
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simulation accuracy [81]. Considering a large passenger vessel, during the progressive flooding
the pace can also sudden accelerate due to the collapse of non-watertight openings (fire dorrs,
joiner doors, etc.) or lolling before ship capsize. All these considerations push the applica-
tion of non-constant integration time step, capable to assure a good simulation accuracy while
reducing the computational load. Hereinafter, a time step adjustment based on the floodwater
level derivatives is proposed. Moreover, an explicit strategy to control the errors associated with
very large time step is presented.

3.3.1 Adaptation procedure

The water level derivatives ż have been already proved to be a good indicator for integration
time step adjustment [81]. However, up to now, they have only be utilized to switch between
multiple discrete values of the integration time step. Here, a continuous formulation is proposed,
applicable disregarding the vessel size [9]. The integration time step is adapted according to the
following formulation:

dt = kdt
T ∗M

max ż∗
(3.14)

where ż∗ and T ∗M are the time derivatives of the floodwater levels and the ship mean draft,
respectively, evaluated at the initial time instant t∗, while kdt is a non-dimensional parameter.

Applying any linearised formulation, the floodwater level derivatives can be easily assessed
according to Equations (3.1) and (3.2). To assure the dimensional consistency of the adjustment
procedure, a length shall be applied as a scaling factor. Among several tested options, the mean
draft has been selected. In fact, mean draught is the best option to account for scaling effects
of the progressive flooding process, having a direct relationship with the maximum effective
waterhead applicable at the hull breaches. Eventually, the kdt parameter in Equation (3.14)
controls the accuracy level of the simulation and can be experimentally calibrated to reach the
appropriate balance between accuracy and computational effort.

3.3.2 Maximum time step

The application of large integration time steps has a positive effect on the computational time
required by the progressive flooding simulation. However, the application of too large time
steps can affect the simulation accuracy. Several phenomena occurring at a specific instant
can induce distorsions or errors in a progressive flooding simulation. Among them, the most
relevant are:

• the submersion of a PFO, which implies the addition of a new flooded room to the equa-
tions’ system;

• the filling of a flooded room that triggers the switch from the differential to algebraic part
of the equations’ system when LDAE method is applied;
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• the collapse of a closed non-watertight opening due to overtaking of the critical effective
waterhead;

• an excessive increment in floodwater volumes leading to a large variation of the ship
floating position, which is non-consistent with the hypothesis of fixed floating position
over a single time step.

For instance, Figure 3.5 shows the effect of the application of an unbounded variable time
step on Scenario 1 introduced in Section 3.2.2. In this case, the late recognition of rooms’
filling due to large time step drives to a total delay of 11 s compared to a solution where the
time step is limited. The limitation of the time step allows to better simulate the occurrence of
all the critical events, whose occurrence has, thus, to be predicted. The most simple approach
is to assess the event occurrence a-posteriori and then recalculate the last time step applying
a properly reduced integration time step. However, to reduce the computational effort of the
simulation, such an iterative procedure should be avoided in favour of an explicit methodology,
not implying recalculation. Here another solution is proposed, based on an a-priori estimation
of maximum time step dtmax from the already computed floodwater levels during latest time
steps.

Figure 3.5 Simulation distortion due to late switch from differential to algebraic formulation
in Scenario 1 on test case arrangement (Section 3.2.2) with adaptive time step (k = 0.01)
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At a certain instant, a specific critical event occurs if a critical level zc is reached in an
observed room; for instance, zc can be the level of the lowest edge of a PFO in the earth-fixed
reference system to detect a new flooded room or the highest point of a room mesh to detect
room-filling. Considering a specific room, the floodwater level rises during the progressive
flooding and reaches zc at a time instant tc. Applying any linearised technique, the raising of
floodwater level is determined according to Equation 3.10, which is not invertible. Hence, the
time tc cannot be assessed without applying an iterative process, that should be again avoided
to reduce the computational time.

Alternatively, a first estimation of tc can be obtained by exponential fitting of z according to
the two latest values observed inside the room. Under this assumption, the estimated level z̃(t)

is evaluated as:

z̃(t) = z∗∗
(

z∗

z∗∗

) t
dt∗

(3.15)

where dt∗ and z∗ are the last time step and level, respectively and z∗∗ is the penultimate level.
The described condition is sketched in Figure 3.6. Since the Equation (3.15) is invertible, the
maximum time step associated to the selected room dtc can be evaluated analytically as:

dtc = tc− t∗ =

[
ln
( zc

z∗∗
)

ln
( z∗

z∗∗
) −1

]
dt∗ (3.16)

The described strategy is directly applicable to the cases of lower PFO submersion or room-
filling. For the case of door collapse, z shall be replaced by |z j − zi| and zc is the collapse
effective waterhead. Moreover, the maximum time step can be determined also to avoid too
large change in the ship floating position. In such a case, the variations of heel angle, trim angle
and non-dimensional mean draught shall be considered instead of the level z. Besides, the zc

has to be arbitrarily stated as the maximum allowable variation of the floating position per main
loop iteration. For instance, the values provided by [9] are reported in Table 3.3.

Figure 3.6 Maximum time step control strategy for a room having a critical level zc
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Table 3.3 Maximum accepted variation of floating position per main loop iteration

Description Bounded Value Threshold
Heel Angle |φk−φk−1| 0.100 deg
Trim Angle |θk−θk−1| 0.050 deg
Mean Draught |TMk−TMk−1|/(TM0) 0.005

At last, the maximum time step dtmax applied to assess the next levels is determined as the
minimum among the ones obtained for PFOs submersion, rooms’ filling, non-watertight doors
collapsing and large variation of the floating position.
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Chapter 4

Validation of the progressive flooding
simulation method

In the present chapter the simulation technique presented in Chapter 3 is calibrated and validated
against experimental data. Moreover, a comparison with other simulation methodologies is
provided. Then, the three proposed formulations are compared on a full scale geometry to
highlight their different behaviour in the challenging environment of a large passenger ship.

4.1 Validation in model-scale

The validation of the flooding simulation method adopting the LDAE formulation is here pre-
sented. First the adaptive time step procedure is calibrated against experimental data in model
scale, then, the simulation results are compared with experimental records and with the results
coming from other techniques available in the literature [103]. The selected test geometry is a
box-shaped barge that has been used during an experimental campaign carried out at Helsinki
University of Technology model basin [78]. The tests were devoted to validating the pressure
correction technique [80], however they have been, here, chosen in accordance being recom-
mended by ITTC guidelines for the validation of flooding simulation tools [52].

4.1.1 Test arrangement

The box-shaped barge utilized for validation purposes has the main particulars summarised in
Table 4.1. The barge is equipped with a portable element 0.7 m long that can be used to test
different internal layouts. The subdivision adopted in the present study is provided in Figure 4.1.
In such a layout, the portable element is divided in two 0.35 m long compartments having by
a transversal bulkhead. Moreover, a tank-top and a main deck are fitted in each compartment
at 0.150 m and 0.475 m respectively. Eventually, two wing tanks have been fitted in the fore
compartment between the tank-top and the main deck. The wing tanks are symmetric and
0.160 m wide.
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Table 4.1 Main particulars of box-shaped barge

Description Symb. Value Description Symb. Value
Length overall LOA 4.000 m Breadth B 0.800 m
Draught T 0.500 m Height D 0.800 m
Displacing Volume ∇ 1.450 m3 Metacentric Height GM 0.110 m
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Figure 4.1 Subdivision layout of the box-shaped barge (dimensions in mm) [8]

The hull and the rooms have been modelled by means of non-structured triangular meshes,
having maximum panel area equal to 0.001 m2. All the internal and external boundaries (hull
shell, bulkheads, decks) have a 0.01 thickness which has been considered in barge model.
Hence, unitary permeabilities have been applied to all the internal spaces. The adopted 3D
model of the box-shaped barge is shown in Figure 4.2.

The internal spaces are interconnected by closable openings in order to test multiple flooding
scenarios. The shape, location and dimension of the openings is provided in Table 4.2 along
with their discharge coefficients, which have been experimentally determined. The internal
openings as well as the breaches are again modelled by means of non-structured meshes, but
the maximum panel area is reduced to 0.0001 m2

It shall be noted that the double bottom in the aft. compartment (DB1) is airtight. Hence,
stable air pockets might there appear, having a strong influence on the progressive flooding
process. This is why the simplified method for air pocket modelling has been introduced in
Section 2.3.3. Moreover, the wing tanks are equipped with vent pipes having limited cross
section. Hence, as the openings R21-R21S or R21-R21P are blocked by floodwater, air com-
pression occours in the wing tanks.

Figure 4.2 Mesh of the hull and internal rooms of box-shaped barge [8]
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Table 4.2 Main characteristics of the barge internal openings. C = (XC,YC,ZC) is the centre
of the opening in ship-fixed reference system

id Type Size (m) XC (m) YC (m) ZC (m) Cd (-)
SEA-DB1 Rectangular 0.060 × 0.040 2.325 0.000 0.005 0.78
SEA-DB2 Rectangular 0.025 × 0.025 2.675 0.000 0.005 0.83
SEA-R21S Rectangular 0.060 × 0.040 2.675 0.395 0.315 0.78
DB1-DB2 Circular D = 0.020 2.500 0.000 0.075 0.80
DB2-R21 Rectangular 0.060 × 0.040 2.800 −0.170 0.155 0.78
R21-R21S Rectangular 0.020 × 0.200 2.675 0.240 0.260 0.75
R21-R21P Rectangular 0.020 × 0.200 2.675 −0.240 0.260 0.75
R21-R11 Circular D = 0.020 2.500 0.000 0.315 0.80
R21-R22 Rectangular 0.100 × 0.100 2.750 −0.160 0.475 0.72
R11-R12 Rectangular 0.100 × 0.100 2.400 −0.160 0.475 0.72
R12-R22 Rectangular 0.080 × 0.200 2.500 0.000 0.580 0.72

However, it has been observed that this phenomenon has only a limited impact on the pro-
gressive flooding process, thus the test cases has been successfully used to validate progressive
flooding simulation codes neglecting air compression [103, 76].

4.1.2 Flooding scenarios

In the present study, three different flooding scenario (A, B, C) has been simulated on the
box-shaped barge. The recorded flooding sequences are sketched in Figure 4.3 and are briefly
described hereinafter. For more details about test arrangement and flooding scenarios, reference
can be made to the tests’ report [78].

The first damage scenario (A) is a side damage case leading to non-symmetric progres-
sive flooding of the barge. The damage (opening SEA-R21S) involves the fore compartment,
leading first to the flooding of the starboard wing tank (R21S). In scenario A, the openings
SEA-DB1, SEA-DB2, DB2-R21 and R12-R22 are closed, thus, the double bottom is intact.
The progressive flooding of the barge lasts about 350 s in scenario A.

The second damage scenario (B) is a bottom damage case driving to down-flooding and flow
reversal. In this case, the opening SEA-DB2 is open whereas the openings SEA-DB1 and SEA-
R21S are kept close. Besides, all the internal connections are open, leading to the flooding of all
the rooms within the barge portable element. In detail, since the floodwater level rises faster in
compartment 2 than compartment 1, the room R12 is first flooded by opening R12-R22 leading
also, through opening R11-R12, to the down-flooding of R11 accelerating its level rising. As
R11 is filled, the flow through opening R11-R12 is reverted. The progressive flooding of the
barge lasts about 440 s in scenario B.

The last scenario (C) is again a bottom damage, but insted down-flooding it leads to a quite
long and complex flooding chain. The breach is the opening SEA-DB1, while the SEA-DB2
and SEA-R21S are kept close.

35



R22

R21

DB2

R
21

P

R
21

S

R11

R12

DB1

R12 R22

R21R11

DB1 DB2

R22

R21

DB2

R
21

P

R
21

S

R11

R12

DB1

R12 R22

R21R11

DB1 DB2

R22

R21

DB2

R
21

P

R
21

S

R11

R12

DB1

R12 R22

R21R11

DB1 DB2

A

B

C

0
12

4545

3

3

3

5 8

7

2

0

2

5

5656

0 0

3
4

1

4

6

2
1

8

2

7

0

3

Figure 4.3 Recored flooding sequances in the damage scenarios A, B and C [9]

Also the opening R12-R22 is closed, preventing the down-flooding to occur. In this scenario
the rooms DB1, DB2, R21, R11 and R12 crate a flooding sequence being progressively filled.
The room R22 and the wing tanks add secondary branches to the main folding chin. The
progressive flooding of the barge lasts about 820 s in scenario C.

4.1.3 Calibration of adaptive time step

In order to apply the LDAE formulation, first, the time step adaptation procedure shall be cal-
ibrated. It means that a proper value of kdt parameter shall be chosen to assure the desired
simulation accuracy. To this end, simulations of the three damage scenarios have been carried
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out with different values of kdt ranging between 0.005 and 0.050. The range and intermediate
values have been chosen according to previous experiences gained investigating simple geome-
tries (see Appendix B) by applying a multiple constant time steps. To study the effect of kdt on
the prediction of the barge floating position in time-domain has been studied. To describe the
gap between the experimental and simulated records, an error ratio have been defined as:

ehi(t) =
h(t,kdti)

he(t)
(4.1)

where h is the considered dimension (i.e. heel angle φ , trim angle θ or sinkage s) at the instant
t simulated assuming the kdti value whereas he is the experimental moving average evaluated at
time instant t. Besides, a dimensional squared error e2

hi
has been also defined to study the results

on heel angle in damage scenario A (which is the only non-simmetric one) and the convergence
of the floating position at the final stage of flooding. The squared error reads:

e2
hi
(t) = [h(t,kdti)−he(t)]

2 (4.2)

Figures figs. 4.4 to 4.6 reports the errors analysis for damage scenarios A, B and C, re-
spectively. Figures figs. 4.7 to 4.9 provides the squared error evaluated at the final equilibrium
position of the barge. As a reference, they are compared with the mean squared error MSE

evaluated on the tail of the experimental record related to the steady state of flooding (see Sec-
tion 2.1). The MSE is defined as:

Figure 4.4 Time evolution of the errors evaluated for heel angle, trim angle and sinkage in
damage scenario A
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Figure 4.5 Time evolution of the error ratio evaluated for trim angle and sinkage in damage
scenario B

Figure 4.6 Time evolution of the error ratio evaluated for trim angle and sinkage in damage
scenario C

MSE =
∑

n
i=0
(
hi−h

)2

n
(4.3a)

h =
∑

n
i=0 hi

n
(4.3b)

where hi is the i-th experimental data point among the n data point related to the final steady
state. For the analysed damage scenarios related to the box-shape barge, it can be observed
that the floating position at steady state converges to the experimental values. In more detail,
the squared errors on the main floating position parameters are always lower than the MSE

evaluated on the experimental record tail for kdt = 0.005 and kdt = 0.010. Considering the
complete progressive flooding process in time domain, the error ratios related to trim angle and
sinkage are lower than 0.05 in all the three studied scenarios.
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Figure 4.7 Squared error evaluated at the steady state for trim angle and sinkage in damage
scenario A

Figure 4.8 Squared error evaluated at the steady state for trim angle and sinkage in damage
scenario B

Figure 4.9 Squared error evaluated at the steady state for trim angle and sinkage in damage
scenario C

Only at the very beginning of the simulation greater error ratios have been observed. How-
ever, they are due to the close to zero values of trim and sinkage rather than modelling issues.
Moreover, the error ratios clearly converge to specific value as the kdt decreases. In general,
the adoption of higher kdt values leads to an increasing delay during the intermediate stages of
progressive flooding. Considering kdt = 0.050, trim and sinkage error ratios differ up to 0.04

39



and 0.08 in the damage scenarios C and D, respectively, whereas more limited differences have
been observed in scenario A as well as applying lower kdt values.

Simulations carried out assuming kdt = 0.005 and kdt = 0.010 has practically the same error
ratios trends. Hence, the value kdt = 0.010 can be considered a good vlaue for high accuracy
simulations that does not present relevant issues in terms of the computational time. In fact,
the latter decreases as the kdt parameter increases as shown in Table 4.3. The tabular values re-
lates to the computational performances obtained employing Intel® CoreTM i7-4710 CPU (2.50
GHz) standard laptop. Assuming kdt = 0.025, the simulations can be carried out in about the
2% of the time-to-flood in model scale, leading to a computational time reduction of over 5
times with respect to the one required by a constant time step simulation having comparable
accuracy [8]. In such a case, only a small/moderate drewback on simulation accuracy is ac-
cepted, being may times lower than the errors that have been considered satisfactory for the
onboard application [84]. Hence, when a fast simulation is required, such as during a flooding
emergency, values up to kdt = 0.025 can be still employed, being a good compromise between
good simulation fidelity and limited computational effort.

Table 4.3 Computation time required by the linearised Differential-Algebraic Equation
(LDAE) method for the flooding scenarios A, B and C.

Case kdt t f (s) tC (s) %t f (%)
A 0.005 350.0 21.1 6.0
A 0.010 350.0 13.3 3.8
A 0.025 350.0 7.4 2.1
A 0.050 350.0 5.3 1.5
B 0.005 440.0 48.3 11.1
B 0.010 440.0 30.8 7.0
B 0.025 440.0 11.2 2.5
B 0.050 440.0 9.7 2.2
C 0.005 820.0 28.9 3.5
C 0.010 820.0 18.5 2.3
C 0.025 820.0 10.8 1.3
C 0.050 820.0 10.2 1.2

4.1.4 Results and discussion

The simulations carried out applying LDAE formulation with adaptive time step (kdt = 0.010)
can be compared with the experimental data and with other simulation techniques. Figures figs. 4.10
to 4.12 provide, for damage scenarios A, B and C, respectiviely, the results coming from LDAE
simulation method along with the Pressure Correction (PC) technique ones [80]. Moreover, for
cases A and B, the comparison can be extended including also the results from a benchmark
study on progressive flooding codes where, besides PC, other 5 simulations methods have been
tested on the box-shaped barge [103].
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Figure 4.10 Comparison of the experimental records and the results provided by LDAE, PC,
C1-C5 techniques for the damage scenario A
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Figure 4.11 Comparison of the experimental records and the results provided by LDAE, PC,
C1-C5 techniques for the damage scenario B
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Figure 4.12 Comparison of the experimental records and the results provided by LDAE and
PC techniques for the damage scenario C
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The results coming from LDAE method are in very good agreement with the PC technique
ones in all the damage scenarios A, B and C. Moreover, they are also very close with the
experimental records, except for the heel angle in scenario A. In fact, the heel agle shows a
small peak during the experiment whereas a larger overshoot is predicted by LDAE simulation.
This discrepancy is mainly due to the dynamic behaviour of the barge during the transient
flooding phase. Since the adopted method is quasi-static it is non-capable to model the dynamic
behaviour in the barge. Nevertheless, the LDAE results on heel angle are in line with the ones
provided by all the compared codes (except C5, which, then, is expected to be a dynamic code
and appear to be less accurate in the prediction of all the other simulated dimensions).

A final consideration has to be done regarding the other mathematical formulations intro-
duced in Chapter 3. The selected damage scenarios are not suitable for the application of the
LODE method since they entail several filled rooms. Regrading LODEG technique, it does
not involve particular issues for the box-shaped barge. In fact, the LODEG method has been
validated for this damage scenarios and more details can be sought in [8]. However, it shall be
noticed that the internal openings in the box shaped barge have quite large difference in size and
location. Hence, to highlight the effect of the different mathematical formulations a different
test layout is needed.

4.2 Comparison of results in full-scale

Up to now, the proposed simulation techniques have been applied only on very simple geome-
tries or on model-scale experiments that are quite different from a large passenger vessel. The
latter is a more challenging environment characterised by more complex internal layouts, non-
wall-sided envelope and closable internal openings [6]. Moreover, the closed non-watertight
openings can leak or collapse under excessive effective waterhead introducing additional com-
plication into the simulation problem [82]. This is why here the behaviour of the three proposed
mathematical formulations is studied on a full-scale geometry to better highlighting the issues
that can arise from the adoption of a non-reliable simulation tool. Moreover, the study of the
computational performances is also essential on a realistic scenario involving a large passenger
vessel, in order to assure the applicability of the proposed methods in full-scale environments.

4.2.1 Test arrangement

The full-scale test case is a large cruise ship having the main particulars reported in Table 4.4.
The ship is divided into 21 watertight compartments grouped in 7 main vertical zones. The inter-
nal layout of the vessel up to the second deck above the bulkhead deck is shown in Figure 4.13.
As done for the model scale barge, the hull and the compartments 14 and 15 (Figure 4.14) have
been, here, modelled by means of non-structured triangular meshes up to the bulkhead deck.
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Table 4.4 Main particulars of test cruise ship

Description Symb. Value
Length between perpendiculars LBP 285.38 m
Length overall LOA 315.600 m
Breadth B 36.700 m
Draught T 8.300 m
Depth D 11.200 m
Displacing Volume ∇ 56351.9 m3

Displacement ∆ 57760.7 t
Longitudinal centre of mass LCG 130.380 m
Transversal centre of mass TCG 0.000 m
Vertical centre of mass VCG 18.840 m
Metacentric Height GM 2.109 m
Frame spacing 0.725 m
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Figure 4.13 General arrangement of the test cruise vessel, highlighting the damaged compart-
ments (red dashed line)
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Figure 4.14 Detail of the internal layout of the damaged compartments
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Figure 4.15 shows the resulting 3D model of the internal subdivision, whereas Table 4.5
more details regarding the rooms’ type, capacity and permeability. Eventually, in Table 4.6
are reported the dimensions and location of all the opening connecting the modelled rooms
Opening type refers to the codes reported in Table 2.1, where also related leakage and collapse
coefficients are defined.

4.2.2 Flooding scenario

The selected flooding scenario has been chosen in order to check the simulation capabilities of
the proposed code in a real full-scale environment. To this end, a medium-size damage has been
selected affecting the compartments 14 and 15 as shown in Figure 4.14, having the dimensions
specified in Table 4.6. Within the two compartments, a very complex internal subdivision is
present under the bulkhead deck. Three decks are there fitted instead of two (as happened in
most of the other watertight compartments): the decks are D-3, D-2 and D-1, located at 2.2 m,
5.6 m and 8.4 m above the baseline, respectively.

Figure 4.15 3D model of the internal spaces in compartments 14 and 15

Table 4.5 Details regarding the test ship rooms within the compartments 14 and 15

Id Type Ve (m3) µ (-) Id Type Ve (m3) µ (-)
E1401 Void 55.026 0.95 R1501 Void 476.942 0.95
E1402 Void 55.026 0.95 R1502 Void 105.296 0.95
R1401 Machinery 695.207 0.85 R1503 Void 71.209 0.95
R1402 Void 64.798 0.95 R1504 Accommodations 228.328 0.95
R1403 Void 428.501 0.95 R1505 Machinery 27.608 0.85
R1404 Machinery 445.699 0.85 R1506 Accommodations 180.238 0.95
R1405 Machinery 408.543 0.85 R1507 Accommodations 57.855 0.95
R1406 Stores 10.231 0.60 R1508 Accommodations 124.042 0.95
R1407 Accommodations 1016.614 0.95 R1509 Stores 206.080 0.60
T1401 Void 10.576 0.95 R1510 Accommodations 1100.951 0.95
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Table 4.6 Main characteristics of the test ship internal openings within the compartments 14
and 15. C = (XC,YC,ZC) is the centre of the opening in ship-fixed reference system

Id Type Room A Room B XC (m) YC (m) ZC (m) A (m2) Status
D14 damage SEA R1401 179.700 -17.000 4.000 6.000 Open
D15 damage SEA R1401 183.700 -17.000 4.000 2.000 Open
ED140101 E R1403 E1401 172.006 2.800 6.575 1.658 Closed
ED140102 E R1403 E1401 172.006 2.800 9.375 1.658 Closed
ED140103 E R1403 E1401 172.006 2.800 12.175 4.290 Closed
ED140104 E R1403 E1401 172.006 2.800 15.150 3.120 Closed
ED140201 E R1403 E1402 172.006 -2.800 6.575 3.120 Closed
ED140202 E R1403 E1402 172.006 -2.800 9.375 1.658 Closed
ED140203 E R1403 E1402 172.006 -2.800 12.175 1.658 Closed
ED140204 E R1403 E1402 172.006 -2.800 15.150 1.658 Closed
FD1401 B2 H R1401 T1401 176.175 -2.800 3.175 2.340 Closed
FD1402 B2 H R1402 T1401 176.175 -2.800 6.575 2.340 Closed
FD1403 B2 DL R1402 R1403 174.000 -1.400 6.575 2.340 Closed
FD1404 B2 DL R1404 R1402 178.713 0.000 6.575 2.340 Closed
FD1405 B2 DL R1405 R1402 178.350 -2.800 6.575 2.340 Closed
FD1406 B2 H R1407 R1403 174.000 2.800 9.375 2.340 Open
FD1407 B2 H R1407 R1403 174.000 -2.800 9.375 2.340 Open
FD1408 B2 H R1406 R1403 174.725 -0.670 9.375 2.340 Closed
FD1501 B2 H R1504 R1501 183.425 10.840 6.575 1.658 Closed
FD1502 B2 H R1508 R1501 183.425 -10.840 6.575 1.658 Closed
FD1503 B2 DL R1504 R1502 184.513 0.000 6.575 3.120 Closed
FD1504 B2 H R1502 R1503 190.675 0.000 6.575 1.658 Closed
FD1505 B2 DL R1506 R1502 193.213 2.800 6.575 3.120 Closed
FD1506 B2 DL R1508 R1502 187.413 -2.800 6.575 3.120 Closed
FD1507 B2 DL R1509 R1502 189.588 -2.800 6.575 3.120 Closed
FD1508 B2 H R1505 R1504 185.600 2.090 6.575 1.658 Closed
FD1509 B2 H R1507 R1502 192.125 2.090 6.575 1.658 Closed
FD1510 B2 H R1507 R1506 192.125 6.730 6.575 1.658 Closed
FD1511 B2 H R1503 R1510 186.325 -0.710 9.375 1.658 Open
FD1512 B2 H R1503 R1510 190.675 -0.710 9.375 1.658 Open

In compartment 14, the sewage treatment plant is installed at the lower deck, while in com-
partment 15 there is a void space embracing three freshwater tanks that are, here, considered
intact. Above, at deck D-2, the ship’s main laundry and housekeeping spaces are fitted in com-
partment 14 and 15, respectively. As can be noted in Figure 4.14, the internal layout at such a
deck is anything but straightforward, having a dense non-watertight subdivision composed of
spaces divided by steel boundaries. The upper deck spaces, in both the selected compartments,
are allocated to crew accommodations. Due to the low restriction to flooding that is typical of
cabins doors and boundaries [90], these spaces have not been modelled in deep detail. Hence,
only the steel-bounded spaces have been included in the ship model.

The damaged compartments are located in the ship’s forebody, characterised by heavily
non-wall-sided external boundaries and leading to trim the ship by the bow. Moreover, most of
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the internal boundaries are strongly non-symmetric (in terms of both geometry and/or perme-
ability), hence, relevant heeling angles are also expected. Besides, most of the non-watertight
openings are initially closed (see Table 4.6), requiring the proper modelling of their leakage and
collapse behaviour. Therefore, the selected damage scenario can be considered very challeng-
ing for a progressive flooding simulation code and this is why has been, here, studied among all
the other possible options.

4.2.3 Results and discussion

The damage scenario has been simulated in the time domain having an overall duration of
about four hours and, eventually, the ship reaches a new equilibrium floating position. The
simulated flooding scenario is characterised by a fast pace during the first 20 minutes (1200 s)
and very slow propagation of floodwater on the upper deck due to the closed doors FD1408
and FD1504, which withstands the waterhead without collapsing during the whole process.
Figure 4.16 shows the time evolution of heel angle, trim angle, sinkage and metacentric height
during the initial phase of progressive flooding simulated applying the three methodologies
presented in Chapter 3.2: LODE, LODEG and LDAE. Figure 4.17 presents the floodwater
levels assessed with the three methods in two rooms that are particularly critical in the selected
scenario: the sewage room R1401 and its escape trunk T1401.

Figure 4.16 Evolution of the floating position of the test ship in the studied damage scenario
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Figure 4.17 Floodwater levels inside the rooms R1401 and T1401 in the very initial phases of
flooding in the earth-fixed reference system

In Table 4.7 the main events that occurred during the simulation are reported, including the
occurrence time assessed with the three methodologies.

It is worth to notice that the LDAE and LODEG methods provide a similar trend, whereas
the LODE method shows a completely different time prediction. This is caused by the too
simplistic assumptions: applying the LODE formulation when the room R1401 is filled, the
conservation of mass is no more fulfilled. It means that the waterhead in the room rises with the
same slope observed in the partially filled condition, instead of reaching almost the seawater
level in about 2 s, as can be observed in the LODEG and LDAE simulations (Figure 4.17). In
general, when the waterplane area Si is assumed to be equal to the top area of a completely
filled room, a delay is experienced applying LODE formulation. This drives to an optimistic
estimation of the time-to-flood, which is not acceptable when the code is used for support
decisions onboard during an emergency. Besides, in the studied test case, the LODE method
presents an even worst issue: it fails in recognising the collapse of the fire door FD1401, which
connects the damaged room R1401 to the escape trunk T1401. The previously discussed slower
rising of floodwater in R1401 avoids the overtaking of the collapse effective waterhead (2.5 m
for the FD1401). The withstanding door leads to a complete distortion of the simulation in all
the subsequent flooding phases. In particular, the time-to-flood is severely overestimated, being
more than 12 hours (three times the values estimated with the other two formulations). Such
values are not completely ascribable to the FD1401 withstanding, since the collapse of several
other openings on the D-2 does not occur too. Nevertheless, in the selected damage scenario,
the LODE method is not capable to obtain either a qualitative simulation of the progressive
flooding process.

Hereinafter focus will be made only on the LODEG and LDAE formulation. As mentioned,
the two techniques provide fully comparable results at the beginning of progressive flooding
process as can be observed in Figure 4.18. Both the methods are capable to model properly the
FD1401 collapse and predict qualitatively the same time evolution.
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Table 4.7 Details regarding the test ship rooms within the compartments 14 and 15

Id event t (s)
LODE LODEG LDAE

FD1401 leakage 1 1 1
FD1401 collapse n.a. 23 23
FD1402 leakage 36 26 26
FD1402 collapse 36 26 26
FD1405 leakage 62 27 27
FD1404 leakage 60 27 27
FD1403 leakage 56 27 27
ED140101 leakage 114 38 38
ED140201 leakage 186 39 39
FD1405 collapse n.a. 41 41
FD1404 collapse n.a. 41 41
FD1403 collapse n.a. 41 41
FD1501 leakage 45 44 44
FD1502 leakage 45 44 44
FD1501 collapse 50 48 48
FD1502 collapse 50 48 48
FD1503 leakage 59 50 50
FD1508 leakage 59 50 50
FD1506 leakage 63 50 50
FD1505 leakage 62 70 70
FD1509 leakage 75 71 71
FD1504 leakage 75 72 72
FD1507 leakage 77 74 74
FD1506 collapse 78 108 108
FD1510 leakage 92 116 116
FD1505 collapse 99 129 129
FD1507 collapse 168 223 235
FD1406 open 15086 294 312
ED140102 leakage n.a. 294 313
FD1408 leakage 16453 299 317
FD1407 open 15086 301 321
ED140202 leakage n.a. 301 322
FD1512 open n.a. 374 410

However, a small delay can be noted in LDAE prediction after 200 s. The delay is again
ascribable to room-filling. In fact, in LODEG method the filled rooms are grouped, leading
to discarding the pressure losses on the opening connecting the grouped rooms. In the studied
scenario, as R1504 is filled, it is grouped with the room R1501. The same happened to R1508.
A similar situation is observed also in CMP14 at about 270 s, where again LODEG pace is faster
than LDAE one. Such a distortion, yet contained, is far reduced as the level in grouped rooms
approaches the sea free surface. The reason can be found in the pressure loss that becomes again
negligible, in the final pahases of progressive flooding. In fact, the pace is mainly due to the
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Figure 4.18 Floodwater level inside the compartments 14 and 15 in ship-fixed reference sys-
tem

already mentioned closed doors FD1407, FD1406 and FD1504 and their higher pressure losses
compared to the previous openings in the flooding chain, which are all collapsed. Since the
discarded pressure losses related to collapsed openings are negligible compared to the closed
ones, a comparable slope of all the level curves obtained applying LODEG and LDAE methods
are then re-established until the simulation end.

However, the choice of the LODEG or the LDAE method has a very limited impact on the
floating position and initial stability prediction in the studied test case, as shown in Figure 4.16.
In particular, they could be negligible when compared to the uncertainties that might affect
the definition of the discharge coefficients [77], the room permeabilities, the initial loading
condition [7] or the critical waterheads that usually are only roughly estimated in a real oper-
ative environment. Moreover, the time-to-flood underestimation coming from the application
of LODEG method is far more acceptable for decision support purposes. Although all the pre-
vious considerations, LDAE formulation should be preferred to the LODEG one for full-scale
simulations, especially if non-watertight openings are present. This statement is far reinforced
by the very small drawback in terms of computational time per cycle introduced by the LDAE
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application, which is mainly due to the more complex set up of matrices [8]
In conclusions, the overall computational effort required by the most reliable methodology

shall be commented on. The LDAE simulation has been carried out with adaptive time step
assuming a kdt = 0.005, resulting in a computation time tC = 117 s employing an Intel® CoreTM

i7-4710 CPU (2.50 GHz) laptop. Among the total computation time, the 44% relates to the
equilibrium assessment, the 38% to the evaluation of the initial floodwater levels from volumes
at the equilibrium floating position, whereas the 15.5% to the assessment of floodwater volumes
from the new levels. The solution of the linearised problem takes less than 2.5% of the com-
putation time. Hence, large improvements are still achievable by applying faster methods to
compute the hydrostatics: now the pressure integration technique is applied [96], being several
times slower than methods based on section area integration. Nevertheless, the computation
time is already less than the 1% of the overall duration of the studied damage case, which can
be considered appropriate for onboard application.
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Chapter 5

Application of Machine Learning

In the present chapter, the theoretical background is presented related to the prediction of the
main damage consequences from the evolution of the damaged ship floating position. The
relation between them is established by applying Machine Learning driven by datasets of pro-
gressive flooding simulations. Hence, after a brief introduction of the main concepts and termi-
nology used in the machine learning field, the specific problems addressed in this work and the
overall process applicable in a new generation of onboard emergency DSSs are described. Then,
focus is made on machine learning algorithms and different database generation algorithms that
have been tested in the present work.

5.1 Introduction to Machine Learning

Machine learning refers to statistical techniques giving a computer system the capability to
"learn" on the base of previous examples, without being explicitly programmed [110]. The
term was introduced by Arthur Samuel in 1959 referring to the solution of checkers game by
machine. Machine Learning gives a computer program the ability to reproduce a behaviour that
has not been programmed by a human being and, thus, might show behaviours that cannot be
foreseen by the author. Machine learning is based on three pillars [57]: the availability of a
large amount of data, a metric to quantify error/distance of the current behaviour from the ideal
one and a feedback mechanism employing the metric to produce better behaviour. Machine
Learning algorithms can be classified into four main learning models [75]:

• Supervised Learning: where a dataset is given consisting of labelled data. In other words,
including the right answer, usually called response or label or, more traditionally, depen-
dent variable(s), corresponding to each data point (or item). Each data point is defined
by the so-called predictors, also known as features or, more traditionally, independent
variable(s). predictors define the so-called input space of the learner. Hence, a supervised
learning algorithm shall map the key characteristics of an item to the right answer. Then,
given a new data point, it shall properly predict the unknown answer. Most common tasks
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addressed by supervised learners are [68]:

– Classification: where the response is categorical;

– Regression: where the response is a real value;

• Unsupervised Learning: where the learner receives only unlabelled data. It means that
the learner does not know the right answer and autonomously makes predictions for all
unseen data. Typical tasks addressed by unsupervised learners are [68]:

– Clustering: aiming at partitioning a set of data points into homogeneous subsets;

– Dimensionality reduction: also known as manifold learning, aims to transform an
initial representation of data-point (a large set of features) into a lower-dimensional
one while preserving some of the properties of the dataset;

• Semi-supervised Learning: where the dataset includes both labelled and unlabelled data;
it is usually employed where responses are for some reasons not available for the complete
dataset or if they are too expansive to obtain. Hence, in semi-supervised learning, the
unlabelled data hopefully help to achieve better accuracy than the one attainable with the
labelled data only.

• Reinforcement Learning: where the training is performed separately from the previous
models, involving feedback from the external environment. In reinforcement learning,
the model parameters are constantly updated to maximise the reward and minimising the
penalty coming from an action, which is the output generated by the model [56].

Machine learning algorithms can be further classified into three types, according to the
estimation method [3]:

• Parametric estimation: when a model is defined over the whole input space (defined by
predictors), learning its parameters from all training dataset;

• Nonparametric estimation: when the model splits the input space into local regions and,
given a new data point, the corresponding local model is used. Each local model is defined
employing the training data available in the local region;

• Instance-based estimation: where the model, given a new item, evaluates the distance
from all the items in the training dataset.

For each of the main classes defined above a large set of algorithms and solutions have
been developed. However, a more detailed literature review is not provided in the present
work, which aims to study a specific set of problems where only some of the machine learning
algorithms are applicable.
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5.2 Prediction of damage consequences

Damage due to collision or grounding drive to change the ship floating position due to the
amount of floodwater loaded onboard. As mentioned in Chapter 2, after the possible dynamic
transient, the process can be considered quasi-static. Thus the spreading of floodwater through
the internal non-watertight openings can be easily predicted employing fast simulation codes
since the flowrates are governed by the well-known hydraulic laws. As shown in Chapter 4,
employing the LDAE method presented in Chapter 3 it is possible to cope with main challenges
related to progressive flooding simulations in model-scale as well as full-scale. The stability of
the damaged vessel can be checked during the progressive flooding identifying the outcome of
the damage scenario. It means, whether the ship will survive with a sufficient residual degree
of safety or whether she will sink or capsize due to insufficient buoyancy or residual stability,
respectively.

Therefore, given a specific damage scenario, a predictable evolution of the floating posi-
tion and main progressive flooding consequences is defined and can be simulated in a design
environment as well as during an emergency [84]. Focusing on the design phase, employing
a quasi-static code large databases of time-domain simulations of the progressive flooding can
be built in a reasonable time. Exploiting a database of progressive flooding simulations, a link
can be searched between the time evolution of the floating position following a defined damage
scenario and its main consequences [102]. The direct comparison of the current evolution of the
floating position with pre-calculated simulations has been found unreasonably time-consuming
for onboard application. Due to the nature of the problem (involving a large amount of la-
belled data), the application of supervised machine learning techniques has been proposed [13].
Hereinafter, this methodology is presented focusing on the main progressive flooding conse-
quences and the possible application to improve onboard decision support. Finally, the metrics
to evaluate the reliability of the proposed process are described.

5.2.1 Studied problems

During the progressive flooding of a damaged ship, some information is essential to support
the master and crew decisions. This is even more important on a large passenger vessel where,
usually, thousands of human lives are at stake. In this work, a basic set of data has been selected
to provide the bridge with the essential knowledge about progressive flooding consequences
and enable proper reaction based on evidence, instead of impressions. Moreover, due to the
low computational power required by trained learners, the main flooding consequences can be
immediately available, having a positive impact also on the emergency reaction time of the
crew. In this context, the three most important consequences have been identified as follows:

1. Final Fate (FF),

2. Flooded Compartments (FC),
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3. Time-to-flood (t f ).

The ship final fate is the most important information during a flooding emergency since
provides information about the ship survival [63]. To apply machine learning, the final fate
can be organised into classes describing the outcome of the damage scenario. Here, instead of
a binary problem (survival/non-survival), a more complex classification has been proposed in
order to provide some additional information about the cause of non-survival scenarios. Hence,
the following classes have been defined:

• Equilibrium (E): this class belongs to survival scenarios, in which the ship reaches a new
safe equilibrium floating position after the progressive flooding process;

• Capsize (C): this is a non-survival case, in which the ship exhausts the stability reserve;

• Sink (S): this is a non-survival case, in which the ship exhausts the buoyancy reserve. It
is worth to notice that this type of failure does not likely happen on large cruise vessels,
more susceptible to capsize;

• Excessive heeling (EH): this is also considered a non-survival case. In fact, if the ship
reaches too large heeling angles during the progressive flooding, she cannot be consid-
ered safe any more [51]. This fact is confirmed by the great attention given to counter
ballasting [62, 11] especially in the naval framework [43, 67, 20, 26];

• Time Exceeded (TE): in a real environment, some damage scenarios drive to very large
values of time-to-flood. For instance, the ones having a very small area or involving
non-watertight doors that withstand the effective waterhead. In such cases, to contain
the computational time during database generation, a maximum threshold on time-to-
flood shall be defined. Hence, all damage scenarios lasting more than the threshold are
classified as TE. From a DSS perspective, the impact of such is limited by the presence
of the bilge system and by the large time anyway available before reaching an unknown
condition.

Another essential information during the progressive flooding is the identification of flooded
watertight compartments [109]. In fact, this knowledge is essential for many reasons: first to
limit/avoid the floodwater spreading to intact watertight compartments. Furthermore, for ships
compliant with the Safe Return to Port (SRtP) rules [46], the extension of damage determines
whether the ship has to be abandoned or the main essential functionalities can be recovered. To
take such a decision flooded compartments shall be known as soon as possible to reduce the
reaction time. The identification of flooded compartments can be again considered a classifica-
tion problem, where the classes are all the possible sets of damaged compartments involved by
every potential progressive flooding process.

Finally, the time-to-flood is the last information claimed as essential to support master de-
cision during the progressive flooding of a damaged ship [87], in particular for non-survival
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damage scenarios. In such cases, the ship shall be evacuated and abandoned. Rushing evac-
uation might lead to panic, increasing the risk for passengers and crew. On the other side, as
was clearly shown by the Costa Concordia accident, the waste of time when ship abandonment
is required might have more severe consequences and lead to the loss of lives. Therefore, to
properly manage evacuation, knowing the time frame of the events is of the utmost importance.
Up to now, only systems based on flooding sensors fitted in each space of the ship, or at least
in some of them [59], have been proved capable to estimate time-to-flood [89, 109]. Here, the
estimation of the time to flood is performed without flooding sensors. Since the time-to-flood
is a numeral its assessment is modelled as a regression problem.

Usually, if the damaged ship survives, the new equilibrium floating position is reached with a
decreasing pace. At a first approximation, the trend can be modelled as limited exponential [8].
Therefore, the accurate definition of t f is not an easy task for survival scenarios. In some
preliminary evaluations was observed that the large uncertainty connected to survival damage
scenarios heavily affects the performances of the regression on t f . On the contrary, in non-
survival scenarios, a well defined time instant can be identified, at which the ship sinks, capsizes
or reaches an unsafe position. Hence, the time-to-flood can be easily identified reducing the
drawback on the regression accuracy. Therefore, also considering that the time-to-flood is not
essential in survival cases, only the lost-ship scenarios (S, C, EH) have been considered studying
the third problem.

5.2.2 Proposed process

In the present work, the three main problems presented above are addressed by applying ma-
chine learning techniques on the base of the time evolution of the floating position of the dam-
aged ship. The floating position of the damaged ship is univocally defined by three parameters:
heel angle φ , trim angle θ and sinkage s. The proposed process, sketched in Figure 5.1, can be
split into two main phases:

1. Offline preparation: in such a phase the data required by the onboard system are generated
and the learners are trained,

2. Onboard DSS: in such a phase, the learners are used onboard to forecast the main flooding
consequences. Since at the moment, no onboard software has been implemented, the
proposed method will be tested by means of progressive flooding simulations.

The main purpose of the first phase is to generate the training database of progressive flooding
simulation. First, the damage cases are defined according to a generation algorithm. Multiple
options to generate training databases will be discussed later in detail. For each damage case,
the progressive flooding is simulated employing the LDAE method presented in Chapter 3.
Since this work aims to forecast the main damage consequences for onboard decision support,
the application of a quasi-static method is deemed sufficient. In fact, there is no interest in
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a detailed simulation of damages leading to immediate capsize during the dynamic transient,
where the time is anyway insufficient to apply any countermeasure for assuring ship survival.
Moreover, the application of fast simulation methods helps to reduce the computational effort
required to build the databases. Hence, it can ease the configuration of the onboard system.

Besides the training database employed to train the learners for the onboard system, here,
an additional database of progressive flooding simulations has been defined for validation pur-
poses. The validation database shall be independently generated from the training one and shall
be as far as possible representative of the damages which might occur in a real environment
(comprising the probability distribution of their main dimensions and location).

The validation database is then employed to mimic and test the behaviour of the possible
new onboard DSS, providing the predictors (time-domain evolution of the floating position) as
well as the right classes for classification problems (i.e. FF, FC) and the observed value for the
regression problem (i.e. t f ). Considering a defined time instant t∗ after the damage occurrence,
the evolution of the time evolution of the floating position of the damaged vessel is known up to
t∗. Assuming that it has been recorded and the records have been filtered to remove noise [39],
the values of φ , θ and s taken at defined time instants can be utilized as predictors of three
supervised learners, each one responding to one of the previously stated problems. Hence, as
time goes by, triplets (φ ,θ ,s) can be added to the predictors set and three new learners, trained
considering the extend predictor set, can be employed to update the system response. In the
present work, the floating position is assumed to be recorded assuming a constant time step dt

and values are retrieved from the validation database for each single damage case.

Figure 5.1 Flowchart showing the proposed process to prepare data and explit them to provide
onboard decision support
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5.2.3 Performance metrics

As mentioned the performances of the proposed methodology to predict the progressive flood-
ing consequences is tested employing a properly large validation database. Hereinafter, the
metrics used to measure these performances are presented, distinguishing between the classifi-
cation and regression tasks.

The accuracy rate of a classification task is usually defined as the capability to assign a
specific item, i.e. a damage scenario from the validation database, to the correct feature, i.e.
the correct class [42]. Namely, considering a specific classification learner related to the time
instant t∗, its accuracy can be defined as:

Acc(t) = 100
Nc

N
(5.1)

where Nc is the number of the correctly classified damage scenarios and N the total number of
the scenarios induced in the validation database.

To focus on the forecast capability of the model, a so-called ongoing accuracy Acc∗(N∗)

has been also defined, considering only the damage cases having t f greater than t∗. It means,
considering only the scenarios that at that point have not already reached the final stage:

Acc∗(N∗) = 100
N∗c
N∗

(5.2)

where N∗c is the number of the correctly classified ongoing damage scenarios and N∗ the total
number of the ongoing scenarios induced in the validation database. Furthermore, besides the
previously defined metrics, also the confusion matrices have been here employed to analyse in
more detail the classification results at each time instant t∗.

Regarding the regression task, several statistical indicators are available in the literature to
assess their performances [24]. In the present work, the coefficient of determination R2(t) has
been adopted:

R2(t) = 1− SSE(t)
SStot

(5.3a)

SSE(t) =
N

∑
i=1

(
yi− y′i

)2 (5.3b)

SStot =
N

∑
i=1

(yi− y)2 (5.3c)

where yi are the observed values (known responses), y their mean values and y′i the responses
predicted by the model. similarly to classification tasks, an ongoing coefficient of determina-
tion R2∗(N∗) has been defined based only on the N∗ ongoing damage scenarios. Besides, the
predicted-observed plot has been employed to analyse in more detail the regression results at
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each time instant t∗.

5.3 Tested machine learning algorithms

In the present section, the ML algorithms employed in this study are presented. Due to the na-
ture of the studied problems, having a dataset including both the predictors and related right re-
sponses, focus has been made on supervised algorithms only, as already mentioned. Moreover,
since both classification and regression tasks shall be addressed, learners that can be employed
in both of them have been preferred rather than ones applicable to a single task, e.g. linear
regressions. Among the most popular supervised machine learning algorithms the following
families has been then considered in the present work:

• Decision Trees (DT),

• K-Nearest Neighbours (KNN),

• Support Vector Machines (SVM)

It is worth noticing that another very popular family of algorithms has been excluded: the proba-
bilistic learners, e.g. Naive-Bayes. This is due to their basic assumption of predictor distribution
independence [56], which cannot be respected in the studied problems. In fact, the predictors
are records of the damaged ship floating position taken at subsequent time instants that are cor-
related by definition. A preliminary attempt to adopt Naive-Bayes algorithms performed very
badly compared to the other tested algorithms, confirming the rightfulness of their exclusion.

5.3.1 Decision Trees

DT are a very popular nonparametric supervised algorithms, based on recursive binary decisions
that drive to define the local region of the input space. Their name descends to the shape of the
decision process, which can be represented as a tree. The process starts from a root and then
moves node by node according to predictors values up to the leaves, i.e. the predicted responses.
The typical structure of a decision tree is given in Figure 5.2. Starting from the route, the
decisions are taken at each node among two possible directions according to the outcome of a
test function f (x). The most common decision function is binary. It means that it is based on the
value of a single predictor x j, which divides the input region into two sub-regions at each node.
The predictor and its threshold value are chosen in order to gain the best fit. A similar process
is carried out at each passed node, until, decision by decision, a leaf is reached, corresponding
to the response [41].

DT can be adopted in both classification and regression problems. Considering the latter
task, they provide a so-called piecewise approximation of the response function, i.e. a constant
response rk provided at each k-th leaf of the tree [57].
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Figure 5.2 Sketch of a simple decision tree employed in a three-class classification problem
in a four-dimensional input space [13]

Trained DT can be easily interpreted, since the mimic quite well a human-like behaviour in
approaching a machine learning problem. Another advantage is that DT can be directly applied
to non-numeral data, e.g. categorical, and can be easily applied to linear as well as non-linear
problems without changing their core logic.

In the present work the different DT learners have been tested for the three studied problems:

• Decision Trees (DT): classification/regression is performed by a single decision tree. For
the classification tasks, Gini’s diversity index has been applied as an impurity measure
in the splitting criterion and testing all the predictors at each node to select the one that
maximises the split-criterion gain. In the regression task the maximisation of the MSE

reduction evaluated on the node’s items has been employed [15];

• Boosted Decision Trees (DTB): the method is an ensemble algorithm, i.e. an algorithm
employing multiple decision trees. In general, boosting paradigm combines the outcomes
of multiple weak learners to define an overall robust learner. The single learners are
trained sequentially using at each iteration a new random sample data set to focus on the
specific items where previous learners did not perform well. Since each tree is depen-
dent on the output of the previous, boosted algorithms are usually slower to train com-
pared to other ensemble methods where learners can be trained in parallel. In the present
work, different boosting algorithms have been adopted for the classification and regres-
sion tasks. Considering the studied classification problems, the final fate can easily result
in a large majority of survival or non-survival scenarios, leading to imbalanced training
data. Even more skewed training-data are expected for the flooded compartments. This
is why, for classification tasks has been selected a random undersampling boosted deci-
sion trees, based on a hybrid sampling/boosting algorithm [98], that proved to better deal
with skewed training-data while assuring a reasonable computational effort. On the other
hand, for the regression task, boosted decision trees have been employed based on a Least
Squares (LS) boosting algorithm [41];
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• Random Forests (RF): The method is an ensemble method employing bagging paradigm,
i.e. the application of multiple weak learners trained in parallel [14]. Like bootstrap
aggregation (the most common bagging algorithm), instead of a single tree trained with
the complete database, the problem is decomposed in a set of trees trained with a random
partition of the database. The final response of the overall model is selected according to
the vote of the multiples trees for classification problems and as the average of responses
for regression ones. Besides, to decorrelate the trees in the ensemble, random forests
employs also a random selection of a predictors’ subset each time a split in a tree is
considered [54]. The random forests have proved to be more resilient to noise/missing
data and more capable to deal with higher dimensionality data. This is why it has been
selected for testing on the studied problems, which involve a large number of predictors
for higher t∗ while might be affected by the progressive flooding uncertainties [77, 7].

In the present work, the DT model is grown up to 200 splits. Moreover, 30 decision trees
have been employed to grow both the RF and the DTB models.

5.3.2 K-Nearest Neighbour

KNN is another popular family of instance-based learners where the response associated with a
new item is assigned according to votes given by its nearest neighbours in the input space or the
mean value of their response for classification and regression problems, respectively. Hence,
they are based on the implicit assumption that similar items are closer together [75]. The process
is schematically shown in Figure 5.3 for a three-class classification problem in two-dimensional
input space. The k parameter stands for the number of neighbours involved in the evaluation
process. For instance, if k = 1, the response related to a given set of predictors is equal to the one
of its nearest neighbour, i.e., the training data point having the lower distance in the predictors’
space. Therefore the metric adopted for distance measurement is the key component of a KNN
algorithm.

Due to the above described behaviour of a KNN algorithm, the training phase is limited to
storing and, possibly, standardise the training data, whereas, during prediction, the distance of a
new item shall be evaluated from each item in the training dataset. Hence, despite the algorithm
is very simple and effective it can present a high memory and computational cost [57]. For this
reason, is often called "lazy algorithm".

Given two data points identified by n× 1 predictors’ vectors x1 and x2 respectively, the
following different algorithms employing different metrics have been here tested:

• Quadratic K-Nearest Neighbour (KNN2): employing the Euclidean distance defined as:

d(x1,x2) =

√
n

∑
j=1

(
x1 j − x2 j

)2 (5.4)
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Figure 5.3 Sketch of the behaviour of a K-Nearest Neighbour algorithm for a three-class clas-
sification problem in a two-dimensional input space [13]

• Cubic K-Nearest Neighbour (KNN3): employing the third-degree Minkoswki distance
defined as:

d(x1,x2) =
3

√
n

∑
j=1

∣∣x1 j − x2 j

∣∣3 (5.5)

• Cosine K-Nearest Neighbour (KNNC): employing the cosine distance defined as:

d(x1,x2) = 1− x1
T x2√

(x1T x1)(x2T x2)
(5.6)

• Weighted K-Nearest Neighbour (KNNW): in this method, the Euclidean distance is still
employed but a different weight is applied to each neighbour response [33]. The closer is
the neighbour is to the new item, the higher its response weight will be. Here, the squared
inverse of the Euclidean distance is used as weight. Thus, in classification tasks, votes are
weighted accordingly, whereas, for the regression task, the response is evaluated as:

y(x) =
∑

k
j=1 y j/

(
d(x,x j)

)2

∑
k
j=1 1/

(
d(x,x j)

)2 (5.7)

In the present work for each of the tested methods, the k parameter is assumed to equal
10. Moreover, the training dataset is standardised: for each predictor defining the input space,
the mean value and standard deviation are computed for centring and scaling the training data,
respectively. Mean values and standard deviations are, then, stored and employed to preliminary
standardise predictors of each new item submitted to the learner for response evaluation.
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5.3.3 Support Vector Machine

SVMs are supervised learners algorithms based on statistical learning frameworks that can be
employed in both classification and regression problems. They were first introduced to face
binary classification [108] by defining the best hyperplane separating the elements belonging
to the two different classes. Separation is performed employing a minimum number of items
from the training dataset, colled support vector. For instance, in Figure 5.4a the support vector
is represented by the encircled items. The support vector is composed of the closest data points
to the hyperplane which is selected to maximise the margin between the two classes, i.e. the
distance between two parallel hyperplanes defining a region not containing any data point [27].

Although basic SVMs are binary, they have been extended also to multi-class problems
employing Error-Correcting Outputs Codes (ECOC). Since both the classification tasks studied
in this work are multi-class problems, ECOC shall be employed to reduce a multiclass problem
to a set of binary classification problems that can be addressed by conventional SVMs. To do
so, ECOC model comprises two main components:

• Coding design: which is a matrix defining which classes are trained by a specific binary
learner;

• Decoding scheme: which aggregates the results of the single binary classifiers determin-
ing the prediction of the multi-class problem.

In the present work, a one-versus-one coding design has been employed [35].

SVMs have been also generalized for regression, defining the hyperplane that best fits the
training data [107]. Its equation f (x) = xT w+b is obtained minimising the norm value wT w
provided that, for each item, all the prediction errors are inside an accepted error ε . In such a
case the problem is called feasible. Otherwise, for infeasible problems, slack variables can be
added to deal with data points having error exceeding ε [3].

margin

a) b)

G(x , x )

support
vector

support
vector

support
vector

support
vector

support
vector

support
vector

margin

hyperplane

1 2

Figure 5.4 Sketch of a binary Support Vector Machine, highlighting the behaviour of the ker-
nel function G mapping the space b) to the a) one [13]
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SVMs are by definition linear classifiers, however, they can be extended to face non-linear
problems too, by applying the so-called kernel trick. When the separation among classes or
the regression function cannot be defined by a simple hyperplane the separating criterion can
be reconducted to a hyperplane by replacing the dot product with a proper kernel function
G(x1,x2) [31]. In other words, mapping the original space into a higher-dimensional space
where the linear solution of the problem is still possible [97]. Figure 5.4b provides a qualitative
example for a binary non-linear classification problem.

In the literature, a large number of single or multiple kernels can be found, opening the
problem of the selection of the proper one. The selection is not an easy task [75]. To address
this issue for the three studied problems, the multiple kernels have been tested in the present
work:

• Linear Support Vector Machine (SVM1): employing a linear kernel function, i.e. the dot
product:

G(x1,x2) = x1
T x2 (5.8)

• Quadratic Support Vector Machine (SVM2) employing a second-order polynomial kernel
function defined as:

G(x1,x2) =
(
1+x1

T x2
)2

(5.9)

• Cubic Support Vector Machine (SVM3): employing a third-order polynomial kernel func-
tion defined as:

G(x1,x2) =
(
1+x1

T x2
)3

(5.10)

• Gaussian Support Vector Machine (SVMG): employing a radial basis function kernel
defined as:

G(x1,x2) = exp
(
−‖x1−x2‖2

)
(5.11)

Same as KNN, all the predictors defining the input space have been, here, standardised to
define the training dataset.

5.4 Database generation

As mentioned, to assess the damage consequences by applying machine learning, a training
dataset is needed, composed of progressive flooding simulations. The simulations are driven
by a damage case generation algorithm. In the present section, several options are proposed to
generate the training database according to a different characterisation of the damages.

In the field of damage stability and flooding simulation, it is a common practice to assume
the damage as a parallelepiped box intersecting the hull [38, 17, 86]. The surface of the hull shell
enclosed in the damage box is considered open to the sea, defining the damage. Considering
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a box-shaped damage due to side collision (always crossing the waterline), it is completely
defined by five parameters (Figure 5.5):

• damage length Ld;

• the longitudinal position of the damage centre Xd;

• transversal damage penetration Bd measured from shell side (B/2);

• vertical height Zmax of the highest tip of the damage above Base Line (BL);

• vertical height Zmin of the lowest tip of the damage above BL;

In the present work focusing on flooding simulation, all the internal structures have been con-
sidered intact, hence the damage penetration has been neglected.

Zmax

Zmin

Ld
Xd

Bd

BL T

LS B

Zd

Hd

Figure 5.5 Bow-shaped damage parameters

Two main methods for database generation have been tested, one based on MC generation
of side damage cases, the second based on a parametric generation aimed to cover all the pos-
sible damage scenarios involving multiple rooms laying on the hull shell [10]. Applying MC
sampling, the damage cases can be generated following the probability distribution of their pa-
rameters [61]. Here three different MC options are explored, one based on SOLAS probability
distributions and the other two based on uniform distributions of different damage parameters.

5.4.1 Monte Carlo with SOLAS probability distributions

Current SOLAS probabilistic rules for ship damage stability are based on the statistical analysis
of a database of side collision accidents [49]. SOLAS rules employ a so-called zonal approach.
However, the probability distributions adopted in the rules definition can be directly applied in
the so-called non-zonal approach [18]. SOLAS embeds the probability distribution of most of
the damage parameters: i.e. Ld , Xd , Bd (leading to the definition of the p-factor) and Zmax (con-
sidered in the v-factor). The Zmin is not defined, since SOLAS adopts a worse case approach in
s-factor determination to consider horizontal subdivision below the waterline. Here, Zmin prob-
ability distribution is defined according to the statistical analysis of collision damage data [17].
In the following, adopted probability distributions are given:
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• damage length is modelled with a bilinear probability density function, leading to the
following cumulative distribution:

cd f (Ld) =



0 if J ≤ 0
b11

2
J2 +b12J if 0≤ J ≤ Jk

b11−b21

2
J2

k +(b12−b22)Jk +
b21

2
J2 +b22J if Jk < J ≤ Jm

1 if J > Jm

(5.12)

where J = Ld/LS and all the other parameters are defined as for SOLAS Ch.II-1 Part B-1
Regulation 7-1 [51].

• the longitudinal position of the damage centre is uniformly distributied along the ship
subdivision length LS length:

cd f (Xd) =


0 if Xd ≤ 0
Xd

LS
if 0 < Xd < LS

1 if Xd ≥ LS

(5.13)

• vertical height Zmax is modelled with a bilinear cumulative density function:

cd f (Zmax) =



0 if Zmax−T ≤ 0 m

0.8
Zmax−T

7.8
if 0 m≤ Zmax−T ≤ 7.8 m

0.8+0.2
Zmax−T −7.8

4.7
if 7.8 m < Zmax−T ≤ 12.5 m

1 if Zmax−T > 12.5 m

(5.14)

• vertical height Zmin is modelled with a linear probability density function leading to the
following cumulative distribution:

cd f (Zmin) =


0 if Zmin ≤ 0

1.4
Zmin

T
−0.4

(
Zmin

T

)2

if 0 < Zmin < T

1 if Zmin ≥ T

(5.15)

5.4.2 Monte Carlo with uniform distribution of damage dimensions

In this second damage cases generation algorithm, the SOLAS values regarding the maximum
damage dimensions are still applied. However, the damage length and height are assumed to
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follow a uniform distribution. The applied cumulative density functions are, then, defined as:

• damage length is assumed as uniformly distributed between 0 and the maximum admis-
sible non-dimensional length according to SOLAS:

cd f (Ld) =


0 if Xd ≤ 0

Ld

JmLS
if 0 < Xd < JmLS

1 if Xd ≥ JmLS

(5.16)

• the longitudinal position of the damage centre is already uniformly distributed in SOLAS.
Hence, Equation (5.13) can be still applied.

• the damage height Hd = Zmax−Zmin is uniformly distributed between 0 and T +12.5 m,
i.e. the maximum value according to SOLAS:

cd f (Zmax) =


0 if Hd ≤ 0

Hd

T +12.5 m
if 0 < Hd < T +12.5 m

1 if Hd ≥ T +12.5 m

(5.17)

• As the damage height is defined, the vertical position of the damage centre Zd is defined
assuring that the damage is crossing the waterline in compliance with SOLAS. Hence,
the Zd is assumed as uniformly distributed in the interval:

[
max

(
Hd

2
, T − Hd

2

)
, T +min

(
12.5 (m)− Hd

2
, T +

Hd

2

)]
(5.18)

5.4.3 Monte Carlo with uniform distribution of damage area inverse

This last damage case generation algorithm based on MC sampling is quite different from the
previous ones. It considers a uniform distribution of the inverse of the damage area Ad =

Ld(Zmax−Zmin). The main objective of such a method is to reach a more uniform distribution
of the time-to-flood, compared to the SOLAS one. In fact, the application of SOLAS proba-
bility distributions likely leads to a great number of large-area breaches having, consequently,
short time-to-flood. Such damages are not very interesting for decision support purposes. Fur-
thermore, lead to a small number of long damage scenarios, which might affect the forecast
accuracy of the learners due to lack of data. This is why the present generation method has been
designed.

In a preliminary study reported in Appendix B, it was observed that for very simple ge-
ometries the time-to-flood is proportional to the inverse of damage area. Hence, the following
cumulative probability function has been applied to draw damage areas:
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cd f
(

1
Ad

)
=



0 if
1
A
≤ 1

Amax
1
A
− 1

Amax
1

Amin
− 1

Amax

if
1

Amax
<

1
A
<

1
Amin

1 if
1
A
≥ 1

Amin

(5.19)

where Amin and Amax are the minimum and maximum damage area that can be defined for
each different ship. In a real application, floodwater inflow due to very small damages can
be taken under control by the bilge system. Hence, it can be assessed considering the bilge
pumps capacity. The maximum area can be defined as the maximum damage area according to
SOLAS: Amax = (T +12.5) Jm LS.

Once the area is defined the other damage parameters shall be assessed. The longitudinal
position of the damage centre is assessed as for SOLAS according to Equation (5.13). Then,
two alternative procedures are applied to the 50% of generated damage cases, respectively:

• the heights Zmin and Zmax are drawn following the SOLAS cd f provided in Equations (5.15)
and (5.14), respectively. Then, defined the damage height Hd = Zmax−Zmin, the damage
length is determined as Ld = Ad/Hd;

• the damage length is drawn following the SOLAS cd f provided in Equation (5.12) and
damage height Hd is determined as Hd = Ad/Ld . Then, the vertical position of damage
centre Zd is randomly drawn within the range defined in Equation 5.18 to have the damage
crossing the waterline.

Damages resulting not feasible (i.e. the ones having height or length outside the ship bound-
aries) are discarded and generated randomly again.

5.4.4 Parametric method

The parametric generation of damage cases is not based on MC sampling and is divided into
two phases. In the first, the box-shaped damages are generated considering every single room
on the hull shell. In the latter, these damage cases are parametrically combined to define damage
cases involving neighbouring rooms.

Considering a single room, it was observed that the longitudinal position of the damage
centre has only a limited impact on progressive flooding (See Appendix A). Hence, all the room
damages have been applied at half of the room longitudinal extension assuming an Ld equal to
the room longitudinal extension. On the contrary, for each room, at least three different vertical
positions of damage centre Ld have been considered: at the room’s bottom, half-height and top.
For rooms extending over multiples decks more intermediate positions have been considered
corresponding to the main decks’ hights from baseline. In order to define damages within
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room boundaries, the damage centre height shall be corrected for top and bottom damages,
considering the applied damage area as shown in Figure 5.6. For each possible damage location
(Xd,Zd), multiple damage sizes shall be applied. The area of the i-th damage in j-th room,
considering the k-th centre is evaluated as:

1
Ai jk

=
1

Amax jk

+
k
nd

(
1

Amax jk

− 1
Amin jk

)
(5.20)

with k = [1,2, ...,nd], where nd is the so-called number of divisions, which is the main parame-
ter governing the database size. Besides, Amin and Amax are defined with a different procedure
compared to the previously described. Regarding the minimum area, for each position, it can be
defined as the one corresponding to an initial inflow equal to bilge pumps capacity. On the other
hand, very large damages drive to the almost instantaneous filling of the damaged room. In the
present study, the maximum damage area for each room has been estimated for each location as
the area that causes the room-filling in 15 s. The maximum area has been defined solving recur-
sively the equations provided in Appendix B valid for simple geometries. Furthermore, every
single room is assumed as lost at the beginning of progressive flooding (instantaneous flooding)
defining an additional single-room damage case. As the single room damage cases have been
defined, they are combined with the ones related to the neighbouring rooms. In detail, com-
bined damage cases are elaborated considering all the possible combinations of damage areas
of damages having the same centre height (bottom, half-height, top) and sharing a boundary
(watertight bulkhead, deck). For instance, at the intersection of a deck and a transverse bulk-
head, the combinations are defined considering up to four rooms. In the present work, only
one or two compartments damages have been considered. However, the proposed generation
technique can be easily extended to a higher number of contiguous compartments.

Correction

Original centre of
the room's top damage

Corrected centre of
the room's top damage

Hd

Ld

Considered
Room

Figure 5.6 Correction of the vertical position of the damage centre according to damage area
for a top damage
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Chapter 6

Machine Learning test case

In the present chapter, the methodology presented in Chapter 5 is applied to a quite simple test
geometry. The main objective is to assess the feasibility of the damage consequences recogni-
tion based on the time evolution of the floating position of the damaged ship. After a description
of the test arrangement, multiple learners have been tested and compared. Finally, the effect of
different algorithms for training database generation is studied.

6.1 Test arrangement

In the present section, the chosen test arrangement is introduced and described. First, the test
geometry is described in detail, then some considerations are made to explain its choice.

6.1.1 Geometry

The test geometry is a box-shaped barge having the main particulars provided in Table 6.1 and
general arrangement depicted in Figure 6.1. The barge has three decks: DK1 located nearby
the waterplane at 5 m above the BL, the DK2 located at 10 m above the BL and the bulkhead
deck (DK3) located 15 m above the baseline. Beneath the bulkheads deck, the barge is divided
into five watertight compartments. The lowest rooms in first and third compartments extend
from the barge bottom to the DK2. Longitudinal bulkheads are fitted on the centreline in the
lowest room within compartments 1 and 3. Moreover, another longitudinal bulkhead is fitted in
compartment 5 between DK2 and DK3 to allow the generation of a long flooding chain.

Table 6.1 Main particulars of the test geometry

Description Symb. Value Description Symb. Value
Length overall LOA 75 m Breadth B 20 m
Draught T 6 m Depth D 17.5 m
Displacing Volume ∇ 7500 m3 Metacentric height GM 2.685 m
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Figure 6.1 General arrangement of the test geometry

All the rooms have unitary permeability and are considered fully vented. The rooms are
interconnected by a set of openings as shown in Figure 6.1. Details about the openings size
and position are provided in Table 6.2. Both the rooms and the openings have been modelled
with non-structured triangular meshes having maximum panel are of 3.125 m2 and 0.25 m2,
respectively. A sketch of the 3D model of the test geometry is shown in Figure 6.2.

6.1.2 Motivation

The test case has the main purpose to test the proposed methodology based on machine learning.
It shall be considered the first attempt in such a direction devoted to proving its feasibility for
application in a flooding-sensor-agnostic DSS.
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Table 6.2 Main characteristics of the test geometry openings. C = (XC,YC,ZC) is the centre of
the opening in ship-fixed reference system

id type h (m) w (m) XC (m) YC (m) ZC (m)
R11S-R13 Horizontal 1.5 1.5 10 -2 10
R11P-R13 Horizontal 1.5 1.5 10 2 10
R13-RA4 Horizontal 1.5 1.5 10 0 15
R21P-R22 Horizontal 1.5 1.5 25 2 5
R22-R23 Horizontal 1.5 1.5 25 0 10
R23-RA4 Horizontal 1.5 1.5 25 0 15
R31-R33 Horizontal 1.5 1.5 40 0 10
R33-RA4 Horizontal 1.5 1.5 40 0 15
R41-R42 Horizontal 1.5 1.5 55 0 5
R42-R43 Horizontal 1.5 1.5 55 0 10
R43-RA4 Horizontal 1.5 1.5 55 0 15
R51-R52 Horizontal 1.5 1.5 65 0 5
R52-R53S Horizontal 1.5 1.5 65 -2 10
R53P-RA4 Horizontal 1.5 1.5 65 2 15
R21S-R21P Longitudinal 1.9 0.8 20 0 0.95
R53S-R53P Longitudinal 1.9 0.8 65 0 10.95

Figure 6.2 Mesh of the internal rooms of the test geometry

Following the previous considerations, it has been chosen to test the new methodology on
quite simple geometry. Hence, the box-shaped barge and its internal subdivision have been de-
signed. The barge geometry can be easily reproduced in other studies, providing a first bench-
mark test case to compare the outcomes of learners/techniques not addressed in the present
work. This is considered a best practice when a new approach to a damage stability problem is
proposed [19]. Furthermore, the application on a full-scale passenger ship has been deemed too
complex at this stage, where neither the best machine learning technique nor the best database
generation strategy is known. The application on a full-scale environment, which is anyway es-
sential before onboard application of the proposed technique, will be addressed in future works,
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following the proof-of-the-concept provided in the present study.

Nevertheless, although the test geometry is simpler than a large passenger ship one, the
box-shaped barge has been designed keeping in mind the typical general arrangement of a large
cruise vessel, characterised by multiple decks below the bulkhead deck and having some spaces
divided by longitudinal bulkheads, e.g. the Primary Electric Motor (PEM) rooms or the steering
gear rooms. Moreover, it has also considered that many spaces below the bulkhead deck pass
through multiple decks to accommodate the main machinery. All these aspects can be found in
the selected test geometry.

6.2 Tested learners

In the present section, all the learners described in Chapter 5 are tested on the box-shaped
barge. First, the density of predictors and the number of damage cases in the training database
are established. Then, a fair comparison of the performances associated with each tested learner
is provided and discussed.

6.2.1 Sensitivity on number of predictors and damage cases

In this preliminary phase, both the training and validation databases are generated according to
SOLAS probability distributions for side collision damages. Before testing all the learners, a
suitable value of dt spearing two subsequent records of the floating position shall be defined as
well as a proper dimension of the training database.

Given a large validation database, it is expected that as the number of damage cases in-
cluded in the training database increases, also the performances of classification/regression will
improve. To assess the minimum number of damage cases comprised in the training database,
the following databases have been independently grown-up:

• MC01: composed of 1000 damage cases (173 non-survival cases);

• MC02: composed of 2500 damage cases (398 non-survival cases);

• MC05: composed of 5000 damage cases (768 non-survival cases);

• MC10: composed of 10000 damage cases (1544 non-survival cases);

• MC15: composed of 15000 damage cases (2286 non-survival cases);

• MC20: composed of 20000 damage cases (3082 non-survival cases);

• MC30: composed of 30000 damage cases (4686 non-survival cases);

• MC40: composed of 40000 damage cases (6263 non-survival cases);
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• MC50a: composed of 50000 damage cases (7886 non-survival cases);

• MC50b: composed of 50000 damage cases (8059 non-survival cases);

The maximum simulated time has been set at 2250 s, since the large majority of the progressive
flooding simulations have a shorter t f . This threshold, for the test geometry, drives to about
0.6% of damage cases classified as TE.

Assuming a dt = 15 s and employing the RF learner, all the databases have been used as
training database except for the MC50b, which was always employed as the validation one.
Figure 6.3 provides the results of the analysis. Each curve refers to the learning performance
evaluated at a different t∗ after damage occurrence.

Figure 6.3 Performances evaluated at different time instants t∗ as function of number of dam-
age cases in the training database employing RF learners. Validation: MC50b
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Almost all the curves converge at a maximum value of accuracy/coefficient of determina-
tion as N increases. The performances are already satisfactory for MC20 training database.
Employing more than 20,000 damage cases marginally improves the accuracy while such gains
are achieved at a high computational cost. Employing an Intel® Xeon® CPU E5-2630 v4 (2.20
GHz) workstation with 18 threads running in parallel to growing up the databases, about 1 hour
is required to simulate 1000 damage cases. Therefore, 20,000 damage cases are considered a
reasonable size for a training dataset based on MC sampling for the present test geometry.

Figure 6.4 shows the effect of different constant sampling time steps dt. Different behaviour
is observed for classification and regression problems. Both FF and FC classification problems
show a strong degrading of performances for very short dt.

Figure 6.4 Performances evaluated at different time instants t∗ as function of the sampling
time step. Training: MC20; validation: MC50b
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Then, for the test geometry, the accuracy is almost stable for 15 s ≤ dt ≤ 60 s. Consider-
ing regression on t f , the coefficients of determination slightly grow as the sampling time step
decreases in the studied range. Considering all the three problems, in this preliminary study
a standard constant sampling time step has been chosen, equal to 15 s, since it assures good
performances at the very beginning of the flooding process as shown by the line t∗ = 60 s in
Figure 6.4 and a negligible drawback for the classification problems in the next phases.

6.2.2 Comparison of learners performances

The learners presented in Chapter 5 have been trained using the MC20 database, using a sam-
pling time step dt = 15 s for DT and KNN learners, whereas dt = 60 s has been used for SVM
ones. In fact, SVMs does not usually work well with high-dimensional input space. Such
a problem was observed also in the present work, driving to increase the sampling time step
to reach a reasonable compromise between maximum accuracy and its fast convergence to the
maximum value. Then, at each time instant, the learners have been tested through the validation
database MC50b. The overall results of the analysis are provided in Figure 6.5, reporting the
accuracy and the coefficients of determination for the classification and regression problems,
respectively. Additional data can be found in Appendix C

Considering the overall performances, very good results have been obtained for all the three
problems (FF, FC, t f ): at about t∗ = 500 s the overall accuracy and determination coefficients
converged for most of the tested learners. Considering the ongoing performances a quite dif-
ferent behaviour has been observed. In an initial phase both the Acc∗ and R2∗ increase up to a
maximum value, which remains almost constant in a region defined according to the percentage
N∗ of ongoing damage scenarios included in the validation database. At a first approximation,
for all three problems, this area ranges between 50% and 20%. When the N∗ < 20%, the ongo-
ing performances become more unstable and decay below the maximum value. The decay and
instability magnitude strongly depends on the studied problem and adopted learner.

At this stage, the best learners for each studied problem can be already identified. For both
the classification problems (FF and FC) the RF definitely provide the best performance in terms
of both overall and ongoing accuracy. On the other hand, considering the t f regression, a clear
preference cannot be inferred by the Figure 6.5. Again RF works well in the initial phases.
Then, KNNW provides better results as N∗ < 10%. In the next section, these overall results are
discussed in more detail, focusing on the best learners.

Finally, an analysis of the computational performances is provided in Tables 6.3-6.5. The
computational time refers to a Intel® CoreTM i7-4710 CPU (2.50 GHz) laptop. Considering the
computational time required for the response prediction, all the tested learners can be considered
suitable for the onboard application. In fact, the "laziest" KNN learners still provide an almost
instantaneous response, which is several times lower than each DSS based on live simulation of
the progressive flooding, which anyway requires a finite computation time.
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Figure 6.5 Comparison of the performances of tested learners. Training: MC20; validation:
MC50b

Since the training is performed during the set-up of the system, the training time is less
relevant. Nevertheless, reference values relating to the test geometry are given in tables for sake
of completeness.

6.2.3 Discussion

It shall be noted that the maximum simulation time applied to the test geometry is quite limited.
This is mainly due to the large volume of the compartments compared to the barge displacing
volume combined with wide and free internal openings.
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Table 6.3 Computational time required for training and prediction of a single damage case in
ship final fate classification evaluated at different t∗

Methods training MC20 tc (s) prediction M50b tc/N (s)
t∗ = 250 s t∗ = 1000 s t∗ = 2000 s t∗ = 250 s t∗ = 1000 s t∗ = 2000 s

DT 1.09 6.48 10.25 2.50E-06 2.50E-06 5.63E-06
DTB 1.42 2.64 3.61 1.56E-05 1.78E-05 2.13E-05
RF 8.00 12.38 12.59 2.53E-05 2.66E-05 2.47E-05
KNN2 0.11 0.47 0.92 1.18E-03 6.11E-03 1.20E-02
KNN3 0.33 0.66 1.06 4.27E-02 1.68E-01 3.35E-01
KNNC 0.17 0.42 0.84 1.20E-03 5.75E-03 1.16E-02
KNNW 0.20 0.42 0.84 1.21E-03 6.02E-03 1.20E-02
SVM1 9.91 24.63 12.50 3.75E-06 1.31E-05 2.31E-05
SVM2 43.34 11.94 10.09 1.19E-05 1.59E-05 1.02E-04
SVM3 762.56 17.42 6.61 9.38E-06 1.41E-05 5.91E-05
SVMG 4.27 5.52 8.13 1.88E-05 1.09E-04 2.69E-04

Table 6.4 Computational time required for training and prediction of a single damage case in
flooded compartments classification evaluated at different t∗

Methods training MC20 tc (s) prediction M50b tc/N (s)
t∗ = 250 s t∗ = 1000 s t∗ = 2000 s t∗ = 250 s t∗ = 1000 s t∗ = 2000 s

DT 1.25 4.63 8.70 4.69E-06 6.88E-06 7.50E-06
DTB 2.03 3.13 4.06 3.53E-05 4.03E-05 4.44E-05
RF 6.61 10.31 12.89 4.72E-05 4.53E-05 4.53E-05
KNN2 0.20 0.50 0.83 1.19E-03 5.97E-03 1.20E-02
KNN3 0.14 0.63 1.00 4.37E-02 1.72E-01 3.37E-01
KNNC 0.20 0.56 0.98 1.15E-03 5.77E-03 1.17E-02
KNNW 0.13 0.42 0.86 1.18E-03 5.80E-03 1.20E-02
SVM1 16.89 11.56 15.92 8.47E-05 1.93E-04 3.38E-04
SVM2 37.16 33.58 32.09 1.01E-04 1.87E-04 4.62E-04
SVM3 93.05 69.78 75.66 1.05E-04 1.78E-04 4.10E-04
SVMG 8.83 9.30 13.50 2.32E-04 4.37E-04 1.54E-03

Besides, the SOLAS probability distributions lead to a high probability of significantly large
damages. Nevertheless, the maximum simulation time tmax = 2250 s has been deemed sufficient
to suit the purpose of the present study. In the following, the studied problems are discussed in
detail. Considering the classification of the ship’s final fate, the best performances have been
obtained applying RF. For the test geometry, the maximum overall and ongoing accuracy is
99.8% and 98.6%, respectively. Moreover, RF result also in the lowest performances decay
as the N∗ decreases: the ongoing accuracy is always above 95%. All the other tested learners
proved slightly worse results for both accuracy and decay. The additional techniques based
on decision trees (single DT and DTB) provide almost the same results and are about 1% less
accurate than the RF in terms of ongoing accuracy. The decay is again limited: Acc∗ > 90%.

Comparable performances have been also achieved applying the KNNW learner, whereas
the other tested KNN algorithms based on non-weighted metrics perform slightly worse.
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Table 6.5 Computational time required for training and prediction of a single damage case in
time-to-flood regression evaluated at different t∗

Methods training MC20 tc (s) prediction M50b tc/N (s)
t∗ = 250 s t∗ = 1000 s t∗ = 2000 s t∗ = 250 s t∗ = 1000 s t∗ = 2000 s

DT 0.28 1.08 1.94E-06 7.76E-06 1.55E-05
DTB 6.98 11.94 7.76E-06 2.33E-05 1.74E-05
RF 5.06 9.47 2.33E-05 3.10E-05 3.30E-05
KNN2 0.02 0.02 3.43E-04 1.03E-03 1.87E-03
KNN3 0.06 0.02 8.32E-03 2.40E-02 4.66E-02
KNNC 0.06 0.06 2.58E-04 3.37E-04 3.94E-04
KNNW 0.06 0.06 3.24E-04 1.04E-03 1.87E-03
SVM1 12.77 38.69 3.10E-05 4.27E-05 7.56E-05
SVM2 39.39 39.53 7.76E-06 4.27E-05 6.98E-05
SVM3 43.48 60.84 3.10E-05 4.46E-05 7.76E-06
SVMG 0.56 0.84 7.76E-06 5.82E-05 9.89E-05

A clear preference for one of the tested metrics does not emerge in the FF classification.
Eventually, the application of SVMs enables to outline some interesting insights, although the
best SVMs are slightly less accurate than KNN, especially in the initial phases, where the lower
number of predictors slows down the convergence to maximum accuracy. The linear kernel
(SVM1) is not suitable to deal with FF problem, whereas both the quadratic (SVM2) and Gaus-
sian (SVMG) kernels work well. Finally, the cubic kernel (SVM3) shows an unstable behaviour:
large oscillations of the accuracy have been observed in the initial phase characterised by a small
number of predictors and a large number of sample data. In this initial phase very high training
times have been experienced, confirming a difficult and ineffective training of the model based
on cubic kernel. Finally, Acc∗ decay related to all the SVM algorithms is stronger than the
KNN’s one, confirming that this class of algorithms is the less appropriate for the forecast of
damaged ship final fate.

Besides accuracy, misclassification shall be analysed too. Considering FF classification
problem, two error type can be defined:

• Type I error: when a non-survival scenario is classified as survival one by the learner;

• Type II error: when a survival scenario is classified as a non-survival one by the learner.

The type I error is extremely more dangerous in the framework of onboard decision support. In
fact, in such a case the master might be pushed by the DSS not to abandon the ship when it will
sink or capsize, with imaginable consequences on people safety. Tables 6.6 and 6.7 shows the
confusion matrices evaluated for the test geometry at t∗ = 250 s and t∗ = 500 s, respectively.
It can be noted that the type I error has a very low probability of occurrence, while the type II
one is slightly more probable. This behaviour was observed during all the analysed time frame.
Considering the classification of flooded compartments, the best performances have been again
obtained applying RF.
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Table 6.6 Confusion matrix related to ship final fate classification problem evaluated at t∗ =
250 s. Training: MC20; validation: MC50b; method: RF

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.79 0.17 0.01 0.02
Equilibrium 0.07 82.97 - 0.12
Ex. Heeling 0.04 0.03 3.05 -
Time Exceeded 0.02 0.32 - 0.37

Table 6.7 Confusion matrix related to ship final fate evaluated at 500 s. Training: MC20;
validation: MC50b; method: RF

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.89 0.09 - 0.01
Equilibrium 0.05 83.00 - 0.12
Ex. Heeling 0.01 0.02 3.05 -
Time Exceeded 0.02 0.17 - 0.52

Moreover, most of the considerations done for FF classification still yield. Hence, focus
will be made on the discrepancies only. The maximum value of overall and ongoing accuracy
is 98.4% and 99.0%, respectively. It shall be noted the ongoing accuracy shows a smaller decay
when RF are applied, being always greater than 98%. Moreover, the Acc∗ gap between RF and
the other learners is larger than 1%. Hence, RF proved to be an excellent solution for dealing
with FC classification. Compared to FF classification, boosted trees (DTB) are very ineffective
in the identification of flooded compartments. On the other hand, SVM2 shows good results,
comparable with the DT and KNNW ones. In such a case SVMG is providing bad perfor-
mances, especially in the initial phase after damage. This suggests that the FF classification
cannot be described well by radial basis kernel, nor by a linear one. Again SVM3 shows a
strong instability on the overall accuracy, even though it provides very good results for ongoing
accuracy for t∗ > 500 s.

The second problem is also somehow more resilient to misclassification, despite the overall
accuracy appears lower than the FF one. Tables 6.8 and 6.9 shows the confusion matrices
evaluated for the test geometry at t∗ = 250 s and t∗ = 500 s, respectively. It can be noted that
most of the errors do not relate to a complete misclassification of the flooded compartments,
but to neglecting one of the flooded compartments. This likely happened when in an initial
flooding phase the breach area in the neglected compartment is substantially smaller than the
other flooded compartments ones. Such an error tends to vanish as the floodwater amount in the
neglected compartment sufficiently grow, having a relevant effect on the ship floating position.
Finally, it shall be noted that the training dataset generated according to SOLAS probability
distributions is very skewed, leading to a higher error rate for less probable damage scenarios
involving three or five adjoining compartments.
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Table 6.8 Confusion matrix related to flooded compartments classification problem evaluated
at t∗ = 250 s. Training: MC20; validation: MC50b; method: RF

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.04 - - - - - - - - - - - -
2 - 13.37 - - - - 0.01 - - - - - 0.03
3 - - 13.62 - - - - - - - - - -
4 - - - 13.43 - - - 0.01 - - - - -
5 - - - - 16.53 - - - - - - - -

1,2 0.01 - - - - 1.53 - - - - - - 0.26
2,3 - 0.09 - - - - 5.67 - - - - - 0.01
3,4 - 0.01 - 0.06 0.02 - - 5.92 0.04 - - 0.01 0.05
4,5 - - - - 0.06 - - 0.01 4.56 - - 0.01 0.21

1,2,3 - - - - - - - - - 0.02 - - 0.02
2,3,4 - - - - - - 0.01 0.02 - - 0.07 - -
3,4,5 - - - - - - - 0.03 0.03 - - 0.01 -
all 0.02 0.04 - 0.01 0.04 0.28 0.02 0.20 0.36 0.01 0.01 0.02 6.18

Table 6.9 Confusion matrix related to flooded compartments classification problem evaluated
at t∗ = 500 s. Training: MC20; validation: MC50b; method: RF

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.04 - - - - - - - - - - - -
2 0.01 13.39 - - - - - - - - - - 0.01
3 - - 13.62 - - - - - - - - - -
4 - - - 13.42 - - - 0.01 - - - - -
5 - - - 0.01 16.52 - - - - - - - -

1,2 - - - - - 1.52 - - - - - - 0.28
2,3 - 0.06 - - - - 5.70 - - - - - 0.02
3,4 - - - 0.04 0.01 - - 5.96 0.03 - - 0.01 0.06
4,5 - 0.01 - - 0.03 - - 0.01 4.63 - - 0.01 0.16

1,2,3 - - - - - - - - - 0.03 - - 0.02
2,3,4 - - - - - - 0.01 0.02 - - 0.07 - 0.01
3,4,5 - - - - - - - 0.03 0.03 - - 0.01 -
all 0.01 0.04 - 0.01 0.03 0.26 0.01 0.19 0.37 0.01 0.01 0.02 6.23

Considering the regression on the t f , the best learner cannot be immediately identified, as
for the FF and FC classification problems. In an initial phase, again, the RF provides the best
performances, then the KNNW shall be preferred for both overall and ongoing coefficients
of determination. Furthermore, other relevant differences from the previous problems can be
identified. First, the decay of R2∗ is more pronounced compared to the decays observed on
Acc∗. In particular, the ongoing determination coefficient reaches a null value when the number
of ongoing damages is lower than the 2% (which occurs at about t∗ = 735 s). The cause can
be searched in the training dataset that here is limited to the non-survival damage cases only.
Hence, besides a reduced size (3082 of the 20,000 damage scenarios for MC20 database), it has
been observed that for the tested geometry most of the non-survival damage cases have very
short time-to-floods. This lead to a very difficult assessment of long damage scenarios due to a
lack of data for large t∗ values.

Focusing on regression learners, both the RF and KNNW reaches a maximum of R2∗ for
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N∗ = 40% (which occurs at about t∗ = 250 s). A consistent reduction of the ongoing coefficient
of determination is observed compared to the overall one. The maximum values related to RF
methods are R2 = 0.89 and R2∗ = 0.62 whereas the ones related to NKKW are R2 = 0.92 and
R2∗ = 0.60. Regarding the other tested methods, DTB provides lower performances than RF in
an initial phase, then they become comparable, being both overtaken by KNNW ones at about
N∗ = 10%. All the other methods provide lower results especially in terms of R2∗. In particular,
SVMs prove to be very ineffective. Only the application of a Gaussian kernel shows a limited
capability in forecasting the t f , showing that the dataset cannot be effectively fitted by linear,
quadratic or cubic kernel functions.

Regression results can be further investigated using the predicted-observed plots. Fig-
ures 6.6 and 6.7 provide these plots for the two best methods (RF and KNN, respectively).
Plots are evaluated at 200 s and 500 s from the damage occurrence. Hence, the coloured region
refers to the t f forecast including all the ongoing damage scenarios (t f > t∗). Among them,
for the ones laying on the red area of the plot the t f is overestimated, otherwise, it is underes-
timated. It can be noted that applying both the RF and KNNW learners, as time goes by, the
predictions tend to group nearby the diagonal. Hence, the reliability of the response increases.
However, as time goes by, the training database density in the forecast region decreases, leading
to higher errors for the longer damage cases. This is the main cause of the decay of R2∗. It
shall be noted that in such a region, non-parametric methods, such as decision trees, become
less reliable since it is hard to define the sub-regions having constant response. This is why RF
does not provide any prediction above 1104 s despite it applies multiple trees, as can be noted
in Figure 6.6. KNNW has not such limitations, thus provides better performances with limited
data taking advantage of the weighting process. Nevertheless, KNNW suffers by lacking data
too, leading anyway to the R2∗ decay, although somehow delayed.

Figure 6.6 Predicted over obseved values of the t f computed at t∗ = 250 s and t∗ = 500 s.
Training: MC20; validation: MC50b; method: RF
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Figure 6.7 Predicted over obseved values of the time-to-flood computed at t∗ = 250 s and
t∗ = 500 s. Training: MC20; validation: MC50b; method: KNNW

Figures 6.8 and 6.9 provides the t f predictions related to the best two algorithms (RF and
KNNW) for two damage cases from the validation database (MC50b): the DC051766 and the
DC071109, respectively. Besides the t f , figures includes also the predictors considered (dots
in the heel angle, trim angle and sinkage plots). Damage case DC051766 involves rooms R23,
R22, R21S and R11S, driving to asymmetric progressive flooding in two main compartments
(1,2). As the floodwater reaches the upper deck, a stable position cannot be found anymore
driving to the loss of the barge. Damage DC071109 involves rooms R53S, R43, R52 and R42.
In this case, the progressive flooding is symmetric up to the flooding of R53S which lead to heel
toward starboard and, then, capsize due to the insufficient residual stability of the barge. Both
these damages are quite long, hence both RF and KNNW tend to underestimate the time-to-
flood at the beginning of the progressive flooding. This is mainly due to the unknown dimension
of damage above the waterline which cannot be accounted for in the initial phases of flooding.
So, for very large damages in the upper part of the hull, an initial overestimation has been
also observed. However, these damage scenarios show usually a very fast evolution, driving
to immediate capsize. Thus, they are less relevant from a DSS point of view. After the initial
phase, the two considered damage cases provide reliable predictions, even though RF slightly
underestimate the t f while KNNW overestimates it. Therefore, in a real operative environment,
the crew might be forced to rush the evacuation procedures due to initial data and then relax the
operations as the prediction have been updated. This behaviour might suggest providing results
after a period sufficient to stabilise the outcomes of the machine-learning-based DSS.

In general, for all three problems, the distribution of the t f in the training database plays a
key role to ensure the forecast capabilities of the models, governing their decay. Obviously, this
especially yields for the t f regression, where a training database based on SOLAS probabilities
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Figure 6.8 Time-to-flood prediction provided by the sysem based on RF and KNNW for dam-
age case DC051766 according to the predictor values. Training: MC20

does not seem appropriate for the test geometry. Furthermore, RF appear to be the best choice
in all three problems, proving that their resilience to noise and capability to deal with high-
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Figure 6.9 Time-to-flood prediction provided by the sysem based on RF and KNNW for dam-
age case DC071109 according to the predictor values. Training: MC20

dimensional input spaces are of the utmost importance to forecast damage consequences from
the time evolution of the floating position. In the present work, the constant dt = 15 s sampling
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time has been adopted to enable a fast convergence of the learners’ accuracy immediately after
damage occurrence. However, the improvement of the performances obtained applying a dt =

60 s to SVMs suggests that a non-constant or t∗ dependent sampling time step is worthy of
further investigation in future works.

6.3 Tested database generation techniques

In the present section, the effect of the different database generation techniques presented in
Chapter 5 is studied. Among all the learners tested in the previous section, here only the most
effective one has been employed, i.e. RF with sampling time dt = 15 s. Besides, the different
generation techniques have been applied to define the training database only. Here, the MC50b
has been always employed as the validation database, since it is based on SOLAS probability
distributions. As mentioned, such distributions have been developed with statistical analysis of
real collision accidents, hence the MC50b database can be considered more representative of
the damages that might occur to a ship during her operative life and, thus, more suitable for
validation purposes.

6.3.1 Sensitivity on parametric generation

Before comparing the different database generation techniques, the effect of the number of
divisions nd on the RF performances has been studied. In fact, the assessment of minimum size
related to MC generation does not yield for the parametric method, which is governed by nd . To
assess the minimum nd for the test geometry, the following databases have been independently
grown up limited to two adjoining damaged compartments:

• P3: having nd = 3 and being composed of 1975 damage cases (1427 non-survival cases);

• P4: having nd = 4 and being composed of 3486 damage cases (2615 non-survival cases);

• P5: having nd = 5 and being composed of 5719 damage cases (4405 non-survival cases);

• P6: having nd = 6 and being composed of 8874 damage cases (7019 non-survival cases);

• P7: having nd = 7 and being composed of 13170 damage cases (10606 non-survival
cases);

• P8: having nd = 8 and being composed of 18854 damage cases (15388 non-survival
cases).

Again the maximum simulated time has been set to 2250 s, being the TE cases about 0.8% of
the total for the test geometry.

Assuming a dt = 15 s and employing the RF learner, all the databases have been used as
training database. Figure 6.10 provides the results of the analysis.
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Figure 6.10 Performances evaluated at different time instants t∗ as function of number of
division nd of the training database. Validation: MC50b; method: RF

It is worth noticing that the performances are almost insensible to the variation of nd in
the range [3,8]. Hence, quite good performances can be obtained with a very limited number
of damage scenarios applying the parametric generation of training database (only 1975 for
nd = 3). However, the performances are inferior to the ones obtained with MC20 training
database. Such a topic will be discussed in more detail later, when all the generation methods
will be compared.

Only the regression on t f shows some preference for the highest values of nd , especially for
short t∗, and a quite unstable behaviour for nd ≤ 4. For this reason, and also to compare results
related to training databases having similar size, P8 database has been selected to be compared
with other MC-based generation techniques.
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6.3.2 Comparison of database generation techniques

The different techniques defined in Chapter 5 have been applied to grow-up four different train-
ing databases:

• MC20: based on SOLAS proability distributions and being composed of 20000 damage
cases (3082 non-survival cases);

• MCD20: based on uniform distribution of damage dimensions and being composed of
20000 damage cases (8898 non-survival cases);

• MCA20: based on uniform distribution of damage area inverse and being composed of
20000 damage cases (2318 non-survival cases);

• P8: parametric database having nd = 8 and being composed of 18854 damage cases
(15,388 non-survival cases).

As mentioned, the MC20 and P8 databases have been selected among the multiple options to
assure a good convergence of the RF performances and a fair comparison in terms of N. For
the same reason, 20,000 damage cases have been included in MCD20 and MCA20 databases.
Figure 6.11 shows the resulting cumulative density functions of the main dimensions, location
and time-to-flood related to the four databases.

As long as the MC-based methods provide continuous distribution of all the parameters, the
parametric one leads to scattered distributions except for the t f .

As expected the MCA20 database has an almost uniform distribution of the t f associated
with small damages located nearby the free surface. Besides, the number of non-survival sce-
narios is lower than the MC20 one. On the other hand, both the MCD20 and P8 databases
contain a considerably higher percentage of non-survival scenarios. Although the probability
distributions of damage parameters are different, MC20 and MCD20 drive to a comparable
cumulative distribution of the t f .

Figure 6.12 shows the overall performances obtained applying the different training databases.
It is worth noticing that the MC20 database employing the SOLAS probability distributions is
not always associated with the best performances despite a SOLAS based dataset is always
employed for validation.

In detail, the MCD20 database provides almost the same results for FF and FC classification
problems compared to the MC20 one. Besides, MCD20 dataset is more accurate in the predic-
tion of the t f . The MCA20 database provides lower performances than MC20 and MCD20 ones
for all the studied problems. However, although a lower maximum of R2 and R2∗ is reached, the
MCA20 shows a larger region of stable t f forecast: the R2∗ decays under a null value at about
t = 1215 s (corresponding to the 0.5% of ongoing damage scenarios in the validation database)
instead of t = 735, which is related to MCD20 database. Regarding the parametric generation
method, it always leads to poorer forecast capability compared to all the methods based on MC
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Figure 6.11 Cumulative density functions of damage dimensions, location and time-to-flood
related to the tested database generation methods

generation. Moreover, a certain degree of accuracy instability has been observed for both the
classification problems.
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Figure 6.12 Comparison of the performances of tested database generation methods. Valida-
tion: MC50b; method: RF

6.3.3 Discussion

Regarding the first classification problem (FF), the adoption of MCD20 training database has
a very limited effect on both the overall and ongoing accuracy. In detail, the larger number
of non-survival damage cases leads to a less skewed training dataset, which slightly reduces
the type I error (about 0.05%) while increasing the type II one (about 0.15%). The MCA20
training database is about 2% less accurate than MC20/MCD20 in forecasting the final fate.
Moreover, it shows a strong decay of the ongoing accuracy for long damage scenarios. The
main reason can be found in the larger number of damage scenarios exceeding the maximum
simulation time compared to the other MC-based datasets: in MCA20, 30% of damage sce-
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narios has t f > 2250 s. Similar behaviour has been observed employing P8 training database,
although the accuracy reaches an almost stable value later (at about 500 s). It shall be noticed
that P8 database, comprises only damage cases affecting one or two adjoining compartments.
On the other end, the validation database (MC50b) is based on SOLAS probability distribution.
The SOLAS maximum damage length is 22.72 m, which exceeds 15 m, i.e. the length of each
watertight compartment of the test barge. Thus, 7.4% of damage scenarios in the validation
database affects 3 adjoining compartments. Considering that the accuracy gap for the FF clas-
sification problem in the stable region is between 1% and 3%, many of the three compartments
damage scenarios are still correctly classified by RF trained with the P8 database.

On the other end, the classification of flooded compartments leads to an accuracy gap of
about 9-10%, which is mostly due to the three compartments damage scenarios included in
the validation database. For this second problem, the MCD20 and MCA20 databases have an
overall accuracy 1% and 2% lower than the MC20 one, respectively. On the other end, the
ongoing accuracy of MCD20 is comparable to the MC20 one whereas the MCA20 one is again
2% worse and shows a greater instability for large t∗ value.

More interesting results have been obtained for the t f regression in non-survival scenarios
based on the different techniques for training database generation. Figures 6.13-6.16 shows the
predicted-observed plots evaluated at t∗ = 500 s and t∗ = 1000 s.

As mentioned, the MCD20 training database leads to better results compared to the ones
coming from the SOLAS probability distributions. MCD20 contains more than double non-
survival scenarios compared to MC20, while the two databases have almost the same distribu-
tion of the time to flood. The resulting increased density of the training database allows the RF
to better forecast the t f up to t∗ = 1700 s. Even better results can be reached at larger t∗ values
by employing the MCA20 training database: values are forecasted up to t∗ = 2000 s. These re-
sults are achieved since the lower dimension of the generated damages leads to a higher density
of training data in the most critical region. However, the model tends to overestimate the t f as
shown by Figure 6.14.

Besides, due to the limited number of non-survival damage scenarios, RF trained with
MCA20 are not capable to deal with the largest damages having short t f : bulky errors have
been observed in this region leading also to poor values of the overall R2, which is never greater
than 0.55. Finally, it shall be noted that the parametric generation method is not capable to
assure good results for the t f regression problem.

In conclusion, the present test case proofs that the training database generation based on
SOLAS probability distributions is not always the best option. Although a SOLAS-based vali-
dation dataset has been always employed, different distributions of damage parameters driving
the MC sampling enable achieving equal or better results. The most sensible problem among
the studied is the t f regression, where uniform distributions of damage dimensions or inverse
area improve the performances for large t∗ values. Besides, the two adjoining compartments
parametric generation seems to have quite lower performances for the studied geometry.
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Figure 6.13 Predicted over obseved values of the t f computed at t∗ = 500 s and t∗ = 1000 s.
Training: MC20; validation: MC50b; method: RF

Figure 6.14 Predicted over obseved values of the time-to-flood computed at t∗ = 500 s and
t∗ = 1000 s. Training: MCA20; validation: MC50b; method: RF
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Figure 6.15 Predicted over obseved values of the time-to-flood computed at t∗ = 500 s and
t∗ = 1000 s. Training: MCD20; validation: MC50b; method: RF

Figure 6.16 Predicted over obseved values of the time-to-flood computed at t∗ = 500 s and
t∗ = 1000 s. Training: P8; validation: MC50b; method: RF
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Chapter 7

Conclusions and Perspectives

The progressive flooded simulation and decision support are key aspects during a flooding emer-
gency. The reliability and speed of direct simulations are essential to assure that the onboard
systems are capable to provide good guidance to the master and officers to reduce the risk for
the vessel and people onboard. In this context, the adoption of modern emergency DSS is
hindered on vessels not equipped with a widespread flooding detection system. The present
dissertation explored an alternative solution to provide decision support based on a very limited
sensors’ set by exploiting machine learning algorithms on a database of progressive flooding
simulations. In the following, the main conclusions of the dissertation are presented along with
some recommendations regarding future works in this new field.

7.1 Conclusions

The present dissertation has presented a new quasi-static method for progressive flooding sim-
ulation. Among the different studied mathematical formulations, the one based on linearised
differential-algebraic equations provided reliable results compared to model scale experiments.
Furthermore, it has been proved capable to deal with large passenger vessels and their very
complex and challenging layout.

The application of an adaptive integration time step improves significantly the computa-
tional time compared to the constant one. The upper limitation of time step according to the
estimated submersion time of openings and acceptable variation of the floating position reduced
the errors, allowing to considerably extend the integration time, only when appropriate. A sim-
ilar scheme might be applied also to other integration techniques available in the literature to
improve their computational performances while limiting the drawbacks associated with too
large time steps.

The new simulation technique has been also found satisfactory to build up large datasets
of progressive flooding simulations, being a good basis for the second part of the present dis-
sertation. There, on a simple geometry, the feasibility has been proved of the recognition and
prediction of main flooding consequences based on the time evolution of the floating position.
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Focusing on the three studied problems tested on a barge geometry with SOLAS-based training
and validation datasets, the best results have been obtained applying the random forests for the
classification of final fate and flooded compartments. Considering the regression on the time-
to-flood, random forests should be preferred in an initial phase, whereas the weighted k-nearest
neighbours provided better results for the longest damage scenarios.

In such a region, a decay of learners performances has been detected for all the studied
problems, although with different magnitude. It is mainly due to the limited number of large
time-to-flood damage cases included in the training database built according to SOLAS proba-
bility distribution. This is why other database generation strategies have been tested to build up
training databases having a higher density of the input space in the large time-to-flood region.
The tested options showed that SOLAS probability distributions are not always the best option
for random forest training. In particular, considering the time-to-flood regression problem, the
increased number of non-survival damage cases obtained applying uniform distribution of dam-
age dimensions (less skewed dataset) lead to some gains of the ongoing accuracy. Besides, the
uniform distribution of the inverse damage area, increasing substantially the percentage of long
damage scenarios, led to heavily improve forecast capability of the models trained at large t∗

values, which are the most interesting from an onboard decision support point of view. How-
ever, the accuracy for fast damage scenarios was affected.

Considering the parametric database generation algorithm, the results suggest that it is not
suitable for the studied problems on the test geometry. However, it demonstrates to work with
very small datasets (low number of divisions) and showed a certain capability of going beyond
its intrinsic limits related to the hypothesis of two adjoining compartments only.

According to these conclusions the main scientific contribution of the present dissertation
are:

• the development of a fast quasi-static method to simulate the progressive flooding based
on the linearization of the governing equations;

• the development of an adaptive integration scheme applicable to progressive flooding
simulations algorithms preventing the errors due to too large integration time step;

• the development of a methodology to predict the flooding consequences based on the time
record of the floating position of the damaged ship;

• the selection of the random forests as the most promising machine-learning algorithm to
forecast the ship final fate, flooded compartments and time-to-flood, among the tested
ones;

• the satisfactory prediction of the ship final fate and flooded compartments employing a
training database built according to SOLAS probability distributions for damage param-
eters (side collision damage);

98



• the demonstration of the strong effect of the training database composition on the predic-
tion of the time-to-flood;

• in conclusion, the feasibility demonstration of machine-learning-based DSS to help mas-
ters and officers during a flooding emergency without any flooding detection device.

7.2 Perspectives

The future works should focus on two main topics: increasing the speed and reliability of on-
board progressive flooding simulation algorithms and better explore the application of machine
learning to assess flooding consequences. Regarding fast progressive flooding simulations, the
main bottleneck in the present algorithm is represented by the evaluation of equilibrium and
hydrostatics, which are based on the pressure integration technique. The replacement with
an Archimedes-based hydrostatic code could further improve the computational performances.
Besides, the current method is based on an iterative equilibrium process which cannot accounts
for any dynamic phenomena. Since the roll angle is the most critical parameter in the equilib-
rium evaluation, the dynamic modelling of roll angle might improve both the accuracy and the
computational load.

Regarding the application of machine learning, further work is advisable to investigate the
effect of the training database composition. In particular, the parametric generation method
shall be further addressed to overcome the issues related to the two-adjoining-compartments
hypothesis. Besides, further research is still essential to develop and install onboard a flooding-
sensor-agnostic DSS. First, the proposed methodology has been developed and tested on simple
geometry and a single loading condition. Hence, it is required to test the application in real full-
scale environments such as a cargo vessel and then a large cruise vessel. Furthermore, the effect
of multiple loading conditions should be studied as well as the effect of the uncertainties that
might affect the mass centre position, displacement, metacentric height, discharge coefficients
and leakage/collapse effective waterheads in a real environment.

Moreover, here a constant sampling time has been employed to define the predictors (heel,
trim, sinkage). A smart selection of a smaller predictors’ set, carried out by dimensionality
reduction or optimization, might further improve the forecast accuracy and, thus, it is worthy of
investigation.

Eventually, although the present dissertation tested a quite large set of supervised learners
and identified the preferred among them, it did not pretend to thoroughly cover all the algorithms
present in the literature. Hence, other families of learners, such as neural networks, might be
tested in future works. However, it shall be bared in mind that the present dissertation is an
explorative study on the application of machine learning to provide decision support during
flooding emergencies without flooding sensors. The main objective was to prove the feasibility
of such a concept. In light of the provided results, such an objective can be considered achieved.
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List of Symbols

Symbol Unit Description
˙ 1/s Time derivative notation; it means ∂/∂ t

A m2 Submerged cross section of an opening (considering all the corrections due
to free outflow and closure status)

Acc - Accuracy of a classification task
Acc∗ - Ongoing accuracy of a classification task evaluated considering only damage

cases having t f ≥ t∗

Ads m2 Deeply submerged fraction of the cross section of an opening
Ae m2 Effective area equivalent to the free outflow fraction of the cross section of

an opening applying deeply submerged formulation
A f o m2 Free outflow fraction of the cross section of an opening
Ao ji m2 Open area of the opening’s submerged fraction
B m Ship breadth
Bd m Damage penetration (transversal extension of damage from ±B/2 in the

ship-fixed reference system
cd f - Cumulative density function
CD - Non-dimensional discharge coefficient of an opening
ct - Non-dimensional correction factor for evaluation of non-dimensional time-

to-flood in a two-rooms scenario
d - Distance between two predictors’ vectors
D m Ship depth
D - Eigenvalues diagonal matrix
dt s Time step
dt∗ s Previous time step
dtc s Maximum time step associated to an opening
dtmax s Maximum time step
eh - Error ratio of h quantity
e2

h - Squared error of h quantity
g m/s2 Gravitational acceleration (assumed value: 9.80665 m/s2)
G - Kernel function
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Symbol Unit Description
GM m Metacentric height
h m Opening height or a generic quantity to define errors
Hd m Height of the damage in the ship-fixed reference system
J - Non-dimensional damage length according to SOLAS
J 1/s Jacobian matrix
Jm - Maximum non-dimensional damage length according to SOLAS
Jk - Knuckle non-dimensional damage length according to SOLAS
K m5/2/s Opening dimensional coefficient
kdt - Non-dimensional coefficient to control time step adjustment
kL - Pressure loss coefficient of an opening
LBP m Length between perpendiculars
LCD m Longitudinal position of the centre of damage in ship-fixed reference system
LCG m Longitudinal position of the centre of mass in ship-fixed reference system
Ld m Damage length (longitudinal extension of the damage in the ship fixed ref-

erence system)
LOA m Length overall
LS m Subdivision Length
MSE - Mean of squared errors
n - Number of flooded rooms at a defined time instant
nd - Number of divisions adopted in parametric damage cases generation
N - Number of damage cases within a database
N∗ - Number of ongoing damage cases at a specific instant t∗

Nc - Number of correctly classified damage cases at a specific instant t∗

N∗c - Number of correctly classified ongoing damage cases at a specific instant t∗

OXY Z (m,m,m) Ship fixed reference system having origin at intersection of base line and
after perpendicular

O′xyz (m,m,m) Earth fixed reference system having origin on the sea free surface, axes x and
y lying on the waterplane and axis z orthogonal to the waterplane (positive
upwards)

pa kPa Air pressure
Q m3/s Volume flowrate
Q f o ji m3/s Volume flowrate for free outflow
r m Variable of decoupled differential equations system
R2 - Coefficient of determination
R2∗ - Ongoing coefficient of determination of a regression task evaluated consid-

ering only damage cases having t f ≥ t∗

s m Ship sinkage, defined as the difference between the actual and initial mean
draught
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Symbol Unit Description
S m2 Free surface area in a flooded room
S 1/m2 Diagonal matrix of rooms’ inverse free surface area
SSE - Sum of squared estimate of errors
SStot - Total sum of squares
T m Ship design draught
T ∗ m Ship initial mean draught at a defined time instant
TCD m Transversal position of the centre of damage in ship fixed reference system
TCG m Transversal position of the centre of mass in ship fixed reference system
TM m Ship mean draught (at midship perpendicular)
TM0 m Ship initial mean draught at damage occurrence
t s Time
t∗ s Initial/specific time instant
ta - Non-dimensional time-to-flood
tc s Time instant at which a defined level zc is reached
tC s Computational time
t f s Time-to-flood
u m/s Flow velocity
v m known term in the decoupled differential equations system
V m3 Floodwater volume in a room
V - Eigenvectors matrix
Va m3 Air volume in a room
VCD m Vertical position of the centre of damage in ship fixed reference system
VCG m Vertical position of the centre of mass in ship fixed reference system
Ve m3 Capacity of a room (considering permeability)
Vw m3 Actual floodwater volume in a room with air pocket
w m Opening width
XC m Longitudinal position of the opening’s geometric centre in ship fixed refer-

ence system
Xd m Longitudinal position of the damage centre in the ship-fixed reference sys-

tem
YC m Transversal position of the opening’s geometric centre in ship fixed reference

system
Z m2/s Symmetric matrix for Jacobian decomposition
ZC m Vertical position of the opening’s geometric centre in ship fixed reference

system
ẑ m Corrected waterlevel of a room: maximum of the room level and the lowest

tip of an opening
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Symbol Unit Description
z m Floodwater level in non-filled rooms or vertical coordinate of a point in

earth-fixed reference system
z∗ m Initial level in flooded rooms
z∗∗ m Initial level in flooded rooms at previous time step
z′ m Difference between current and initial floodwater level
zb m Maximum among lowest floodwater level and the vertical position of the

lowest tip of the opening in the earth-fixed reference system
zc m Critical effective waterhead for door collapsing or a critical level, in general
Zd m Vertical position of the damage centre in the ship-fixed reference system
ze m Effective waterhead applied to an opening
zl m Critical effective waterhead for door leakage
zmax m Vertical position of the highest tip of the opening in the earth-fixed reference

system
zmin m Vertical position of the lowest tip of the opening in the earth-fixed reference

system
zrb m Vertical posiotion of the room bottom in the earth-fixed reference system
zt m Minimum among highest floodwater level and the vertical position of the

highest tip of the opening in the earth-fixed reference system
zw m Actual level in non-filled rooms with air pockets
z0 m Atmospheric pressure equivalent waterhead (Atmospheric pressure assumed

value: 101.325 kPa)
Zmax m Vertical position of the highest tip of the damage in the ship-fixed reference

system (from Base Line)
Zmin m Vertical position of the lowest tip of the damage in the ship-fixed reference

system (from Base Line)
α - Non-dimensional leakage coefficient
β 1/m Dimensional leakage coefficient
γ - free outflow correction factor
∆ t Displacement
ζ m Waterhead in filled rooms
θ deg Ship angle of trim
µ - Permeability of a room
ρ t/m3 Water density (assumed value: 1.025 t/m3 and 1.000 t/m3 for sea and fresh

water, respectively)
φ deg Ship angle of heel
∇ m3 Displacing volume
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List of Abbreviations

Abbreviation Description
BL Base Line
C Capsize
3D three-dimensional
CFD Computational Fluid Dynamics
CPU Central processing unit
DAE Differential Algebraic Equation
DOF Degrees of Freedom
DSS Decision Support System
DT Decision Trees
DTB Boosted Decision Trees
E Equilibrium
EH Excessive Heeling
FC Flooded Compartments
FF Final Fate
IMO International Maritime Organization
ITTC International Towing Tank Conference
KNN K-Nearest Neighbours
KNN2 Quadratic K-Nearest Neighbours
KNN3 Cubic K-Nearest Neighbours
KNNC Cosine K-Nearest Neighbours
KNNW Weighted K-Nearest Neighbours
LDAE Linearised Differential Algebraic Equation
LODE Linearised Ordinary Differential Equations
LODEG Linearised Ordinary Differential Equations with Grouping
MC Monte Carlo
ODE Ordinary Differential Equations
PC Pressure Correction
PEM Primary Electric Motor
PFO Progressive Flooding Opening
RF Random Forests
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Abbreviation Description
S Sink
SOLAS International Convention for the Safety of Life at Sea
SRtP Safe Return to Port
SVM Support Vector Machine
SVM1 Linear Support Vector Machine
SVM2 Quadratic Support Vector Machine
SVM3 Cubic Support Vector Machine
SVMG Gaussian Support Vector Machine
TE Time Exceeded
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Appendix A

Sensitivity Study on Progressive Flooding
Simulation

In this appendage, the effects of a systematic variation of parameters on progressive flooding
simulations are studied for the Helsinki barge’s test cases A, B, and C presented in Chapter 4.
Part of this analysis has been already published in [7]. All simulations have been carried out
applying the LODEG method with a constant time step 0.25 s. The parameters considered
in the sensitivity study are related to damage geometry, ship geometry and initial condition.
Different damage geometries have been tested varying the damage dimension and its location.
The ship geometry has been altered in terms of permeabilities and discharge coefficients of the
openings. Moreover, different initial conditions have been tested changing the height of the
centre of mass KG and the displacement considering also the effect of the water density. For
each parameter, the trends of heel, trim, sinkage, and all levels inside flooded compartments
have been compared. Furthermore, the effect on several overall quantities characterizing the
progressive flooding process has been also studied. In detail, these variables are the time-to-
flood t f , which is of the utmost importance for decision support purposes, the minimum value
of metacentric height GMmin measured during the process, considered representative of the
stability of the ship, the maximum heeling angle φmax and the final floating position of the barge
in terms of trim θe and sinkage se. The error e compared to original values has been evaluated
for each variable in each case studied.

A.1 Damage geometry

The geometry of the damage has been studied in terms of two parameters: the damage area Ad

and its location. The shape of the damage has not been considered since it is usually taken into
account by means of a proper discharge coefficient. Concerning Ad , it has been increased and
reduced by 5.0% and 10.0% with a constant position of the centre of damage. The location of
damage was changed according to the specific case studied, assuming a constant damage area.
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The damage centre (LCD,TCD,VCD) in case A was moved longitudinally and vertically along
the barge side, while in cases B and C was moved longitudinally and transversally along the flat
part of the bottom. The adopted positions are provided in Table A.1. The results of simulations
in function of damage area are provided in Table A.2 and then in Figures A.1, A.2, and A.3 for
cases A, B, and C respectively. The results of simulations in function of the damage location
are provided in Table A.3 and in Figures A.4, A.5, and A.6 for cases A, B, and C respectively.

Table A.1 Applied damage position for cases A, B and C

case location LCD (m) TCD (m) VCD (m)
A 0 2.675 0.395 0.315
A 1 2.375 0.395 0.455
A 2 2.975 0.395 0.455
A 3 2.375 0.395 0.175
A 4 2.975 0.395 0.175
B 0 2.675 0.000 0.000
B 1 2.375 0.250 0.000
B 2 2.375 -0.250 0.000
B 3 2.975 0.250 0.000
B 4 2.975 -0.250 0.000
C 0 2.325 0.000 0.000
C 1 2.225 0.250 0.000
C 2 2.225 -0.250 0.000
C 3 2.425 0.250 0.000
C 4 2.425 -0.250 0.000

The geometry of damage does not affect the final floating position of the ship. Only some
small differences have been experienced in case C but are caused by the delay in detection of an
air pocket inside room DB1. Concerning the position, the only relevant parameter, which leads
to significant differences, is the vertical position of damage while longitudinal and transversal
translations do not result in notable differences. In case A, the vertical position has a small
impact on t f which increases with the VCD and a greater effect on φmax which decreases as
the VCD increases. Both the trends appear non-linear. The effects on the progressive flooding
process induced by the Ad differ substantially due to the internal subdivision. The t f increases
with the damage area but the increment is also dependent on the area of the other openings of
the first flooded room: the effect becomes even negligible in case C where the opening DB1-
DB2 is very small compared with the damage size. Thus, greater damage size accelerates only
the flooding of room DB1. In case A, the heeling moment during the transient phase increases
with damage size, leading to a greater φmax value.
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Table A.2 Overall effect of damage size for cases A, B and C

case ∆Ad et f eGMmin eφmax ese eθe

A -10.00% 0.61% 0.11% -7.30% 0.00% 0.00%
A -5.00% 0.53% 0.10% -2.86% 0.00% 0.00%
A 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
A 5.00% -0.38% 0.01% 3.18% 0.00% 0.00%
A 10.00% -0.83% 0.02% 12.30% 0.00% 0.00%
B -10.00% 10.63% 0.00% 0.00% 0.03% 0.02%
B 5.00% 4.85% 0.00% 0.00% 0.02% 0.01%
B 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
B 5.00% -4.54% 0.00% 0.00% -0.01% 0.00%
B 10.00% -7.96% 0.00% 0.00% -0.02% -0.02%
C -10.00% 0.03% 0.02% 0.00% -0.22% -0.15%
C -5.00% -0.29% 0.02% 0.00% -0.37% -0.25%
C 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
C 5.00% 0.00% 0.02% 0.00% -0.23% -0.16%
C 10.00% 0.00% -0.01% 0.00% 0.11% 0.07%

Table A.3 Overall effect of damage location for cases A, B and C

case ∆Ad et f eGMmin eφmax ese eθe

A 1 3.10% 0.07% -42.05% 0.00% 0.00%
A 2 2.80% 0.09% -42.37% 0.00% 0.00%
A 0 0.00% 0.00% 0.00% 0.00% 0.00%
A 3 -0.15% -0.03% 2.52% 0.00% 0.00%
A 4 -0.15% -0.03% 2.52% 0.00% 0.00%
B 1 0.00% 0.00% 0.00% 0.00% 0.00%
B 2 0.00% 0.00% 0.00% 0.00% 0.00%
B 0 0.00% 0.00% 0.00% 0.00% 0.00%
B 3 0.00% 0.00% 0.00% 0.00% 0.00%
B 4 0.00% 0.00% 0.00% 0.00% 0.00%
C 1 0.00% 0.00% 0.00% 0.00% 0.00%
C 2 0.00% 0.00% 0.00% 0.00% 0.00%
C 0 0.00% 0.00% 0.00% 0.00% 0.00%
C 3 0.00% 0.00% 0.00% 0.00% 0.00%
C 4 0.00% 0.00% 0.00% 0.00% 0.00%
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Figure A.1 Overall effect of damage size for cases A
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Figure A.2 Overall effect of damage size for cases B
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Figure A.3 Overall effect of damage size for cases C

132



0 100 200 300 400
t (s)

0.00

0.05

0.10

0.15

Z 
(m

)

R12

0 100 200 300 400
t (s)

0.00

0.05

0.10

0.15

Z 
(m

)

R22

0 100 200 300 400
t (s)

0.00

0.10

0.20

0.30

0.40

Z 
(m

)

R11

0 100 200 300 400
t (s)

0.00

0.10

0.20

0.30

0.40

Z 
(m

)

R21

0 100 200 300 400
t (s)

0.00

0.10

0.20

0.30

0.40

Z 
(m

)

R21S

0 100 200 300 400
t (s)

0.00

0.10

0.20

0.30

0.40

Z 
(m

)

R21P

0 100 200 300 400
t (s)

0.00

0.05

0.10

0.15

G
M

 (m
)

0 5 10 15 20 25
t (s)

0.00

0.50

1.00

 (d
eg

)

0 100 200 300 400
t (s)

-0.10

-0.05

0.00

s (
m

)

0 1 2 3 4

0 100 200 300 400
t (s)

0.00

0.50

1.00

1.50

2.00
(d

eg
)

Figure A.4 Overall effect of damage location for cases A
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Figure A.5 Overall effect of damage location for cases B
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Figure A.6 Overall effect of damage location for cases C
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A.2 Ship geometry

The internal layout of bulkheads and decks was considered constant, while different perme-
abilities and the discharge coefficients have been applied to all the compartments and all the
openings respectively. The compartments of the test barge were modelled taking into account
the thickness of all boundaries. Therefore, a unit permeability was applied during validation.
Later, simulations were carried out applying lower permeabilities to all rooms, ranging between
1.00 and 0.85. The results are provided in Table A.4 and in Figures A.8, A.9 and A.10 for cases
A, B and C respectively. The discharge coefficients for barge internal openings were assessed
experimentally. Several works highlighted that in real scenarios the value of these coefficients
is uncertain and usually change within the range 0.6 and 0.8 [111]. Nevertheless, it is common

Table A.4 Overall effect of permeabilities for cases A, B and C

case ∆Ad et f eGMmin eφmax ese eθe

A 1.00 0.00% 0.00% 0.00% 0.00% 0.00%
A 0.95 -0.91% -0.21% -2.85% -4.45% -4.43%
A 0.90 -1.59% -0.53% -7.94% -10.56% -10.51%
A 0.85 -1.89% -0.92% -13.08% -16.53% -16.45%
B 1.00 0.00% 0.00% 0.00% 0.00% 0.00%
B 0.95 -0.44% -0.15% 0.00% -4.43% -4.37%
B 0.90 -1.12% -0.35% 0.00% -10.57% -10.43%
B 0.85 -1.62% 0.83% 0.00% -16.52% -16.31%
C 1.00 0.00% 0.00% 0.00% 0.00% 0.00%
C 0.95 -0.65% -0.15% 0.00% -4.46% -4.40%
C 0.90 -1.86% -0.37% 0.00% -10.57% -10.43%
C 0.85 -2.87% -0.58% 0.00% -16.54% -16.33%

Table A.5 Overall effect of discharge coefficients for cases A, B and C

case ∆Ad et f eGMmin eφmax ese eθe

A -5.00% 5.52% 0.03% -1.89% 0.00% 0.00%
A -2.50% 2.65% 0.08% -0.75% 0.00% 0.00%
A 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
A 2.50% -4.01% 0.42% 0.39% 0.00% 0.00%
A 5.00% -5.37% 0.10% 0.03% 0.00% 0.00%
B -5.00% 4.97% 0.10% 0.00% -0.01% 0.00%
B -2.50% 2.49% 0.00% 0.00% 0.02% 0.01%
B 0.00% 0.00% 0.00% 0.00% 0.00% 0.00%
B 2.50% -2.73% 0.00% 0.00% 0.00% 0.00%
B 5.00% -4.85% 0.16% 0.00% 0.00% 0.00%
A -5.00% 4.56% 3.41% 0.00% -0.37% -0.25%
A -2.50% 1.95% 3.49% 0.00% -0.18% -0.13%
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Figure A.7 Overall effect of permeabilities for cases A

practice to assume for full-scale simulations a value equal to 0.6 [83]. For such a reason, the ef-
fect of discharge coefficients on the progressive flooding process has been studied. To this end,
all the coefficients associated with barge openings (including damages) have been multiplied by
a coefficient reducing and increasing the experimental values by 2.5% and 5.0%. The results
are provided in Table A.5 and in Figures A.11, A.12 and A.13 for cases A, B and C respectively.

The permeability has a heavy impact on the ship floating position during the whole progres-
sive flooding process, since it acts on the volume of floodwater loaded onboard. For the simple
geometry of the test barge, the percentage reduction of trim, heel and sinkage is almost equal
to the one connected to permeability. It is worth noticing that the effect on GMmin is not heavy
as well as the one on t f . In fact, although a lower volume has to be filled, the resulting lower
draught at openings drives to lower velocities that approximately compensate the time-to-flood
reduction (a reduction of 2% of t f is caused by a reduction of 15% of µ).

The discharge coefficient has no effects on progressive flooding except for the time evolu-
tion. As a matter of fact, the floating position, the stability and the levels of floodwater assume
the same values, but a delay or an advance is observed proportional to the reduction or increase
of discharge coefficients values. In detail, the percentage error on time-to-flood ∆t f is almost
equal and opposite to the percentage difference in discharge coefficients ∆Cd applied to all the
openings. Figure A.7 shows that this trend is confirmed from a ∆Cd ranging from -7.5% up to
7.5%, which is representative of a realistic uncertainty level for discharge coefficients.
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Figure A.8 Overall effect of permeabilities for cases A
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Figure A.9 Overall effect of permeabilities for cases B
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Figure A.10 Overall effect of permeabilities for cases C
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Figure A.11 Overall effect of discharge coefficients for cases A
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Figure A.12 Overall effect of discharge coefficients for cases B
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Figure A.13 Overall effect of discharge coefficients for cases C
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A.3 Initial Condition

In an operative condition, often the actual displacement, the position of mass centre and the
water density are not accurately defined. An uncertainty within 5% on ship weight assessed via
loading instrument compared with the displacement corresponding to the measured draughts
is considered acceptable. This is why the impact of the initial condition on the progressive
flooding process has been studied.

To this end, different values of displacement ∆ and height of the centre of mass VCG have
been studied. The water density ρ was not analysed, since it does not influence the progressive
flooding. In fact, from several simulations carried out with constant initial draughts and variable
water density no differences were spotted on floating position, water levels in compartments,
nor ship stability during the whole progressive flooding process. Concerning the displacement,
it has been increased and reduced by a 2.5% and 5.0% and the results are provided in Table
A.6 and in Figures A.14, A.15 and A.16 for cases A, B and C, respectively. The height of mass
centre has been increased and reduced by a 5.0% and 10.0% and the results are provided in
Table A.7 and in Figures A.17, A.18 and A.19 for cases A, B and C respectively.

It has been proved that the initial condition has a heavy impact on progressive flooding. In
particular, an increased displacement causes an increment of time-to-flood, of initial stability,
on final draught and trim, whereas a reduction of healing angle during the transient phase.
The vertical position of the mass centre has a relevant effect only on ship stability and, thus,
also on the heeling angle during the transient phase. Only a modest effect on the trim was
observed but was not sufficient to cause a relevant effect on the water level inside compartments.
Nevertheless, the barge has a large value of initial GM; in case of asymmetric flooding scenario
or for less stable ships (e.g. large passenger ships), VCG is likely to have even a greater impact.
Moreover, a low value of VCG could lead to a reduction of time-to-flood in a capsize scenario.
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Table A.6 Overall effect of displacement for cases A, B and C

case ∆Ad et f eGMmin eφmax ese eθe

A 1.378 -2.80% -6.54% 15.55% -6.98% -6.60%
A 1.414 -1.59% -3.35% 4.16% -3.49% -3.29%
A 1.450 0.00% 0.00% 0.00% 0.00% 0.00%
A 1.486 1.13% 3.56% -3.09% 3.49% 3.25%
A 1.523 3.10% 7.15% -9.04% 6.99% 6.47%
B 1.378 0.37% -5.49% 0.00% 0.02% 0.01%
B 1.414 0.75% -2.71% 0.00% -2.72% -2.44%
B 1.450 0.00% 0.00% 0.00% 0.00% 0.00%
B 1.486 -0.12% 2.95% 0.00% 2.73% 2.42%
B 1.523 0.75% 6.02% 0.00% 5.48% 4.85%
C 1.378 -3.09% -5.51% 0.00% -5.62% -5.04%
C 1.414 -1.66% 1.38% 0.00% -2.81% -2.50%
C 1.450 0.00% 0.00% 0.00% 0.00% 0.00%
C 1.486 1.37% 2.95% 0.00% 2.81% 2.48%
C 1.523 3.06% 6.03% 0.00% 5.02% 4.54%

Table A.7 Overall effect of mass centre height for cases A, B and C

case ∆Ad et f eGMmin eφmax ese eθe

A 0.264 0.08% 27.49% -20.46% -0.03% -0.94%
A 0.250 0.00% 13.78% -11.27% -0.01% -0.47%
A 0.278 0.00% 0.00% 0.00% 0.00% 0.00%
A 0.292 0.00% -13.66% 23.87% 0.02% 0.48%
A 0.306 -0.61% -27.20% 46.07% 0.04% 0.97%
B 0.264 0.00% 27.53% 0.00% -0.06% -0.96%
B 0.250 0.00% 13.77% 0.00% -0.02% -0.47%
B 0.278 0.00% 0.00% 0.00% 0.00% 0.00%
B 0.292 0.00% -13.77% 0.00% -0.01% 0.46%
B 0.306 0.81% -27.53% 0.00% 0.04% 0.96%
C 0.264 -0.20% 27.49% 0.00% -0.04% -0.94%
C 0.250 -0.20% 16.60% 0.00% -0.02% -0.47%
C 0.278 0.00% 0.00% 0.00% 0.00% 0.00%
C 0.292 0.52% -13.79% 0.00% 0.02% 0.48%
C 0.306 0.20% -27.55% 0.00% 0.04% 0.96%
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Figure A.14 Overall effect of displacement for cases A
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Figure A.15 Overall effect of displacement for cases B
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Figure A.16 Overall effect of displacement for cases C
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Figure A.17 Overall effect of mass centre height for cases A

149



0 100 200 300 400 500
t (s)

0.00

0.05

0.10

0.15

Z 
(m

)

R12

0 100 200 300 400 500
t (s)

0.00

0.05

0.10

0.15

Z 
(m

)

R22

0 100 200 300 400 500
t (s)

0.00

0.10

0.20

0.30

0.40

Z 
(m

)

R11

0 100 200 300 400 500
t (s)

0.00

0.10

0.20

0.30

0.40

Z 
(m

)

R21

0 100 200 300 400 500
t (s)

0.00

0.10

0.20

0.30

0.40

Z 
(m

)

R21S

0 100 200 300 400 500
t (s)

0.00

0.10

0.20

0.30

0.40

Z 
(m

)

R21P

0 100 200 300 400 500
t (s)

0.00

0.05

0.10

0.15

0.20

Z 
(m

)

DB2

0 100 200 300 400 500
t (s)

0.00

0.05

0.10

0.15

0.20

Z 
(m

)

DB1

0 100 200 300 400 500
t (s)

-0.10

-0.05

0.00

s (
m

)

-10.0% -5.0% KG = 0.278 m +5.0% +10.0%

0 100 200 300 400 500
t (s)

0.00

0.50

1.00

1.50

2.00
(d

eg
)

Figure A.18 Overall effect of mass centre height for cases C
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Figure A.19 Overall effect of mass centre height for cases C
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A.4 Concluding Remarks

A sensitivity study has been carried out acting on several parameters connected to damage
geometry, ship geometry and initial condition at damage occurrence. This analysis provided
interesting results, helping to define the minimum set of parameters required to build a complete
database of damage scenarios for a single ship.

The damage location appears to be relevant only in terms of the vertical position of the
damage centre. Therefore, it is not necessary to investigate all the possible longitudinal and
transversal positions for each damaged room. On the other hand, the damage dimension requires
more attention, since it was observed that its effect on the progressive flooding process depends
upon internal subdivision geometry. In particular, as the damage size increases the effect of
internal openings connecting the damaged room to other spaces becomes relevant. This is why
it could be reasonable to define a non-dimensional damage size leading to relevant differences
in the progressive flooding process. Further study is advisable devoted to assessing such a
maximum size as a function of relevant geometrical coefficients describing the damaged room.

Concerning ship geometry, the permeability has not a significant effect on ship initial sta-
bility and neither on time-to-flood. These are the most important characteristics of the pro-
gressive flooding process required to support decision after damage. Therefore, the application
of standard values from classification societies or ITTC could not lead to critical errors in the
estimation of the damage scenario’s outcome. However, the permeability has an impact on the
evolution of the floating position and thus, for more complex hull geometries, could reduce the
ship stability too. This is why, whenever it is possible, a detailed analysis of internal volumes
is recommended. Concerning discharge coefficients, they only influence the time-to-flood ap-
plying a delay/advance equal to their uncertainty. The discharge coefficients are quite difficult
to predict a-priori, but a parametric study of the effect of different values could lead to a huge
number of different cases even with a limited number of internal openings and thus is actually
not feasible for real applications on large passenger ships.

The seawater density was found to be indifferent to progressive flooding simulations pro-
vided that constant draughts (and the related different displacement) are applied in the initial
condition. Therefore, to assure the accuracy of onboard simulations, it is always advisable to
use the displacement assessed from measured draught, assuming even a standard value of water
density. This assumption might lead to computational errors in the case of floodwater mix-
tures with other liquids carried onboard. However, mixtures are not usually taken into account
by quasi-static techniques nowadays applied onboard. Concerning displacement and height of
mass centre, they have a relevant influence on progressive flooding process leading to relevant
differences on studied variables. Thus, to study all the possible damage scenarios of a vessel,
not only the standard loading conditions included in the stability booklet should be analysed.
To this end, a parametric analysis within all the operative range of the vessel is recommended.
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Appendix B

Time-to-flood estimation

In this appendix, a regression analysis on time-to-flood is presented considering one and two
parallelepiped rooms in calm water. The methods can be used to estimate a-priori the time-to-
flood to define the parameters for database generation.

B.1 Single room geometry

Considering an parallelepiped room in upright position and assuming that its position does not
change during flooding process, it can be defined a non-dimensional time-to-flood as:

ta = t f

√
g

zrb
= f

(
z

zrb
,
A
S

)
(B.1)

where t f is the time-to-flood in seconds, g is the gravity constant, zrb is the draught of the
room bottom measured in earth fixed reference system. The non-dimensional time-to-flood is
function of two non-dimensional quantities: z/zrb and A/S, where z and A are the draught of
damage centre and its effective area (including the reduction due to discharge coefficient Cd)
respectively and S is the waterplane area of the flooded room. The relation can be written as
(coefficients provided in Table B.1):
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] (B.2)

Table B.1 Coefficients of multivariate regression for single room geometry

a0 a1 a2 a3 a4 a5 a6 a7 a8
-0.003213 -0.024535 -0.030957 -0.012832 -0.001641 0.787854 0.037498 -0.083947 -0.01397
10000 simulations, z/zrb and A/S ranging in ]0,1[, R2 = 0.9999
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B.2 Two rooms geometry

Considering a simple two rooms geometry where the first flooded room is connected with an-
other parallelepiped room by means of an opening having area A1 and located on the bottom of
the first flooded room. Moreover, It is assumed that the second room has a constant free surface
area equal to S1 and has the same bottom draught of the first flooded room.

It is possible to evaluate by means of Equation (B.2) the time-to-flood of the first room only
(ta min) and the one connected to the sum of he volumes of the two rooms (ta max):

ta min = f
(

z
zrb

,
A
S

)
ta max = f

(
z

zrb
,

A
S+S1

) (B.3)

Defining a correction factor as ct = ta min/ta, where ta is related to the time-to-flood of the
first room connected to the second room. The correction factor can be evaluated as a function of
two main non-dimensional parameters: A1/A and S1/S. The correction factor is equal to one if
one of the two parameters is null, otherwise it assumes values within [1,0[ range. At a generic
S1/S value, the factor ct decreases fast reaching a local minimum, than it shows an horizontal
asymptote reaching, for A1/A→ ∞, the value:

ct∞ = ta min/ta max (B.4)

It can be noticed that the position of the minimum is independent by the value of S1/S and
it is located at: (

A1

A

)
min

= 0.202422549 (B.5)

Moreover, the value of the minimum can be estimated with the following regression equation
(coefficients provided in Table B.3):

ctmin = 1+a1 exp
[
−b1

(
S1

S

)c1
]
+a2 exp

[
−b2

(
S1

S

)c2
]
−a1−a2 (B.6)

Table B.2 Coefficients of multivariate regression for ctmin

a1 b1 c1 a2 b2 c2
0.538418736 2.019498758 1.273836007 0.446287131 0.680113795 0.687334693
20 values, S1/S ranging in ]0,20], SSE = 2.39E−04, R2 = 0.9998
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Considering the values defined in Equations (B.4), (B.5) and (B.6), the corrective factor can
be estimated with the following model for A1/A < (A1/A)min:

ct
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= 1− (1− ctmin)
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and for A1/A > (A1/A)min:

ct
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= (ct∞− ctmin)arctan
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(B.8)

Table B.3 Coefficients of multivariate regression up to (A1/A)min

i ai1 ai2 ai3 ai4 ai5 SSE R2

1 0.034601445 2.760871221 -0.164917431 1.323666382 0.390427418 0.0018 0.9709
2 0.207390573 2.237779056 1.451066079 - - 0.0007 0.9850
3 0.115200923 0.370945666 0.901206923 - - 0.0013 0.9311
5 1.34E-06 12.18022137 9.78825515 0.957288337 1.668287856 0.8644 0.9998
20 values, S1/S ranging in ]0,40], A1/A ranging in ]0,2]
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Appendix C

Comparison of different learners

In the present appendix additional data to compare the performances of the tested learners are
provided. In detail, all the learners are compared grouped by classification problem and consid-
ered time instant t∗ as follows:

• Final fate: t∗ = 250 s: Tables C.1-C.11; t∗ = 500 s: Tables C.12-C.22

• Flooded compartments: t∗ = 250 s: Tables C.23-C.33; t∗ = 500 s: Tables C.34-C.44

• Time-to-flood: Figures C.1-C.11

Table C.1 Confusion matrix, ship final fate; t∗ = 250 s; training: MC20; validation: MC50b;
method: DT

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.73 0.22 0.04 0.01
Equilibrium 0.19 82.71 0.00 0.27
Ex. Heeling 0.05 0.02 3.04 0.00
Time Exceeded 0.01 0.30 0.00 0.398

Table C.2 Confusion matrix, ship final fate; t∗ = 250 s; training: MC20; validation: MC50b;
method: DTB

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.75 0.18 0.01 0.06
Equilibrium 0.35 80.17 0.02 2.63
Ex. Heeling 0.01 0.03 3.06 0.01
Time Exceeded 0.00 0.02 0.00 0.69
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Table C.3 Confusion matrix, ship final fate; t∗ = 250 s; training: MC20; validation: MC50b;
method: RF

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.79 0.17 0.01 0.02
Equilibrium 0.07 82.97 0.00 0.12
Ex. Heeling 0.04 0.03 3.05 0.00
Time Exceeded 0.02 0.32 0.00 0.37

Table C.4 Confusion matrix, ship final fate; t∗ = 250 s; training: MC20; validation: MC50b;
method: KNN2

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.65 0.29 0.04 0.01
Equilibrium 0.08 82.95 0.00 0.14
Ex. Heeling 0.11 0.04 2.97 0.00
Time Exceeded 0.00 0.50 0.00 0.21

Table C.5 Confusion matrix, ship final fate; t∗ = 250 s; training: MC20; validation: MC50b;
method: KNN3

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.62 0.32 0.05 0.01
Equilibrium 0.09 82.94 0.01 0.14
Ex. Heeling 0.12 0.04 2.96 0.00
Time Exceeded 0.00 0.50 0.00 0.21

Table C.6 Confusion matrix, ship final fate; t∗ = 250 s; training: MC20; validation: MC50b;
method: KNNC

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.64 0.28 0.07 0.01
Equilibrium 0.10 82.92 0.01 0.14
Ex. Heeling 0.12 0.04 2.96 0.00
Time Exceeded 0.01 0.48 0.00 0.23

Table C.7 Confusion matrix, ship final fate; t∗ = 250 s; training: MC20; validation: MC50b;
method: KNNW

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.70 0.25 0.04 0.01
Equilibrium 0.06 82.90 0.01 0.21
Ex. Heeling 0.06 0.04 3.02 0.00
Time Exceeded 0.01 0.34 0.00 0.36
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Table C.8 Confusion matrix, ship final fate; t∗ = 250 s; training: MC20; validation: MC50b;
method: SVM1

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.20 0.65 0.15 0.00
Equilibrium 0.30 82.86 0.01 0.00
Ex. Heeling 0.39 0.05 2.68 0.00
Time Exceeded 0.01 0.71 0.00 0.00

Table C.9 Confusion matrix, ship final fate; t∗ = 250 s; training: MC20; validation: MC50b;
method: SVM2

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.58 0.34 0.05 0.02
Equilibrium 0.08 83.00 0.01 0.09
Ex. Heeling 0.02 0.04 3.06 0.00
Time Exceeded 0.01 0.65 0.00 0.05

Table C.10 Confusion matrix, ship final fate; t∗ = 250 s; training: MC20; validation: MC50b;
method: SVM3

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.61 0.33 0.05 0.02
Equilibrium 0.05 82.66 0.01 0.46
Ex. Heeling 0.02 0.04 3.06 0.00
Time Exceeded 0.00 0.46 0.00 0.25

Table C.11 Confusion matrix, ship final fate; t∗ = 250 s; training: MC20; validation: MC50b;
method: SVMG

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.58 0.40 0.02 0.00
Equilibrium 0.09 83.08 0.00 0.00
Ex. Heeling 0.12 0.04 2.95 0.00
Time Exceeded 0.00 0.71 0.00 0.00

Table C.12 Confusion matrix, ship final fate; t∗ = 500 s; training: MC20; validation: MC50b;
method: DT

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.76 0.17 0.06 0.01
Equilibrium 0.08 82.92 0.00 0.17
Ex. Heeling 0.02 0.02 3.05 0.00
Time Exceeded 0.03 0.13 0.00 0.54
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Table C.13 Confusion matrix, ship final fate; t∗ = 500 s; training: MC20; validation: MC50b;
method: DTB

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.88 0.08 0.00 0.03
Equilibrium 0.26 81.86 0.02 1.03
Ex. Heeling 0.01 0.01 3.09 0.00
Time Exceeded 0.01 0.04 0.00 0.66

Table C.14 Confusion matrix, ship final fate; t∗ = 500 s; training: MC20; validation: MC50b;
method: RF

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.89 0.09 0.00 0.01
Equilibrium 0.05 83.00 0.00 0.12
Ex. Heeling 0.01 0.02 3.05 0.00
Time Exceeded 0.02 0.17 0.00 0.52

Table C.15 Confusion matrix, ship final fate; t∗ = 500 s; training: MC20; validation: MC50b;
method: KNN2

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.76 0.19 0.03 0.02
Equilibrium 0.08 82.98 0.00 0.11
Ex. Heeling 0.06 0.02 3.03 0.01
Time Exceeded 0.01 0.40 0.00 0.30

Table C.16 Confusion matrix, ship final fate; t∗ = 500 s; training: MC20; validation: MC50b;
method: KNN3

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.70 0.22 0.06 0.02
Equilibrium 0.07 82.99 0.00 0.10
Ex. Heeling 0.10 0.01 3.00 0.01
Time Exceeded 0.01 0.41 0.00 0.30

Table C.17 Confusion matrix, ship final fate; t∗ = 500 s; training: MC20; validation: MC50b;
method: KNNC

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.75 0.14 0.09 0.02
Equilibrium 0.09 82.97 0.01 0.10
Ex. Heeling 0.12 0.02 2.98 0.00
Time Exceeded 0.02 0.37 0.00 0.32
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Table C.18 Confusion matrix, ship final fate; t∗ = 500 s; training: MC20; validation: MC50b;
method: KNNW

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.79 0.15 0.04 0.02
Equilibrium 0.04 83.01 0.00 0.11
Ex. Heeling 0.03 0.01 3.07 0.00
Time Exceeded 0.01 0.29 0.00 0.42

Table C.19 Confusion matrix, ship final fate; t∗ = 500 s; training: MC20; validation: MC50b;
method: SVM1

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.35 0.50 0.15 0.00
Equilibrium 0.36 82.80 0.01 0.00
Ex. Heeling 0.37 0.03 2.73 0.00
Time Exceeded 0.00 0.71 0.00 0.00

Table C.20 Confusion matrix, ship final fate; t∗ = 500 s; training: MC20; validation: MC50b;
method: SVM2

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.72 0.21 0.04 0.03
Equilibrium 0.06 83.02 0.00 0.08
Ex. Heeling 0.01 0.02 3.09 0.00
Time Exceeded 0.02 0.46 0.00 0.23

Table C.21 Confusion matrix, ship final fate; t∗ = 500 s; training: MC20; validation: MC50b;
method: SVM3

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.73 0.19 0.05 0.02
Equilibrium 0.03 83.01 0.01 0.12
Ex. Heeling 0.01 0.02 3.09 0.00
Time Exceeded 0.01 0.31 0.00 0.40

Table C.22 Confusion matrix, ship final fate; t∗ = 500 s; training: MC20; validation: MC50b;
method: SVMG

True Predicted Class (%)
Class Capsize Equilibrium Ex. Heeling Time Exceeded
Capsize 12.79 0.19 0.00 0.02
Equilibrium 0.05 83.09 0.00 0.03
Ex. Heeling 0.06 0.02 3.05 0.00
Time Exceeded 0.01 0.52 0.00 0.18
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Table C.23 Confusion matrix, flooded compartments; t∗ = 250 s; training: MC20; validation:
MC50b; method: DT

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
2 0.02 13.31 0.00 0.00 0.00 0.00 0.07 0.00 0.00 0.00 0.00 0.00 0.01
3 0.00 0.00 13.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 13.37 0.02 0.00 0.00 0.04 0.01 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.01 16.51 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00

1,2 0.01 0.00 0.00 0.00 0.00 1.52 0.00 0.00 0.00 0.00 0.00 0.00 0.28
2,3 0.00 0.13 0.00 0.00 0.00 0.00 5.61 0.00 0.00 0.00 0.01 0.00 0.03
3,4 0.00 0.01 0.00 0.08 0.02 0.00 0.01 5.75 0.10 0.00 0.01 0.01 0.12
4,5 0.00 0.00 0.00 0.02 0.05 0.00 0.00 0.09 4.16 0.00 0.00 0.04 0.48

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.01
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.06 0.00 0.02
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00 0.00 0.01 0.01
all 0.02 0.05 0.00 0.01 0.04 0.37 0.05 0.20 0.36 0.02 0.01 0.02 6.01

Table C.24 Confusion matrix, flooded compartments; t∗ = 250 s; training: MC20; validation:
MC50b; method: DTB

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.08 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.44 12.79 0.00 0.00 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 13.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.10 13.27 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
5 0.00 0.02 0.00 1.44 14.99 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.06 0.00 0.00 0.00 0.00 1.64 0.00 0.01 0.00 0.09 0.00 0.00 0.02
2,3 0.03 0.14 0.01 0.00 0.00 0.00 5.35 0.00 0.00 0.04 0.17 0.00 0.05
3,4 0.00 0.00 0.05 0.22 0.04 0.00 0.00 4.83 0.13 0.00 0.02 0.81 0.00
4,5 0.00 0.01 0.00 0.02 0.15 0.00 0.00 0.07 3.72 0.00 0.00 0.78 0.08

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.09 0.00 0.00
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.06 0.00
all 0.24 0.04 0.01 0.01 0.31 0.70 0.11 0.09 0.29 0.46 0.14 0.30 4.50

Table C.25 Confusion matrix, flooded compartments; t∗ = 250 s; training: MC20; validation:
MC50b; method: RF

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 13.37 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.03
3 0.00 0.00 13.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 13.43 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.00 16.53 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.01 0.00 0.00 0.00 0.00 1.53 0.00 0.00 0.00 0.00 0.00 0.00 0.26
2,3 0.00 0.09 0.00 0.00 0.00 0.00 5.67 0.00 0.00 0.00 0.00 0.00 0.01
3,4 0.00 0.01 0.00 0.06 0.02 0.00 0.00 5.92 0.04 0.00 0.00 0.01 0.05
4,5 0.00 0.00 0.00 0.00 0.06 0.00 0.00 0.01 4.56 0.00 0.00 0.01 0.21

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.07 0.00 0.00
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.01 0.00
all 0.02 0.04 0.00 0.01 0.04 0.28 0.02 0.20 0.36 0.01 0.01 0.02 6.18
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Table C.26 Confusion matrix, flooded compartments; t∗ = 250 s; training: MC20; validation:
MC50b; method: KNN2

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.01 13.38 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01
3 0.00 0.00 13.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.01 13.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.01 0.02 16.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.01 0.00 0.00 0.00 0.00 1.60 0.00 0.00 0.00 0.00 0.00 0.00 0.19
2,3 0.01 0.20 0.13 0.00 0.00 0.00 5.43 0.00 0.00 0.00 0.00 0.00 0.01
3,4 0.00 0.04 0.18 0.12 0.00 0.00 0.02 5.47 0.21 0.00 0.00 0.00 0.07
4,5 0.00 0.00 0.00 0.02 0.06 0.00 0.00 0.06 4.65 0.00 0.00 0.00 0.05

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.00 0.00 0.04 0.00 0.01
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.00 0.00 0.01
all 0.06 0.06 0.02 0.03 0.05 0.33 0.03 0.24 0.45 0.00 0.00 0.00 5.90

Table C.27 Confusion matrix, flooded compartments; t∗ = 250 s; training: MC20; validation:
MC50b; method: KNN3

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.01 13.37 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01
3 0.00 0.00 13.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.01 13.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.01 0.02 16.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.01 0.00 0.00 0.00 0.00 1.61 0.00 0.01 0.00 0.00 0.00 0.00 0.18
2,3 0.01 0.19 0.13 0.00 0.00 0.00 5.43 0.00 0.00 0.00 0.00 0.00 0.02
3,4 0.01 0.06 0.19 0.13 0.00 0.00 0.01 5.41 0.23 0.00 0.00 0.00 0.07
4,5 0.00 0.02 0.00 0.02 0.05 0.00 0.00 0.07 4.63 0.00 0.00 0.00 0.05

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.00 0.00 0.03 0.00 0.01
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.00 0.00 0.00 0.01
all 0.07 0.06 0.01 0.03 0.06 0.36 0.04 0.25 0.44 0.01 0.00 0.00 5.86

Table C.28 Confusion matrix, flooded compartments; t∗ = 250 s; training: MC20; validation:
MC50b; method: KNNC

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.01 13.37 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.02
3 0.00 0.00 13.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.01 0.00 0.01 13.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.04 0.01 0.02 16.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.01 0.00 0.00 0.00 0.00 1.62 0.00 0.00 0.00 0.00 0.00 0.00 0.18
2,3 0.01 0.19 0.12 0.00 0.00 0.00 5.44 0.00 0.00 0.00 0.00 0.00 0.01
3,4 0.01 0.04 0.17 0.11 0.00 0.00 0.01 5.46 0.24 0.00 0.00 0.00 0.07
4,5 0.00 0.01 0.00 0.02 0.05 0.00 0.00 0.04 4.65 0.00 0.00 0.00 0.07

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02
2,3,4 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.04 0.00 0.01
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.00 0.00 0.01
all 0.06 0.05 0.01 0.03 0.04 0.36 0.04 0.22 0.45 0.01 0.00 0.00 5.91
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Table C.29 Confusion matrix, flooded compartments; t∗ = 250 s; training: MC20; validation:
MC50b; method: KNNW

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.00 13.38 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.01
3 0.00 0.00 13.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 13.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.01 0.01 16.50 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.01 0.00 0.00 0.00 0.00 1.57 0.00 0.00 0.00 0.00 0.00 0.00 0.23
2,3 0.00 0.15 0.09 0.00 0.00 0.00 5.53 0.00 0.00 0.00 0.00 0.00 0.01
3,4 0.00 0.04 0.11 0.11 0.00 0.00 0.02 5.59 0.16 0.00 0.00 0.00 0.08
4,5 0.00 0.00 0.00 0.02 0.05 0.00 0.00 0.03 4.54 0.00 0.00 0.01 0.19

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.06 0.00 0.00
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.00 0.00 0.01 0.01
all 0.04 0.05 0.01 0.02 0.05 0.31 0.02 0.20 0.39 0.01 0.01 0.00 6.07

Table C.30 Confusion matrix, flooded compartments; t∗ = 250 s; training: MC20; validation:
MC50b; method: SVM1

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 16.93 0.00 0.00 0.01 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.05 13.31 0.00 0.01 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.02
3 0.00 0.00 13.38 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.01 13.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.06 0.00 0.04 0.32 16.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.01 0.00 0.00 0.00 0.00 1.48 0.00 0.01 0.00 0.00 0.00 0.00 0.31
2,3 0.02 0.11 0.00 0.04 0.00 0.00 5.53 0.00 0.00 0.00 0.01 0.00 0.07
3,4 0.01 0.00 0.05 0.06 0.01 0.00 0.00 5.84 0.05 0.00 0.00 0.00 0.09
4,5 0.02 0.00 0.01 0.03 0.02 0.00 0.00 0.00 4.73 0.00 0.00 0.00 0.04

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.07
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.03 0.00 0.00 0.00 0.00
all 0.07 0.08 0.00 0.05 0.06 0.37 0.02 0.29 0.55 0.00 0.00 0.00 5.68

Table C.31 Confusion matrix, flooded compartments; t∗ = 250 s; training: MC20; validation:
MC50b; method: SVM2

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 16.89 0.00 0.00 0.15 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.04 13.33 0.00 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.03
3 0.00 0.00 13.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.01 13.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.06 0.01 0.00 0.20 16.25 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.01 0.00 0.00 0.00 0.00 1.49 0.00 0.00 0.00 0.00 0.00 0.00 0.31
2,3 0.01 0.09 0.00 0.01 0.00 0.00 5.65 0.00 0.00 0.00 0.00 0.00 0.02
3,4 0.00 0.00 0.03 0.06 0.00 0.00 0.01 5.93 0.04 0.00 0.01 0.00 0.03
4,5 0.01 0.00 0.00 0.04 0.01 0.00 0.00 0.01 4.68 0.00 0.00 0.01 0.08

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.07 0.00 0.00
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.01
all 0.02 0.03 0.00 0.05 0.02 0.31 0.01 0.24 0.39 0.02 0.02 0.00 6.06
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Table C.32 Confusion matrix, flooded compartments; t∗ = 250 s; training: MC20; validation:
MC50b; method: SVM3

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 16.92 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.04 0.13 0.00 0.00 0.00 0.00 13.14 0.00 0.00 0.00 0.00 0.00 0.10
3 0.00 0.00 13.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.01 13.42 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
5 0.05 0.00 0.00 0.08 16.40 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.01 0.00 0.00 0.00 0.00 1.52 0.00 0.00 0.00 0.00 0.00 0.00 0.28
2,3 0.01 0.01 0.00 0.01 0.00 0.00 5.69 0.00 0.00 0.01 0.01 0.00 0.04
3,4 0.00 0.01 0.01 0.06 0.00 0.00 0.01 5.95 0.03 0.01 0.01 0.00 0.03
4,5 0.00 0.00 0.00 0.01 0.05 0.00 0.00 0.03 2.15 0.00 0.00 0.00 2.59

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.07 0.00 0.01
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.01 0.00 0.00 0.01 0.02
all 0.01 0.01 0.01 0.04 0.02 0.34 0.04 0.25 0.16 0.12 0.01 0.01 6.17

Table C.33 Confusion matrix, flooded compartments; t∗ = 250 s; training: MC20; validation:
MC50b; method: SVMG

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 16.88 0.00 0.00 0.16 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.04 13.32 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.03
3 0.00 0.00 13.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.02 13.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.02 0.03 0.00 0.72 15.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.01 0.00 0.00 0.00 0.00 1.50 0.00 0.00 0.00 0.00 0.00 0.00 0.30
2,3 0.02 0.19 0.00 0.02 0.01 0.00 5.50 0.00 0.00 0.00 0.00 0.00 0.04
3,4 0.00 0.00 0.05 0.08 0.00 0.00 0.01 5.82 0.10 0.00 0.00 0.00 0.05
4,5 0.01 0.01 0.00 0.05 0.00 0.00 0.00 0.01 4.72 0.00 0.00 0.00 0.05

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.00 0.00 0.03 0.00 0.03
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.00 0.00 0.00
all 0.02 0.11 0.00 0.06 0.02 0.39 0.03 0.25 0.50 0.00 0.00 0.00 5.79

Table C.34 Confusion matrix, flooded compartments; t∗ = 500 s; training: MC20; validation:
MC50b; method: DT

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.01 13.33 0.00 0.00 0.01 0.00 0.04 0.00 0.00 0.00 0.00 0.00 0.03
3 0.00 0.00 13.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 13.39 0.02 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.01
5 0.00 0.00 0.00 0.06 16.46 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.00 0.00 0.00 0.00 0.00 1.52 0.00 0.00 0.00 0.00 0.00 0.00 0.28
2,3 0.00 0.06 0.00 0.00 0.00 0.00 5.66 0.00 0.00 0.00 0.01 0.00 0.05
3,4 0.00 0.01 0.00 0.05 0.01 0.00 0.01 5.83 0.06 0.00 0.00 0.01 0.14
4,5 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.07 4.30 0.00 0.00 0.01 0.43

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.05 0.00 0.02
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.02 0.00 0.00 0.00 0.01
all 0.01 0.03 0.00 0.01 0.02 0.34 0.02 0.20 0.37 0.02 0.02 0.00 6.14
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Table C.35 Confusion matrix, flooded compartments; t∗ = 500 s; training: MC20; validation:
MC50b; method: DTB

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.07 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.31 12.27 0.00 0.00 0.00 0.00 0.74 0.00 0.00 0.00 0.00 0.00 0.00
3 0.00 0.00 13.69 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.09 13.28 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.00 0.00
5 0.00 0.01 0.01 0.72 15.75 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

1,2 0.04 0.00 0.00 0.00 0.00 1.64 0.00 0.00 0.01 0.09 0.00 0.00 0.04
2,3 0.01 0.08 0.01 0.00 0.00 0.00 5.56 0.00 0.00 0.04 0.06 0.00 0.04
3,4 0.00 0.00 0.03 0.19 0.02 0.00 0.00 4.99 0.19 0.00 0.01 0.69 0.00
4,5 0.00 0.01 0.01 0.01 0.11 0.00 0.00 0.04 3.83 0.00 0.00 0.75 0.08

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.00 0.00 0.00
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.09 0.00 0.00
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.05 0.00
all 0.15 0.01 0.03 0.00 0.72 0.75 0.10 0.10 0.34 0.45 0.09 0.25 4.21

Table C.36 Confusion matrix, flooded compartments; t∗ = 500 s; training: MC20; validation:
MC50b; method: RF

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.01 13.39 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01
3 0.00 0.00 13.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 13.42 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.00 0.01 16.52 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.00 0.00 0.00 0.00 0.00 1.52 0.00 0.00 0.00 0.00 0.00 0.00 0.28
2,3 0.00 0.06 0.00 0.00 0.00 0.00 5.70 0.00 0.00 0.00 0.00 0.00 0.02
3,4 0.00 0.00 0.00 0.04 0.01 0.00 0.00 5.96 0.03 0.00 0.00 0.01 0.06
4,5 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.01 4.63 0.00 0.00 0.01 0.16

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.02
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.07 0.00 0.01
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.01 0.00
all 0.01 0.04 0.00 0.01 0.03 0.26 0.01 0.19 0.37 0.01 0.01 0.02 6.23

Table C.37 Confusion matrix, flooded compartments; t∗ = 500 s; training: MC20; validation:
MC50b; method: KNN2

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.02 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.02 13.37 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.01
3 0.00 0.00 13.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 13.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.02 0.01 0.05 16.45 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.00 0.00 0.00 0.00 0.00 1.61 0.00 0.00 0.00 0.00 0.00 0.00 0.19
2,3 0.01 0.16 0.10 0.00 0.00 0.00 5.50 0.00 0.00 0.00 0.00 0.00 0.01
3,4 0.00 0.03 0.11 0.14 0.00 0.00 0.01 5.54 0.21 0.00 0.00 0.00 0.07
4,5 0.00 0.01 0.00 0.00 0.03 0.00 0.00 0.06 4.68 0.00 0.00 0.00 0.05

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.04 0.00 0.01
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.00 0.00 0.01
all 0.03 0.06 0.01 0.02 0.05 0.35 0.02 0.25 0.45 0.01 0.01 0.00 5.93
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Table C.38 Confusion matrix, flooded compartments; t∗ = 500 s; training: MC20; validation:
MC50b; method: KNN3

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.02 0.00 0.02 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.03 13.36 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.01
3 0.00 0.00 13.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 13.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.03 0.01 0.05 16.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.00 0.00 0.00 0.00 0.00 1.62 0.00 0.01 0.00 0.00 0.00 0.00 0.17
2,3 0.01 0.17 0.11 0.00 0.00 0.00 5.47 0.00 0.00 0.00 0.00 0.00 0.02
3,4 0.00 0.06 0.13 0.13 0.00 0.00 0.01 5.46 0.24 0.00 0.00 0.00 0.08
4,5 0.00 0.02 0.00 0.00 0.03 0.00 0.00 0.07 4.66 0.00 0.00 0.00 0.06

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.00 0.00 0.04 0.00 0.01
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.04 0.00 0.00 0.00 0.01
all 0.03 0.10 0.00 0.02 0.05 0.37 0.02 0.25 0.47 0.01 0.01 0.00 5.87

Table C.39 Confusion matrix, flooded compartments; t∗ = 500 s; training: MC20; validation:
MC50b; method: KNNC

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.03 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.02 13.36 0.00 0.00 0.00 0.00 0.01 0.00 0.01 0.00 0.00 0.00 0.02
3 0.00 0.00 13.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.01 0.00 0.00 13.42 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.03 0.01 0.06 16.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.00 0.00 0.00 0.00 0.00 1.62 0.00 0.00 0.01 0.00 0.00 0.00 0.17
2,3 0.01 0.16 0.09 0.00 0.00 0.00 5.51 0.00 0.00 0.00 0.00 0.00 0.01
3,4 0.00 0.02 0.11 0.13 0.01 0.00 0.01 5.52 0.24 0.00 0.00 0.00 0.07
4,5 0.00 0.02 0.00 0.00 0.01 0.00 0.00 0.05 4.68 0.00 0.00 0.00 0.08

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02
2,3,4 0.00 0.00 0.01 0.00 0.00 0.00 0.01 0.04 0.00 0.00 0.04 0.00 0.01
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.00 0.00 0.01
all 0.02 0.05 0.01 0.02 0.04 0.35 0.02 0.22 0.45 0.01 0.00 0.00 5.99

Table C.40 Confusion matrix, flooded compartments; t∗ = 500 s; training: MC20; validation:
MC50b; method: KNNW

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 17.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.01 13.38 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.02
3 0.00 0.00 13.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 13.44 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.00 0.01 0.03 16.49 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.00 0.00 0.00 0.00 0.00 1.57 0.00 0.00 0.00 0.00 0.00 0.00 0.23
2,3 0.00 0.11 0.06 0.00 0.00 0.00 5.60 0.00 0.00 0.00 0.00 0.00 0.01
3,4 0.00 0.02 0.05 0.11 0.00 0.00 0.01 5.65 0.17 0.00 0.00 0.00 0.08
4,5 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.03 4.60 0.00 0.00 0.01 0.16

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.07 0.00 0.00
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.03 0.00 0.00 0.01 0.01
all 0.03 0.04 0.01 0.01 0.05 0.32 0.01 0.20 0.39 0.01 0.01 0.00 6.10
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Table C.41 Confusion matrix, flooded compartments; t∗ = 500 s; training: MC20; validation:
MC50b; method: SVM1

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 16.93 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.03 13.32 0.01 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.05
3 0.00 0.00 13.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.05 13.38 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.04 0.00 0.01 0.28 16.20 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.01 0.00 0.00 0.00 0.00 1.51 0.00 0.00 0.00 0.00 0.00 0.00 0.29
2,3 0.01 0.10 0.00 0.03 0.00 0.00 5.58 0.00 0.00 0.00 0.01 0.00 0.06
3,4 0.00 0.00 0.04 0.04 0.01 0.00 0.00 5.89 0.03 0.00 0.00 0.00 0.10
4,5 0.02 0.00 0.00 0.01 0.00 0.00 0.00 0.02 4.75 0.00 0.00 0.00 0.05

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00 0.00 0.00 0.00 0.08
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04 0.03 0.00 0.00 0.00 0.00
all 0.03 0.07 0.00 0.03 0.03 0.41 0.02 0.28 0.54 0.00 0.00 0.00 5.76

Table C.42 Confusion matrix, flooded compartments; t∗ = 500 s; training: MC20; validation:
MC50b; method: SVM2

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 16.94 0.00 0.00 0.10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.02 13.34 0.00 0.01 0.00 0.00 0.02 0.00 0.00 0.00 0.01 0.00 0.02
3 0.00 0.00 13.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.01 13.42 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00
5 0.02 0.01 0.00 0.11 16.38 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.00 0.00 0.00 0.00 0.00 1.51 0.00 0.00 0.00 0.00 0.00 0.00 0.30
2,3 0.00 0.06 0.00 0.01 0.00 0.00 5.66 0.00 0.00 0.00 0.01 0.00 0.03
3,4 0.00 0.01 0.02 0.05 0.00 0.00 0.01 5.97 0.04 0.00 0.00 0.00 0.01
4,5 0.01 0.00 0.00 0.01 0.00 0.00 0.00 0.02 4.73 0.00 0.00 0.00 0.07

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.03 0.00 0.00 0.06 0.00 0.01
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.01
all 0.01 0.03 0.00 0.03 0.02 0.30 0.01 0.25 0.40 0.02 0.01 0.00 6.09

Table C.43 Confusion matrix, flooded compartments; t∗ = 500 s; training: MC20; validation:
MC50b; method: SVM3

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 16.95 0.00 0.03 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.01 13.37 0.00 0.00 0.00 0.00 0.01 0.00 0.00 0.00 0.00 0.00 0.01
3 0.00 0.00 13.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.01 13.40 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00
5 0.01 0.00 0.00 0.08 16.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.00 0.00 0.00 0.00 0.00 1.55 0.00 0.00 0.00 0.00 0.00 0.00 0.26
2,3 0.01 0.06 0.01 0.01 0.00 0.00 5.63 0.00 0.00 0.00 0.00 0.00 0.07
3,4 0.00 0.02 0.01 0.04 0.00 0.00 0.01 5.96 0.00 0.00 0.00 0.01 0.06
4,5 0.01 0.01 0.00 0.01 0.01 0.00 0.00 0.17 0.21 0.00 0.00 0.00 4.43

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00 0.00 0.02
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00 0.00 0.07 0.00 0.02
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.04
all 0.01 0.04 0.00 0.02 0.02 0.30 0.01 0.22 0.16 0.04 0.01 0.00 6.34
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Table C.44 Confusion matrix, flooded compartments; t∗ = 500 s; training: MC20; validation:
MC50b; method: SVMG

True Predicted Class (%)
Class 1 2 3 4 5 1,2 2,3 3,4 4,5 1,2,3 2,3,4 3,4,5 all

1 16.93 0.00 0.00 0.07 0.04 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
2 0.02 13.33 0.00 0.01 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.05
3 0.00 0.00 13.62 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
4 0.00 0.00 0.00 13.43 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
5 0.00 0.04 0.00 0.40 16.09 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

1,2 0.00 0.00 0.00 0.00 0.00 1.59 0.00 0.00 0.00 0.00 0.00 0.00 0.22
2,3 0.00 0.11 0.00 0.01 0.01 0.00 5.62 0.00 0.00 0.00 0.00 0.00 0.04
3,4 0.00 0.01 0.03 0.05 0.01 0.00 0.00 5.89 0.08 0.00 0.00 0.00 0.05
4,5 0.00 0.02 0.00 0.01 0.00 0.00 0.00 0.00 4.73 0.00 0.00 0.00 0.09

1,2,3 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.04
2,3,4 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.02 0.00 0.00 0.03 0.00 0.04
3,4,5 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.03 0.04 0.00 0.00 0.00 0.00
all 0.00 0.07 0.00 0.03 0.02 0.43 0.01 0.26 0.45 0.00 0.00 0.00 5.91

Figure C.1 Predicted over obseved values, t f ; t∗ = 250 s and t∗ = 500 s; training: MC20;
validation: MC50b; method: DT

Figure C.2 Predicted over obseved values, t f ; t∗ = 250 s and t∗ = 500 s; training: MC20;
validation: MC50b; method: DTB

169



Figure C.3 Predicted over obseved values, t f ; t∗ = 250 s and t∗ = 500 s; training: MC20;
validation: MC50b; method: RF

Figure C.4 Predicted over obseved values, t f ; t∗ = 250 s and t∗ = 500 s; training: MC20;
validation: MC50b; method: KNN2

Figure C.5 Predicted over obseved values, t f ; t∗ = 250 s and t∗ = 500 s; training: MC20;
validation: MC50b; method: KNN3
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Figure C.6 Predicted over obseved values, t f ; t∗ = 250 s and t∗ = 500 s; training: MC20;
validation: MC50b; method: KNNC

Figure C.7 Predicted over obseved values, t f ; t∗ = 250 s and t∗ = 500 s; training: MC20;
validation: MC50b; method: KNN2

Figure C.8 Predicted over obseved values, t f ; t∗ = 250 s and t∗ = 500 s; training: MC20;
validation: MC50b; method: SVM1

171



Figure C.9 Predicted over obseved values, t f ; t∗ = 250 s and t∗ = 500 s; training: MC20;
validation: MC50b; method: SVM2

Figure C.10 Predicted over obseved values, t f ; t∗ = 250 s and t∗ = 500 s; training: MC20;
validation: MC50b; method: SVM3

Figure C.11 Predicted over obseved values, t f ; t∗ = 250 s and t∗ = 500 s; training: MC20;
validation: MC50b; method: SVMG
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