Novosti
Više novosti1. kolovoza 2024.
Call for Participation in the Pilot course Transversal Skills in Applied Artificial Intelligence (TSAAI)
As a part of the project Transversal Skills in Applied Artificial Intelligence (TSAAI), Erasmus+ 2021-1-ES01-KA220-HED-000030125 (2022-2025), a pilot course is organised for the interested students.
30. ožujka 2021.
SSIP Call for applications is now open
The Call for applications for SSIP 2021 is now open. Application deadline is 17 May 2021. A limited number of stipends for visiting students is available. More information is available on the <a href="https://ssip2021.riteh.hr/2021/03/24/call-for-applications-is-now-open/">SSIP website</a>.
31. siječnja 2021.
SSIP preparations in progress
The 29th Summer School on Image Processing will be held in July 2021 at the Faculty of Engineering in Rijeka, Croatia. The preparations are underway. More information is available on the [SSIP website](http://ssip2021.riteh.hr).
Voditelj Prof. dr. sc. Ivan Štajduhar
Email adresa ivan.stajduhar@riteh.uniri.hr +385 51 651448, int. 2448 (Ured) 1-49b
Istraživači
-
Doc. dr. sc. Goran Mauša
-
Izv. prof. dr. sc. Jonatan Lerga
-
Franko Hržić, doktorand
-
Teo Manojlović, doktorand
-
Arian Skoki, doktorand
-
Mateja Napravnik, doktorand
-
Robert Baždarić, poslijedoktorand
Projekti
-
“Machine Learning for Knowledge Transfer in Medical Radiology”, Croatian Science Foundation research project IP-2020-02-3770 (2021-2024).
-
“European Network for assuring food integrity using non-destructive spectral sensors”, COST Action CA19145 (2020-2024).
-
“Hyperspectral Image Analysis Using Machine Learning and Adaptive Data-Driven Filtering”, bilateral project in cooperation with the Medical Physics Group at the Faculty of Mathematics and Physics, Ljubljana, Slovenia (2020-2022).
-
“Development of machine-learning-based techniques for illness and injury detection in medical images”, University of Rijeka grant uniri-tehnic-18-15 (2019-2022).
-
“Computer-aided digital analysis and classification of signals”, University of Rijeka grant uniri-tehnic-18-17 (2019-2022).
-
“A network for gravitational waves, geophysics and machine learning”, COST Action CA17137 (2018-2022).
-
“Adapting multi-objective genetic programming for solving complex combinatorial problems”, University of Rijeka grant 18.10.2.1.01 (2018-2019).
-
“An empirical comparison of machine learning based approaches for code smell detection”, bilateral project in cooperation with the Information Systems Laboratory (M. Heričko), Maribor, Slovenia (2018-2019).
-
“Thorax motion supervision in radiotherapy using machine learning techniques”, bilateral project in cooperation with the Medical Physics Group at the Faculty of Mathematics and Physics, Ljubljana, Slovenia (2018-2019).
-
“RadiologyNet: Machine Learning for Knowledge Transfer”, University of Rijeka grant 16.09.2.2.05 (2017).
-
“Implementation of Time-Frequency and other Advanced Algorithms to Biomedical Signal Analysis”, University of Rijeka grant 16.09.2.2.04 (2017).
-
“Automatic Detection of Knee Ligament Injury from Magnetic Resonance Scans”, The Scientific & Technological Research Council of Turkey (TUBITAK), in collaboration with the Computer Vision and Pattern Analysis Laboratory (VPALAB), Sabanci University, Istanbul, Turkey (2015).
-
“Analysis and innovative approaches to developing, managing and applying complex software systems”, University of Rijeka grant 13.09.2.2.16 (2014-2018).
-
“Evolving Software Systems: Analysis and Innovative Approaches for Smart Management”, CSF research project 7945 (2015-2018).
Radovi u časopisima
-
M. Njirjak, E. Otović, D. Jozinović, J. Lerga, G. Mauša, A. Michelini, I. Štajduhar. The Choice of Time–Frequency Representations of Non-Stationary Signals Affects Machine Learning Model Accuracy: A Case Study on Earthquake Detection from LEN-DB Data. Volume 10 (6), 965, 2022.
Mathematics: WoS JCR Q1, Scimago Q2, impact factor 2.258 -
E. Otović, M. Njirjak, D. Jozinović, G. Mauša, A. Michelini, I. Štajduhar. Intra-domain and cross-domain transfer learning for time series data – How transferable are the features?, Vol. 239, 107976, 2022.
Knowledge-Based Systems: WoS JCR Q1, Scimago Q1, impact factor 8.038 -
D. Jozinović, A. Lomax, I. Štajduhar, A. Michelini. Transfer learning: Improving neural network based prediction of earthquake ground shaking for an area with insufficient training data, Vol. 229, Issue 1, Pages 704-718.
Geophysical Journal International: WoS JCR Q2, Scimago Q1, impact factor 2.934 -
F. Hržić, M. Janisch, I. Štajduhar, J. Lerga, E. Sorantin, S. Tschauner. Modeling Uncertainty in Fracture Age Estimation from Pediatric Wrist Radiographs, Vol. 9, Issue 24, 3227, 2021.
Mathematics: WoS JCR Q1, Scimago Q2, impact factor 2.258 -
F. Hržić, I. Žužić, S. Tschauner, I. Štajduhar. Cast suppression in radiographs by generative adversarial networks, Vol 28, Issue 12, pp. 2687-2694, 2021.
Journal of the American Medical Informatics Association: WoS JCR Q1, Scimago Q1, impact factor 4.497 -
T. Manojlović, I. Štajduhar. Deep Semi-Supervised Algorithm for Learning Cluster-Oriented Representations of Medical Images Using Partially Observable DICOM Tags and Images, Vol. 11, Issue 10, 1920, 2021.
Diagnostics: WoS JCR Q2, Scimago Q3, impact factor 3.706 -
F. Nikolić, I. Štajduhar, M. Čanađija. Casting Microstructure Inspection Using Computer Vision: Dendrite Spacing in Aluminum Alloys, Volume 11, Issue 5, 756, 2021.
Metals: WoS JCR Q2, Scimago Q1, impact factor 2.351 -
S. Ljubic, F. Hržić, A. Salkanovic, I. Štajduhar. Augmenting Around-Device Interaction by Geomagnetic Field Built-in Sensor Utilization, Vol. 21, Issue 9, 3087, 2021.
Sensors: WoS JCR Q1, Scimago Q2, impact factor 3.275 -
F. Hržić, S. Tschauner, E. Sorantin, I. Štajduhar. XAOM: A method for automatic alignment and orientation of radiographs for computer-aided medical diagnosis, Vol. 132, pp. 104300:1-12, 2021.
Computers in biology and medicine: WoS JCR Q1, Scimago Q2, impact factor 3.434 -
B. Petrovska, E. Zdravevski, P. Lameski, R. Corizzo, I. Štajduhar, J. Lerga. Deep Learning for Feature Extraction in Remote Sensing: A Case-Study of Aerial Scene Classification, Vol. 20, Issue 14, 3906, 2020.
Sensors: WoS JCR Q1, Scimago Q2, impact factor 3.275 -
D. Jozinović, A. Lomax, I. Štajduhar, A. Michelini. Rapid prediction of earthquake ground shaking intensity using raw waveform data and a convolutional neural network, Vol. 222, Issue 2, Pages 1379-1389, 2020.
Geophysical journal international: WoS JCR Q2, Scimago Q1, impact factor 2.777 -
I. Krsnik, G. Glavaš, M. Krsnik, D. Miletić, I. Štajduhar. Automatic Annotation of Narrative Radiology Reports, Vol. 10 (4), 196, 2020.
Diagnostics: WoS JCR Q1, Scimago Q2, impact factor 3.110 -
G.M. Jadav, J. Lerga, I. Štajduhar. Adaptive filtering and analysis of EEG signals in the time-frequency domain based on the local entropy, Vol. 2020, Issue 1, Pages 1-18, 2020.
EURASIP Journal on Advances in Signal Processing: WoS JCR Q3, Scimago Q2, impact factor 1.749 -
A. Skoki, S. Ljubić, J. Lerga, I. Štajduhar. Automatic Music Transcription for Traditional Woodwind Instruments Sopele, Volume 128, Pages 340-347, 2019.
Pattern Recognition Letters:WoS JCR Q2, Scimago Q1, impact factor 2.810 -
D. Kalafatovic, G. Mauša, T. Todorovski, E. Giralt. Algorithm-supported, mass and sequence diversity-oriented random peptide library design, Vol. 11, 11:25, pp. 1 – 15, 2019.
Journal of Cheminformatics: Q1 (JCR), Q1 (WoS), impact factor 3.893 -
Hržić, F.; Štajduhar, I.; Tschauner, S.; Sorantin, E., Lerga, J.: Local-Entropy Based Approach for X-Ray Image Segmentation and Fracture Detection, vol. 21, no. 4, pp. 338:1-18, 2019.
Entropy: Q2 (JCR), Q2 (WoS), impact factor 2.305 -
Kirinčić, V.; Čeperić, E.; Vlahinić, S.; Lerga, J.: Support Vector Machine State Estimation, Applied Artificial Intelligence, vol. , no. , pp. , 2019.
Applied Artificial Intelligence: Q3 (JCR), Q4 (WoS), impact factor 0.587 -
Lerga, J.; Mandić, I.; Peić, H.; Brščić, D.: An adaptive method based on the improved LPA-ICI algorithm for MRI enhancement, The Imaging Science Journal, vol. 66, no. 6, pp. 372-381, 2018.
The Imaging Science Journal: Q2 (JCR), Q4 (WoS), impact factor 0.366 -
Mandić, I.; Peić, H.; Lerga, J.; Štajduhar, I.: Denoising of X-ray Images Using the Adaptive Algorithm Based on the LPA-RICI Algorithm, Journal of Imaging, vol. 4, no. 2, pps. 15, 2018.
Journal of Imaging: WoS CC -
Lerga, J.; Kirinčić, V.; Franković, D.; Štajduhar, I.: Adaptive State Estimator With Intersection of Confidence Intervals Based Preprocessing, International Journal of Electrical Power & Energy Systems, vol. 102, pp. 413-420, 2018.
International Journal of Electrical Power & Energy Systems: Q1 (JCR), Q1 (WoS), impact factor 3.610 -
Lerga, J.; Grbac, E.; Sucic, V.; Saulig, N.: Adaptive Methods for Video Denoising Based on the ICI, FICI, and RICI Algorithms, Tehnički vjesnik, vol. 25, no. suppl. 1, pp. 1-6, 2018.
Tehnički vjesnik: Q2 (JCR), Q4 (WoS), impact factor 0.686 -
G. Mauša, T. Galinac Grbac. Co-evolutionary Multi-Population Genetic Programming for Classification in Software Defect Prediction: an Empirical Case Study, Vol. 55, pp. 331 – 351, 2017.
Applied soft computing: Q1 (JCR), Q1 (WoS), impact factor 3.907 -
Štajduhar, I.; Tomić, M.; Lerga, J.: Mirroring quasi-symmetric organ observations for reducing problem complexity, Expert Systems with Applications, vol. 85, pp. 318–334, 2017.
Expert Systems with Applications: Q1 (JCR), Q1 (WoS), impact factor 3.768 -
Volaric, I.; Lerga, J.; Sucic, V.: A Fast Signal Denoising Algorithm Based on the LPA-ICI Method for Real-Time Applications, Circuits, Systems, and Signal Processing, vol. 36, pp. 4653-4669, 2017.
Circuits, Systems, and Signal Processing: Q2 (JCR), Q2 (WoS), impact factor 1.998 -
Lerga, J.; Saulig, N.; Mozetič, V.: Algorithm Based On the Short-Term Rényi Entropy And IF Estimation For Noisy EEG Signals Analysis, Computers In Biology And Medicine, vol. 80, pp. 1-13, 2017.
Computers In Biology And Medicine: Q2 (JCR), Q2 (WoS), impact factor 2.115 -
I. Štajduhar, M. Mamula, D. Miletić, G. Unal, Semi-automated detection of anterior cruciate ligament injury from MRI, Volume 140, Pages 151–164, 2017.
Computer Methods and Programs in Biomedicine: Q1 (JCR), Q1 (WoS), impact factor 2.674 -
Šegon, G.; Lerga, J.; Sucic, V.: Improved LPA-ICI-Based Estimators Embedded in a Signal Denoising Virtual Instrument, Signal, Image and Video Processing, vol. 11, no. 2, pp. 211-217, 2017.
Signal, Image and Video Processing: Q2 (JCR), Q3 (WoS), impact factor 1.643 -
G. Mauša, T. Galinac Grbac, B. Dalbelo Bašić. A Systematic Data Collection Procedure for Software Defect Prediction, Vol. 13 (1), 2016, pp. 173–197, 2016.
Computer Science and Information Systems Journal -
Bujak M; Ratkaj I.; Markova-Car E.; Jurisic D.; Horvatic A.; Vucinic S.; Lerga J.; Baus Loncar M.; Pavelic K.; Kraljevic Pavelic S.: Inflammatory Gene Expression Upon TGF-b1-Induced p38 Activationin Primary Dupuytren’s Disease Fibroblasts, Frontiers in Molecular Biosciences, vol. 2; pp. 1-9, 2015.
-
Lerga, J.; Grbac E.; Sucic, V.: An ICI Based Algorithm for Fast Denoising of Video Signals, Automatika, vol. 55, no. 3, pp. 351-358, 2014.
Automatika: Q3 (JCR), Q4 (WoS), impact factor 0.307 -
Sucic, V.; Lerga, J.; Boashash, B.: Multicomponent Noisy Signal Adaptive Instantaneous Frequency Estimation Using Components Time Support Information, IET Signal Processing, vol. 8, no. 3, pp. 277-284, 2014.
IET Signal Processing: Q2 (JCR), Q3 (WoS), impact factor 1.495 -
Lerga, J.; Franusic, M.; Sucic, V.: Parameters Analysis for the Time-Varying Automatically Adjusted LPA Based Estimators, Journal of Automation and Control Engineering, vol. 2, no. 3; pp. 203-208, 2014.
-
Sucic, V.; Lerga, J.; Vrankic, M.: Adaptive Filter Support Selection for Signal Denoising Based on the Improved ICI Rule, Digital Signal Processing, vol. 23, no. 1, pp. 65-74, 2013.
Digital Signal Processing: Q1 (JCR), Q2 (WoS), impact factor 1.495 -
I. Štajduhar, B. Dalbelo Bašić, Uncensoring censored data for machine learning: A likelihood-based approach, Volume 39, Issue 8, 2012, Pages 7226-7234
Expert Systems with Applications: Q1 (JCR), Q1 (WoS), impact factor 3.768 -
Lerga, J.; Sucic, V.; Grbac, E.: An Adaptive Method for Video Denoising Based on the ICI Rule, Engineering Review, vol. 32, no. 1; pp. 33-40, 2012.
-
Lerga, J.; Sucic, V.; Vrankić, M.: Separable Image Denoising Based on the Relative Intersection of Confidence Intervals Rule, Informatica, vol. 22, no. 3, pp. 383-394, 2011.
Informatica: Q2 (JCR), Q1 (WoS), impact factor 1.627 -
Lerga J.; Sucic, V.; Boashash, B.: An Efficient Algorithm for Instantaneous Frequency Estimation of Nonstationary Multicomponent Signals in Low SNR, EURASIP Journal on Advances in Signal Processing, vol. 2011, pp. 1-16, 2011.
EURASIP Journal on Advances in Signal Processing: Q2 (JCR), Q3 (WoS), impact factor 0.811 -
I. Štajduhar, B. Dalbelo Bašić, Learning Bayesian networks from survival data using weighting censored instances, Volume 43, Issue 4, 2010, Pages 613-622
Journal of Biomedical Informatics: Q1 (JCR), Q1 (WoS), 2.882 -
Lerga, J.; Sucic, V.: Nonlinear IF Estimation Based on the Pseudo WVD Adapted Using the Improved Sliding Pairwise ICI Rule, IEEE Signal Processing Letters, vol. 16, no. 11, pp. 953-956, 2009.
IEEE Signal Processing Letters: Q1 (JCR), Q2 (WoS), impact factor 1.173 -
I. Štajduhar, B. Dalbelo Bašić, N. Bogunović, Impact of censoring on learning Bayesian networks in survival modelling, Volume 47, Issue 3, 2009, Pages 199-217
Artificial Intelligence in Medicine: Q1 (JCR), Q1 (WoS), impact factor 2.879 -
Lerga, J.; Vrankic, M.; Sucic, V.: A Signal Denoising Method Based on the Improved ICI Rule, IEEE Signal Processing Letters, vol. 15, pp. 601-604, 2008.
IEEE Signal Processing Letters: Q1 (JCR), Q2 (WoS), impact factor 1.203
Nastavna oprema
Meta 2 AR development Kit |
Dobot Magician Educational + extras |
DiddyBorg |
Bonaca GPU workstation |
Istraživačka oprema
Maestral GPU workstation (Gigabyte G492-Z51 HPC) |
Široko NAS (Supermicro CSE-847 X10DRI-T4+) |
|
|
SEIPlab old webpage (link)